
Math. Program., Ser. B (2015) 154:29–53
DOI 10.1007/s10107-014-0857-y

FULL LENGTH PAPER

Centrality of trees for capacitated k-center

Hyung-Chan An · Aditya Bhaskara · Chandra Chekuri ·
Shalmoli Gupta · Vivek Madan · Ola Svensson

Received: 30 April 2014 / Accepted: 17 December 2014 / Published online: 9 January 2015
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015

Abstract We consider the capacitated k-center problem. In this problemwe are given
a finite set of locations in a metric space and each location has an associated non-
negative integer capacity. The goal is to choose (open) k locations (called centers)
and assign each location to an open center to minimize the maximum, over all loca-
tions, of the distance of the location to its assigned center. The number of locations

The main result of this paper was obtained independently by An, Bhaskara and Svensson, and by Chekuri,
Gupta and Madan. This paper is based on the manuscript of the first group. Work done while A. Bhaskara
was at EPFL, Switzerland. C. Chekuri was supported in part by NSF Grants CCF-1016684 and
CCF-1319376. H.-C. An and O. Svensson was supported in part by ERC Starting Grant
335288-OptApprox. A preliminary version of this work was presented in the 17th Conference on Integer
Programming and Combinatorial Optimization.

H.-C. An (B) · O. Svensson
School of Computer and Communication Sciences,
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
e-mail: hyung-chan.an@epfl.ch

O. Svensson
e-mail: ola.svensson@epfl.ch

A. Bhaskara
Google Research, New York, NY 10011, USA
e-mail: bhaskara@cs.princeton.edu

C. Chekuri · S. Gupta · V. Madan
University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
e-mail: chekuri@illinois.edu

S. Gupta
e-mail: sgupta49@illinois.edu

V. Madan
e-mail: vmadan2@illinois.edu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-014-0857-y&domain=pdf

30 H.-C. An et al.

assigned to a center cannot exceed the center’s capacity. The uncapacitated k-center
problem has a simple tight 2-approximation from the 80’s. In contrast, the first con-
stant factor approximation for the capacitated problem was obtained only recently
by Cygan, Hajiaghayi and Khuller who gave an intricate LP-rounding algorithm that
achieves an approximation guarantee in the hundreds. In this paper we give a simple
algorithm with a clean analysis and prove an approximation guarantee of 9. It uses the
standard LP relaxation and comes close to settling the integrality gap (after necessary
preprocessing), which is narrowed down to either 7, 8 or 9. The algorithm proceeds
by first reducing to special tree instances, and then uses our best-possible algorithm to
solve such instances. Our concept of tree instances is versatile and applies to natural
variants of the capacitated k-center problem for which we also obtain improved algo-
rithms. Finally, we give evidence to show that more powerful preprocessing could lead
to better algorithms, by giving an approximation algorithm that beats the integrality
gap for instances where all non-zero capacities are the same.

Keywords Approximation algorithms · Capacitated network location problems ·
Capacitated k-center problem · LP-rounding algorithms

Mathematics Subject Classification 68W25

1 Introduction

Network location problems form a large and important class of problems in discrete
and combinatorial optimization. Many of these problems can be phrased in terms of
choosing centers or facilities to best serve a given set of clients, typically under the
assumption that the locations for the facilities and clients lie in a metric space. One
can imagine several objective functions to measure the quality of service. Perhaps the
most natural andwell-studied ones are “social welfare”, wherewewish tominimize the
average distance from a client to its assigned center, and “fairness”, in which we wish
to minimize the maximum distance from a client to its assigned center. Note that, once
we have selected the centers, both of these objectives are minimized by assigning each
client to its closest center. An inherent drawback of this strategy, however, is that it is
unable to deal with centers of (different) capacities that limit the number of clients they
can serve, which is a constraint present in typical applications. Capacity constraints
in location problems pose difficult algorithmic challenges from both a theoretical and
empirical point of view and our understanding continues to evolve despite a long
history of work.

For uncapacitated network location problems, several beautiful algorithmic tech-
niques, such as LP-rounding [7], primal-dual framework [16] and local search [6,18]
have been used to obtain a fine-grained understanding of the approximability of the
well-known variants: k-center, k-median, and facility location.1 Already in the 80’s,

1 Recall that in k-center and k-median, we wish to select k centers so as to minimize the fairness and social
welfare, respectively; facility location is similar to k-median but instead of having a constraint k on the
number of centers to open, each center has an opening cost.

123

Centrality of trees for capacitated k-center 31

Gonzales [11], Hochbaum and Shmoys [14] developed tight 2-approximation algo-
rithms for the k-center problem. For facility location, the current best approximation
algorithm is due to Li [20]. He combined an algorithm by Byrka [5] and an algorithm
by Jain et al. [15] to achieve an approximation guarantee of 1.488. This is nearly
tight, as it is hard to approximate the problem within a factor of 1.463 [12]. The gap
is slightly larger for k-median: a recent LP rounding [21] achieves an approximation
guarantee of 1 + √

3 ≈ 2.732 improving upon a local search algorithm by Arya
et al. [2]; and it is NP-hard to do better than 1 + 2/e ≈ 1.736 [15]. Although the dif-
ferent problems have algorithms with different approximation guarantees, they share
many techniques, and improvements have often come hand in hand. In particular, most
of the above progress relies on standard linear programming (LP) relaxations.

In contrast to the uncapacitated versions, the standard LP relaxations for the capac-
itated problems have unbounded integrality gaps and this is one reason for the coarser
understanding we have. Apart from special cases, such as uniform capacities [17], soft
capacities (a center can be opened several times) [16,17,23], and other variants [9,19],
the only known constant factor approximation algorithm until recently was for facility
location. In a sequence of works, including Korupolu et al. [18], Pál et al. [22], Chudak
and Williamson [8], and Zhang et al. [25], increasingly enhanced local search algo-
rithms culminated in an approximation guarantee of 5 due to Bansal et al. [3]. These
methods are elegant but specialized to facility location and are not LP-based. In fact,
finding a relaxation-based algorithm for capacitated facility location with a constant
approximation guarantee remains a major open problem (see e.g. “Problem 5” of the
ten open problems from the recent book by Williamson and Shmoys [24]). One of the
motivations for finding algorithms based on relaxations is that the methods are often
flexible and the developed techniques transfer to different settings, as has indeed been
the case in the study of uncapacitated location problems.

In the quest to obtain a better understanding and more general (relaxation based)
techniques for capacitated network location problems, it is natural to start with the
capacitated k-center problem. Indeed, even though we have a good understanding of
uncapacitated location problems in general, the uncapacitated k-center problem stands
out, with an extremely simple greedy algorithm that gives a tight analysis of the LP
relaxation. Our failure to understand the capacitated k-center problem is therefore
solely due to the lack of techniques for analyzing capacity constraints. An important
recent development in this line of research is due to Cygan et al. [10], who obtain
the first constant factor approximation for the capacitated k-center problem. Their
algorithm works by preprocessing the instance to overcome the unbounded integrality
gap of the natural LP relaxation, followed by an intricate rounding procedure. The
approximation factor is not computed explicitly, but is estimated to be roughly in the
hundreds. This however, is still quite far off from the integrality gap lower bound of
7 (after preprocessing) [10] and the inapproximability results which rule out a factor
better than 3 (see e.g. [10] for a simple proof).

In this paper, we develop novel techniques to further close the gap in our under-
standing of capacitated location problems. In particular, we present a simple algorithm
for the capacitated k-center problem with a clean analysis that allows us to prove an
approximation guarantee of 9. Our result is based on the standard LP relaxation and it
almost settles its integrality gap (after the preprocessing ofCygan et al. [10]): it is either

123

32 H.-C. An et al.

7, 8 or 9 (both the integrality gap and approximation ratio can only take integral values;
this is because the worst instances can easily be seen to be ones defined by the shortest-
path metric on an unweighted graph). Due to the simplicity of our analyses, we hope
that some of the ideas could be applied to other location problems, such as capacitated
k-median, for which no constant factor approximation algorithms are known.

