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Abstract We study the maximum budgeted allocation problem, i.e., the problem of
selling a set ofm indivisible goods to n players, each with a separate budget, such that
we maximize the collected revenue. Since the natural assignment LP is known to have
an integrality gap of 3

4 , which matches the best known approximation algorithms, our
main focus is to improve our understanding of the stronger configurationLP relaxation.
In this direction, we prove that the integrality gap of the configuration LP is strictly
better than 3

4 , and provide corresponding polynomial time roundings, in the following
restrictions of the problem: (i) the restricted budgeted allocation problem, in which all
the players have the same budget and every item has the same value for any player it
can be sold to, and (ii) the graph MBA problem, in which an item can be assigned to
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at most 2 players. Finally, we improve the best known upper bound on the integrality
gap for the general case from 5

6 to 2
√
2 − 2 ≈ 0.828 and also prove hardness of

approximation results for both cases.

Mathematics Subject Classification 68W25

1 Introduction

Consider the following scenario: there are multiple players that are willing to pay to
gain access to some advertisement resources and each of these players has a specified
budget that he cannot exceed. The owner of these resources wants to allocate them so
as to maximize his total revenue, i.e., he wishes to maximize the total amount paid by
the players. Since no player can pay more than his budget, the task of the owner is to
find a revenue-maximizing assignment of resources to players where each player pays
the minimum of his budget and his valuation of the items assigned to him.

The above problem is called maximum budgeted allocation (MBA) and arises often
in the context of advertisement allocation systems. Formally, a problem instance I
can be defined as follows: there is a set of playersA and a set of itemsQ. Each player
i has a budget Bi and each player i ∈ A has a certain valuation pi j for every item
j ∈ Q. This valuation represents the amount of money player i would be willing to
pay in order to acquire item j . Since our goal will be to maximize revenue, pi j will
also correspond to the price that we will charge player i for acquiring item j (the
natural assumption that pi j ≤ Bi is without loss of generality, because no player can
spend more money than his budget). Our goal is to find disjoint sets Si ⊆ Q for each
player i , i.e., an indivisible assignment of items to players, so as to maximize

∑

i∈A
min

⎧
⎨

⎩
∑

j∈Si
pi j , Bi

⎫
⎬

⎭ .

In this paper, we are interested in designing good algorithms for the MBA problem
and we shall focus on understanding the power of a strong convex relaxation called
the configuration LP. The general goal is to obtain a better understanding of basic
allocation problems that have a wide range of applications. In particular, the study
of the configuration LP is motivated by the belief that a deeper understanding of
this type of relaxation can lead to better algorithms for many allocation problems,
including MBA, the generalized assignment problem, unrelated machine scheduling
and max-min fair allocation.

As the maximum budgeted allocation problem is known to be NP-hard [11,14],
we turn our attention to approximation algorithms. Recall that an r -approximation
algorithm is an efficient (polynomial-time) algorithm that is guaranteed to return a
solution within a factor r of the optimal value. The factor r is referred to as the
approximation ratio or guarantee.

Garg et al. [11] obtained thefirst approximation algorithm forMBAwith a guarantee
of 2

1+√
5

≈ 0.618. Thiswas later improved to 1− 1
e byAndelman andMansour [1],who

also showed that an approximation guarantee of 0.717 can be obtained in the casewhen
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On the configuration LP for maximum budgeted allocation 429

all the budgets are equal. Subsequently, Azar, Birnbaum, Karlin and Mathieu [3] gave
a 2

3 -approximation algorithm, which Srinivasan [18] extended to give the best-known
approximation guarantee of 3

4 . Concurrently, the same approximation guarantee was
achieved by Chakrabarty and Goel [6], who also proved that it is NP-hard to achieve
an approximation ratio better than 15

16 .
It is interesting to note that the progress on MBA has several points in common

with other basic allocation problems. First, it is observed that when the prices are
relatively small compared to the budgets, the problem becomes substantially easier
(e.g. [6,18]), analogous to how unrelated machine scheduling becomes easier when
the largest processing time is small compared to the optimal makespan. Second, the
above mentioned 3/4-approximation algorithms give a tight analysis of a standard LP
relaxation, called the assignment LP, which has been a successful tool for allocation
problems ever since the breakthrough work by Lenstra et al. [15]. Indeed, we now
have a complete understanding of the strength of the assignment LP for all of the
above mentioned allocation problems. The strength of a relaxation is measured by its
integrality gap, which is the maximum ratio between the solution quality of the exact
integer programming formulation and of its relaxation.

A natural approach for obtaining better (approximation) algorithms for allocation
problems is to use stronger relaxations than the assignment LP. Similarly to other
allocation problems, there is a strong belief that a strong convex relaxation called
the configuration LP relaxation could give strong guarantees for the MBA problem.
Even though we only know that the integrality gap is no better than 5

6 [6], our cur-
rent techniques fail to prove that the configuration LP gives even marginally better
guarantees for MBA than the assignment LP. The goal of this paper is to increase our
understanding of the configuration LP and to shed light on its strength.

Our contributions. To analyze the strength of the configuration LP compared to the
assignment LP, it is instructive to consider the tight integrality gap instance for the
assignment LP from [6] depicted in Fig. 1. This instance satisfies several structural
properties: (i) at most two players have a positive price of an item, (ii) every player
has the same budget (also known as uniform budgets), (iii) the price of an item j for
a player is either p j or 0, i.e., pi j ∈ {0, p j }.

Motivated by these observations and previous work on allocation problems, we
shall mainly concentrate on two special cases of MBA. The first case is obtained by

xi1j1 =
1
2 xi2j1 =

1
2

xi1j2 = 1 xi2j3 = 1

pj1 = 2

Bi1 = 2 Bi2 = 2

pj2 = 1 pj3 = 1

Fig. 1 Here, circles correspond to items and boxes correspond to players. The budget of every player is
2. The solution x has value of 4. Any integral solution has a value of at most 3, since one player will be
assigned only one item of value 1
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enforcing (i) in which at most two players have a positive price of an item.We call this
case graph MBA, as an instance can be represented by a graph where items are edges,
players are vertices and assigning an item corresponds to orienting an edge. The same
restriction, where it is often called graph balancing, has led to several nice results for
unrelated machine scheduling [7] and max-min fair allocation [5,22].

The second case is obtained by enforcing (ii) and (iii). That is, each item j has a non-
zero price, denoted by p j , for a subset of players, and the players have uniformbudgets.
We call this case restricted MBA or the restricted budgeted allocation Problem as it
closely resembles the restricted assignment problem that has been a popular special
case of both unrelated machine scheduling [19] and max-min fair allocation [2,4,8].
These two properties produce natural restrictions whose study helps increase our
understanding of the general problem, as one can realize by going through [6,18], and
specifically, instances displaying property (ii) have been studied in [1].

Our main result proves that the configuration LP is indeed stronger than the assign-
ment LP for the considered problems.

Theorem 1 Restricted MBA and graph MBA have ( 3+c
4 )-approximation algorithms

that also bound the integrality gap of the configuration LP, for some constant c > 0.

The result for graph MBA is inspired by the work by Feige and Vondrak [9] on the
generalized assignment problem and is presented in Sect. 4. The main idea is to first
recover a 3/4-fraction of the configuration LP value by randomly (according to the LP
solution) assigning items to the players. The improvement over 3/4 is then obtained by
further assigning some of the items that were left unassigned to players whose budgets
are not already exceeded. The difficulty in the above approach lies in analyzing the
contribution of the items assigned in the second step over the random assignment in
the first step (Lemma 10).

For restricted MBA, we need a different approach. Indeed, randomly assigning
items according to the configuration LP only recovers a (1 − 1/e)-fraction of the LP
value when an item can be assigned to any number of players. Current techniques
only gain an additional small ε-fraction by assigning unassigned items in the second
step. This would lead to an approximation guarantee of (1 − 1/e + ε) (matching the
result in [9] for the generalized assignment Problem) which is strictly less than the
best known approximation guarantee of 3/4 for MBA. We therefore take a different
approach. We first observe that an existing algorithm, described in Sect. 3.1, already
gives a guarantee better than 3/4 for configuration LP solutions that are not well-
structured (see Definition 1). Informally, an LP solution is well-structured if half the
budgets of most players are assigned to expensive items, which are defined as those
items whose price is very close to the budget. For the rounding of well-structured
solutions in Sect. 3.4, the main new idea is to first assign expensive/big items (of value
close to the budgets) using random bipartite matching and then assign the cheap/small
items in the space left after the assignment of expensive items. For this to work, it is
not sufficient to assign the big items in any way that preserves the marginals from the
LP relaxation. Instead, a key observation is that we can assign big items so that the
probability that two players i, i ′ are both assigned big items is at most the probability
that player i is assigned a big item times the probability that player i ′ is assigned a
big item (i.e., the events are negatively correlated). Using this we can show that we
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On the configuration LP for maximum budgeted allocation 431

can assign many of the small items even after assigning the big items leading to the
improved guarantee.We believe that this is an interesting use of bipartitematchings for
allocation problems as we are using the fact that the events that vertices are matched
can be made negatively correlated. Note that this is in contrast to the events that edges
are part of a random matching which are not necessarily negatively correlated.

Finally, we complement our positive results by hardness results and integrality gaps.
For restricted MBA, we prove hardness of approximation that matches the strongest
results known for the general case. Specifically, we prove in Sect. 6 that it is NP-
hard to approximate restricted MBA within a factor 15/16. This shows that some of
the hardest known instances for the general problem are the ones we study. We also
improve the 5/6 integrality gap of the configuration LP for the general case: we prove
that it is not better than 2(

√
2 − 1) ≈ 0.828 in Sect. 5.

2 Preliminaries

Assignment LP. The assignment LP for the MBA problem has a fractional “indicator”
variable xi j for each player i ∈ A and each item j ∈ Q that indicates whether
item j is assigned to player i . Recall that the profit received from a player i is the
minimum of his budget Bi and the total value

∑
j∈Q xi j pi j of the items assigned to

i . In order to avoid taking the minimum for each player, we impose that each player
i is fractionally assigned items of total value at most his budget Bi . Note that this
is not a valid constraint for an integral solution but it does not change the value of
a fractional solution: we can always fractionally decrease the assignment of an item
without changing the objective value if the total value of the fractional assignment
exceeds the budget. To further simplify the relaxation, we enforce that all items are
fully assigned by adding a dummy player � such that p�j = 0 for all j ∈ Q and
B� = 0. The assignment LP for MBA is defined as follows:

max
∑

i∈A
∑

j∈Q xi j pi j
subject to

∑
j∈Q xi j pi j ≤ Bi ∀i ∈ A∑

i∈A xi j = 1 ∀ j ∈ Q
0 ≤ xi j ≤ 1 ∀i ∈ A,∀ j ∈ Q

As discussed in the introduction, it is known that the integrality gap of the assign-
ment LP is exactly 3

4 ; therefore, in order to achieve a better approximation, we employ
a stronger relaxation called the configuration LP.

