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Abstract The vector channel spectral function at zero spa-
tial momentum is calculated at next-to-leading order in ther-
mal QCD for any quark mass. It corresponds to the imaginary
part of the massive quark contribution to the photon polar-
isation tensor. The spectrum shows a well-defined transport
peak in contrast to both the heavy quark limit studied pre-
viously, where the low frequency domain is exponentially
suppressed at this order, and the naive massless case where
it vanishes at leading order and diverges at next-to-leading
order. From our general expressions, the massless limit can
be taken and we show that no divergences occur if done care-
fully. Finally, we compare the massless limit to results from
lattice simulations.

1 Introduction

In heavy ion collisions, fireballs of quark–gluon plasma are
formed. The QCD matter being strongly interacting, the
quarks and gluons only escape as mesons or hadrons when the
plasma cooled down sufficiently. To reconstruct what hap-
pened at early stages of the collision, we have to resort to
probes that can be traced in experiment and whose proper-
ties are modified in the plasma. For several available probes,
one quantity describes their fate in the plasma: the vector
channel spectral function in medium.

For instance the way bound states such as charmonium
or bottomonium decay into muon pairs [1,2] could tell us
how they are affected by the plasma [3–6]. Another example
is the heavy flavour diffusion coefficient, which describes
how the massive quarks will be diffused or slowed down by
the plasma. This observable is of interest for experiment as
heavy quarks can be tagged and their transverse momentum
distribution studied; see for instance [7,8]. For light quarks,
the zero frequency limit of the spectral function describes the
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electric conductivity [9] and its momentum dependence the
photon or dilepton emission rate [10–12].

In the vacuum, this spectral function is known at five loops
[13] for massless fermions and Taylor expansions in the mass
are known to four loops [14–17]. In the presence of a finite
temperature medium, the two loop massless result has been
known since a long time [18] and the case of large masses
with respect to the temperature M � T was calculated rather
recently [19]. Here we extend the previous calculations to any
mass and discuss the transport part of the spectrum, which is
suppressed in the heavy quark limit and was not obtained in
the previous calculations. We still consider implicitly that the
frequency ω � gT is sufficiently large so that we can neglect
hard thermal loop (HTL) corrections [20] in the fermion
propagators and vertices. Other HTL corrections are of higher
order [19] and will not be addressed here either.

Of course in QCD, the convergence of perturbation theory
is slow due to the largeness of the coupling αs and, moreover,
finite temperature gauge theories suffer from infrared prob-
lems so that the full infrared physics requires nonperturbative
methods. Lattice computations contain the full physics but
are performed in Euclidean time and do not have a direct
access to the Minkowskian spectral function. After measur-
ing the corresponding Euclidean correlator, an analytic con-
tinuation is needed to obtain the desired spectral function.
In the case of discrete numerical data of finite precision the
reconstruction of the spectrum is very hard to perform [21–
24]. The challenge is even bigger here since the Euclidean
correlator is not even continuous at zero Euclidean times
and hence the full analytical continuation is ill defined [25].
That’s where perturbation theory could again be of use, since
the zero Euclidean time limit (or the corresponding large fre-
quency limit of the spectral function) is weakly coupled and
accessible to perturbation theory. This ’large’ perturbative
part (containing zero and possibly finite temperature contri-
butions) could be subtracted from the lattice data [26] or used
as a prior to define the analytical continuation [27].
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In the case of the vector current spectral function consid-
ered here, the Euclidean correlator was computed recently
together with its mass dependence in [28]. In this paper
we complete our program and calculate the related spectral
function i.e. perform the analytic continuation. This is not a
trivial task even though the Euclidean correlator G(τ,p) of
Ref. [28] can be cross checked by convoluting the spectral
function ρ(ω,p) with the finite temperature kernel K (τ, ω):

G(τ,p) =
∫ ∞

0

dω

π
ρ(ω,p)K (τ, ω),

(1)
K (τ, ω) = cosh(ω(τ − β/2))

sinh(ωβ/2)
.

After defining the observables in Sect. 2, we discuss the
calculation in Sect. 3. and refer to appendices for details. In
Sect. 4 we present our results for the spectrum, discuss the
transport coefficients and derive the massless limit, which we
compare to lattice results. Conclusions are given in Sect. 5.

2 Correlators and spectral functions

2.1 Basic setup

We consider the vector current of a massive quark described
by the operator �(τ, x)

Jμ(τ, x) = �̄(τ, x)γμ�(τ, x), (2)

with μ = 0, . . . , d. The object we compute here is the spec-
tral function in medium, which is given by the thermal aver-
age of the current commutator

ρV (ω) =
∫

dt eiωt
∫

dd x

〈
1

2
[Jμ(t, x), Jμ(0, 0)]

〉
T

. (3)

Following [19] we will start from the Euclidean correlator
in frequency space (ωn = 2πnT denote the Matsubara fre-
quencies),

GE (ωn) =
∫ β

0
dτeiωnτ

∫
dd x〈Jμ(τ, x)Jμ(0, 0)〉, (4)

which can be calculated using conventional finite tempera-
ture Feynman rules [9,29,30]. The spectral function can be
determined from the discontinuity of the Euclidean correlator
along the imaginary axis:

ρV (ω) = Disc [GE (−iω)]
= 1

2i
lim

ε→0+[GE (−iω + ε) − GE (−iω − ε)]. (5)

Note that for ω ∼ gT usual perturbation theory breaks down
and would require us to use hard thermal loop (HTL) resum-
mation, which will not be considered here. As was shown in

[19], no infrared divergences occur so that HTL corrections
are subleading for ω � gT .

2.2 Possible applications

One observable defined by this spectral function is the pro-
duction rate of muon pairs from the decay of massive quark
pairs [1,2]. If we suppose that the quark pair is at rest we
have in particular:

dNμμ̄

d4xd4q
= −2e4Z2

3(2π)5ω2

(
1 + 2m2

μ

ω2

) (
1 − 4m2

μ

ω2

) 1
2

×nB(ω)ρV (ω), (6)

where Ze is the charge of the quark and nB the Bose–Einstein
distribution and ω = Eμ+ + Eμ− . The main contribution to
this observable comes form the threshold ω ∼ 2M , where
the spectrum can be obtained more precisely with dedicated
resummations [19,31].