Main result and outline of algorithmic approach. Our main result is the following.

Theorem 1 There exists a 9-approximation algorithm for the capacitated k-center
problem.

The algorithm guesses the optimal solution value τ and considers an unweighted
graph G≤τ on the given set of vertices where two vertices are adjacent if and only if
their distance is at most τ : the edges in this graph represent the assignments that are
“admissible” with respect to τ . This graph can be assumed to be connected (see [10]).
The algorithm then solves a natural and standard LP on G≤τ . This determines if it is
possible to (fractionally) open k vertices while assigning every vertex to a center that
is adjacent in G≤τ . If this LP is infeasible, we know that the optimum is larger than τ ;
otherwise, our algorithm will open k centers and find an assignment of every vertex
to an open center that is within a distance of 9 in G≤τ , and moreover the assignment
respects the capacities of open centers. This leads to a 9-approximation algorithm.

The LP solution specifies a set of opening variables that indicate the fraction to
which each vertex is to be opened. Our algorithm rounds these opening variables by
“transferring” openings between vertices tomake them integral. Sincewe do not create
any new opening, our rounding will naturally open at most k centers; however, the
challenge is to ensure that there exists a small-distance assignment of the vertices to
open centers. If, for example, the opening of a vertex v is transferred to another vertex
that is far away, the clients that were originally assigned to v may be unable to find an
available center nearby. For another example, if the opening of a high-capacity vertex
gets transferred to a low-capacity one, the low-capacity vertex may fail to provide
sufficient capacity to cover the vertices in the neighborhood. Thus, we need to ensure
that our rounding algorithm transfers openings only in small vicinity, and that “locally
available capacity” of the graph does not decrease (Definition 1 formalizes this concept
as a distance-r transfer.).

We reduce the rounding problem to the special case of tree instances, and present
a best-possible algorithm that rounds such instances. A tree instance is given by a
set of opening variables defined on a rooted tree, where every non-leaf node has an
opening variable of 1. Tree instances are generalizations of caterpillars used by Cygan
et al. [10], which can be considered as tree instances whose non-leaf nodes form a path
and have certain degree bounds. Suppose we have a tree instance where the capacities
are uniform and there are exactly two leaves u and v each of which is opened to an
extent of 1/2, whereas every other vertex is opened by 1. If u and v are distant, this
may appear problematic at a glance as we cannot transfer the opening of one to the
other. However, there exists a (unique) path u, w1, . . . , wm, v in the tree, and we can
transfer the opening of 1/2 in a “chain” along this path: from u to w1, from w1 to w2,
. . ., from wm to v. This idea can in fact be carried through to give an algorithm for
capacitated k-center when all capacities are equal.

123

Centrality of trees for capacitated k-center 33

Unfortunately, this chain of transfers can cause a problemunder arbitrary capacities:
suppose in the previous example that u and v have very high capacities compared to
the others. Then we will not be able to transfer the opening of u to w1, since the open
centers near u may not be able to provide sufficient capacity to cover the vertices that
were originally assigned to u. However, from a different viewpoint, w1 (or any other
non-leaf vertex) can be seen as “wasting” the budget, since it opens a center while
contributing relatively small capacity to the graph. This provides us some “slack” in
the budget that we can utilize: in this particular example, by transferring an opening
of 1/2 from w1 to u, and the other 1/2 from w1 to v in a chain, we can successfully
round the given instance thanks to the decision of closing w1 which had originally
had its opening variable equal to one. This strategy of closing a fully open center is
quite powerful, yet we need to ensure that its capacity can be accomodated by nearby
centers if we want to close it. Thus, the viability of such a strategy tends to depend on
several factors, including how its capacity compares to vertices in the neighborhood,
which of these vertices are to be opened, and so on—all decisions which could depend
on more and more distant vertices.

In contrast, our algorithm departs from previous works by using a simple local
strategy that does not depend on distant vertices and applies to every non-leaf node.
The reason our strategy works locally is that the decision of closing fully open centers
is determined using solutions to subinstances, which are solved recursively. This key
idea significantly eases the analysis and leads to our algorithm for tree instances that is
the best possible. The simplicity of our analysis also helps usmore carefully analyze the
approximation ratio and extend our techniques to related problems. Section 4 formally
presents our algorithm to round a tree instance; Sects. 6.1, 6.2 present its extensions to
two related problems: the capacitated k-supplier problem and the budgeted opening
problem with uniform capacity.

Finally, Sect. 3 presents our reduction to tree instances.We reduce the given problem
to a tree instance by constructing a tree on a subset of vertices that are chosen as
“candidates” to be opened. Non-leaf nodes will be carefully chosen, in order to yield
a 9-approximation algorithm. Two adjacent vertices in the constructed tree instance
will not necessarily be adjacent in the original graph, but will be in close proximity;
hence, if the tree instance can be rounded using short transfers of openings, the original
instance can also be rounded using only slightly longer transfers.

Additional results and future directions. We also explore future directions towards
a better understanding of the problem. Recall that our algorithm proceeds in three
steps: firstly, we preprocess the given instance as done by Cygan et al. [10]; secondly,
we reduce the problem to a tree instance; lastly, we solve this tree instance. Given
that our tree rounding algorithm is best-possible, it is natural to seek to improve
the first two steps. The preprocessing step of Cygan et al. allows us to bring down
the integrality gap from unbounded to 9; however, the integrality gap after the basic
preprocessing is known to be at least 7 [10], which is larger than the best known
inapproximability result that rules out a better factor than 3. The instance showing the
integrality gap of 7 (and also that of the inapproximability result) has a special structure
that every capacity is either 0 or L for some constant L . In order to understand the
potential of stronger preprocessing methods, we investigate this {0, L}-case and show

123

34 H.-C. An et al.

that additional preprocessing and a sophisticated rounding gives a 6-approximation
algorithm (see Sect. 5). The interesting fact is that we obtain an approximation ratio
which surpasses the integrality gap lower bound of 7 after basic preprocessing. This
raises the natural open question: could there be preprocessing steps which bring the
approximation ratio down to 3?Wecould also ask: do lift-and-projectmethods (applied
to a potentially different formulation) automatically capture these preprocessing steps?
We believe that understanding these questions would also shed light on approximating
capacitated versions of other problems such as facility location and k-median.

2 Preliminaries

Given an integer k and a metric distance/cost c : V × V → R+ on V with a capacity
function L : V → Z≥0, the capacitated k-center problem is to choose k vertices to
open, along with an assignment of every vertex to an open center which minimizes the
longest distance between a vertex and the center it is assigned to while honoring the
capacity constraints: i.e., no open center v is assigned more vertices than its capacity
L(v).

For an undirected graphG = (V, E), dG(u, v) denotes the distance between u, v ∈
V ; NG [u] denotes the set of vertices in the closed neighborhood of u, which includes u
itself: i.e., NG[u] := {v | (u, v) ∈ E}∪{u}. ForU ⊆ V , dG(v,U) denotes the distance
from v to U : dG(v,U) := minu∈U dG(v, u). NG [U] is a shorthand for ∪u∈U NG [u].
When the graph of interest G is clear from the context, we will use d and N [·] instead
of dG and NG [·], respectively. Let OPT denote the optimal solution value.

Reduction to an unweighted problem using the standard LP relaxation. Our algorithm
begins with determining a lower bound τ ∗ on the optimal solution value: it makes a
guess τ at OPT, and tries to decide if τ < OPT. We simplify this problem by
considering an unweighted graph that represents which assignments are “admissible”.
Let G≤τ = (V, E≤τ) be the unweighted graph on V (with loops on every vertex)
where two vertices are adjacent if and only if their distance is at most τ : E≤τ :=
{(u, v) | c(u, v) ≤ τ }. Note that a feasible solution of value τ assigns every vertex
to a center that is adjacent in G≤τ , and conversely, if a solution assigns every vertex
to a center that is adjacent in G≤τ , its value is no greater than τ . For an unweighted
graph G = (V, E), the standard LP relaxation LPk(G) is the following feasibility LP
that fractionally verifies whether there exists a solution that assigns every vertex to an
open center that is adjacent in G:

∑

u∈V
yu = k;
xuv ≤ yu, ∀u, v ∈ V ;∑

v:(u,v)∈E
xuv ≤ L(u) · yu, ∀u ∈ V ;

∑

u:(u,v)∈E
xuv = 1, ∀v ∈ V ;

0 ≤ x, y ≤ 1.

xuv is called an assignment variable; yu is called the opening variable of u.