Configuration LP. The intuition behind the configuration LP comes from observing
that, in an integral solution, the players are assigned disjoint sets, or configurations,
of items. The configuration LP models this by having a fractional “indicator” variable
yiC for each player i and configuration C ⊆ Q, which indicates whether or not C is the
set of items assigned to player i in the solution. The constraints of the configuration
LP require that each player is assigned at most one configuration and each item is

assigned to at most one player. If we let wi (C) = min
{∑

j∈C pi j , Bi
}
denote the
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432 C. Kalaitzis et al.

total value of the set C of items when assigned to player i , the configuration LP can
be formulated as follows:

max
∑

i∈A
∑

C⊆Q wi (C)yiC
subject to

∑
C⊆Q yiC ≤ 1 ∀i ∈ A∑

i∈A,C⊆Q: j∈C yiC ≤ 1 ∀ j ∈ Q
yiC ≥ 0 ∀i ∈ A,∀C ⊆ Q

We remark that even though the relaxation has exponentially many variables, it can
be solved approximately in a fairly standard way by designing an efficient separation
oracle for the dual which has polynomially many variables. We refer the reader to [6]
for more details.

The configuration LP is stronger than the assignment LP as it enforces a stricter
structure on the fractional solution. Indeed, every solution to the configuration LP can
be transformed into a solution of the assignment LP of at least the same value (see
e.g. Lemma 2). However, the converse is not true; configuration LP has value 3 for the
example shown in Fig. 1 while assignment LP has value 4, the key difference being
that the fractional assignments of the players cannot induce a fractional assignment
of configurations of the same value. More convincingly, our results show that the
configuration LP has a strictly better integrality gap than the assignment LP for large
natural classes of the MBA problem.

For a solution y to the configuration LP, let Vali (y) = ∑
C wi (C)yiC be the value

of the fractional assignment to player i and let Val(y) = ∑
i Vali (y). Note that Val(y)

is equal to the objective value of the solution y. Abusing notation, we also define
Vali (x) = ∑

j xi j pi j for a solution x to the assignment LP.

Random bipartite matching. As alluded to in the introduction, one of the key ideas of
our algorithm for the restricted case is to first assign expensive/big items (of value close
to the budgets) by picking a random bipartite matching so that the events that vertices
are matched are negatively correlated. The following theorem is a minor modification
of a theorem proved by Gandhi, Khuller, Parthasarathy and Srinivasan in their work
on selecting random bipartite matchings with particular properties [10]; their proof
directly gives the following:

Theorem 2 ([10]) Consider a bipartite graph G = ((A, B), E) and an assignment
(xe)e∈E to edges so that the fractional degree

∑
u:uv∈E xuv of each vertex v is at most

1. Then there is an efficient, randomized algorithm that generates a (random)matching
satisfying:

(P1): Marginal Distribution For every vertex v ∈ A ∪ B,

Pr[v is matched] =
∑

u:uv∈E
xuv

(P2): Negative Correlation For any S ⊆ A,

Pr

[
∧

v∈S
(v is matched)

]
≤

∏

v∈S
Pr[v is matched].
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On the configuration LP for maximum budgeted allocation 433

One should note that the events {edge e is in the matching} and {edge e′ is in the
matching} are not necessarily negatively correlated (if we preserve the marginals). A
crucial ingredient for our algorithm is therefore the idea that we can concentrate on
the event that a player has been assigned a big item without regard to the specific item
assigned.

3 Restricted budget allocation

In this section we consider the MBA problem with uniform budgets where the prices
are restricted to be of the form pi j ∈ {p j , 0}. This is the so called restricted maximum
budgeted allocation. Our main result is the following.

Theorem 3 There is a (3/4 + c)-approximation algorithm for restricted MBA for
some constant c > 0.

Since the budgets are uniform, by scaling we can assume that each player has a
budget of 1.We refer to p j as the price of item j . It is convenient to distinguishwhether
items have big or small prices, so we let B = { j : p j ≥ 1 − β} be the big items for
some β, 1/3 ≥ β > 0 to be determined. Let S denote the set of the remaining items
with small prices, which we also refer to as small items.

We first introduce a 3/4-approximation algorithm for the general MBA problem;
this algorithm is the starting point of our approach. In our analysis of that algorithm,
we identify a family of LP solutions, for which our analysis is tight. These solutions,
which we call well-structured solutions, play a key role in our approach. Based on
their structure, we develop a new algorithm, which achieves a good guarantee exactly
for them. Therefore, the distinction between two families of LP solutions, and the
design of an algorithm that performs well for each one of them, will be the basis of
our approach.

3.1 General 3/4-approximation algorithm

We introduce an algorithm (inspired by [17]) to round assignment LP solutions and
thenwe present an analysis showing that it is a 3/4-approximation algorithm. In the rest
of Sect. 3 we use this analysis to show that the algorithm has a better approximation
ratio than 3/4 in some cases.

Each player has a set of buckets. Algorithm 1 first partitions x into the buckets,
creating a new assignment x ′, such that the sum of x ′ in each bucket is exactly 1
except possibly the last bucket of each player. Some items are split into two buckets.
The process for one player is illustrated in Fig. 2.

From the previous discussion, for every bucket b = (i, k) we have
∑

j x
′
bj ≤ 1.

Also,
∑

b∈U x ′
bj = 1 for every item j , which is implied by

∑
i∈A xi j = 1 for all

j ∈ Q. Hence x ′ is inside the bipartite matching polytope, where the two sides of
the bipartite graph are the buckets U and the items Q, and has the extra property
that for every item j ,

∑
b∈U x ′

bj = 1. Using an algorithmic version of Carathŕodory’s
theorem (see e.g. Theorem 6.5.11 in [12]) we can in polynomial time decompose x ′
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434 C. Kalaitzis et al.

Input : Solution x to the assignment LP, ordering oi of the items by prices for player i
Output: Assignment x∗ of items to the players

foreach i ∈ A do
// Create buckets for player i, see Fig. 2
ci ← ∑ j xi j �
Create ci buckets (i, 1), . . . , (i, ci )
k ← 1
Create x ′

(i,·) from xi as follows:

foreach j ∈ Q do
// The items are examined in non-increasing order of pi j
if xi j + ∑

j ′ �= j
x(i,k) j ′ ≤ 1 then

x(i,k) j ← xi j
else

x(i,k) j ← 1 − ∑

j ′ �= j
x(i,k) j ′

k ← k + 1
x(i,k) j ← xi j − x(i,k−1) j

end if
end foreach

end foreach
U ← {(i, k) | 1 ≤ k ≤ ∑ j xi j �}
V ← Q
Express x ′ as a convex combination of matchings : x ′ = ∑

t γtmt , where γt is the coefficient of
matching mt when expressing x ′ as a convex combination of matchings.
Sample a matching mt with probability γt , and return the corresponding assignment x∗ of items, i.e.,
assign to player i all items assigned to buckets (i, k) for all 1 ≤ k ≤ ci .

Algorithm 1: Bucket algorithm

0

2

4

pr
ic
e

1

x′
(i,1)1

2

x′
(i,1)2

3

x′
(i,1)3 x′

(i,2)3

4

x′
(i,2)4

5
x′
(i,2)5 x′

(i,3)5

Fig. 2 Illustration of bucket creation by Algorithm 1 for player i . Buckets are marked by solid lines. The
value xi3 is split into x ′

(i,1)3 and x ′
(i,2)3 and xi5 is split into x ′

(i,2)5 and x ′
(i,3)5. For the other items we have

x ′
(i,1)1 = xi1, x

′
(i,1)2 = xi2, x

′
(i,2)4 = xi4. Items are ordered in non-decreasing order by their prices, in

such a way that the length of an item j in the x-axis corresponds to xi j and the y-axis corresponds to pi j

into a convex combination of polynomially many matchings for V , such that every
such matching matches all items to a bucket.

In the algorithm we use an ordering oi for player i such that pioih ≥ pioi,h+1 , i.e.,
descending order of items according to their prices for player i . Thus, the algorithm
does not depend on the actual prices, but rather the order they induce on the items.
Also note that Algorithm 1 can be made deterministic: instead of picking a random
matching we can pick the most valuable one.

Let Algi (x) be the expected price that player i pays. We know that Algi (x) ≤
Vali (x), because the probability of assigning j to i is xi j , but we do not have equality
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On the configuration LP for maximum budgeted allocation 435

in the expression, because some matchings might assign a price that is over the budget
for some players.

Given a solution x to the assignment LP, we define αi = Bi/Vali (x). Let a(i,k) be
the average price of items in the bucket (i, k) of player i , i.e., a(i,k) = ∑

j x
′
(i,k) j pi j .

Let r(i,k) be the average price of items in (i, k) that have price more than αi a(i,k), that

is r(i,k) =
∑

j :pi j≥αi a(i,k)
x ′
(i,k) pi j∑

j :pi j≥αi a(i,k)
x ′
(i,k)

. In the following lemma we bound Algi (x) from

below.

Lemma 1 Let x be a solution to the assignment LP. For any i ∈ A

Algi (x) ≥ Vali (x)
(
1 − r(i,1)

4Bi

)
.

In particular, since r(i,1) ≤ Bi , this implies that Algorithm1gives a 3/4-approximation.

Proof The expected total price of the items of the rounded integral solution x∗ for
player i is E[Vali (x∗)] = Vali (x), because the probability of assigning item j to
player i is xi j . The problem with the assignment x∗ is that it may exceed the budget
for some players, so we cannot make use of the full value Vali (x∗). We now prove
that we only lose r(i,1)

4Bi
-fraction of Vali (x) by going over the budget of player i .

Note that αi ≥ 1, since, as addressed in Sect. 2, a solution to the assignment LP
never exceeds a player’s budget Bi . Furthermore, the matching picks at most one item
from each bucket. Let b = (i, k) be the k-th bucket of player i . Suppose the algorithm
picks an item of price more than αi · ab from bucket b. Then since αi

∑
� a(i,�) = Bi ,

the player could possibly be assigned more than her budget. However, if we assume
that all itemswithin each bucket (i, �) have price at most αi ·a(i,�), all matchings assign
total price at most Bi to player i .We therefore define p′

(i,�) j to bemin{p(i,�) j , αi ·a(i,�)}
for each i, �, j and we get a new instance J in which the set of prices are denoted by
p′ and the set of players correspond to the buckets from the original instance. In the
new instance, a player corresponding to bucket (i, �) has budget αi · a(i,�). We abuse
the notation and use ValJi (·) to refer to the total value of buckets belonging to player
i in instance J .

From the previous discussion we know no player goes over budget when using
the fictional prices p′, so ValJi (x∗) ≤ Bi . Thus Algi (x) can be lower-bounded by

E[ValJi (x∗)] = ValJi (x ′). We now prove that ValJi (x ′) ≥
(
1 − r(i,1)

4Bi

)
Vali (x).

Let rb be the average price of items in bucket b = (i, k) with price above αi · ab
and let qb be the average price of the items in bucket b with price less than αi · ab.
Note that qb = q(i,k) ≥ r(i,k+1). We let x ′

b be the probability corresponding to rb, i.e.
the sum of all x ′

bj where pbj > αi · ab. Since pi j is changed to αi · ab in p′ for these
items, the difference in price for bucket b is (rb −αi ab)x ′

b. The loss of value by going
from p to p′ is thus

Vali (x) − ValJi (x ′) =
∑

�

(r(i,�) − αi a(i,�))x
′
(i,�).
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436 C. Kalaitzis et al.

Since ab, i.e., the average price of items in bucket b, is equal to (rb−qb)x ′
b+qb, we

have (rb −αi ab)x ′
b = (rb −αi qb)x ′

b − (rb −qb)αi x ′
b
2 ≤ (rb −qb)(x ′

b −αi x ′
b
2
) where

the last inequality follows from αi ≥ 1. Let b′ = (i, k+1), i.e. the next bucket after b.
Since qb ≥ rb′ , we get (rb−αi ab)x ′

b ≤ (rb−qb)(x ′
b−αi x ′

b
2
) ≤ (rb−rb′)(x ′

b−αi x ′
b
2
).