When speaking of heavy flavour diffusion or electric con-
ductivity, the diffusion coefficient D is obtained from the
low energy behaviour of the spectrum. In fact one expects
the spectral function to look like a Lorentzian in the low
energy limit

−ρV (ω)

ω

0<ω<ωUV≈ 3χD
η2
D

η2
D + ω2

, (7)

where χ is the susceptibility, ηD another number called
the drag coefficient and ωUV the scale at which other kind
of physics enter and where the spectrum deviates from a
Lorentzian.1 The diffusion coefficient can then be extracted:

D = − 1

3χ
lim
ω→0

ρV (ω)

ω
. (8)

For a thorough discussion of this formula and the zero fre-
quency limit see for instance Ref. [9].

If the onset of non-transport physics ωUV is well sepa-
rated from the transport peak, another strategy can be used
[32]. The idea is to calculate another observable, the momen-
tum diffusion coefficient κ , which is proportional to the drag
coefficient ηD . It can be extracted from the falloff of the
Lorentzian peak [33]:

κ = 2MkinTηD ≈ −2M2
kinω

2

3χ

ρV (ω)

ω

∣∣∣∣∣
ηD	ω	ωUV

, (9)

1 Note also that ρV (ω > 0) < 0 hence the minus sign.
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where Mkin is the in-medium kinetic mass defined by the low
momentum limit of the dispersion relation.2 The fluctuation–
dissipation theorem finally relates this coefficient to the diffu-
sion coefficient D = 2T 2/κ and hence to the drag coefficient
ηD = κ/(2MkinT ).

The momentum diffusion coefficient can be calculated in
perturbation theory with dedicated resummations [36]. How-
ever, even if the resummations seem to catch the relevant
physics, the convergence of the perturbative series for κ is at
best very slow. In the case of the heavy quarks for instance,
the first non-vanishing contribution arises at O(α2) and the
correction O(α2g) is an order of magnitude larger for typical
heavy ion plasmas [37].

Here we head for another approach, namely a lattice deter-
mination of the low frequency spectral features and we aim
at calculating the perturbative large frequency part, which
is needed to properly analyse the Euclidean lattice data and
extract the low frequency part [26].

3 Outline of the calculation

We now turn to the calculation of the spectral function, fol-
lowing Refs. [19,28,31,38].

3.1 Leading order and notations

At leading order the only diagram is

where the squares denotes the current insertion and the lines
the quark propagator. Performing the Wick contractions and
the trace algebra, we get at leading order (LO)

(10)

where and denotes the sum integrals over bosonic
and fermionic matsubara frequencies. The spectrum is then
given by

where Q = (−iω ± ε, 0) will be set in the process of tak-
ing the discontinuity. Note that the first term in Eq. (10) is

2 Namely the velocity dependence of the free energy is expanded as
F(v) = Mrest + Mkinv

2/2 + O(v4).

independent of Q and does not contribute to the spectrum.
To simplify the following expressions in both the LO and
the next-to-leading order (NLO), we introduce the following
notations:

(11)

(12)

with �(P) = P2 − M2, so that at leading order,

ρV
LO(ω) = −2Nc(4M

2 + 2ω2)I11(ω). (13)

All the relevant I are calculated in Appendix B and in par-
ticular:

I11(ω) = θ(ω − 2M)

√
ω2 − 4M2

16πω
tanh

( ω

4T

)
(14)

×
[

1 + ε

(
2 + ln

μ̄2

ω2 − 4M2

)]

+πωδ(ω)

∫
p

n′
F(Ep)

2E2
p

, (15)

where we introduced the notation E2
p = p2 + M2,

∫
p =∫ dd p

(2π)d
and set d = 3 − 2ε.

3.2 Next-to-leading order

At leading order the diagrams are:

where the curly line denotes the gluon propagator. After per-
forming the Wick contractions and the trace algebra, we get
the NLO in terms of the master sum integrals defined in Eqs.
(11):
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ρV
NLO

4NcCFg2 = 4(1 − ε)2 I 0
12000 − 4(1 − ε)I 0

11100

+ 8(1 − ε)M2 I 0
12100 − 4(1 − ε)2 I 0

02100

+ 8(1 − ε)I 0
01110

− 8(2M2 + ω2(1 − ε))I 0
11110

+ 4(1 − ε)I 0
10110 + 8M2(2M2

+ω2(1 − ε))I 0
12110

− 4(1 − ε)(2M2 + ω2(1 − ε))I 0
02110

− 8(1 − ε)2 I 1
11110

− 2(1 − ε)I 0−11111 + 2(2M2ε

+ω2(2 − ε − ε2))I 0
01111

+ 2(4M4 − 2M2ω2ε − ω4(1 − ε))I 0
11111

− 4(1 − ε)I 0
11010 + 4(1 − ε)(2M2

+ω2(1 − ε))I 0
12010. (16)

Note that the first four terms are independent of ω and do not
contribute to the spectral function.

3.3 Renormalisation

The previous NLO expression (16) is UV divergent but is
finite after redefinition of the mass. The counterterms for the
currents read

ρ
V,CT
NLO

4NcCFg2 = δM2

g2CF

1

4Nc

∂ρV
LO

∂M2 (17)

with

1

4Nc

∂ρV
LO

∂M2 = (4M2 + 2ω2(1 − ε))I21 − 2I11 − 2(1 − ε)I20

(18)

and using the pole mass scheme as in Ref. [28], we set

δM2 = −6g2CFM2

(4π)2

(
1

ε
+ ln

μ̄2

M2 + 4

3

)

= −g2CF

∫
k

(2 − 2ε)(Epk − k) + 2M2

�−+ + 2M2

�++
2kEpk

, (19)

where we denoted Epk = Ep+k, k = |k| and �±± = k ±
Ep ± Epk and of course the last integral is independent of p.