123

Centrality of trees for capacitated k-center 35

However, the integrality gap of this LP, defined as the maximum ratio OPT
τ

where
LPk(G≤τ) is feasible, is unbounded; hence this LP cannot in general estimate OPT
very well. We use the approach of Cygan et al. [10] to address this issue: consider
the connected components of G≤τ ; if τ ≥ OPT, a vertex can be assigned only to
the vertices in the same connected component. For each connected component Gi of
G≤τ , the algorithm decides the minimum integer ki for which LPki (Gi) is feasible; if∑

i ki > k, this certifies that there exists no solution of value τ or better (τ < OPT).
Now let τ ∗ be the smallest τ forwhich the algorithm fails to certify that τ < OPT; since
the algorithm has to fail to provide a certificate for τ = OPT, we have τ ∗ ≤ OPT. The
algorithm then separately solves the subproblems given by the connected components
ofG≤τ∗ : given a connected graphG for which LPk(G) is feasible, our algorithm finds
a set of k vertices to open, with an assignment of every vertex to an open center that is
within the distance of nine.Note thatdG≤τ∗ (u, v) ≤ 9 implies c(u, v) ≤ 9τ ∗ ≤ 9·OPT
from the triangle inequality.

Lemma 1 (Cygan et al. [10]) Suppose there exists an algorithm that, given a con-
nected graph G, capacity L, and k for which LPk(G) is feasible, computes a set of
k vertices to open and an assignment of every vertex u to an open center v such
that d(u, v) ≤ ρ and the capacity constraints are satisfied. Then we can obtain a
ρ-approximation algorithm for the capacitated k-center problem.

Distance-r transfers. The above discussion reduces the task of designing an approx-
imation algorithm for the capacitated k-center problem to that of using a solution
(x, y) to LPk(G) in order to select k centers so that each vertex in the connected graph
G is assigned to a center within a small distance. Simple algebraic manipulations
show that, for any U ⊆ V , the LP solution satisfies |U | = ∑

u∈U
∑

w:(w,u)∈E xwu ≤∑
w∈N [U] L(w) · yw; note that, if the opening variables y are integral, this exactly

corresponds to Hall’s condition [13] and hence we can assign every vertex to an adja-
cent center. However, the LP solution may open each center only by a small fractional
amount; in order to obtain an integral solution, it is therefore natural to try to aggregate
fractional openings of nearby vertices. As different centers have varying capacities,
one difficulty of this approach is that the rounding also needs to ensure that the aggre-
gation does not decrease the available capacity. Consider a center u of capacity L(u)

that is open with fraction yu ; we can view it as a center with the fractional capacity of
L(u) · yu , because in a sense this is the maximum number (as a fraction) of vertices
this center serves according to the LP. Our rounding procedure will open k centers,
while ensuring that we can transfer the fractional capacity of each u to one or more
of the open centers that are close by (and the performance guarantee is determined
by how close these centers are). The following definition formalizes the notion of a
distance-r transfer:

Definition 1 Given a graph G = (V, E) with a capacity function L : V → Z≥0 and
y ∈ R

V+, a vector y′ ∈ R
V+ is a distance-r transfer of (G, L , y) if

(1a):
∑

v∈V y′
v = ∑

v∈V yv and
(1b):

∑
v:d(v,U)≤r L(v)y′

v ≥ ∑
u∈U L(u)yu for all U ⊆ V .

If y′ is the characteristic vector of S ⊆ V , we say S is a distance-r transfer of (G, L , y).

123

36 H.-C. An et al.

The given conditions say that a transfer should not change the total number of open
centers, while ensuring that the total fractional capacity in each small neighborhood
does not decrease as a result of this transfer. We also remark that multiple transfers
can be composed: if y′ is a distance-r transfer of (G, L , y) and y′′ is a distance-r ′
transfer of (G, L , y′) then y′′ is a distance-(r + r ′) transfer of (G, L , y).

Lemma 2 For a graph G = (V, E) with a capacity function L : V → Z≥0, let (x, y)
be a feasible solution to LPk(G). If S ⊆ V is a distance-r transfer of (G, L , y), then
every vertex v ∈ V can be assigned to a center s ∈ S such that dG(v, s) ≤ r+1, while
ensuring no center is assigned more vertices than its capacity. Moreover, |S| = k, and
this assignment can be found in polynomial time.

Proof Consider the natural bipartite matching problem between V and the multiset of
open centers that are duplicated to their capacities: i.e, each center s ∈ S appears in
the multiset with multiplicity L(s). Every vertex v in V is connected to every copy of
each center s ∈ S such that d(v, s) ≤ r + 1. Observe that a matching of cardinality
|V | naturally defines an assignment that satisfies the desired properties. We shall now
show that there exists such a matching by verifying Hall’s condition, i.e., that for all
U ⊆ V , |U | ≤ ∑

s∈S:dG (s,U)≤r+1 L(s).
As was observed earlier, we have |U | ≤ ∑

w:dG (w,U)≤1 L(w) · yw; from Condi-
tion (1b), |U | ≤ ∑

w:dG (w,U)≤1 L(w) · yw ≤ ∑
s∈S:dG (s,U)≤r+1 L(s). This matching

can be found in polynomial time, and |S| = k follows from Condition (1a).
�

Tree instances. As was discussed earlier, we solve the general problem via reduction
to tree instances.

Definition 2 A tree instance is defined as a tuple (T, L , y), where T = (V, E) is
a rooted tree with the capacity function L : V → Z≥0, and opening variables y ∈
(0, 1]V satisfy that

∑
v∈V yv is an integer and yv = 1 for every non-leaf node v ∈ V .

3 Reducing general instances to trees

In this section, we present the reduction from the capacitated k-center problem to tree
instances.

Lemma 3 Suppose there exists a polynomial-time algorithm that finds an integral
distance-r transfer of a tree instance. Then there exists a (3r + 3)-approximation
algorithm for the capacitated k-center problem.

Lemma 3 directly follows from Lemmas 1, 2, and 4.

Lemma 4 Suppose there exists a polynomial-time algorithm that finds an integral
distance-r transfer of a tree instance. Then there exists an algorithm that, given a
connected graph G = (V, E), capacity L : V → Z≥0, and k ∈ N for which LPk(G)

has a feasible solution (x, y), finds an integral distance-(3r +2) transfer of (G, L , y).

Our reduction, conceptually, constructs a tree instance by defining a tree on a subset
of the vertices that have nonzero opening variables in theLP solution.Adjacent vertices

123

Centrality of trees for capacitated k-center 37

in this tree instancemay not necessarily be adjacent inG, butwill be in close proximity;
this establishes that a distance-r transfer of the tree instance can be interpreted as a
short-distance transfer in G. The opening variables of this tree instance would ideally
be set equal to the corresponding LP opening variables. However, recall that one of
the crucial characteristics of tree instances is that every non-leaf node has the opening
variable of one. Yet, individual opening variables of the LP solution may have values
less than one in general; we address this issue by using the clustering due to Khuller
and Sussmann [17].

Lemma 5 (Khuller and Sussmann [17]) Given a connected graph G = (V, E), V
can be partitioned into {Cv}v∈Γ for some set of cluster midpoints Γ ⊆ V , such that

– there exists a tree U = (Γ, F) rooted at r ∈ Γ such that for every (u, v) ∈ F,
dG(u, v) = 3;

– for all v ∈ Γ , NG [v] ⊆ Cv; and
– for all u ∈ Cv , dG(u, v) ≤ 2.