Since b = (i, k) and b′ = (i, k + 1), it follows that

Vali (x) − ValJi (x ′) ≤
∑

�

(r(i,�) − r(i,�+1))
(
x ′
(i,�) − αi x

′
(i,�)

2
)

. (1)

The maximum of x ′
(i,�) − αi x ′

(i,�)
2 is attained for x ′

(i,�) = 1
2αi

and we get

Vali (x) − ValJi (x ′) ≤
∑

�

r(i,�) − r(i,�+1)

4αi
≤ r(i,1)

4αi

Hence

Algi (x) ≥ ValJi (x ′) ≥ Vali (x) − r(i,1)
4αi

= Vali (x)
(
1 − r(i,1)

4Bi

)
(2)

Since r(i,1) ≤ Bi , Algorithm 1 is a 3/4-approximation algorithm. ��
The lower bounding in the previous analysis has some slack, that we list in the

following remarks:

Remark 1 Whenever x ′
(i,1) is bounded away from

1
2αi

, then from Inequality (1) we see
that the algorithm achieves a ratio better than 3/4. This is the opposite of the notion
of well-structured solutions that we introduce later, which is a central concept of our
approach.

Remark 2 If r(i,1) is bounded away from Bi , which means that most items do not have
a very high price for player i , then, as we deduce by examining Inequality (2), an
approximation ratio greater than 3/4 is achieved.

These observations are the motivation behind the use of well-structured solutions,
that we introduce in the next section.

3.2 Well-structured solutions

Let us describe the concept of well-structured solutions. In short, a solution y to the
configuration LP is (ε, δ)-well-structured, if for at least (1 − ε)-fraction of players
roughly half of their configurations contain a big item.

Definition 1 A solution y to the configuration LP is (ε, δ)-well-structured if

Pr
i

⎡

⎣
∑

C⊆Q
|B ∩ C| · yiC /∈

[
1 − δ

2
,
1 + δ

2

]⎤

⎦ ≤ ε,
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where the probability is taken over a weighted distribution of players such that player
i is chosen with probability Vali (y)/Val(y).

It is instructive to notice that this definition addresses exactly the structural prop-
erties of the LP solutions for which Algorithm 1 might perform poorly, as discussed
in Remarks 1 and 2. Specifically, the LP solutions that make the analysis of Algo-
rithm 1 tight look very much like well-structured solutions; being tight with respect to
Remark 2 means that the LP solution contains a fair amount of big items for player i ,
while being tight with respect to Remark 1 means that the total fractional assignment
of big items should be around 1

2αi
.

We want to be able to switch from the configuration LP to the assignment LP
without changing the well-structuredness of the solution. The following lemma shows
that this is indeed possible.

Lemma 2 Let y be a well-structured solution to the configuration LP. Then there
exists a solution x to the assignment LP such that Vali (x) = Vali (y) and

∑

C⊆Q
|B ∩ C| · yiC ∈

[
1 − δ

2
,
1 + δ

2

]
⇔

∑

j : j∈B
xi j ∈

[
1 − δ

2
,
1 + δ

2

]

for all i ∈ A. Furthermore, x can be produced from y in polynomial time.

Proof Note that we can assume that each configuration in y contains at most 2 big
items. If a configuration contains more than 2 big items, all but 2 big items can be
removed without decreasing the objective value. This follows from the fact that, in
that case, the configuration has value at least 2(1 − β), which is greater than 1 since
β ≤ 1/3.

We first modify y to obtain a new solution y′ where for each player, the following
holds: the player does not have both a configuration containing 2 big items and a
configuration with no big items. Then y′ is projected to a solution x for the assignment
LP with the desired properties.

Fix player i and two configurations C and C′ such that C contains two big items and
C′ contains no big items. We can assume that yiC = yiC′ , otherwise we can split the
bigger fractional value into two and focus on just one of them. We want to move the
second big item from C into C′ without decreasing the objective value. We ensure that
the objective value does not decrease by moving small items from C′ to C.

Let us order the small items in C′ by value in decreasing order j1, . . . , jk . We move
a big item from C to C′ and then move j1, j2, . . . to C until it has value at least 1 or we
run out of items. Let F and F ′ be the transformed configurations which arise from C
and C′, respectively.

If w(F) < 1, then we moved all items from C′ to F , so w(F) ≥ 1 − β + w(C′)
and β > w(C′). F ′ contains one big item, so w(F ′) ≥ 1− β. Then w(F) + w(F ′) ≥
2 − 2β + w(C′) > w(C) + w(C′). This implies that the objective value improved
by moving the items and y is not an optimal solution, a contradiction. Hence we can
safely assume that w(F) ≥ 1.

It remains to prove thatw(F ′) ≥ w(C′), so that the objective value does not decrease
with themove. In the process abovewemoved a big itemof value at least 1−β to C′ and
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we now show that wemoved less in the other direction. Suppose towards contradiction
that we moved items of value at least 1 − β ≥ 2β to C. Since C has one big item, it
needs at most value of β from C′. If we only moved one small item, then this cannot
be true, since a small item is of value less than 1 − β. Hence we moved s ≥ 2 small
items to C. The last item added was of value at least 2β/s. By s ≥ 2, moving only the
s − 1 most valuable items would suffice, since s−1

s 2β ≥ β and F would reach price
1 already with the s − 1 most valuable items from C′.

Applying this procedure whenever we can, we end up with a modified solution y′ to
the configuration LP inwhich there is no player at the same time having a configuration
containing two big items and a configuration with no big items. Also, y′ is such that

∑

C⊆Q
|B ∩ C| · yiC =

∑

C⊆Q
|B ∩ C| · y′

iC,

because big items are only moved between configurations, so their contribution to the
sums above is preserved.

The pairs of configurations C, C′ can be chosen in such a way that we only create
polynomially many new configurations in total. To see this, let T = {C1, . . . , Ck}
be the configurations in y that have two big items and let S = {C′

1, . . . , C′
�} be the

configurations in y with no big items.We process T one by one. For each C j ∈ T we try
to move the second big item to the configurations C′

1, . . . , C′
� one by one. In the end we

try at most k ·� different pairs and each pair creates at most 2 new configurations. Since
k · � is polynomial in the size of the instance, also the number of new configurations
is polynomial.

In the final step we project y′ to a solution x to the assignment LP as follows: for
every player i and configuration C, consider the items in C in non-increasing order
according to pi j . If the total value of C is at most 1, the configuration C contributes
y′
iC to the value xi j for all items j ∈ C. Otherwise, consider the items in C in non-
increasing order with respect to their price, and let t be the minimum number such
that the sum of the values of the first t items is greater than the budget. Then, the first
t − 1 items j will have a value of y′

C contributed towards their assignment xi j , the t-th
item will have some fraction of y′

iC contributed towards its assignment, and the rest
of the items will not receive any contribution towards their assignment. In particular
this means that big items get the full contribution y′

iC .
Let us now formalize the intuition given above. Let j ′ be the minimum index such

that
∑

1≤ j≤ j ′ pi j > 1, where the items are now ordered in decreasing order according
to their prices for player i . For all j > j ′, set zi jC = 0, for all j < j ′ set zi jC = y′

iC
and

zi j ′C = 1 − ∑
1≤ j< j ′ pi j

pi j ′
y′
iC .

Finally, we define

xi j =
∑

C⊆Q
zi jC .
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We have Val(x) = Val(y′) = Val(y), since
∑

j zi jC pi j = wi (C)y′
iC , i.e. the

contribution of each configuration is preserved by the projection.
The projection from y′ to x gives full contribution y′

iC to the largest item inC. If there
are two big items in C, the second big item does not get the full contribution. However,
this happens only when

∑
C⊆Q |B ∩ C| · y′

iC > 1 and in this case all configurations in
y′ for player i have a big item, so

∑
j : j∈B xi j > 1. However, if the total weight of big

items in y′ for player i is less than 1, the same total weight is projected on x . We thus
have ∑

j : j∈B
xi j =

∑

C⊆Q
|B ∩ C| · yiC

if
∑

C⊆Q |B ∩ C| · yiC ≤ 1 and otherwise
∑

j : j∈B xi j > 1. This concludes the proof.
��

In the next section (Lemma 5), we show that Algorithm 1 actually performs better
than 3/4 if the solution x to the assignment LP is produced from a non-well-structured
solution y. In Sect. 3.4 (Lemma 6), we show a new algorithm for well-structured
solutions that also has an approximation guarantee strictly better than 3/4. Finally,
Lemma 5 and Lemma 6 immediately imply the main result of this section, Theorem 3.

3.3 Better analysis for non-well-structured solutions

So far, we have pointed out where some slack is introduced in the analysis of Algo-
rithm 1; as a complement to that discussion, we now show that Algorithm 1 performs
well if not all players are fully assigned in the LP. The intuition is that if a player’s
budget is not fully used, then the probability that the total price assigned to that player
is more than the budget decreases and therefore we exceed the budget by a lower
amount on average.

Lemma 3 Let ε′ > 0 be a small constant and consider player i such that Vali (x) ≤
1 − ε′. Then Algi (x) ≥ 3+ε′/5

4 Vali (x).

Proof For player i , let fi (z) = ∑
j xi j min{pi j , z}. Note that fi (z) is a continuous

function, for which we have fi (1) = Vali (x) < 1 and fi (0) = 0. Let Qi be the largest
value z that satisfies fi (z) = z.

If we substitute prices pi j with qi j = min{pi j , Qi }, the ordering of the items for a
player by the price stays the same. ThusAlgorithm1produces the same result nomatter
which one of the two prices we use. Let Di denote the difference

∑
j xi j (pi j −qi j ) =

Vali (x) − Qi . We do case distinction based on the size of Di .
In the first case the cut-off Di is significant; in this case, we can ensure that if

we add back the cut-off in the first bucket, we do not violate the budget and we get
an improved approximation guarantee. In the second case we use the fact that Qi is
bounded away from 1, so the algorithm performs well and with negligible Di this
leads to an improvement.

Case Di > ε′
5 Vali (x) :

By Lemma 1, if we run Algorithm 1 on x but use values qi j and budget Qi in
the analysis, we get Algi (x) ≥ 3

4Qi . In order to improve this we use the fact that
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qi j < pi j only for at most one total unit of the largest items. If already more than
one unit of items is at least Qi , then we have fi (Qi ) > Qi ; therefore, Qi is not a
solution to fi (z) = z, a contradiction.
Moreover, since the assignment according to the analysis with respect to q does not
violate the budget Qi and the real budget is Bi ,we canget an improvedperformance
guarantee by restoring the original item prices. Specifically, the items in the first
bucket had their prices possibly capped to Qi from at most Bi . Hence, if such
an item j is assigned to i , we can consider its price to be pi j ; furthermore, since
qi j < pi j can be true only for items in the first bucket, restoring the original prices
will not cause us to exceed the budget. Therefore, from all items j , we gain an
increase of pi j − qi j in the final algorithm performance. Since we are already
guaranteed that our algorithm returns an expected value of at least 3Qi/4, we
are not losing a quarter from the difference Di = Vali (x) − Qi , so we have an
advantage of Di/4 > ε′

20Vali (x). Formally, Algi (x) is at least

3

4
Qi + Di = 3

4
(Qi + Di ) + Di/4 = 3

4
Vali (x) + Di/4,

which is at least
(
3
4 + ε′

20

)
Vali (x).