3.4 Thermal correction to the mass

After subtraction of the counterterms, the spectral function
is finite everywhere but at the threshold ω = 2M . The diver-
gence there comes from thermal corrections, in fact one can
rewrite the whole spectral function as

ρV (ω, M2) = ρV
LO(ω, M2) + δM2

T
∂ρV

LO(ω, M2)

∂M2

+ρ̄V
NLO(ω, M2) + O(g4), (20)

where

ρ̄V
NLO = ρV

NLO − δM2
T

∂ρV
LO

∂M2 (21)

and the term δM2
T

∂ρV
LO (ω,M2)

∂M2 is actually responsible for the
divergence. In fact we can resum this contribution by redefin-
ing the mass M2 → M2 + δM2

T :

ρV (ω, M2) = ρV
LO(ω, M2 + δM2

T )

+ρ̄V
NLO(ω, M2 + δM2

T ) + O(g4). (22)

The explicit shift δM2
T , is the thermal contribution to the

dispersion relation, which, for a massless fermion is the well-
known expression

δM2
T = g2CF

∫ ∞

0

dk

π2 k(nB(k) + nF(k)) = g2CFT 2

4
(23)

and for a massive fermion, the less well-known [39] expres-
sion

δM2
T

g2CF
= 2

∫
k

[
nB(k)

k

+nF(Epk)

Epk

(
1 − M2

�++�−−
− M2

�+−�−+

)]

=
∫ ∞

0

dk

π2

[
k nB(k)

+k2nF(Ek)

Ek

(
1 + M2

2pk
ln

∣∣∣∣k − p

k + p

∣∣∣∣
) ]

, (24)

which actually depends on the integration variable p. In the
heavy quark limit M � T , the expression simplifies again
[34,35] and we get

δM2
T = g2CFT 2

6
. (25)

As a summary, to avoid divergences at the threshold, we
resum the mass correction. To calculate the spectral function
of a fermion of mass squared M2, we calculate the spectral
function at the mass M2 + δM2 as written in Eq. (22) and
modify the NLO contribution as explained in Eq. (21).

Note that the relevant part of this shift (25) was per-
formed in [19]. The divergence is, however, integrable and
the shift was left out in Ref. [28], where the Euclidean corre-
lator was calculated, but the changes are easily tractable (see
Appendix D).

123



Eur. Phys. J. C (2015) 75 :529 Page 5 of 14 529

3.5 Explicit calculation of the NLO result

While the leading order is given in Eqs. (13, 15) the next-
to-leading order requires significantly more work. The full
expression is obtained adding to the NLO (16), the mass
counterterm (17) and the contribution from the thermal mass
shift (21). The first step is to carry out the sums (see Appendix
A) and take the discontinuity (5). We are then left with the
integrals and a delta function remaining from the discontinu-
ity. Parts of the integrals can be performed analytically and
the remaining ones have to be done numerically. The explicit
expressions for the master integrals are given in Appendix B
and the details on their integration in Appendix C.

4 Results

The final result can be split into three parts,

ρV
NLO(ω) = ρvac

NLO(ω) + ρbos
NLO(ω) + ρferm

NLO(ω). (26)

First the vacuum part [15–17], which can be integrated
explicitly,

ρvac
NLO(ω)

4NcCFg2 = θ(ω − 2M)

(4π)3ω

[√
ω2 − 4M2

(
−3(ω2 + 6M2)

4

+2(ω2 + 2M2) ln
ω(ω2 − 4M2)

M3

)

+14M4 + 4M2ω2 − 6ω4

ω
acosh

( ω

2M

)

+8M4 − 2ω4

ω
L2

(
ω − √

ω2 − 4M2

ω + √
ω2 − 4M2

)]
,

(27)

where L2 = 4Li2(x)+2Li2(−x)+ln(x)[2 ln(1−x)+ ln(1+
x)].

Second, the first thermal part, which we will denote the
‘bosonic’ thermal correction, calculated in Ref. [19] for
which one integral is left for numerical evaluation (for the
mass shift contribution, see Appendix D). It is proportional
to the Bose–Einstein distribution function nB(k) and does
not contain any Fermi–Dirac distribution:

ρbos
NLO

4NcCFg2 = 2

(4π)3ω2

∫ ∞

0
dk

nB(k)

k

×
{
θ(ω)θ

(
k − 4M2 − ω2

2ω

)

×
[
+(ω2 + 2M2)

√
ω(ω + 2k)

×
√

ω(ω + 2k) − 4M2

−2�+acosh

√
ω(ω + 2k)

4M2

+ 2ω2k2

√
1 − 4M2

ω(ω + 2k)

]
+ θ(ω − 2M)θ

(ω2 − 4M2

2ω
− k

)

×
[
+(ω2 + 2M2)

√
ω(ω − 2k)

√
ω(ω − 2k) − 4M2

− 2�−acosh

√
ω(ω − 2k)

4M2 + 2ω2k2

√
1 − 4M2

ω(ω − 2k)

]

+ θ(ω − 2M)

[
−2(ω2 + 2M2) ω

√
ω2 − 4M2

+ 4(ω4 − 4M4 + 2ω2k2)acosh

(
ω

2M

)]}
, (28)

where �± = ω4 − 4M4 ± 2ωk(ω2 + 2M2) + 2ω2k2. The
remaining contribution ρferm

NLO contains at least one Fermi–
Dirac distribution nF(Ep) or nF(Epk); hence it is suppressed
in the limit M 	 T . However this piece contains a non-
vanishing transport peak near ω → 0 and dominates the
spectrum at low frequency. In this part, two integrals have
to be performed numerically. The full expression is rather
lengthy and can be read from Appendix C. For ω < 2M
only a few structures actually contribute and we can quote
the result here:

ρferm
NLO

ω<2M= −2nF

(ω

2

)
ρbos

NLO + ρ
ferm,1
NLO , (29)

where

ρ
ferm,1
NLO

4NcCFg2 = 1

8π3

∫ ∞

ω/2

∫ ∞

E1+
p

{
1 + M2(2M2 + ω2)

ω2

×
(

1

(2Ep + 2k − ω)2 + 1

(2Ep − ω)2

)

+−2k2ω2 + (kω + 2M2)2 − ω2(ω − k)2

2kω2

×
(

1

2Ep + 2k − ω
− 1

2Ep − ω

)}

×{nB(k)(nF(Ep) − nF(Ep + k − ω))

+(nF(Ep) − 1)nF(Ep + k − ω)}. (30)

This last term, ρ
ferm,1
NLO , contributes to the transport peak and

comes from gluon emission or absorption by the massive
fermion.