Proof (sketch, [17]) Take an arbitrary node as r . We iteratively choose additional
cluster midpoints as follows: for each vertex v, compute the shortest distance from v

to any of the cluster midpoints chosen so far. If every vertex is within distance 2 from
the current set of cluster midpoints, we are done choosing midpoints. Otherwise, there
exists a vertex v that is at distance 3 from a cluster midpoint w (and no shorter from
the other midpoints); choose v as a new cluster midpoint, make it a child of w in the
tree, and repeat.

Note that every pair of chosen midpoints are at distance 3 or more; hence, their
closed neighborhoods are disjoint. Moreover, every vertex is within a distance of 2
from some midpoint. This shows that there exists a valid partition {Cv}v∈Γ .
�

Observe that, for every cluster Cv , the total opening in the neighborhood of v is
at least one:

∑
u∈NG [v] yu ≥ ∑

u∈NG [v] xuv = 1 from the LP constraints. We will
aggregate these openings to create at least one vertex with the opening variable of
one in each cluster; then each cluster will contribute one “fully open vertex” to the
tree instance, which will become the non-leaf nodes of the tree. Two non-leaf nodes
in the tree instance are made adjacent if and only if their clusters are adjacent in U .
In order to ensure that the aggregation retains the fractional capacity in the graph [in
other words, to satisfy Condition (1b) of Definition 1], we will transfer the openings in
NG [v] to a vertex with the highest capacity in NG [v]. Let mv := argmaxu∈NG [v]L(u)

denote this vertex.
Ifmu andmv are adjacent in this tree instance, how far can they be inG? Recall that

mu and mv are adjacent if and only if (u, v) ∈ F ; hence, dG(mu,mv) ≤ dG(mu, u)+
dG(u, v) + dG(v,mv) ≤ 5. However, here comes a subtlety: if mv and mw are also
adjacent in the tree, we would expect dG(mu,mw) ≤ dG(mu,mv) + dG(mv,mw) ≤
10, whereas a tighter bound shows that dG(mu,mw) in fact never exceeds 8:
dG(mu,mw) ≤ dG(mu, u) + dG(u, v) + dG(v,w) + dG(w,mw) ≤ 1 + 3 + 3 + 1.
Therefore, a simple abstraction that a tree edge corresponds to a length-5 path in G
would lead to a slight slack in the analysis. In order to avoid this issue, we will create
an auxiliary vertex av that is “almost at the same position” as the cluster midpoint v

for each cluster, and aggregate openings to this auxiliary vertex av instead ofmv as we

123

38 H.-C. An et al.

did earlier. We will treat av as the delegate for mv , in the sense that av (in lieu of mv)
will be part of our tree instance, and if we decide to open av from the tree instance,
we will open mv instead.

Proof (of Lemma 4) We begin by invoking Lemma 5 to obtain a partition of vertices
{Cv}v∈Γ and a tree U = (Γ, F) of the cluster midpoints. Recall that, for each v ∈ Γ ,
mv := argmaxu∈NG [v]L(u) denotes a vertex with the highest capacity in NG[v].

We first augment the graph by introducing the auxiliary vertices (see also Fig. 1):
for each Cv , we add a new vertex av to the graph, along with the edges from av to
every vertex in NG [v]. Let Ḡ = (V̄ , Ē) be this augmented graph. Observe that av is
located “almost at the same position” as v in the following sense: for every u ∈ V ,
dḠ(u, av) = dG(u, v)unlessu = v;dḠ(v, av) = 1.Note thatdḠ(aw, az) = dG(w, z).
L and y are accordingly augmented by setting the capacity and the opening variable
of the new auxiliary vertex respectively as L(av) := L(mv) and yav := 0.

Nowour reductionworks in three phases: in thefirst phase,we aggregate the opening
of 1 from NG[v] to av; this phase yields a distance-1 transfer yfirst of (Ḡ, L , y). In
the second phase, we construct a tree instance by defining a tree on a subset of V̄ , and
invoke the polynomial-time algorithm to find an integral distance-r transfer of this
tree instance. We will see that this transfer can be interpreted as a distance-3r transfer
ysecond of (Ḡ, L , yfirst). In the last phase, we transfer the opening of each auxiliary
variable av to the vertex it delegates, mv . This constitutes a distance-1 transfer ythird

of (Ḡ, L , ysecond).
The opening aggregation in the first phase works as follows: for each cluster Cv ,

we increase yav while simultaneously decreasing yu for some u ∈ NG [v]with yu > 0.
If yav reaches one, we stop; if yu reaches zero, we find another u ∈ NG[v]. The initial
choice of u is always taken asmv so that this procedure ensures that ymv becomes zero.
The procedure outputs a distance-1 transfer yfirst, since whenever an opening variable
decreases during the construction, we increase the opening variable of an adjacent
vertex with higher or equal capacity.

In the second phase, we define a tree T on the set of vertices with nonzero opening
variables. Note that this in particular implies that mv /∈ T for each cluster Cv . T is
constructed fromU = (Γ, F) as follows: we replace each v ∈ Γ by av to obtain a tree
on the auxiliary vertices, and for each vertex u ∈ Cv such that yu > 0, we attach u as
a (leaf) child of av . Note that every non-leaf node is an auxiliary vertex and therefore
has the opening variable of one. The total opening is equal to the total opening of
y, and therefore (T, L , yfirst) is a valid tree instance; we invoke the polynomial-time

w z

G

u

w z

Ḡ

u

aw az

Fig. 1 Graph Ḡ obtained by augmenting G with auxiliary vertices; black nodes correspond to cluster
midpoints, dashed circles represent their neighborhoods

123

Centrality of trees for capacitated k-center 39

algorithm to find an integral distance-r transfer of this instance. For any two nodes
i and j that are adjacent in this tree instance, either i = au and j = av for some
(u, v) ∈ F , or i = av and j ∈ Cv . In the former case, dḠ(i, j) = 3; in the latter
case, dḠ(i, j) ≤ 2. Thus, the integral distance-r transfer of the tree instance can be
interpreted as an integral distance-3r transfer ysecond of (Ḡ, L , yfirst).

Note that ysecondmv
= 0 for every cluster Cv , since mv does not participate in the

tree instance; on the other hand, av may have been opened by the tree algorithm. In
the last phase, we transfer the opening of av to mv , the vertex delegated by av . This
yields an integral distance-1 transfer ythird of (Ḡ, L , ysecond).

Note that ythirdav
= 0 for every cluster Cv; by projecting ythird back to V , we obtain

an integral distance-(3r + 2) transfer of (G, L , y).
�

4 Algorithm for tree instances

In this section we prove the following.

Lemma 6 There is a polynomial time algorithm that finds an integral distance-2
transfer of a given tree instance (T, L , y).

We remark that it is easy to see that some tree-instances do not admit an integral
distance-1 transfer and the above lemma is therefore the best possible. One example
is the following: the instance consists of a root with six children, where each child is
opened with a fraction 2/3, and all vertices have the same capacity; it is easy to see
that any integral solution needs to transfer fractional capacity from one leaf to another
(i.e., of distance 2). We now present the algorithm along with the arguments of its
correctness.

The algorithm builds up the solution by recursively solving smaller tree instances.
The base case is simple: if |T | ≤ 1 then simply open the vertex in V (T) if any. By
the integrality of

∑
v∈V (T) yv this is clearly a distance-2 transfer (actually a distance-0

transfer). Let us now consider the more interesting case when |T | ≥ 2; then there
exists a node r of which every child is a leaf. Let v1, . . . , v� be the children of r , in
the non-increasing order of capacity: L(v1) ≥ · · · ≥ L(v�). Let Tr denote the subtree
rooted at r and Y := ∑�

i=1 yvi . The algorithm considers two separate cases depending
on whether Y is an integer.