Case Di ≤ ε′
5 Vali (x):

We apply Lemma 1 with prices qi j and all budgets equal to 1. Since Qi is bounded
away from 1, Algi (x) is more than 3/4Qi . Formally,

Algi (x) ≥ (1 − Qi/4)Qi

= (1 − Qi/4)Vali (x) − (1 − Qi/4)Di

≥ 4 − Qi

4
Vali (x) − Di .

As Qi ≤ Vali (x) ≤ 1 − ε′,

Algi (x) ≥
(
1 − 1 − ε′

4

)
Vali (x) − Di

≥
(
1 − 1 − ε′/5

4

)
Vali (x)

= 3 + ε′
5

4
Vali (x).

��
From the above, we see that the difficult players to round are those that have an

almost full budget. Furthermore, we show in the following lemma that such players
must have a special fractional assignment in order to be difficult to round; something
we already mentioned in Remarks 1 and 2.
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When all items that are fractionally assigned to the player are big, then there is only
one bucket, and hence there is no loss in Algorithm 1. On the other hand, if all the items
are small, then the probability that the assigned items have total value much higher
than the budget is low, as suggested in Remark 2. The following analysis formalizes
this intuition, showing that the worst-case structure is when the player’s LP value is
coming both from small and big items to the same extent.

Lemma 4 Let δ > 0 be a small constant and β be such that δ/4 ≤ β. Consider a
player i such that Vali (x) ≥ 1− δ2/8 and

∑
j : j∈B xi j /∈ [ 1−δ

2 , 1+δ
2

]
. Then Algi (x) ≥

3+δ2/64
4 Vali (x).

Proof If the average in the first bucket is more than 3+δ2/64
4 Vali (x) then we are done,

since assigning a random item from that bucket gives sufficient profit. If r(i,1) ≤
1 − δ2/16, Lemma 1 already implies the claim. Therefore assume from now on that

r(i,1) ≥ 1 − δ2/16 and r(i,2) ≤ r(i,1) ≤ 3+δ2/16
4 , so r(i,1) − r(i,2) ≥ 1/8, since δ is

small.
In the proof of Lemma 1 we have that the expected decrease Vali (x) − Algi (x) in

our rounding is at most
∑

(i,k)(r(i,k) − r(i,k+1))(x ′
(i,k) − αi x ′

(i,k)
2
).

This can be rewritten as

(r(i,1) − r(i,2))
(
x ′
(i,1) − αi x

′
(i,1)

2
)

+
∑

(i,�):�≥2

(r(i,�) − r(i,�+1))
(
x ′
(i,�) − αi x

′
(i,�)

2
)

≤ (r(i,1) − r(i,2))
(
x ′
(i,1) − αi x

′
(i,1)

2
)

+ r(i,2) · 1

4αi

≤ 1/8
(
x ′
(i,1) − αi x

′
(i,1)

2
)

+ 7/8 · 1

4αi
. (3)

The last inequality follows from (x ′
(i,1) − αi x ′

(i,1)
2
) ≤ 1

4αi
and r(i,1) − r(i,2) ≥ 1/8.

In the rest of the proof we prove that x ′
(i,1) − αi x ′

(i,1)
2 is smaller than 1

4αi
which

follows from that x ′
(i,1) can not be close to 1/2. This fact will in turn follow from

the premises of the lemma; intuitively, Vali (x) ≥ 1 − δ2/8 greatly restricts how the
structure of the first bucket will look like, and the premise

∑
j : j∈B xi j /∈ [ 1−δ

2 , 1+δ
2

]

will then enforce that x ′
(i,1) can not be close to 1/2.

Formally, the probability x ′
(i,1) corresponds to items in thefirst bucket that havevalue

at least αi a(i,1). Suppose towards contradiction that more than δ2/(16β)-fraction of
these items are small items, so they have value less than 1 − β, while the rest of the
items are big. Then we lose β in the value for a δ2/(16β)-fraction of items, so r(i,1) <

1 − δ2

16β · β = 1 − δ2/16, a contradiction. This means that x ′
(i,1) = (

∑
j∈B xi j ) + γ ,

where γ ∈ [0, δ2/(16β)]. By β ≥ δ/4, γ ∈ [0, δ/4]. Since ∑
j∈B xi j /∈ [ 1−δ

2 , 1+δ
2

]
,

we have x ′
(i,1) /∈

[
1−δ/2

2 ,
1+δ/2

2

]
, thus x ′

(i,1) is bounded away from 1/2.
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Observe that the loss in performance in (3) is a multiple of x ′
(i,1) − αi x ′

(i,1)
2, which

is an expression of the form z−αi z2. For a function z−z2 the maximum is attained for
z = 1/2, so z bounded away from 1/2 gives values bounded away from the maximum
which is 1/4. For a function z − αi z2 the maximum is attained close to 1/2 provided
that αi is close to 1. Again, z bounded away from 1/2 gives values bounded away
from the maximum. In the rest of the proof we formalize this intuition.

The maximum for the function z(1−αi z) is attained for z = 1
2αi

and we can prove

that 1
2αi

∈
[
1−δ/2

2 ,
1+δ/2

2

]
. Since αi ≥ 1, it only remains to prove that 1

2αi
≥ 1−δ/2

2 .

By 1/αi ≥ 1 − δ2/8,

1

2αi
≥ 1 − δ2/8

2
>

1 − δ/2

2
.

The function z − αi z2 is symmetric around 1
2αi

and this value is closer to the

beginningof the interval
[
1−δ/2

2 ,
1+δ/2

2

]
, so themaximumof x ′

(i,1)−αi x ′
(i,1)

2 is attained

when x ′
(i,1) = 1−δ/2

2 .

For such x ′
(i,1), x

′
(i,1) −αi x ′

(i,1)
2 ≤ x ′

(i,1) − x ′
(i,1)

2 = (1−δ2/4)/4 ≤ (1−δ2/8)2/4.

Since 1 − δ2/8 ≤ 1
αi
,

x ′
(i,1) − αi x

′
(i,1)

2 ≤ 1 − δ2/8

4αi
.

We can finally bound the decrease in our rounding Vali (x) − Algi (x):

Vali (x) − Algi (x) ≤ r(i,1)

(
1

8
· 1 − δ2/8

4αi
+ 7

8
· 1

4αi

)
= r(i,1)(1 − δ2/64)

4αi
.

The claim follows from the fact that r(i,1) ≤ 1 and αi ≥ 1. ��
From Lemmas 3 and 4 we have that as soon as a weighted ε-fraction (weight

of player i is Vali (y)) of the players satisfies the conditions of either lemma, we
get a better approximation guarantee than 3/4. Therefore, when a solution y to the
configuration LP is not (ε, δ)-well-structured, we use Lemma 2 to produce a solution
x to the assignment LP for which ε-fraction of players satisfies either conditions of
Lemmas 3 or 4. Hence we have the following lemma:

Lemma 5 Given a solution y to the configuration LP which is not (ε, δ)-well-
structured and β ≥ δ/4, we can in polynomial time find a solution with expected

value at least 3+εδ2/64
4 Val(y).

Proof Let x be a solution to the assignment LP produced from y as in Lemma 2. Then
more than weighted ε-fraction of players have

∑
j : j∈B xi j /∈ [ 1−δ

2 , 1+δ
2

]
.

According to Lemma 3 using ε′ = δ2/8, we have Algi (x) ≥ 3+δ2/40
4 Vali (x) if

Vali (x) ≤ 1 − δ2/8. By Lemma 4, using β ≥ δ/4 implies Algi (x) ≥ 3+δ2/64
4 Vali (x)
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ifVali (x) ≥ 1−δ2/8 and
∑

j : j∈B xi j /∈ [ 1−δ
2 , 1+δ

2

]
. Hence for weighted ε-fraction of

players we get Algi (x) ≥ 3+δ2/64
4 Vali (x), so the total gain is at least

3+εδ2/64
4 Val(y).

��

3.4 Algorithm for well-structured solutions

We devise a novel algorithm that gives an improved approximation guarantee for
(ε, δ)-well-structured instances when ε and δ are small constants.

Lemma 6 Let 1− β be the threshold for the big items. Given a solution y to the con-
figuration LP that is (ε, δ)-well-structured, we can in polynomial time find a solution
with expected value at least (1 − δ)2(1 − β − ε) · 25

32Val(y).

To prove the above lemma we first give the algorithm and then its analysis.

Algorithm. The algorithm constructs a slightly modified version y′ of the solution y
to the configuration LP. Solution y′ is obtained from y in three steps and y′ is then
rounded in two additional steps; in the fourth step we assign big items and in the fifth
step we assign small items.

Step 1 Remove all players i with
∑

C⊆Q |B ∩ C|yiC /∈
[

(1−δ)
2 ,

(1+δ)
2

]
.

Step 2 Change y as in the proof of Lemma 2 by getting rid of configurations with
2 big items without losing any objective value. Then remove all small items from
the configurations containing big items. After this step, we have the property that
big items are alone in each configuration. We call such configurations big and the
remaining ones small.

Step 3We scale down the fractional assignment of small configurations (if neces-
sary), so as to ensure that

∑
C:C∩B=∅ y′

iC ≤ 1/2 for each player i ∈ A.

Step 4 Let x ′ be the solution to the assignment LP from Lemma 2 applied on y′
and note that Val(x ′) = Val(y′). Consider the bipartite graph where we have a
vertex ai for each player i ∈ A; a vertex b j for each big item j ∈ B; and an
edge of weight x ′

i j between vertices ai and b j . Note that a matching in this graph
naturally corresponds to an assignment of big items to players. We shall find our
matching/assignment of big items by using Theorem 2. Note that by Theorem 2
we have that (i) each big item j is assigned with probability

∑
i x

′
i j and (ii) the

probability that two players i and i ′ are assigned big items is negatively correlated,

i.e., it is at most
(∑

j∈B x ′
i j

)
·
(∑

j∈B x ′
i ′ j

)
. These two properties are crucial in

the analysis of our algorithm. It is therefore important that we assign the big items
according to a distribution that satisfies the properties of Theorem 2.

Step 5After assigning big items, we assign the small items as follows. First, obtain
an optimal solution x (2) to the assignment LP for the small items together with
the players that were not assigned a big item in the previous step; these items are
the ones that are not assigned during the previous step. Then we obtain an integral
assignment (of the small items) of value at least 3

4Val(x
(2)) by using Algorithm 1.
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Analysis. As solution y is (ε, δ)-well-structured, Step 1 decreases the value of the
solution by at most εVal(y). Step 2 decreases the LP value of y by at most βVal(y)
because each big item has value at least 1 − β and each configuration has value at
most 1. Regarding the loss incurred by Step 3, since remaining players are assigned big
configurations with a total fraction at least (1−δ)/2 and therefore small configurations
with a total fraction at most (1+δ)/2, it may decrease the value by a factor 1/(1+δ) >

1 − δ.
From now on we work with solution y′, for which we have Val(y′) ≥ (1 − β −

ε)(1 − δ)Val(y). Let us reiterate the properties of our tentative solution y′:

– No big configuration in the support of y′ contains a small item.
– For all players i ∈ A we have

∑
C:C∩B=∅ y′

i,C ≤ 1/2 and
∑

C:C∩B �=∅ y′
i,C ∈

[ 1−δ
2 , 1+δ

2 ].
It remains to argue about the value that is returned from Steps 4 and 5. Let x∗

denote the integral assignment found by the algorithm, and let T be the players that
were not assigned a big item in Step 4; since the assignment output by the procedure
of Theorem 2 satisfies the marginals, the expected value of x∗ due to Step 4 (i.e., over
the randomly chosen assignment of big items) is expressed as:

E[Val(x∗)] = ET

⎡

⎣
∑

j∈B

∑

i∈A∩T
x ′
i j p j + 3

4
Val

(
x (2)

)
⎤

⎦

=
∑

j∈B

∑

i∈A
x ′
i j p j + 3

4
ET

[
Val

(
x (2)

)]
,

where the expectation is taken over the random choice of the set T of the players that
were not assigned a big item from the sampled matching.