The full result containing the LO and NLO contributions
is plotted in Fig. 1 (left) for T = 1.5Tc and different masses
ranging from M = 0.5T to M = 11.9T corresponding to a
bottom quark (mass 4.65GeV). Note that the spectral func-
tion is in fact negative and for clarity we show −ρV (ω) in
the plots. In Fig. 1 (right) we show the zero frequency limit
of the spectral function limω→0 ρV (ω)/ω, which enters the
determination of the transport coefficient D. The transport
coefficient itself requires division by the susceptibility χ , for
which we use the NLO result of Ref. [28]; see Fig. 2.
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0.0
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0.3

0.4

T

²

Spectrum, for different masses at T 1.5Tc

M 0.5 T

M T

M 3.3 T M 5 T M 11.9 T

NLO

LO

Fig. 1 Left LO (green dashed) and NLO (blue) spectral function
(−ρV (ω)/ω2) for M = (0.5, 1, 3.3, 5, 10)T , T = 1.5Tc. The LO van-
ishes at frequencies below the threshold ω = 2M where the NLO shows

a discontinuity. Right Value of the low energy limit of −ρV (ω)/ω as a
function of the quark mass. In this plot we used g = 1.6 as in [28]

0.5 1.0 5.0 10.0 50.0
0.01
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0.04

0.05
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T

g

M 3.3 T, charm at 1.5Tc
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0.0000
0.0005
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0.0015
0.0020
0.0025
0.0030
0.0035

g
T

NLO
NLO
vac

NLO
bos

NLO
ferm

T

Fig. 2 Left Different parts of the NLO contribution to the spectral function for M = 3.3T and Lorentzian fit of the transport peak (black dot-dashed
line). Right The generated transport coefficient D

Separate results for the three contributions to the next-to-
leading order are shown in Fig. 2 for the case M = 3.3T ,
representing the charm quark at T = 1.5Tc studied on
the lattice in [40] and for the generic case M = T in
Fig. 3. In these figures we scaled the result to ω2 so that
the vacuum contribution goes to a constant at large fre-
quency.

4.1 Charm transport

Keeping in mind that the present computation is not sys-
tematic3 [41] for ω < gT , we shall still briefly discuss
its low frequency limit. In the insert of the same figures,
Figs. 2 and 3, we scale the spectrum to the frequency and

3 The full IR completion for any mass goes far beyond the scope of this
study.

zoom in on the low frequency region to see the transport
peak. We see that ρ(ω)

ω
goes smoothly to a constant with

vanishing slope at ω → 0 and typical Lorentzian cur-
vature, hence defining a diffusion coefficient D accord-
ing to Eq. (8). The value of D is plotted as a function
of the quark mass in Fig. 2(right). We see that it is sup-
pressed for large masses T D ∝ (M/T )−2 and behaves as

a power law T D ∝ (M/T )− 1
4 at small M . In the case

of the charm quark at T = 1.5Tc, we see that it is in
principle small, 2πT D ≈ 0.1, in comparison to the lat-
tice results, suggesting 2πT D ≈ 2 [40] and in comparison
to the perturbative heavy quark limit, 2πT D ≈ 10 [37].
That said, the transport peak is not well separated from the
UV physics – at least in this low order calculation – and
there is no region where ηD 	 ω 	 ωUV so that the
momentum diffusion coefficient cannot be defined straight
from Eq. (9).
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0.03
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0.05
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NLO

NLO
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NLO
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g

T
g

T

T

Fig. 3 Left The different contributions to the NLO spectrum for M =
T . Right The result of this paper for the total thermal NLO contribution
(continuous blue line) compared to the result of Ref. [18] where the

mass shift was not fully taken into account (dotted red line). Note that
the threshold structure appears negative as we show only the thermal
part of the NLO. For the complete spectrum see Fig. 1

4.2 Massless limit and electric conductivity

Let us consider a fermion that is massless in the vacuum.
Even if at low frequency, the HTL correction would be of
the same order as our NLO result, it is interesting to see how
our result behaves. As we resummed the thermal mass cor-
rection according to Eq. (22), we in fact have to calculate
the spectral function of a fermion of mass δM2

T . In a typical
quark–gluon plasma produced in heavy ion collision we have
numerically (23) δM2

T = g2CFT 2/4 ≈ T 2. The spectrum of
such a fermion is shown in Fig. 3. We see that the spectrum
has no divergence neither at the threshold nor at zero fre-
quency and shows a transport peak. This result differs from
the old result of Ref. [18]. There the mass shift was noticed
and performed in the LO result but was not made in the NLO
calculation where the mass was set to zero. Their NLO con-
tribution hence diverges at zero frequency, whereas ours has
a threshold structure at ω = 2δMT and a transport peak; see
Fig. 3. At high frequency both results agree and merge to the
asymptotic behaviour derived in Ref. [42], which reads4

− ρT
NLO = −ρbos

NLO − ρferm

ω�M,T = 4NcCFg
2
(

πT 4

36ω2 + T 2M2

8πω2

)
. (31)

The transport coefficient obtained here is of order 2πT D
∼ 0.3, which is again on the low side, the perturbative resum-
mation from [43,44] gets in this case 2πT D ∼ 25 and lattice
results ranges from 2πT D ∼ 1–6 depending on the analytic
continuation method used [24,45–47].

4 The asymptotic behaviour of Ref. [42] was derived without the mass
shift hence contains only the first term.

4.3 Matching the massless limit with lattice results

The full spectral function for M2 = δM2
T = g2CFT/4 with

T = 1.46Tc is shown in Fig. 4 together with the Euclidean
correlator scaled to the free correlator. Keeping in mind that
our approximations are not consistent at low frequencies,
we still compare the Euclidean correlator to the continuum
extrapolated quenched lattice data of Ref. [45] for a massless
fermion.

In Fig. 4 right, we see first a quite good match at small
τ but then a different slope at large τ , signalling a lack of
power in the small ω region. To picture how far we are from
the lattice data, we multiply the ω < 2M region by a constant
so that to fit the lattice data. We get an excellent match with a
factor 2.26. To see how the width of the transport peak shows
up in the correlator we compare this first limit to an infinitely
thin transport peak fitted to reproduce the lattice data (here
the existing ω < 2M part has been removed). We see that the
difference is sizeable but still much smaller than the given
lattice error bars.