Let us start with the simpler case when Y is an integer: the algorithm selects the
set Sr consisting of the Y + 1 vertices of highest capacity in Tr . Recall that yr = 1
and therefore

∑
v∈Tr yv = Y + 1; as every pair of nodes in Tr are within a distance

of 2, Sr is a distance-2 transfer of the tree instance induced by Tr . The algorithm then
solves the tree instance induced by T̄ := T \Tr to obtain a distance-2 transfer S̄ of size∑

v∈T yv − Y − 1. It follows that S := Sr ∪ S̄ is a distance-2 transfer of (T, L , y).
Wenowconsider thefinalmore interesting casewhenY is not an integer. In this case,

we cannot consider Tr and T \Tr as two separate instances because the y-values suggest
to either open �Y � + 1 or �Y � + 1 centers in Tr : a choice that depends on the selected
centers in T \Tr . As at least �Y � + 1 of the vertices in Tr will be selected as centers
in either case, the algorithm will commit itself to open the �Y � + 1 vertices in Tr of
highest capacity. Let Scommit denote that set and it is chosen as either {v1, . . . , v�Y �, r}

123

40 H.-C. An et al.

or {v1, . . . , v�Y �, v�Y �+1} dependent on which node of r and v�Y �+1 has the higher
capacity (v�Y �+1 is well defined since we have that the number of children � is at least
�Y � from y ≤ 1). By the selection of Scommit, we have

∑

u∈V (Tr)

yu L(u) ≤
∑

s∈Scommit

L(s) + ȳp L̄(p), (1)

where ȳp = Y − �Y � and L̄(p) = min[L(r), L(v�Y �+1)]. In other words, if the
algorithm on the one hand chooses to only open the �Y � + 1 centers Scommit in Tr ,
then an additional fractional capacity ȳp L̄(p) needs to be transferred from Tr to an
open center in T \Tr . On the other hand, if the algorithm chooses to open all the centers
�Y � + 1 in Scommit ∪ {v�Y �+1, r} then those centers can accomodate all the fractional
capacity in Tr together with (1 − ȳp)L̄(p) additional capacity.

We defer this decision to be based on the solution of the smaller tree instance
(T̄ , L̄, ȳ) obtained from (T, L , y) as follows (see also Fig. 2a): replace Tr by the vertex
p that represents the deferred decision and let ȳ, L̄ be the natural restrictions of y, L
on T \Tr with ȳp = Y − �Y � and L̄(p) = min[L(r), L(v�Y �+1)]. The algorithm then
recursively solves this smaller instance to obtain a distance-2 transfer S̄ of (T̄ , L̄, ȳ).
From S̄ it constructs the solution S to the original problem instance by first replacing
p (if p is in S̄) by the vertex v�Y �+1 or r that was not chosen to be in Scommit, and then
adding Scommit to the set.

We complete the proof of Lemma 6 by arguing that S is a distance-2 transfer of the
original tree instance (T, L , y). Note that, as |S̄| = ∑

v∈T̄ ȳv = ∑
v∈T yv−1−�Y �, we

have |S| = |S̄|+|Scommit| = ∑
v∈V yv as required. It remains to verify Condition (1b)

of Definition 1:

Claim 2 We have
∑

u∈U yuL(u) ≤
∑

s∈S:dT (s,U)≤2
L(s) for all U ⊆ V (T).

Proof Consider the bipartite graphG with left-hand-side V (T), right-hand-side S, and
an edge between v ∈ V (T) and s ∈ S if dT (s, v) ≤ 2. For simplicity, we slightly abuse
notation and think ofV (T) and S as disjoint sets.Moreover, let N (U) denote the (open)
neighbors of a subsetU of vertices in this graph: N (U) := {v | ∃u ∈ U dG(u, v) = 1}.

r

v1 v2

a

b p

a

b

L̄(p)=min[L(r),L (v Y +1)]
ȳp = Y −�Y�

a

b
b

p

r
v1

v2
v1

r

p
Ḡ

Gr

(a) (b)

Fig. 2 a The construction of T̄ from T with the subtree Tr rooted at r with children v1 and v2; the grey
vertices are those selected in potential solutions to T̄ and T , respectively. b The bipartite graph and the
induced subgraphs Ḡ and Gr that are used in the proof of Claim 2

123

Centrality of trees for capacitated k-center 41

Let w : V (T) ∪ S → R be weights on the vertices defined by

w(v) =
{
yvL(v) if v ∈ V (T)

L(v) if v ∈ S
.

With this notation, we can reformulate the condition of the claim as

∑

u∈U
w(u) ≤

∑

s∈N (U)

w(s) for all U ⊆ V (T). (2)

To prove this, we shall prove a slightly stronger statement by verifying the condition
separately on two biparite graphs Gr and Ḡ that correspond to Tr and T̄ , respectively.
We obtain Gr and Ḡ from G as follows (see also Fig. 2b). First, add a vertex p to
the left-hand-side by making a copy of r ∈ T and set w(p) = ȳp L̄(p) and update
w(r) = yr L(r) − ȳp L̄(p) ≥ 0, where the inequality follows from yr = 1 and
L̄(p) ≤ L(r). Similarly, if p ∈ S̄ then add a copy p of r ∈ S and set w(p) = L̄(p)
and update w(r) = L(r) − L̄(p) ≥ 0. Note that after these operations the vertices of
both the left-hand-side and the right-hand-side can naturally be partitioned into those
that correspond to vertices in Tr and those that correspond to vertices in T̄ . Graphs
Gr and Ḡ are the subgraphs induced by these two partitions.

Let us first verify that (2) holds for Ḡ. By construction, we have that the total weight
w(U) of a subsetU of V (T̄) is equal to

∑
u∈U ȳu L̄(u) and the total weight w(N (U))

of its neighborhood in Ḡ equals
∑

s∈S̄:dT (s,U)≤2 L̄(s). Hence, (2) holds since S̄ is a

distance-2 transfer of (T̄ , L̄, ȳ).
We conclude the proof of the claim by verifying (2) for Gr . As both the left-hand-

side and right-hand-side of Gr correspond to vertices in Tr that all are within distance
2 of each other, we have that Gr is a complete bipartite graph. The total weight of
the left-hand-side vertices is by construction

∑
u∈Tr yu L(u) − ȳp L̄(p) and the total

weight of the right-hand-side is
∑

s∈Tr∩S L(s)− L̄(p)1p∈S̄ = ∑
s∈Scommit

L(s), where

1p∈S̄ is defined as 1 if p ∈ S̄ and 0 otherwise. The claim now follows from (1), i.e.,

that
∑

u∈Tr yu L(u) − ȳp L̄(p) ≤ ∑
s∈Scommit

L(s).
�
The above claim completed the analysis of the algorithm for finding an integral

distance-2 transfer of a given tree instance and Lemma 6 follows.

5 Better preprocessing for better algorithms

In this section, we explore the possibility of a further improvement in the performance
guarantee and integrality gapbounds via a better preprocessing.Wedemonstrate this by
presenting a 6-approximation algorithm for the {0, L}-case of our problem. Formally,
this is the special case of the capacitated k-center problem in which all the vertex
capacities are either 0 or L , for some integer L . Instances with this property will be
called {0, L}-instances.

It turns out that instances arising from the NP-hardness results, as well as the gap
instances for the standard LP relaxation are all of this form, so this special case seems

123

42 H.-C. An et al.

to capture the essential combinatorial difficulty of the capacitated problem. For these,
we prove the following theorem:

Theorem 3 There is a polynomial-time algorithm achieving a 6-approximation for
{0, L}-instances of the capacitated k-center problem.

General framework revisited. Let us recall the preprocessing done byCygan et al. [10],
explained in Sect. 2. The idea is to guess the optimum (call the guess τ), and consider
an unweighted graph G≤τ in which we place an edge between u, v if d(u, v) ≤ τ .
If we then solve the LP on such a graph, the integrality gap is unbounded, as the
following example shows. We have two groups of 3 vertices, such that the distance
within the groups is 1, and distance between the groups is some large C . Suppose the
capacity of each vertex is 2, and k = 3. Then the LP for the instance is feasible with
τ = 1, while the OPT is C .

The trick to avoid this situation is to restrict to connected components of G≤τ

defined above, then for each i , determine the smallest integer ki for which the LP is
feasible in component i , and finally check if

∑
i ki ≤ k. (If not, the guess τ is too

small). For connected graphs G≤τ , our main theorem shows that the integrality gap is
at most 9. Cygan et al. [10] gave a connected {0, L}-instance with integrality gap 7,
i.e., the LPk(G≤τ) is feasible with τ = 1, while OPT ≥ 7.