Essentially, this means we recover all of the fractional value of big items in x ′ and
about 3/4 of the fractional value of small items in x (2). We now analyze E[Val(x (2))],
i.e., the expected optimal value of the assignment LP when only considering small
items and the set of players T ⊆ A that were not assigned big items in Step 4.
Then a solution z to the assignment LP can be obtained by scaling up the fractional
assignments of the small items assigned to players in T according to x ′ by up to a
factor of 2 while maintaining that an item is assigned at most once. In other words,
∑

i∈A∩T zi j = min
{
1,

∑
i∈A∩T 2x ′

i j

}
for each j and z is a feasible solution to the

assignment LP, because we have
∑

j∈S x ′
i j p j ≤ 1/2 for every i .

Thus we have that the expected value of the optimal solution to the assign-
ment LP is by linearity of expectation at least ET [Val(x (2))] ≥ ∑

j∈S p j ·
ET

[
min

{
1,

∑
i∈A∩T 2x ′

i j

}]
.

We continue by analyzing the expected fraction of a small item. In this lemma we
use that the randomly selected matching of big items has negative correlation. To see
why this is necessary, consider a small item j ∈ S and suppose that j is assigned to
two players u and v both with a fraction 1/2, i.e., x ′

u j = x ′
v j = 1/2. As the instance is

well-structured and each configuration contains at most one big item, both u and v are
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roughly assigned half a fraction of big items; for simplicity assume it to be exactly 1/2.

Note that in this casewehave thatmin
{
1,

∑
i∈A∩T 2x ′

i j

}
is equal to 1 if eitheru orv are

not assigned a big item and 0 otherwise. Therefore, on the one hand, if the event that u is
assigned a big item and the event that v is assigned a big itemwere perfectly correlated

then we would have ET

[
min

{
1,

∑
i∈A∩T 2x ′

i j

}]
= 1/2. On the other hand, if those

events are negatively correlated then ET

[
min

{
1,

∑
i∈A∩T 2x ′

i j

}]
≥ 3/4, as in this

case the probability that both u and v are assigned big items is at most 1/4.

Lemma 7 For every j ∈ S, ET

[
min

{
1,

∑
i∈A∩T 2x ′

i j

}]
≥ (1 − δ) 34

∑
i∈A x ′

i j .

Proof We slightly abuse notation and also denote by T the event that the play-
ers in T ⊆ A were those that were not assigned big items. Let also x(T ) =
min

{
1,

∑
k∈A∩T 2x ′

k j

}
for the considered small item j . With this notation,

ET

[
min

{
1,

∑

i∈A∩T
2x ′

i j

}]
=

∑

T⊆A
Pr[T ] · x(T ).

We shall show that we can lower bound this quantity by assuming that j is only
fractionally assigned to two players. Indeed, suppose j is fractionally assigned tomore
than two players. Then there must exist two players, say i and i ′, so that 0 < x ′

i j < 1/2
and 0 < x ′

i ′ j < 1/2; the fractional assignment of a small item to some player never
exceeds 1/2 by construction of y′ and x ′. We can write

∑
T⊆A Pr[T ] · x(T ) as

∑

T⊆A\{i,i ′}
(Pr[T ] · x(T ) + Pr[T ∪ {i}] · x(T ∪ {i})

+Pr[T ∪ {i ′}] · x(T ∪ {i ′}) + Pr[T ∪ {i, i ′}] · x(T ∪ {i, i ′})) (4)

Note that if we shift some amount of fractional assignment from x ′
i j to x ′

i ′ j (or vice-
versa) then x(T ) and x(T ∪ {i, i ′}) do not change. We now analyze the effect such
a shift has on the sums

∑
T⊆A\{i,i ′} Pr[T ∪ {i}] · x(T ∪ {i}) and ∑

T⊆A\{i,i ′} Pr[T ∪
{i ′}] · x(T ∪ {i ′}). After this shift x ′ might not be a valid solution to the assignment
LP, namely we might go over the budget for some players. However, our goal is only
to prove a lower-bound on E[Val(x (2)].

For this purpose let Fi denote the probability that the set T is selected such that the
value of x(T ∪ {i}) is strictly less than 1, i.e.,

Fi :=
∑

T⊆A\{i,i ′}:x(T∪{i})<1

Pr[T ∪ {i}].

The definition of Fi ′ is analogous. Note that if we, on the one hand, decrease x ′
i j by

a small η and increase x ′
i ′ j by η, this changes (4) by at most 2η(−Fi + Fi ′). On the

other hand, if we increase x ′
i j and decrease x ′

i ′ j by η, then (4) changes by at most
2η(Fi − Fi ′). Necessarily, one of 2η(Fi − Fi ′) and 2η(−Fi + Fi ′) is non-positive.
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Let us assume (−Fi +Fi ′) is non-positive(the complementary case is treated analo-
gously), in which case wewill shift a small fraction η from x ′

i j to x
′
i ′ j . This implies that

the change in (4) is non-positive. After the small change by η, Fi can not decrease. To
see this, let Ti = {T ⊆ A\{i, i ′} : x(T ∪ {i}) < 1} with respect to solution x ′ before
the η-shift, and let T ′

i = {T ⊆ A\{i, i ′} : x(T ∪ {i}) < 1} with respect to solution x ′
after the η-shift. Then, Ti ⊆ T ′

i , which by the definition of Fi implies that Fi will not
decrease after the η-shift. Similarly, let Ti ′ = {T ⊆ A\{i, i ′} : x(T ∪ {i ′}) < 1} with
respect to solution x ′ before the η-shift, and let T ′

i ′ = {T ⊆ A\{i, i ′} : x(T ∪{i ′}) < 1}
with respect to solution x ′ after the η-shift. Then, T ′

i ′ ⊆ Ti ′ , which by the definition of
Fi ′ implies that Fi ′ will not increase after the η-shift. Therefore, if wemake any shift in
the same direction (i.e., from x ′

i j to x
′
i ′ j ), the change in (4) will always be non-positive.

We can therefore shift a fraction of x ′
i j to x ′

i ′ j without increasing (4) until one of the
variables becomes 0 or 1/2. If it becomes 0 then we repeat the process with one less
fractionally assigned small item and if it becomes 1/2 we consider two other players
where j is fractionally assigned strictly between 0 and 1/2. After repeating the above
process we may assume that j is fractionally assigned to at most two players u and v

and x ′
u j , x

′
v j ≤ 1/2. Therefore (4) is at least

Pr[u, v /∈ T ] · 0 + Pr[u ∈ T, v /∈ T ] · 2x ′
u j

+Pr[u /∈ T, v ∈ T ] · 2x ′
v j + Pr[u, v ∈ T ] · min{1, 2x ′

u j + 2x ′
v j }

≥ Pr[u ∈ T ] · 2x ′
u j + Pr[v ∈ T ] · 2x ′

v j + Pr[u, v ∈ T ]
(
min

{
1, 2x ′

u j + 2x ′
v j

}

−2x ′
u j − 2x ′

v j

)
. (5)

We have min{1, 2x ′
u j + 2x ′

v j } − 2x ′
u j − 2x ′

v j ≥ −x ′
u j − x ′

v j , since min{1, 2x ′
u j +

2x ′
v j } ≥ x ′

u j + x ′
v j . Let us fix Pr[u ∈ T ] and Pr[v ∈ T ], then (5) is minimized when

Pr[u, v ∈ T ] is maximized. By Theorem 2 the assignments of big items are negatively
correlated, so Pr[u, v ∈ T ] ≤ Pr[u ∈ T ]Pr[v ∈ T ]. Thus (5) is at least

Pr[u ∈ T ] · 2x ′
u j + Pr[v ∈ T ] · 2x ′

v j − Pr[u ∈ T ]Pr[v ∈ T ](x ′
u j + x ′

v j ). (6)

The distribution from Theorem 2 preserves the marginals, so Pr[u ∈ T ] and Pr[v ∈
T ] are in the interval [ 1−δ

2 , 1+δ
2 ]. Since (6) is non-decreasing in Pr[u ∈ T ] and Pr[v ∈

T ], the worst case is when Pr[u ∈ T ] = Pr[v ∈ T ] = 1−δ
2 , which implies Pr[u, v ∈

T ] ≤ (1−δ)2

4 . Hence (6) is at least

(1 − δ)x ′
u j + (1 − δ)x ′

v j − (1 − δ)2

4
(x ′

u j + x ′
v j )

≥ (1 − δ)

(
1 − 1 − δ

4

)
(x ′

u j + x ′
v j ) ≥ (1 − δ)

3

4
(x ′

u j + x ′
v j ).

��
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Let us now see how it implies Lemma 6. We have that E[Val(x∗)] is equal to

∑

j∈B

∑

i∈A
x ′
i j p j + 3

4
E

[
Val

(
x (2)

)]
≥

∑

j∈B

∑

i∈A
x ′
i j p j + (1 − δ)

(
3

4

)2 ∑

j∈S

∑

i∈A
x ′
i j p j .

As
∑

j∈B x ′
i j ≥ 1−δ

2 for every remaining player, we have

E[Val(x∗)]
Val(x ′)

≥ (1 − δ)

(
1

2
+ 1

2

9

16

)
= (1 − δ)

25

32
.

Lemma 6 now follows from that Val(x ′) ≥ (1−β − ε)(1− δ)Val(y). We have proved
Lemmas 5 and 6, which in turn imply Theorem 3 and our analysis is concluded.

4 An algorithm for graph MBA

In this section, we consider the graph MBA problem. Specifically, every player i ∈ A
has a (possibly different) budget Bi and every item j ∈ Q has a non-zero valuation for
at most two players. This can be viewed as a graph problem where items are edges,
players are vertices and assigning an item means directing an edge towards a vertex.

We already know that the integrality gap of the assignment LP for this variant is
exactly 3/4 [1], and that of the configuration LP is no better than 5/6 [6].We prove that
using the configuration LP, we can recover a fraction of the LP value that is bounded
away from 3/4 by a constant, implying the following theorem.

Theorem 4 There is a polynomial time algorithmwhich returns a ( 34+c)-approximate
solution to the graph MBA problem, for some constant c > 0.

We remark that our algorithm for Graph MBA is slightly different from the one in
the conference version of this paper due to a technical error.