5 Conclusion

We calculated the thermal correction to the massive quark
vector spectral function at NLO in thermal QCD. The ther-
mal corrections are small in comparison to the vacuum cor-
rections for large fermion masses and comparable to them for
M ∼ T . The result shows some typical features: First, the
threshold for pair production is smoothed by thermal correc-
tions, the discontinuity in the vacuum spectrum being partly
compensated by thermal effects. Second, a transport peak
appears at this order, it is, however, small in comparison to
other expectations. We also see that the transport peak is
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(τ
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G+GP
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τ

Fig. 4 Left Spectrum at leading and next-to-leading order for M =
0.9T (respectively green dashed and blue continuous line, errorband
given by renormalisation scale variation as in [28]). Inset Fit of the low
energy domain with a Lorentzian. Right NLO Euclidean correlator for
M = 0.9T (green continuous line) together with continuum extrap-
olated quenched lattice data [45] (blue dots). In this particular plot,
to improve the comparison to lattice data we use a four loop running

to define the frequency dependence of the coupling (�QCD = 0.216,
renormalisation scale μ = max(ω, πT )). Note that the agreement can
be improved adding more power to the transport peak. The red dashed
curve is obtained increase the height of the existing transport peak by
a factor 2.26 and the black dotted one contains instead of a transport
peak an infinitely thin delta peak. Note that the precision of the lattice
data has to be very high to distinguish between the two extreme cases

broad and is not well separated from other kind of physics.
It should, however, be stressed that higher loop orders give
corrections of the same order for ω ≤ gT .

Setting the vacuum fermion mass to zero in our formulae
do not lead to divergences. This contradict the calculation
of Ref. [18] where the spectral function was calculated for
massless fermions and the result for the NLO diverges at
zero frequency hindering a definition of the corresponding
Euclidean correlator. The difference can be traced back to
how the thermal mass shift is introduced in the NLO. In the
previous reference, the thermal mass shift was performed
in the leading order part as done here but not in the NLO
contribution where the fermion remained purely massless,
leading to divergences at zero frequency.
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Appendix A: Calculation of the master integrals

The calculation of the master sum integrals is mostly standard
(for details, see Ref. [30]); only one difficulty arises in double
poles at zero frequency, which will be explained below. Their
calculation is subtle and is shown explicitly for the case of

I 0
01111, which is the simplest case as regards the amount of

algebra but contains most of the technical difficulties.
We start by rewriting the master integral in a form where

the elementary summation formula (valid for 0 < τ < β)

T
∑
pn

eipnτ

p2
n + E2

p
= nB(Ep)

2Ep
(eτ Ep + e(β−τ)Ep )

T
∑
{pn}

eipnτ

p2
n + E2

p
= nF(Ep)

2Ep
(eτ Ep − e(β−τ)Ep ) (A.1)

can be applied. To do that we shift P − K → K and intro-
duce the new integration variables S, R and the correspond-
ing delta functions:

(A.2)

The temporal part of the delta function can be rewritten as
an integral, where we keep track of time ordering:

δ(rn − pn + qn)δ(sn − kn + qn) = eiβ(pn+sn)

×
∫ β

0
dτ1e

i(rn−pn+qn)τ1

∫ τ1

0
dτ2e

i(−sn+kn−qn)τ2

+eiβ(pn+sn+qn)

×
∫ β

0
dτ1e

i(−sn+kn−qn)τ1

∫ τ1

0
dτ2e

i(rn−pn+qn)τ2 . (A.3)
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The factors eiβ(pn+kn) = eiβ(pn+sn+qn) = 1 were added
so that the total phase of all the Matsubara frequencies are
between 0 and β. Thanks to the time ordering and this last
prescription the sums can be performed with Eq. (A.1) and
then the integrals over τ1, τ2 calculated. Remembering that
qn is a bosonic Matusubara frequency we can set eiqnβ → 1.5

The result is a rather long expression containing many terms
that can be simplified in rewriting all the exponents in terms
of Fermi–Dirac (or Bose–Einstein) distributions. Each term
contains a product of Fermi–Dirac (or Bose–Einstein) distri-
butions in the numerator and products of all kinds of sums of
the energies (apEp+ak Ek+ar Er +as Es+iaqqn) with inte-
ger ai in the denominator. Note that there are no divergences
(up to the poles for the qn variable on the complex axis) since
when one sum of the energies (apEp+ak Ek +ar Er +as Es)

vanishes in the denominator, the numerator vanishes as well.
This cancellation obviously occurs since the initial integral
(A.3) has no poles.

Now, it is possible to extract the discontinuity in each of
these terms. The difficulty arises in terms proportional to

f (Ep, Er , Ek, Es, ω)

(ω − Ep + Er )(ω + Es − Ek)
. (A.4)

This term contains a simple pole at ω = 0 when we enforce
one of the delta functions contained in (A.2). Note that its
contribution is finite even after replacing the second delta
function as the numerator f vanishes when energies are set
equal. However, this term also contains a double pole when
both deltas are set to zero. The simplest way to deal with this
issue is to rewrite the delta functions in (A.2) as

δ3(r − p)δ3(k − s) (A.5)

∝ δ(Er − Ep)δ(Es − Ek)δ
2(�r − �p)δ(�s − �k)

∝ δ(Er − Ep)δ(Es − Ek − Er + Ep) (A.6)

×δ2(�r − �p)δ(�s − �k)

and use the δ(Es − Ek − Er + Ep) to replace Es − Ek by
Er −Ep (note that this replacement has to be done as a limit).
After this, all the poles which contribute at ω ∼ 0 are of the
type (ω±(Er −Ep)). The discontinuity can be taken in each
term separately using

Disc

[
1

ω − A

]
= −πδ(ω − A) (A.7)

for simple poles and

Disc

[
1

(ω − A)2

]
= πδ′(ω − A) (A.8)

5 This simplification has to be done; it is part of the prescription to get
the correct analytic continuation.

for double poles.
The spatial integrals over r, s can be performed using the

remaining delta functions δ3(r − p)δ3(s − k). They force us
to perform the limit Er → Ep and get as the final result

I 0 (ω∼0)
01111 =

∫
p,k

πωδ(ω) (A.9)

×
(

n′
F1

4E2
pE

3
pk

(1 − 2nF2) + n′
F1n

′
F2

4E2
pE

2
pk

)
.