So in a nutshell, the steps above can be seen as coming up with a graph (in this
case G≤τ) which has edges between u, v only if it is feasible to assign u to v and
vice versa, solving the LP on the connected components of this graph, and verifying
that

∑
i ki ≤ k, as described. The aim of better preprocessing would then be to come

up with a graph with even fewer edges, while still guaranteeing that the optimum
assignment is preserved. Intuitively, this could produce more connected components,
thus the

∑
i ki ≤ k condition now becomes stronger.

For the {0, L}-case, we prove that an extremely simple additional preprocessing,
namely removing edges between vertices u and v with L(u) = L(v) = 0, provably
lowers the integrality gap. Theorem 3 follows from Lemma 7:

Lemma 7 Suppose G∗≤τ is a connected component after the new preprocessing
described above, and suppose LPk(G∗≤τ) is feasible, for some k. Then there is an
algorithm to compute a set of k vertices to open and an assignment of every vertex u
to an open center v such that d(u, v) ≤ 6, and the capacity constraints are satisfied.

The preprocessing leads to additional structure in the instance which we then use
carefully in our rounding procedure. The proof is presented in Sect. 5.1. A natural
open question is whether a similar approach can be applied to the general problem as
well, improving our 9-approximation algorithm.

5.1 Rounding procedure for the {0, L}-case

In this section, we present the proof of Lemma 7 yielding the 6-approximation algo-
rithm for the {0, L}-case.

123

Centrality of trees for capacitated k-center 43

We call a vertex a 0-node if its capacity is zero; an L-node otherwise. Let VL denote
the set of L-nodes. NL [v] denotes N [v] ∩ VL . Let G = (V, E) denote a connected
component of G∗≤τ after the new preprocessing.

Recall that the 9-approximation algorithm rounds the opening variables of the LP
solution “locally”: it considers the tree of clusters in the bottom-up fashion, and for each
subtree Tu , it opens �y(Tu)� centers while deferring the decision of whether to open
one additional center to the later subinstances. Our 6-relaxed decision procedure also
operates as a bottom-up local rounding procedure, but in this case, our preprocessing
ensures that a path from (the midpoint of) a child cluster to (the midpoint of) the
parent does not contain consecutive 0-nodes; this implies that L-nodes are very well
“dispersed” throughout the graph, permitting local rounding to be performed at a finer
granularitywithin closer proximity. In fact, evenwithout such change in the granularity
of rounding, a careful choice of mv alone with the original rounding algorithm is
sufficient to give a 8-relaxed decision procedure.

Further improvements are facilitated by a better clustering. The clustering algorithm
of Khuller and Sussmann [17] that is used by our 9-approximation algorithm finds
clustermidpoints that are connected by length-three paths. This is in order to guarantee
that y(Cv) ≥ 1 for each cluster Cv , by ensuring N [v] ⊆ Cv . However, in a {0, L}-
instance, NL [v] ⊆ Cv is sufficient to yield y(N [v]∩Cv) ≥ 1, and hencewe can choose
two vertices that are at distance 2 as cluster midpoints as long as all their common
neighbors are 0-nodes. This observation leads to an improved clustering where some
parent and child can be closer.

Clustering algorithm. Our clustering algorithm runs in two phases. During the first
phase, it identifies cluster midpoints one by one; each time a new cluster midpoint v is
identified, NL [v] is allotted to the new cluster Cv . The next cluster midpoint is always
chosen at distance 2 from the set of already allotted vertices to ensure that NL [v]
of each cluster are disjoint. Once the first phase is over, we may be left with some
unallotted nodes. The second phase of the algorithm assigns every unalloted L-node
to a nearby cluster.

Algorithm 1 shows our clustering algorithm. Let α(u) for each allotted node u
denote the midpoint of the cluster to which u is allotted: u ∈ Cα(u). During the
first phase, Vallotted maintains the set of vertices that has been already allotted to a
cluster by the algorithm; dist(v) denotes the shortest distance from Vallotted to v:
dist(v) := minu∈Vallotted dG(u, v). In addition to identifying cluster midpoints, our
algorithm also chooses p(v) ∈ Cv for each cluster Cv , on which the opening of one is
to be aggregated later. Also, for each non-root cluster Cv , the algorithm finds a vertex
in the parent cluster through which v is connected to the parent cluster and call it
π1(v).

After the first phase, Vallotted retains its final value, i.e., the set of all vertices allotted
during the first phase. Vallotted does not change any more, and so neither does dist. The
second phase assigns each unallotted L-node v to a nearby cluster; it also annotates
v with π2(v), where π2(v) denotes the vertex through which v is connected to α(v).
Figure 3 shows an example of an execution of Algorithm 1.

123

44 H.-C. An et al.

(c) (d)

(e)

(b)(a)

Fig. 3 Example of an execution of Algorithm 1. L-nodes are represented as shaded circles, and 0-nodes
are empty circles. For each vertex v, dist(v), p(v), π1(v), and π2(v) is respectively shown on the upper
right, upper left, lower left, and lower right corner of the vertex, if defined. Clusters are shown as closed
curves; α(v) is not shown since it simply is the shorthand for “u such that v ∈ Cu”. a Given graph G. b At
the end of Step 4. c At the end of the first phase. d At the end of the second phase. e Legend

123

Centrality of trees for capacitated k-center 45

Algorithm 1 Clustering algorithm.
1: Vallotted ← ∅ � First phase
2: Let v be an arbitrary L-node
3: Create a new cluster centered at v: Cv ← NL [v]; Vallotted ← Vallotted ∪ Cv

4: p(v) ← v

5: while ∃w ∈ VL dist(w) ≥ 2 do
6: Let v ∈ V be an arbitrary vertex with dist(v) = 2
7: u∗ ∈ argminu∈VallotteddG (u, v)

8: Create a new cluster centered at v, as a child ofCα(u∗):Cv ← {v}∪NL [v]; Vallotted ← Vallotted∪Cv

9: π1(v) ← u∗
10: if v is an L-node then p(v) ← v

else p(v) is arbitrarily chosen from N [v] ∩ N [u∗]
11: for all v ∈ VL \ Vallotted do � Second phase
12: Let u be an arbitrary vertex in Vallotted ∩ N [v]
13: Cα(u) ← Cα(u) ∪ {v}
14: π2(v) ← u

Lemma 8 Algorithm 1 is well-defined, and its output satisfies the following:

(i) N L [v] ⊆ Cv for every Cv , and Cv’s are disjoint;
(ii) every L-node is allotted to some cluster, and a 0-node is allotted only when it

becomes a cluster midpoint;
(iii) p(v) ∈ NL [v] for every Cv;
(iv) π1(v), when defined, is in N L [x] for some Cx; π2(v), when defined, is in N L [y]

for some Cy;

(v) Cv =
{
NL [v] ∪ {u | π2(u) ∈ NL [v]}, if v is an L-node;
{v} ∪ NL [v] ∪ {u | π2(u) ∈ NL [v]}, if v is a 0-node.

Proof Since LPk(G) is feasible, VL �= ∅ and v can be chosen at Step 2. At Step 6, as
there exists w ∈ VL with dist(w) ≥ 2, there exists a vertex v with dist(v) = 2, for
example the one that appears on a path of length dist(w) from Vallotted to w. Note that
v ∈ V may be a 0-node or an L-node. At Step 10, dG(u∗, v) = 2 from the choice of u∗
and hence N [v] ∩ N [u∗] is nonempty. When the while loop terminates, dist(w) ≤ 1
for every w ∈ VL ; thus, v at Step 12 satisfies dist(v) = 1 and therefore u can be
chosen. The algorithm is well-defined.