Let us define some notation first. Let y be a solution to the configuration LP. We
abuse notation and use x to denote a fractional assignment such that for all i ∈ A
and j ∈ Q, xi j = ∑

C⊆Q: j∈C yiC , i.e., it corresponds to the sum of all values yiC
for which j is a member of C. Note that we can always maintain that for all j ∈ Q,∑

i∈A xi j = 1, by assigning item j to some arbitrary configuration if needed, even
though that configuration exceeds the budget of the player to which it is assigned.
Similarly, we can always guarantee for all players i ∈ A that

∑
C⊆Q yiC = 1, by

setting yi∅ to whatever value that is needed.
We denote by pi jC the contribution of item j to wi (C), i.e., the part of the value of

configuration C that is attributed to item j . More specifically, if wi (C) < Bi , then the
contribution is the same as the valuation, i.e., pi jC = pi j . Otherwise, we take

pi jC = pi j
Bi∑

j ′∈C pi j ′
,
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448 C. Kalaitzis et al.

i.e., we scale down the valuation, so that each item gets a part of Bi that is proportional
to its valuation. Note that

∑
j∈C pi jC = wi (C), so pi jC is a partition of wi (C) among

all items in C proportional to pi j .
LetVali j (y) = ∑

C⊆Q: j∈C yiC pi jC be the contribution of item j to the LP objective
value which comes from its assignment to player i . Note that Vali j (y) corresponds to
the contribution that player i expects from item j when configuration C is assigned to
i with probability yiC . Also note that the definition ofVal here is slightly different than
the one in Sect. 3. Since pi jC depends on the configuration C,Vali j (y) depends heavily
on the specific structure of the solution y to the configurationLP, and the configurations
it assigns to player i . Furthermore, let Val j (y) = ∑

i∈A Vali j (y) be the contribution
of item j to the objective value of the LP. We have that Val(y) = ∑

j∈Q Val j (y) is
the objective value of y. Let Avgi j (y) = Vali j (y)/xi j , i.e., the average contribution
of j conditioned on the event that j is in a configuration chosen by i (this happens
with probability xi j ).

4.1 Preprocessing

We first preprocess the solution y to the configuration LP. The idea is to find two
players i and i ′ with two configurations C and C′ (for i and i ′ respectively) that could
be used to gain at least a (3/4+c)-fraction of the total budget Bi+Bi ′ without affecting
the rest of the players.

For two players i, i ′ ∈ A letQi,i ′ be items that can only be assigned to these players.
The preprocessing is as follows. If there are configurations C and C′ with yiC > 0 and
yi ′C ′ > 0 such that

∑

j∈(C\C′)∩Qi,i ′
pi jC +

∑

j∈(C′\C)∩Qi,i ′
pi jC ′ ≥ (3/4 + c)(Bi + Bi ′),

then assign the items inQi,i ′ according to C and C′. If an item is assigned to both then
assign it arbitrarily.We then removeplayers i, i ′ from the instance aswell as the items in
Qi,i ′ . In each preprocessing stepwemake progress towards a (3/4+c)-approximation,
since we assign items of value at least (3/4 + c)(Bi + Bi ′) to i and i ′. Note that we
only use items from Qi,i ′ , so all other players are unaffected by the removal.

We continue until there are no two players with such two configurations left. Since
there is only a polynomial number of configurations in y with yiC > 0, the preprocess-
ing takes polynomial time.

4.2 First algorithm

To prove Theorem 4, we employ two algorithms that perform well in two different
cases. Algorithm 2 recovers more than a 3/4-fraction of Val j (y) whenever Avgi j (y)
and Avgi ′ j (y) differ a lot or when xi j is bounded away from 1/2.

Let max( j) be the player that maximizes Avgi j (y) for item j and let min( j) be the
player that minimizes Avgi j (y) for item j .
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Input : Solution y to the configuration LP
Output: Assignment y∗ of items to the players

foreach i ∈ A do
// Configuration assignment
Pick a configuration C with probability equal to yiC

end foreach
foreach j ∈ Q do

// Conflict resolution
if j is chosen by both i and i ′ then

Assign j to i∗ ∈ {i, i ′} which maximizes Avgi∗ j (x)
end if

end foreach
Return assignment of items y∗

Algorithm 2: Sampling algorithm using averages

Lemma 8 For all j ∈ Q, the expected contribution of j to the objective value is at
least

Val j (y) − ρ(1 − ρ)Avgi ′ j (y)

where i ′ = min( j), i = max( j) and ρ = xi j .

Proof Item j is assigned to i whenever i picks a configuration containing j , because
i has priority over i ′. Therefore, the expected contribution of j due to its assignment
to i is Vali j (y). On the other hand, j is taken away from i ′ whenever i also picks j
and this happens with probability ρ = xi j . Hence, the expected contribution of j due
to its assignment to i ′ is (1 − ρ)Vali ′ j (y).

We can write the total expected contribution as

Vali j (y)+ (1−ρ)Vali ′ j (y) = Val j (y)−ρVali ′ j (y) = Val j (y)−ρ(1−ρ)Avgi ′ j (y),

since Val j (y) = Vali j (y) + Vali ′ j (y) and (1 − ρ)Avgi ′ j (y) = Vali ′ j (y). ��

Corollary 1 IfAvgi j (y)−Avgi ′ j (y) ≥ γAvgi ′ j (y), the expected contribution of item
j is at least

(
1 − ρ(1 − ρ)

1 + ργ

)
Val j (y),

where ρ = xi j .

Proof We can write

Val j (y) = ρAvgi j (y) + (1 − ρ)Avgi ′ j (y)

= Avgi ′ j (y) + ρ(Avgi j (y) − Avgi ′ j (y))

≥ (1 + ργ )Avgi ′ j (y).
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We thus have that

ρ(1 − ρ)Avgi ′ j (y)

Val j (y)
≤ ρ(1 − ρ)Avgi ′ j (y)

(1 + ργ )Avgi ′ j (y)
= ρ(1 − ρ)

1 + ργ
.

By Lemma 8, the expected contribution of j to the objective value is at least

Val j (y) − ρ(1 − ρ)Avgi ′ j (y) ≥
(
1 − ρ(1 − ρ)

1 + ργ

)
Val j (y).

��
Suppose a weighted ε-fraction of items has ρ(1−ρ)

1+ργ
≤ 1/4 − c′, such that εc′ = c.

Then Algorithm 2 returns a solution of value that is at least 3/4 + c′ε = 3/4 + c
fraction of Val(y).

If ρ ∈ [1/2 − β, 1/2 + β] for some small β, then the loss in Corollary 1 is at
most 1

4(1+γ /3) , since ρ(1 − ρ) ≤ 1/4 and ργ ≥ γ /3. Thus for γ > 0 we get a better
than 3/4-approximation. On the other hand, if ρ /∈ [1/2− β, 1/2+ β], the loss in the
corollary is at most 1/4− β2 < 1/4 and we also get a better than 3/4-approximation.
We can therefore assume that each item is assigned to both players with probability
roughly 1/2 and that it has roughly the same average value for both players, because
otherwise we already do better than 3/4.

4.3 Second algorithm

We now present Algorithm 3. It works in two phases, called the primary assignment
phase and the secondary assignment phase. Note that the secondary assignment is
similar to the techniques used to tackle GAP in [9].

During the primary assignment phase, player i picks configuration C with prob-
ability equal to yiC . An item j might be picked by two players i and i ′ and these
conflicts are resolved as follows: we assign item j to i with probability xi ′ j and to i ′
with probability xi j . It is important that we use the value for player i ′ to assign an item
to player i and vice versa.

During the secondary assignment phase, we want to assign items that were not
picked by any player. We assign an item j to players i and i ′ uniformly at random.

The first important property of the algorithm is that the primary assignment already
recovers a 3/4-fraction of the LP value. The second important property is that when
many values in x are close to 1/2 or Avgmax( j) j (y) and Avgmin( j) j (y) are close for
many items, in expectation a constant fraction of the budget is left empty after the
primary assignment and thus it can be used by the yet unassigned items to allocate a
constant fraction of the LP value. Let us now formalize this intuition.

4.4 Analysis of the primary assignment

Let us first prove a lemma regarding the value recovered by the primary assignment,
i.e., the phase of the algorithm that involves configuration assignment and conflict
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Input : Solution y to the configuration LP
Output: Assignment y∗ of items to the players

Let xi j = ∑
C⊆Q: j∈C yiC , for all i ∈ A and j ∈ Q

foreach i ∈ A do
// Configuration assignment, part of primary assignment
Pick a configuration C with probability equal to yiC

end foreach
foreach j ∈ Q do

// Conflict resolution, part of primary assignment
if j is chosen by both i and i ′ then

Assign j to i with probability xi ′ j , otherwise assign j to i ′
end if
// Secondary assignment
if j is unassigned then

Assign j to i ∈ {k | pk j > 0} chosen uniformly at random
end if

end foreach
Return assignment of items y∗

Algorithm 3: Configuration sampling algorithm

resolution. Let y p be the solution to the configuration LP that corresponds to the
primary assignment. We have the following lemma.

Lemma 9 Let i ∈ A, j ∈ Q and ρ = xi j . The expected contribution of j to i due to
primary assignment is at least

E
[
Vali j (y p)

] ≥
(
1 − ρ + ρ2

)
Vali j (y).

Proof An item j is expected to contribute with Vali j (y) to the value of i when config-
urations are randomly picked according to y. However, j might be assigned to another
player in the conflict resolution, so we cannot make use of the full value Vali j (y).

Let i and i ′ be the players for which pi j > 0 and pi ′ j > 0. If j is in a configuration
that was picked by i , the probability that j is not picked by i ′ is ρ, while the probability
that j is also picked by i ′ but then assigned in conflict resolution to i is (1 − ρ)2. So
the total probability of j being assigned to i , when j is picked by i , is ρ + (1− ρ)2 =
1 − ρ + ρ2.

Therefore, the expected contribution of j to i due to primary assignment to i is

E
[
Vali j (y p)

] ≥
(
1 − ρ + ρ2

)
Vali j (y).

��
The above lemma implies the following corollary.

Corollary 2 Let j ∈ Q be such that it can be assigned to players i and i ′. The expected
contribution of j to the objective value due to primary assignment is

E
[
Val j (y p)

] ≥
(
1 − ρ + ρ2

) (
Vali j (y) + Vali ′ j (y)

)
.
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where ρ = xi j . Moreover,

E
[
Val j (y p)

] ≥ 3

4
Val j (y).

Proof We have 1− xi j + x2i j = 1− xi ′ j + x2i ′ j = 1−ρ +ρ2, since xi j + xi ′ j = 1. The
expected contribution of j to the objective value of the LP due to primary assignment
is

E
[
Val j (y p)

] = E
[
Vali j (y p) + Vali ′ j (y

p)
]

=
(
1 − ρ + ρ2

) (
Vali j (y) + Vali ′ j (y)

)

≥ 3

4
Val j (y),

since 1 − ρ + ρ2 ≥ 3/4 for all ρ. ��
As we can see, the primary assignment already recovers a 3/4-fraction of the objec-

tive value. It thus remains to prove that the secondary assignment recovers an additional
constant fraction of the objective value.

4.5 Analysis of the secondary assignment

Let δ ∈ (0, 1
2 ) and γ > 0 be parameters to be defined later. Let

I = { j ∈ Q : max{xi j : i ∈ A} ≥ 1 − δ

∨Avgmax( j) j (y) ≥ (1 + γ )Avgmin( j) j (y)}

be the set of almost-integral items together with items that have big difference between
Avgmax( j) j (y) and Avgmin( j) j (y). Let H = Q\I be the remaining items.

By Corollary 1, Algorithm 2 recovers more than a 3/4-fraction of the value of each
item in I . Therefore, when the fraction of the objective value which corresponds to
items in I is non-negligible, we can improve over the approximation ratio 3/4. Hence,
our troubles begin when the contribution of items in I to the objective value is tiny.