Appendix B: Master integrals

Following the notations of Ref. [19], we detail here the dif-
ferent master integrals (denoting E2

p = p2 + M2, E2
k =

k2 +M2, E2
p−k = (p+k)2 +M2, k being the gluon momen-

tum). First the leading order sum integrals:

I11 = π

∫
p

[
ωδ(ω)

n′
F1

2E2
p

+(δ(ω − 2Ep) − δ(ω + 2Ep))
1 − 2nF1

4E2
p

]
, (B.10)

I21 = π

∫
p
(1 − 2ε)

[
ωδ(ω)

n′
F1

8p2E2
p

+(δ(ω − 2Ep) − δ(ω + 2Ep))
1 − 2nF1

16p2E2
p

]
. (B.11)

From them a few NLO sum integrals are derived:

I 0
11010 =

∫
k

1 + 2nB(k)

2k
I11, (B.12)

I 0
12010 =

∫
k

1 + 2nB(k)

2k
I21, (B.13)

I 0
01110 =

∫
k

1 − 2nF(Ek)

2Ek
I11, (B.14)

I 0
02110 =

∫
k

1 − 2nF(Ek)

2Ek
I21. (B.15)

The truly NLO sum integrals are given below using the
notation �± = Ep ± Epk and �στ = k + σ Ep + τ Epk .
Here I only give the terms proportional to ωδ(ω) when the
other terms contributing at ω > 0 can be read from [19],
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I 0 (ω∼0)
10110 = I 0 (ω∼0)

11001 = 0, (B.16)

I 0 (ω∼0)
11110 = πωδ(ω)

∫
k,p

n′
F1

8E2
pEpkk

×
{
[1 + nB0 − nF2]

(
1

�−+
+ 1

�++

)

−[nB0 + nF2]
(

1

�−−
+ 1

�+−

)}
, (B.17)

I 1 (ω∼0)
11110 = 0, (B.18)

I 0 (ω∼0)
11111 = πωδ(ω)

∫
k,p

[
(k2 − E2

p − E2
pk)n

′
F1n

′
F2

4E2
pE

2
pk�++�−+�+−�−−

+ n′
F1

2Epk E2
pk

×
{

1

4E2
pk

(
�++ + Epk

�2++
+ �−+ + Epk

�2−+

)

+EpknB0

(
1

�2+−�2++
+ 1

�2−−�2−+

)

+ nF2k

2E2
pk

(2�2+ − E2
p + E2

pk − k2

�2−−�2++

+2�2− − E2
p + E2

pk − k2

�2−+�2+−

)}]
. (B.19)

The last sum integrals are given for all ω for completeness
(as they were not all written in a suitable form for our present
purpose):

I 0
01111 = π

∫
p,k

[
ωδ(ω)

×
{

n′
F1

4E2
pE

3
pk

(1 − 2nF2) + n′
F1n

′
F2

4E2
pE

2
pk

}

− (
δ(ω − 2Ep) − δ(ω + 2Ep)

)

×[1 − 2nF1][1 − 2nF2]
8E2

pEpk�+�−

]
, (B.20)

I 0−11111 = 2I 0
01110 + 1

2
(ω2 − 4M2)I 0

01111 (B.21)

and

I 0
12110 = π

∫
k,p

[
ωδ(ω)

(
1

16E4
pEpkk

[
n′

F1 − 1

2
Epn

′′
F1

]

×
{
[1 + nB0 − nF2]

(
1

�−+
+ 1

�++

)

−[nB0 + nF2]
(

1

�−−
+ 1

�+−

)}

− n′
F1

8E2
pEpkk

{
1 + nB0 − nF2

�++�−+

(
1

�−+
+ 1

�++

)

−nB0 + nF2

�+−�−−

(
1

�−−
+ 1

�+−

)})

+[δ(ω − 2Ep) − δ(ω + 2Ep)]
32k

×
( E2

p(k
2+(1−4ε)E2

pk−E2
p+2M2)−4E2

pk p
2

4E4
pE

3
pk p

2

×(1 − 2nF1)

{
[1 + nB0 − nF2]

(
1

�−+
+ 1

�++

)

−[nB0 + nF2]
(

1

�−−
+ 1

�+−

)}

− E2
p + E2

pk − k2 − 2M2

4E2
pE

2
pk p

2
(1 − 2nF1) n

′
F2

×
[

1

�++
+ 1

�+−
+ 1

�−+
+ 1

�−−

]

+1 − 2nF1

E3
pEpk

{[
1

�++
+ 1

�−+

] [
1

�++

− 1

�−+
+ 1

Ep

]
[1 + nB0 − nF2]

+
[

1

�−−
+ 1

�+−

] [
1

�−−
− 1

�+−

− 1

Ep

]
[nB0 + nF2]

}

−1 − 2nF1

2E2
pE

2
pk

{(
�+
Ep

+ E2
pk − E2

p − k2

2p2

)

×
[

1 + nB0 − nF2

�2++
+ nB0 + nF2

�2−−

]

+
(

�−
Ep

+ E2
pk − E2

p − k2

2p2

)

×
[

1 + nB0 − nF2

�2−+
+ nB0 + nF2

�2+−

]})

+[δ(ω − �++) − δ(ω + �++)]
× (1 + nB0)(1 − nF1 − nF2) + nF1nF2

8EpEpkk�2++�2−+
+[δ(ω − �−−) − δ(ω + �−−)]
×−nB0(1 − nF1 − nF2) + nF1nF2

8EpEpkk�2−−�2+−
+[δ(ω − �+−) − δ(ω + �+−)]
×nB0nF1 − (1 + nB0)nF2 + nF1nF2

8EpEpkk�2−−�2+−
+[δ(ω − �−+) − δ(ω + �−+)]

×nB0nF2 − (1 + nB0)nF1 + nF1nF2

8EpEpkk�2++�2−+

]
. (B.22)
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Appendix C: Full NLO result

To obtain the full NLO result form the previous formulae,
the integrals over p,k still have to be performed. From the
antisymmetry of the spectral function it is enough to consider
the case ω ≥ 0. Using rotation symmetry, it is obvious that
all the angular integrals are trivial up to the one containing
the angle θ between p and k so that we have three non-trivial
integrals to perform over |p|, |k|, cos θ . The full result can be
split into three parts, a part proportional to ωδ(ω), which we
call ρt

NLO for transport, a part proportional to δ(ω − 2Ep),

called ρ
f

NLO for factorised and a last part proportional to one
of the δ(ω±�±±) denoted by ρ

p
NLO for phase space, follow-

ing the notation of [19]. For the terms proportional to δ(ω) the
three integrals have to be performed but the angular integral
happens to be analytically doable [28]. For the ones propor-
tional to δ(ω − 2Ep) one can constrain the |p| integral and
only two integrals are left but most of them have to be per-
formed numerically. The terms proportional to δ(ω ± �±±)

require more work as the domains where the ω = ±�±±
constraints can be satisfied are non-trivial.