Each time a new clusterCv is created, NL [v] is added toCv: NL [v] ⊆ Cv . The only
two cases in which we create a new cluster Cv is when it is the first cluster created,
and when dist(v) = 2. In the latter case, since dist(v) = 2, NL [v] ∩ Vallotted = ∅ and
therefore {v} ∪ NL [v] is disjoint from Vallotted, the set of currently allotted vertices.
Thus, at the end of the first phase,Cv’s are disjoint. No new clusters are created during
the second phase and only the L-nodes that has not been allotted are added to exactly
one of the existing clusters. Hence, Property (i) holds.

Property (ii) is easily verified, sinceSteps 11–14 ensure that every L-node is allotted,
and the only case a 0-node is allotted is at Step 8, where the cluster midpoint v is
allotted.

At Step 10, if v is a 0-node, N [v] \ {v} ⊆ VL since every edge is incident to at least
one L-node; Property (iii) follows from this observation.

123

46 H.-C. An et al.

During the first phase, vertices are allotted only when it is a cluster midpoint or in
NL [v] for some cluster midpoint v. Thus, u∗ ∈ Vallotted chosen at Step 7 is either a
cluster midpoint or in NL [v] for some Cv . Suppose u∗ is a cluster midpoint. If u∗ is
an L-node, then u∗ ∈ NL [u∗]; suppose u∗ is a 0-node. As dG(u∗, v) = 2 from the
choice of u∗, there exists a vertex z that is in both N [u∗] and N [v]. z is an L-node
since u∗ is a 0-node. Thus z is in NL [u∗] and has to be in Vallotted, contradicting
dist(v) = 2. Hence, in any case, π1(v) ∈ NL [x] for some Cx , verifying the first half
of Property (iv).

At Step 12, u ∈ Vallotted and hence either u is a cluster midpoint or u ∈ NL [y]
for some Cy . If u is a cluster midpoint, v ∈ NL [u], contradicting v /∈ Vallotted. This
completes the verification of Property (iv).

At the end of the first phase, for every Cv , Cv = {v} ∪ NL [v] from construction
and it can be only augmented in the rest of the algorithm. When v is added to a cluster
at Step 13, it is added to Cα(π2(v)) and hence

Cv =
{
NL [v] ∪ {u | π2(u) ∈ {v} ∪ NL [v]}, if v is a L-node;
{v} ∪ NL [v] ∪ {u | π2(u) ∈ {v} ∪ NL [v]}, if v is a 0-node.

Now Property (v) follows from Property (iv).
�

Observation 4 For every non-root cluster Cv , the distance between π1(v) and p(v)

is

{
1, i f v is a 0-node;
2, otherwise.

Proof Note thatπ1(v) and v are at distance 2 as can be seen fromStep 7 ofAlgorithm1;
thus, if v is an L-node, p(v) = v and the distance between π1(v) and p(v) is two. If
v is a 0-node, p(v) is chosen from N [π1(v)] at Step 10 of Algorithm 1.
�

Rounding opening variables. Our algorithm will gradually round the opening vari-
ables y, starting from the original LP solution, until they become integral. This process
will be described in terms of opening movements, where eachmovement specifies how
much opening is moved from which L-node to which L-node. Since the L-nodes have
the same capacities, if we show that a set of opening movements makes the opening
variables integral while no opening is moved by the net distance of more than r , this
implies that the resulting set of opening variables is an integral distance-r transfer.

Our rounding procedure begins with changing yp(v) of every cluster Cv to one: for
each clusterCv , we increase yp(v) until it reaches one,while simultaneously decreasing
the opening variable of a vertex in NL [v] by the same amount. This initial aggregation
can be interpreted as openingmovements, and keeps the budget constraint

∑
v∈V yv =

k satisfied.

123

Centrality of trees for capacitated k-center 47

Observation 5 For each cluster Cv , the initial aggregation can be implemented by a
set of opening movements within the distance of

{
1, i f p(v) = v;
2, otherwise.

Proof N L [v]’s are disjoint fromLemma8, and y(NL [v]) ≥ 1 from theLP constraints;
hence, yp(v) can be made 1 via movements from NL [v]. Note that p(v) ∈ NL [v] in
any case.
�

After the initial aggregation, the procedure considers each clusterCv in the bottom-
up order and make the opening variables of every vertex in Cv\{p(v)} integral, using
movements of distance 5 or smaller; p(v) is propagated to the parent cluster, to be
taken into account when that cluster is rounded. Precisely, the rounding procedure for
Cv rounds the opening variables of Iv := VL ∩ (Cv\{p(v)} ∪ {p(u) | π1(u) ∈ Cv}),
i.e., the set of L-nodes that is either propagated from a child cluster or originally in
Cv , except the vertex to be propagated from Cv .

Algorithm2 shows the procedure. First it recursively processes the children clusters,
and then constructs a family of vertex sets {Xu}u∈NL [v] indexed by NL [v]. For u �=
p(v), Xu consists of u itself, vertices propagated from the children clusters that are
connected through u, and the vertices in Cv that are connected to v through u: Xu :=
{u} ∪ {p(w) | π1(w) = u} ∪ {w | π2(w) = u}. X p(v) is similarly defined, except that
it does not contain p(v). Now for every u ∈ NL [v], we locally round Xu : we choose
a set Wu of the vertices to be opened, and move the openings of the other vertices to
the vertices in Wu . Note that LocalRound(VtoOpen, VmoveFrom1, VmoveFrom2) is a
procedure that increases the opening variables of the vertices in VtoOpen to one, while
decreasing the opening variables of VmoveFrom1 (and VmoveFrom2 if VmoveFrom1 is
used up) to match the increase.Wu is chosen as a subset of Xu , but we avoid choosing
u ∈ NL [v] whenever possible. After these local roundings, each Xu may still have
some non-integral opening variables remaining; we choose a set F ⊆ NL [v] \ {p(v)}
to accomodate these openings. Finally, if there still remains some fraction, we choose
one last center denoted by w∗, and open it using the opening movements from the
vertices that are still fractionally open (denoted by ĪStep12) and p(v). Note that yp(v),
therefore, may become less than one at the termination of Round(v).

Lemma 9 Suppose that yp(v) = 1 before Step 3 of Round(v). Then Steps 3–15 of
Round(v) make the opening variables of Iv integral, and this can be implemented by
a set of opening movements within Iv ∪ {p(v)}, with no incoming movements to p(v).
The maximum distance of these movements is five taking the initial aggregation into
account.

Proof Note that, from Properties (iii), (iv), and (v) of Lemma 8, {Xu}u∈NL [v] forms a
partition of Iv . Thus it suffices to verify that the opening variables of each Xu becomes
integral. Also note that Xu ⊆ VL .

At Step 6 of the algorithm, we have y(Xu) ≤ |Xu | from y ≤ 1; hence Wu can
be successfully chosen. After Step 7, Xu may still have some non-integral opening

123

48 H.-C. An et al.

Algorithm 2 Rounding algorithm.
1: procedure Round(v)
2: for all children clusters Cw do Round(w)
3: X p(v) ← {p(w) | π1(w) = p(v)} ∪ {w | π2(w) = p(v)}
4: Xu ← {u} ∪ {p(w) | π1(w) = u} ∪ {w | π2(w) = u} for all u ∈ NL [v] \ {p(v)}
5: for all u ∈ NL [v] do
6: Choose �y(Xu)� vertices from Xu ; call it Wu (avoid choosing u unless |Xu | = y(Xu))
7: LocalRound(Wu , Xu , ∅)
8: Let ĪStep8 be set of vertices in ∪u∈NL [v]Xu that have non-integral opening variables

9: F := {u ∈ NL [v] \ {p(v)} | yu < 1}
10: Choose �∑u∈ ĪStep8 yu� vertices from F ; call it WF

11: LocalRound(WF , ĪStep8 \ X p(v), ĪStep8 ∩ X p(v))

12: Let ĪStep12 be set of vertices in ∪u∈NL [v]Xu that have non-integral opening variables

13: if ĪStep12 �= ∅ then
14: Choose w∗ from F \ WF if F \ WF �= ∅; otherwise choose from ĪStep12
15: LocalRound({w∗}, ĪStep12, {p(v)})
16: procedure LocalRound(VtoOpen, VmoveFrom1, VmoveFrom2)
17: while ∃u ∈ VtoOpen yu < 1 do
18: Choose a vertex w with nonzero opening from VmoveFrom1 \ VtoOpen;

if there exists none, choose from VmoveFrom2 \ VtoOpen
19: � ← min(1 − yu , yw); increase yu by � and decrease yw by �

variables, but their total opening is given by ru := y(Xu) − �y(Xu)� < 1. Moreover,
when ru > 0, we have u /∈ Wu and therefore yu < 1. Thus,

∑
u∈ ĪStep8 yu = rp(v) +∑

u∈NL [v]\{p(v)} ru < 1+|F | at Step 10 and thereforeWF can be chosen as well. Note

that (ĪStep8 \ X p(v)) ∪ (ĪStep8 ∩ X p(v)) = ĪStep8 and hence Step 18 of LocalRound
called from Step 11 will always succeed. After Step 11, the total non-integral opening
variables in Iv will become strictly smaller than one. If ĪStep12 = ∅, we are done.
Otherwise, w∗ can be successfully chosen since ĪStep12 �= ∅, and Step 15 will make
the opening variables of Iv completely integral, while making yp(v) smaller than one.
Note that yp(v) = 1 before Step 15.