More formally, if for some ε > 0, at least an ε-fraction of the LP value corresponds
to items in I , i.e.,

∑

j∈I
Val j (y) ≥ εVal(y),

then Corollary 1 implies that

∑

j∈Q
E

[
Val j (y p)

] ≥
(
3

4
+ ε′

)
Val(y).

for some ε′ > 0 which depends on ε, δ and γ .
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Since we know how to achieve a better than 3/4-approximation in this case, we can
make the assumption that less than an ε-fraction of the LP value comes from items
in I . We remove items in I and work under the assumption that all the items belong
to H . The removal causes a decrease in the LP value that is at most an ε-fraction of
the original LP value. For simplicity, we ignore this term for the rest of our analysis,
up to the point where we finalize the proof of Theorem 4.

From now on, assume that all items belong to H . Let y∗ be the rounded integral
solution after the secondary assignment step. First, we prove a lemma concerning the
value we gain from Algorithm 3 for each item in H , and then conclude the analysis
by proving that the approximation ratio of Algorithm 2 and Algorithm 3 is greater
than 3/4. Let Alg be the value of the rounded integral solution y∗. Then we have the
following lemma.

Lemma 10 If all items are in H,

E[Alg] ≥
(
3

4
+ δ2(1 − δ)2

15

)
Val(y),

where the expectation is taken over the random choices of Algorithm 3.

Proof Fix item j ∈ H and let i and i ′ be the players that j can be assigned to. The idea
of the proof is that the preprocessing step leaves a fraction of the total budget Bi + Bi ′
either unassigned or assigned to items that are removed with constant probability
in the conflict resolution. This constant fraction can be used by j in the secondary
assignment.

We already analyzed the expected contribution of j due to the primary assignment
in Lemma 9, so we focus mostly on the secondary assignment in this proof. Item j
gets secondarily assigned if j was not assigned in the primary assignment to any of the
players i and i ′. This means that player i picked configuration C and player i ′ picked
C′ such that j /∈ C ∪ C′. This happens with probability at least δ(1− δ), since j ∈ H .
The preprocessing makes sure that at most a (3/4 + c)-fraction of the total budget
Bi + Bi ′ comes from items that are assigned only to i or only to i ′. Hence, when i and
i ′ pick configurations C and C′, a value of at least (1/4 − c)(Bi + Bi ′) is completely
unassigned or corresponds to items not inQi,i ′ , i.e., items that are assignable to players
other than i and i ′.

With probability of 1− xi j ′ item j ′ ∈ C\Qi,i ′ is also picked by another player � and
assigned to her with probability xi j ′ in the conflict resolution, and this is true even if
we condition on the event that players i and i ′ picked C and C′ respectively. Since all
items are in H , xi j ′ ∈ [δ, 1− δ] and therefore each item j ′ ∈ C\Qi,i ′ has a probability
of at least xi j ′(1 − xi j ′) ≥ δ(1 − δ) to not be assigned to i after conflict resolution.
The same analysis applies to player i ′ and items in C′\Qi,i ′ .

For the rest of the proof we make the assumption that items in C and C′ do not
exceed the budgets, i.e.,

∑
j ′∈C pi j ′ ≤ Bi and

∑
j ′∈C′ pi ′ j ′ ≤ Bi ′ . This is without

loss of generality, because the opposite situation is the easier case. Suppose towards
contradiction that the lemma is false when

∑
j ′∈C pi j ′ > Bi or

∑
j ′∈C′ pi ′ j ′ > Bi ′ , but

is true otherwise. After i and i ′ pick C and C′, scale down the valuations of items in
C and C′ so that their total valuations match exactly Bi and Bi ′ , i.e., we use pi jC and
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pi ′ jC′ as valuations. The expected contribution of each item did not decreasewith these
new valuations, since we scale down pi j to pi jC when calculating Vali j (y) anyway.
Therefore the lemma would be true in this case as well, a contradiction.

Since
∑

j ′∈C pi j ′ ≤ Bi and
∑

j ′∈C′ pi ′ j ′ ≤ Bi ′ , in expectation at least a δ(1 − δ)-
fraction of (1/4 − c)(Bi + Bi ′) is free after the conflict resolution, i.e. the total free
value is at least

δ(1 − δ)

(
1

4
− c

)
(Bi + Bi ′) ≥ δ(1 − δ)

5
(Bi + Bi ′),

since we assume that c is small. This part of the budget is used in the secondary
assignment by j and other secondarily assigned items.

Suppose a b-fraction of i’s budget Bi is free after the primary assignment and
let Ui be the set of items that is secondarily assigned to i . By the definition of Val,∑

j Vali j (y) ≤ Bi and Vali j (y) ≤ pi j . We use this to partition the freed-up budget
bBi among all items in Ui such that item j ′ ∈ Ui is attributed an expected contribu-
tion of bVali j ′(y). Since

∑
j ′∈Ui

Vali j ′(y) ≤ ∑
j ′ Vali j ′(y) ≤ Bi , the total expected

contribution of Ui is at most bBi . Furthermore, since Vali j ′(y) ≤ pi j ′ , no item has
expected contribution that is bigger than its valuation.

Suppose that after the primary assignment an a-fraction of Bi is free and a b-fraction
of Bi ′ is free. As j is secondarily assigned to players i and i ′ uniformly at random,
the expected contribution of j due to the secondary assignment is

aVali j (y) + bVali ′ j (y)

2
.

Without loss of generality, we can assume that Vali j (y) ≥ Vali ′ j (y), so

aVali j (y) + bVali ′ j (y)

2
≥ a + b

2
Vali ′ j (y).

In expectation, at least a δ(1−δ)
5 -fraction of the total budget Bi + Bi ′ is freed up,

so E[a + b] ≥ 2δ(1−δ)
5 . Hence, the expected contribution of j during the secondary

assignment is at least

δ(1 − δ)

5
Vali ′ j (y).

For every pair of configurations C and C′ such that j /∈ C ∪ C′, we have a lower
bound on the expected contribution of j during the secondary assignment. Since
j ∈ H , players i and i ′ pick such C and C′ with probability at least δ(1 − δ), so the
expected contribution of j due to secondary assignment is at least

δ2(1 − δ)2

5
Vali ′ j (y).
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Let ρ = xi j . We have Val j (y) = ρAvgi j (y) + (1 − ρ)Avgi ′ j (y) and Avgi j (y) ≤
(1 + γ )Avgi ′ j (y), where i

′ = min( j), since j ∈ H . Therefore,

Val j (y) ≤ ρ(1 + γ )Avgi ′ j (y) + (1 − ρ)Avgi ′ j (y) ≤ (1 + ργ )Avgi ′ j (y).

It follows that Val j (y)/(1 + ργ ) ≤ Avgi ′ j (y). Since Vali ′ j (y) = (1 − ρ)Avgi ′ j (y),

Vali ′ j (y) ≥ Val j (y)(1 − ρ)

1 + ργ
.

We have ρ ≈ 1/2 and γ is a small constant, so Vali ′ j (y) ≥ Val j (y)/3. Therefore, the
expected contribution of j due to secondary assignment is at least

δ2(1 − δ)2

5
Vali ′ j (y) ≥ δ2(1 − δ)2

15
Val j (y).

By Corollary 2, the contribution due to the primary assignment is at least
(3/4)Val j (y), so the total expected contribution of j is at least

(
3

4
+ δ2(1 − δ)2

15

)
Val j (y).

The lemma follows from

E[Alg] ≥
∑

j

(
3

4
+ δ2(1 − δ)2

15

)
Val j (y) ≥

(
3

4
+ δ2(1 − δ)2

15

)
Val(y).

��

We are now ready to prove Theorem 4.

Proof of Theorem 4 Let us first assume that at least an ε-fraction of the LP value of
the original solution y comes from items in I , i.e.,

∑

j∈I
Val j (y) ≥ εVal(y).

Pick δ < 1/2 and by Corollary 1, the expected contribution of item j ∈ I is at least
(3/4+ε′)Vali j (y) for some ε′ > 0. Corollary 1 implies that items in H have expected
contribution at least (3/4)Vali j (y), since ρ(1 − ρ) ≤ 1/4.
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Therefore, the expected value of the solution returned by Algorithm 2 is at least

∑

j∈I

(
3

4
+ ε′

)
Val j (y) +

∑

j∈H

3

4
Val j (y) =

∑

j∈Q

3

4
Val j (y) +

∑

j∈I
ε′Val j (y)

≥
∑

j∈Q

(
3

4
+ εε′

)
Val j (y)

=
(
3

4
+ εε′

)
Val(y)

which proves the theorem in the case when at least an ε-fraction ofVal(y) comes from
items in I .

Let us then consider the case where less than an ε-fraction of the LP value comes
from items in I . We can preprocess the solution y into a solution y′ that does not
contain items in I by removing all such items from any configuration in the support
of y as well as from the original instance. It follows that the LP value of y′ is at least
an (1 − ε)-fraction of the LP value of y,

Val(y′) ≥ (1 − ε)Val(y).

We then run Algorithm 3 on y′. By Lemma 10, E[Alg] ≥
(
3
4 + δ2(1−δ)2

15

)
Val(y′),

so Algorithm 3 recovers at least a value of
(
3

4
+ δ2(1 − δ)2

15

)
Val(y′) ≥ (1 − ε)

(
3

4
+ δ2(1 − δ)2

15

)
Val(y),

where the last inequality follows from Val(y′) ≥ (1 − ε)Val(y).
The theorem follows by choosing appropriate δ and ε: fix any δ > 0, then ( 34 +

δ2(1−δ)2

15 ) = 3/4 + η, where 1/100 > η > 0. Let ε = η/2, then (1 − ε)(3/4 + η) ≥
3/4 + η/2 − η2/2 > 3/4, since η(1 − η)/2 > 0. ��

5 An improved integrality gap for the unrestricted case

The previously best known upper bound on integrality gap of the configuration LPwas
5/6 = 0.833 proved byChakrabarty andGoel in [6].We improve this to approximately
0.828. Unlike the previous result, our gap instance is not a graph instance.

Theorem 5 The integrality gap of the configuration LP is at most 2(
√
2−1) ≈ 0.828.

Proof For p, q ∈ N such that p < q, consider the following MBA instance: there are
q players li ∈ L for 1 ≤ i ≤ q with budget 1 and q players si ∈ S for 1 ≤ i ≤ q with
budget p

q . Additionally, there are p items c j ∈ R for 1 ≤ j ≤ p, each of which can
be assigned to players in L with a value of 1. Finally, for each player li ∈ L , there are
q items oi j ∈ Oi for 1 ≤ j ≤ q, which can be assigned to li and si with a value of 1

q .
An example with p = 2 and q = 3 is drawn in Fig. 3.
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Fig. 3 An instance with p = 2 and q = 3. Black squares are players in L , white squares players in S.
They have budgets 1 and 2/3 respectively. Items in R are black dots and items in Oi are white dots with
their values written next to them. An edge between a player and an item denotes that the player is interested
in that item

The optimal integral solution assigns p items from R to p distinct players in L;
for each player i that is assigned an item from R, we assign p items from Oi to si .
Let i ′ be one of the q − p players which do not get an item from R, the optimal
integral solution assigns the q items from Oi ′ to i ′. The total value of the solution is

p(1 + p
q ) + q − p = p2

q + q.
Consider the following fractional solution to the configuration LP. Every item in R

is shared by the q players in L , each with a fraction of 1
q . Furthermore, every player i

in L is assigned a fraction q−p
q of every item in Oi . More precisely, the configuration

C = Oi has yiC = q−p
q , so the budget of i is completely filled.