Appendix C.1: δ(ω) terms

All the terms proportional to δ(ω) in the master integrals
can be combined according to Eq. (16). After performing an
analogous work as in Ref. [28], i.e. integrating by parts and
performing the angular integrals we get

ρt
NLO

4NcCFg2 = ωδ(ω)

4π3

∫ ∞

0
dp n′

F(Ep)

∫ ∞

0
dk

[

+ak nB(k)

(
1 − 3p2

E2
p

)

+nF(Ek)

Ek

(
ak2 − M2 − a

3k2 p2

E2
p

− M2k2 p2

E2
pE

2
k

− M2kp

2E2
k E

2
p

{
M2E2

k (a − 1)

p2

−2(a + 1)E2
k + M2

}
ln

∣∣∣∣ p + k

p − k

∣∣∣∣
)]

, (C.23)

where the parameter a keeps track of the thermal mass shift.
Setting a = 0 is equivalent to performing the thermal mass
shift (23), otherwise a = 1.

5.1 Appendix C.2: δ(ω − 2Ep) terms

Summing all terms proportional to δ(ω − 2Ep) occurring in
Eq. (16) we get a formula of the form

ρ
f

NLO(ω) =
∫
p

∫
k

g(k, Ep, Epk, ω)

kEpEpk
2δ(ω − 2Ep). (C.24)

While the function g can easily be constructed from the for-
mulae of the above section, it is very long and will not be
given here. Note that this integral contains divergent terms
and requires a careful renormalisation. This proceeds as at
zero temperature [19] and will not be explained here. The
thermal part we calculate here is finite. We can rewrite the
previous integral as

ρ
f

NLO(ω) = 1

8π4

∫ ∞

0
dk

∫ ∞

M
dEp

∫ E+
pk

E−
pk

dEpk

×g(k, Ep, Epk, ω)2δ(ω − 2Ep)

= 1

8π4

∫ ∞

0
dk

∫ E+
pk

E−
pk

dEpk

×g
(
k,

ω

2
, Epk, ω

)
θ(ω − 2M), (C.25)

where E±
pk =

√
E2
p + k2 ± 2pk is replaced by√

ω2/4 + k2 ± k
√

ω2 − 4M2 after applying the delta func-
tion. The last two integrals are performed numerically and

ρ
f

NLO(ω) = θ(ω − 2M)
(

1 − 2nF

(ω

2

))
(ρ

vac, f
NLO + ρ

bos, f
NLO )

+ρ
ferm,2
NLO (ω), (C.26)

where

ρ
ferm,2
NLO (ω)

4NcCFg2 = θ(ω − 2M)

8π3

(
1 − 2nF

(ω

2

)) ∫ ∞

0
dk

×
∫ E+

pk

E−
pk

dEpk

(
n′

F2
M2

(
2M2 + ω2

)
Epk(ω2 − 4M2)ω

×
[
k +

(
2M2 + Epkω

)
2

[
1

δ++
+ 1

δ−−

]

+
(
2M2 − Epkω

)
2

[
1

δ+−
+ 1

δ−+

]]

+nF2

[
2M2 + ω2

ωE2
pk(ω

2 − 4M2)

{
ωM2Epk

2

×
(

δ−
δ2+−

− δ−
δ2−+

− δ+
δ2++

+ δ+
δ2−−

)

−M2(M2 − E2
pk(1 − a))

(
1

δ++
+ 1

δ+−

+ 1

δ−+
+ 1

δ−−

)
+ k(aE2

pk − M2)

}

+ 1

2ω2

{
−2kωa + M2(2M2 + ω2)

Epk

×
(

δ+
δ2−+

+ δ−
δ2++

− δ−
δ2−−

− δ+
δ2+−

)
+

+
(
P 1

kδ−
+ 1

kδ+

) (
k2

(
4M2 + 3ω2

)
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+8M4 − 2ω4
)

+
(

1

kδ−−
+ 1

kδ−+

) (
− 2k2ω2

+
(
kω + 2M2

)2 − ω2(k − ω)2
)

+
(

1

kδ+−
+ 1

kδ++

) (
2k2ω2

−
(

2M2 − kω
)2 + ω2(k + ω)2

)

−2M2ω(1 − a)

(
1

δ++
+ 1

δ+−
+ 1

δ−+

+ 1

δ−−

)}])
(C.27)

with δ±± = 2k±ω±Epk , δ± = ω±2Epk and, again, setting
a = 0 is equivalent to performing the thermal mass shift (23).
The symbol P means that we treat the pole at δ− = 0 in the
principal value sense. Numerically this can be implemented

as follows. We split the integral as
∫ ω/2
E−
pk

+ ∫ E+
pk

ω/2 , perform a

change of integration variable Epk → ω−Epk in the second
integral and add it to the first one.

