000216688 001__ 216688
000216688 005__ 20181203024156.0
000216688 0247_ $$2doi$$a10.1134/S1064562415060241
000216688 022__ $$a1064-5624
000216688 02470 $$2ISI$$a000368186800021
000216688 037__ $$aARTICLE
000216688 245__ $$aDynamics of particles with anisotropic mass depending on time and position
000216688 269__ $$a2015
000216688 260__ $$aNew York$$bSpringer Verlag$$c2015
000216688 300__ $$a4
000216688 336__ $$aJournal Articles
000216688 520__ $$aRepresentations of solutions of equations describing the diffusion and quantum dynamics of particles in a Riemannian manifold are discussed under the assumption that the mass of particles is anisotropic and depends on both time and position. These equations are evolution differential equations with secondorder elliptic operators, in which the coefficients depend on time and position. The Riemannian manifold is assumed to be isometrically embedded into Euclidean space, and the solutions are represented by Feynman formulas; the representation of a solution depends on the embedding.
000216688 700__ $$0243113$$aRatiu, T. S.$$g118378$$uEcole Polytech Fed Lausanne, Sect Math, CH-1015 Lausanne, Switzerland
000216688 700__ $$aSmolyanov, O. G.
000216688 773__ $$j92$$k3$$q723-726$$tDoklady Mathematics
000216688 909C0 $$0252609$$pCAG2
000216688 909CO $$ooai:infoscience.tind.io:216688$$particle
000216688 917Z8 $$x180122
000216688 937__ $$aEPFL-ARTICLE-216688
000216688 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000216688 980__ $$aARTICLE