Finally, every player i in S uses the unassigned fraction p
q of every item in Oi to

form
(q
p

)
configurations of size p, which fill up the budget of i completely. Hence, the

value of the fractional solution is q + q p
q = q + p. Note that the total value of items

is p + q, so there can not be a better assignment.
Hence, the integrality gap I (p, q) is

I (p, q) =
p2

q + q

p + q
=

p2

q2
+ 1

p
q + 1

.
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For x ∈ R, the expression f (x) = x2+1
x+1 is minimized at x∗ = √

2 − 1 and has

f (x∗) = 2(
√
2− 1). Hence, choosing p, q such that p

q is arbitrarily close to
√
2− 1,

we can achieve an integrality gap arbitrarily close to 2(
√
2 − 1). ��

6 Hardness of approximation

In this section we strengthen the known hardness results. First we prove hardness
59/60 in the graph case and then we prove that the known 15/16-hardness holds also
for restricted MBA where players have the same budget.

Previously Chakrabarty andGoel in [6] proved hardness of approximation to within
a factor of 15/16 by a reduction from Max-3-Lin(2). Remember that Max-3-Lin(2)
is the following problem: given m linear equations modulo 2 over n variables, each
equation containing 3 variables, find an assignment of variables to maximize the
number of satisfied constraints.

We modify this construction to useMax-2-Lin(2)which is the same problem, with
the difference being that each equation contains 2 variables. The important change
is that we create items for assignments that do not satisfy an equation, while the
previous construction used satisfying assignments. The use of equations of size 2
implies hardness for the graph case, i.e., where each item can only be assigned to two
players.

Theorem 6 For every ε > 0, it is NP-hard to approximate graphMBA within a factor
of 59/60 + ε. Furthermore, this is true for the restriction of the problem where all
players have the same budget.

Proof We reduce from an instance φ of Max-2-Lin(2). Let x be a variable occurring
deg(x) times in φ. We have two players 〈x : 1〉 and 〈x : 0〉 both with budgets deg(x)
and an itemof value deg(x) that can only be assigned to these two players. Themeaning
of this item is that if it is assigned to the player 〈x : a〉, then a truth assignment α has
α(x) = a.

We use the notation 〈x : a1, y : a2〉 to denote items of our graph MBA instance,
where x and y corresponds to variables of theMax-2-Lin(2) instance we reduce from,
and a1, a2 ∈ {0, 1}. Specifically, for each equation x + y = b, there are two items
〈x : a1, y : a2〉 of value 1. Each such item corresponds to an assignment α for which
α(x) = a1, α(y) = a2 and a1 + a2 �= b. An item 〈x : a1, y : a2〉 can be assigned to
〈x : c〉 only if c = a1 and to 〈y : d〉 only if d = a2.

Every item can only be assigned to two players, so this is a graph instance. Fur-
thermore, the valuation for both players is the same, so it is the restricted case.

The analysis is now very similar to the one in [6]. We can prove that an optimal
assignment of items always assigns items that have weight deg(x), for some x , and this
can be translated into a truth assignment α to variables.We have α(x) = a if an item of
value deg(x) is assigned to 〈x : a〉. If α satisfies x + y = b, i.e., α(x) + α(y) = b, we
can assign both items 〈x : a1, y : a2〉. Otherwise we can only assign one of them, since
the budgets of 〈x : α(x)〉 and 〈y : α(y)〉 are fully assigned. So if φ is δ-satisfiable (i.e.,
there is a truth assignment that satisfies a δ-fraction of the equations) withm equations,
the MBA instance has objective value

∑
x deg(x) + m(2δ + (1 − δ)) = 3m + δm.
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Håstad [13], using techniques from Trevisan et al. [21], proved that it is NP-hard
to distinguish instances of Max-2-Lin(2) that are at least (3/4 − ε)-satisfiable and
those that are at most (11/16+ ε)-satisfiable. Hence it is hard to distinguish between
an instance of MBA with objective value at least 3m + 3

4m − εm = m(60/16 − ε)

and at most 3m + 11
16m + εm = m(59/16 + ε), where m is the number of equations

in φ.
Therefore graph MBA is NP-hard to approximate to within a factor of 59/60 + ε.

The instance from [21] can also be modified to be regular, i.e., with all degrees deg(x)
being the same, thus producing an instance with equal budgets. In order to achieve
regularity, one has to take a closer look at the reduction behind the APX -hardness
result of Max-2-Lin(2). This reduction can be split into two steps: the first one is the
PCP reduction from the label cover problem to Max-3-Lin(2), and the second one
is the gadget reduction from Max-3-Lin(2) to Max-2-Lin(2). Formally, instances
of the label cover problem are described as follows: we are given a bipartite graph
G = (U ∪ V, E), alphabets [WU ] and [WV ], and a projection fe : [WU ] → [WV ]
associated with every edge e of the graph. The label cover problem is the problem of
choosing a labeling (lU , lV ) of the vertices of G, where lU and lV are functions such
that lU : U → [WU ] and lV : V → [WV ], such that the number of satisfied edges (i.e.,
edges e = (u, v) ∈ U × V for which it holds that fe(l(u)) = l(v)) is maximized. For
any constant ε > 0, it is known [16] that it is NP-hard to distinguish, given an instance
of label cover, whether there is a labeling that satisfies all the edges of the graph, or
there is no labeling that satisfies more than an ε-fraction of the edges; furthermore,
Raz’s parallel repetition [16] can produce instances that are left and right regular, i.e.,
all vertices in U have degree dl and all vertices in V have degree dr (we can achieve
this by using a regular NP-hard constraint satisfaction problem (CSP) as the starting
problem of parallel repetition, i.e., a CSP where every variable appears a fixed and
constant amount of times).

Now, Håstad’s (1/2 + ε)-hardness result for Max-3-Lin(2) [13] can be seen as a
PCP reduction from the label cover problem to Max-3-Lin(2). One nice property of
this reduction the following: if we take a look at the instances of Max-3-Lin(2) this
reduction produces, then we can partition the variables of any such instance into two
sets L and R, such that:

– every clause contains one variable from L and two variables from R.
– all the variables in L(R) appear in the same number DL (DR) of clauses.

Due to this property, we can actually produce instances of Max-3-Lin(2) that are
regular, i.e., all variables appear in the same number of clauses, using a technique
from [20]. What we do is essentially to create a modified instance I ′ of Max-3-
Lin(2), by splitting each variable of the original instance I into more variables. I ′
consists of DLDR copies of I , where for each variable x of L , we introduce DL

copies x1 . . . xDR , each of which is substituted for x in DR copies of I . Similarly, for
each variable y of R, we introduce DR copies y1 . . . yDL , each of which is substituted
for y in DL copies of I . It is easy to see that in I ′, every variable appears in exactly
DLDR clauses; furthermore, since I ′ only contains copies of I , it is easy to deduce
that, for any ε > 0, the following is true:
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– if there is an assignment of truth values to the variables of I ′ that satisfies at least
an (1 − ε)-fraction of the clauses, the same is true for I .

– if there is no assignment of truth values to the variables of I ′ that satisfies more
than an (1/2 + ε)-fraction of the clauses, the same is true for I .

In order to produce regular instances forMax-2-Lin(2), we apply the gadget reduc-
tion of Håstad [13] to an instance of Max-3-Lin(2) constructed as above. Due to the
construction of the gadget, any instance I with n variables andm clauses that is output
will have the following property: all the variables of I can be split into two sets L and
R, such that:

– every clause contains one variable from L and one variable from R.
– all the variables in R appear in the same number DR of clauses.
– there is one variable in L that appears in m/4 clauses; the rest of the variables in

L appear in the same number DL of clauses.

Hence, for any ε > 0, and using an approach similar to the one we took for Max-3-
Lin(2), we can transform I into a regular instance I ′, such that:

– if there is an assignment of truth values to the variables of I ′ that satisfies at least
a (3/4 − ε)-fraction of the clauses, the same is true for I .

– if there is no assignment of truth values to the variables of I ′ that satisfies more
than an (11/16 + ε)-fraction of the clauses, the same is true for I .

Combined with our own reduction from Max-2-Lin(2) to graph MBA, our hardness
result extends to the restricted version of graph MBA in which all players have the
same budget. ��

Let us now give a proof of hardness for the restricted MBA. The construction is the
same as the one of Chakrabarty and Goel in [6] but we reduce from a Max-3-Lin(2)
instance with stronger properties.

Theorem 7 For every ε > 0, it is NP-hard to approximate restricted MBA within a
factor of 15/16 + ε. Furthermore, this is true for instances where all items can be
assigned to at most 3 players.

Proof Chakrabarty and Goel in [6] prove the (15/16+ε)-hardness forMBA instances
where all items can be assigned to at most 3 players, and they also have uniform prices,
i.e., for all items j there is a p j such that for all players i , pi j ∈ {p j , 0}. They achieve
this by reducing Max-3-Lin(2) problem to MBA. The Max-3-Lin(2)problem was
proved to be NP-hard to approximate within a factor of 1/2 + ε by Håstad in [13].

Their reduction is the following: given an instance φ of Max-3-Lin(2) with n
variables and m equations, we construct an instance of restricted MBA.

– For each variable xi of the original instance, we introduce players 〈xi , 0〉 and
〈xi , 1〉. The budget of these players is 4 deg(xi ).

– For each variable xi of the original instance,we introduce item si ; si can be assigned
to players 〈xi , 0〉 and 〈xi , 1〉, and its price for both of them is 4 deg(xi ).

– For every equation e : xi + x j + xk = a (a ∈ {0, 1}) of the original instance, we
introduce 3 copies of 4 items, where each of the 4 items corresponds to one of the
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satisfying assignments of e. For each one of these items, let a1, a2 and a3 be the
truth values of the corresponding satisfying assignment of e: then, this item can
be assigned to players 〈xi , ai 〉,

〈
x j , a j

〉
and 〈xk, ak〉, for a price of 1.

Chakrabarty and Goel prove that if the original Max-3-Lin(2) instance is at least
(1 − ε)-satisfiable, then there exists an assignment of items to players in the reduced
instance of value at least 24m − 12mε; conversely, they prove that if the original
instance is at most 1/2 + ε-satisfiable, then any assignment of items to players in the
reduced instance has value at most 22.5m + 3mε.

We use the same proof but use a different starting point. By re-using the techniques
we used in the proof of hardness for graph MBA, the result of Håstad can be modified
so that each variable in the Max-3-Lin(2) instance has the same degree.

The construction of Chakrabarty and Goel gives budget 4 deg(xi ) to the 2 players
corresponding to variable xi . Hence, if all variables have the same degree, all players
have the same budget, and the result of Chakrabarty and Goel carries over. ��

7 Conclusion and future directions

We showed that the integrality gap of the configuration LP is strictly better than 3
4 for

two interesting and natural restrictions of maximum budgeted allocation: restricted
and graph MBA. These results imply that the configuration LP is strictly better than
the natural assignment LP and pose promising research directions. Specifically, our
results on restricted MBA suggest that our limitations in rounding configuration LP
solutions do not necessarily stem from the items being fractionally assigned to many
players, while our results on graphMBAsuggest that they do not necessarily stem from
the items having non-uniform prices. Whether these limitations can simultaneously
be overcome is left as an interesting open problem.

Finally, it would be interesting to see whether the techniques presented, and espe-
cially the exploitation of the big items structure, can be applied to other allocation
problems with similar structural features as MBA (e.g. GAP).
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