Appendix C.3: δ(ω ± �±±) terms

Summing all terms proportional to δ(ω±�±±) occurring in
Eq. (16) we get a formula of the form

∑
±,±

∫
p

∫
k

f±±(k, Ep, Epk, ω)

kEpEpk
(δ(ω − �±±)

−δ(ω + �±±)). (C.28)

If we restrict ourselves to ω > 0, only half of the δ’s can
actually be realised in some domain of the integrals so that
the previous sum becomes

θ(ω − 2M)

8π4

∫ k1

0
dk

∫ E1+
p

E1−
p

dEp f++(k, Ep, ω − Ep − k, ω)

− 1

8π4

∫ ∞

k2
dk

∫ E2+
p

E2−
p

dEp f−−(k, Ep, ω − Ep + k, ω)

+ 1

8π4

∫ ∞

k3
dk

∫ ∞

E1+
p

dEp f+−(k, Ep,−ω + Ep + k, ω)

+ 1

8π4

∫ ∞

k3
dk

∫ ∞

−E1−
p

dEp f−+(k, Ep, ω + Ep − k, ω),

(C.29)

where the boundaries of the integrals are given by

k1 = ω2 − 4M2

2ω
, k2 = max(0,−k1), k3 = ω

2
,

E1±
p = ω − k

2
± k

2

√
1 − 4M2

ω(ω − 2k)
,

E2±
p = ω + k

2
± k

2

√
1 − 4M2

ω(ω + 2k)
(C.30)

and the functions f±,± through

f++(k, Ep, ω − Ep − k, ω)

= π

(
4kM4

ω2(ω − 2Ep)2(2(Ep + k) − ω)

+M2(3ω − 4Ep)

ω(ω − 2Ep)2 + 2(Ep + k − ω)2

(2Ep − ω)(2(Ep + k) − ω)

)

× [
(nB0 + 1)(1 − nF(ω − Ep − k) − nF1)

+nF1nF(ω − Ep − k)
]
, (C.31)

f−−(k, Ep, ω − Ep + k, ω)

= π

(
− 4kM4

ω2(ω − 2Ep)2(2(Ep − k) − ω)

+M2(3ω − 4Ep)

ω(ω − 2Ep)2 + 2(k − Ep + ω)2

(2Ep − ω)(2(Ep − k) − ω)

)

× [
nF1nF(ω − Ep + k)

−nB0(1 − nF(ω − Ep + k) − nF1)
]
, (C.32)

f+−(k, Ep, Ep + k − ω,ω)

= π

(
4kM4

ω2(ω − 2Ep)2(2(Ep + k) − ω)

+M2(3ω − 4Ep)

ω(ω − 2Ep)2 + 2(Ep + k − ω)2

(2Ep − ω)(2(Ep + k) − ω)

)

×[−(nB0 + 1)nF(Ep + k − ω)

+nF1nB0 + nF1nF(Ep + k − ω)], (C.33)

f−+(k, Ep, ω + Ep − k, ω)

= π

(
− 4kM4

ω2(2Ep + ω)2(2(Ep − k) + ω)

+M2(4Ep + 3ω)

ω(2Ep + ω)2 + 2(Ep − k + ω)2

(2Ep + ω)(2(Ep − k) + ω)

)

× [
nB0nF(Ep − k + ω)

−nF1(nB0 + 1) + nF1nF(Ep − k + ω)
]
. (C.34)

Note that at T = 0 only the first integral in (C.29) con-
tributes. This term, setting T = 0, added to the expression
ρ

vac, f
NLO in Eq. (C.26) gives the full zero temperature result

ρvac
NLO given in Eq. (27). For M � T the first two integrals

contribute. If we take in these terms the part proportional to
nB(k) and not containing any Fermi–Dirac distribution func-
tion and add them to the expression ρ

bos, f
NLO in Eq. (C.26), we
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get the ’bosonic’ thermal correction ρbos
NLO given in Eq. (28).

The remaining terms are exponentially suppressed if M � T
but dominate the spectrum at small ω.

Even if the full result is infrared finite, the different terms
are not. To avoid such problems one can first add the two last
integrals in (C.29) after having performed the shift Ep →
Ep − ω + k in the last integral. As a result of that we get the
three last lines of Eq. (29) and then in all terms add an ε to
the lower bound of the k integration and take the limit ε → 0
after having added all terms.

5.2 Fermionic contribution

The full result is the sum of the vacuum part (27), the
’bosonic’ thermal corrections (28) and the fermionic con-
tribution, which we can write as

ρferm
NLO = ρt

NLO − 2nF

(ω

2

)
(ρvac

NLO + ρbos
NLO)

+ρ
ferm,1
NLO + ρ

ferm,2
NLO + ρ

ferm,3
NLO , (C.35)

where ρt
NLO is given in Eq. (C.23), ρvac

NLO in (27), ρbos
NLO in (28),

ρ
ferm,1
NLO in (30), ρ

ferm,2
NLO in (C.27) and the remaining ρ

f rem,3
NLO

by

ρ
frem,3
NLO

4NcCFg2 = θ(ω − 2M)

8π3

∫ k1

0
dk

∫ E1+
p

E1−
p

dEp

×
(

4kM4

ω2(ω − 2Ep)2(2(Ep + k) − ω)

+M2(3ω − 4Ep)

ω(ω − 2Ep)2

+ 2(Ep + k − ω)2

(2Ep − ω)(2(Ep + k) − ω)

)

×[
(nB0 + 1)(2nF(ω/2)

−nF(ω − Ep − k) − nF1)

+nF1nF(ω − Ep − k)
]

− 1

8π3

∫ ∞

k2
dk

∫ E2+
p

E2−
p

dEp

×
(

− 4kM4

ω2(ω − 2Ep)2(2(Ep − k) − ω)

+M2(3ω − 4Ep)

ω(ω − 2Ep)2

+ 2(k − Ep + ω)2

(2Ep − ω)(2(Ep − k) − ω)

)

×[nF1nF(ω − Ep + k)

−nB0(2nF(ω/2) − nF(ω − Ep + k) − nF1)].
(C.36)

Appendix D: Mass shift

The results of Ref. [28] for the Euclidean correlator can be
modified to account for the mass shift (21). We have to add
to GV (τ )

4NcCFg2 in Eqs. (4.4)–(4.5) of [28] the following integral:

GMS
V (τ )

4NcCFg2 =
∫
p
δM2

T

[
p2

2E4
p

(
D2Ep (τ ) + 2Tn′

F(Ep)
)

+
(

1 + M2

2E2
p

)
∂Ep D2Ep (τ )

2Ep
+ M2

2E3
p
n′′

F(Ep)

]
.

(D.37)

In Eq. (28) the thermal mass shift has been performed. With-

out mass shift,
ρbos

NLO
4NcCFg2 would contain additionally

θ(ω − 2M)

(4π)3ω2

∫ ∞

0
dk

2nB(k)

k

×
(

4ωk2
√

ω2 − 4M2 − 4k2ω
(2M2 + ω2)√

ω2 − 4M2

)
. (D.38)
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