Now it remains to verify that this rounding can be realized in terms of opening
movements within the distance of five. When x ∈ Xu , one of the following holds: (i)
x = u, (ii) x = p(w) and π1(w) = u, or (iii) π2(x) = u. In Case (ii), dG(x, u) ≤ 2
from Observation 4. In Case (iii), dG(x, u) = 1 as can be seen from Step 12 of
Algorithm 1. Thus, for any x ∈ Xu , x is within the distance of 2 from u. Note that the
opening at x ∈ Xu has been moved from NL [w] if x = p(w); otherwise, it originates
from x itself. From Observations 4 and 5, the opening at x , in Case (ii), originates
from vertices within the distance of three from u; in the other cases, it is from x itself
and therefore within the distance of one. Thus, any movements resulting from Step 7
of Algorithm 2 moves opening that originally comes from vertices within the distance
of three from u to a vertex within the distance of two from u; the maximum distance
of these movements therefore is five.

Since the opening at x ∈ Xu originates from vertices within the distance of three
from u, it is within the distance of four from v. On the other hand, every vertex in F

123

Centrality of trees for capacitated k-center 49

is within the distance of one from v; therefore, the maximum distance of movements
resulting from Step 11 also is five.

Supposew∗ is chosen from F\WF at Step 14. Thenw∗ is within the distance of one
from v; as observed earlier, the opening at x ∈ ĪStep12 originates from vertices within
the distance of four from v. p(v) is within the distance of one from v, and its opening
originates from vertices within the distance of two from p(v) (see Observation 5);
hence, the opening at p(v) originates from vertices within the distance of three from
v. Thus, in this case, any movements resulting from Step 15 moves opening that
originates from vertices within the distance of four from v to a vertex within the
distance of one from v; the maximum distance of these movements therefore is five.

Suppose F\WF = ∅. In this case, F = WF and thus
∑

u∈ ĪStep8\X p(v)
yu < |F | =

|WF |. Hence, ĪStep8\X p(v) is used up during LocalRound called from Step 11 (note
that (WF ∩ ĪStep8) ⊆ (ĪStep8\X p(v))). Therefore, we have ĪStep12 ⊆ X p(v). As
observed earlier, w∗ ∈ X p(v) is within the distance of two from p(v); the opening at
x ∈ X p(v) is from vertices within the distance of three from p(v). The opening at p(v)

is from vertices within the distance of two from p(v), as was seen in Observation 5.
Thus, the maximum distance of movements resulting from Step 15 is five in this case
as well.
�
Proof (of Lemma 7) Let Cr be the root cluster, and we execute Round(r) on the LP
solution.

From Lemma 9, Round(r) outputs a set of opening variables that can be realized
by a set of opening movements of distance five or smaller: note that yp(v) = 1 before
Step 3 of each execution of Round(v), since we process the clusters in the bottom-
up order. As every vertex in VL\{p(r)} is in Iv for some cluster Cv , their opening
variables are made integral. Since

∑
v∈V yv = k, yp(r) is also made integral, and the

opening movements to p(r) during the initial aggregation were within the distance of
one. Thus the output set of open vertices is an integral distance-5 transfer.

Now Lemma 2 completes the proof.
�

6 Extensions to other problems

In this section, we present how our techniques readily apply to two other problems.

6.1 Capacitated k-supplier

Firstly, we present an 11-approximation algorithm for the capacitated k-supplier prob-
lem. This problem is a generalization of the capacitated k-center problem in which
some vertices are designated clients and some facilities. We can only open k of the
facilities, and the aim is to serve the clients (facilities do not have to be served).

Let us denote by C and F the set of clients and facilities respectively. For this
version, we prove the following.

Theorem 6 There exists a polynomial time11-approximationalgorithm for the capac-
itated k-supplier problem.

123

50 H.-C. An et al.

The algorithm proceeds along the lines of our main result. We first guess the optimum
τ , and restrict to the bipartite graph G on vertex sets C ,F , with an edge between
u ∈ C and v ∈ F iff d(u, v) ≤ τ . We then divide this into connected components and
work with them separately, as before. Thus in what follows, let us assume that G as
defined above is connected, and LPk(G) is feasible. Note that this is a slightly different
LP, where y-variables exist only for facilities, and the constraints

∑
u:(u,v)∈E xuv = 1

exist only for the clients.
Themain difference in this variant is in the clustering step.Wemodify the clustering

of Khuller and Sussmann [17] as follows. Start with an arbitrary client u ∈ C as the
first clustermidpoint, and include all of N [u] in the clusterCu . Nowas long as possible,
do the following: pick a client u ∈ C which is at a distance > 2 from the midpoints of
all the clusters so far, but is distance precisely 4 from some cluster midpoint; include
all of N [u] into the new cluster Cu (there will not be an overlap with other clusters
because of the distance condition).

When the procedure ends, we will be left with a bunch of clients at distance 2 from
some cluster midpoints, and some facilities at distance 3 from some cluster midpoints
(and nothing else, by connectivity properties). We move them to the closest cluster
(breaking ties arbitrarily). Now the procedure satisfies the following conditions:

1. Each cluster has its y-values adding up to ≥ 1 (indeed, the neighborhood of the
cluster midpoint has total y-value ≥ 1, as is required in the tree reduction).

2. The graph of clusters, in which we place an edge if the midpoints are at distance
precisely 4, is connected.

These properties ensure that we can perform precisely the same reduction to tree
instances, however we have a variant of Lemma 3: an r -transfer to the tree instance
now implies a (4r + 3) approximation algorithm for the client/facility problem. This
is because adjacent cluster midpoints are at a distance 4, and hence the distance in
G between two vertices au and av (as in the reduction) which have distance r in the
tree instance, is now 4r . The rest of the proof carries over verbatim, and we obtain a
reduction to tree instances with the above guarantee.

This proves Theorem 6, because for tree instances, we can use our algorithm which
gives r = 2.
�

6.2 Budgeted version with uniform capacities

The budgeted center problem is a weighted generalization of the k-center problem: in
the k-center problem, opening a center incurs the uniform cost of one and there is a
budget of k on the total opening cost; on the other hand, in the budgeted center problem,
the opening costs are given by C : V → R+ that is a part of the input along with the
total budget B ∈ R+. When the capacities are uniform, Khuller and Sussmann [17],
using the technique of Bar-Ilan et al. [4], gives a 13-approximation algorithm. In this
subsection, we present a 9-approximation algorithm for the budgeted center problem
with uniform capacities. We note that it is easy to extend this result to the {0, L}-case
as well.

Let L0 ∈ N be the uniform capacity. Following is the key lemma of our analysis:

123

Centrality of trees for capacitated k-center 51

Lemma 10 Suppose there exists a polynomial-time algorithm that finds an integral
distance-r transfer of a tree instance. Then there exists an algorithm that, given a
connected graph G = (V, E), the constant capacity function L : V → {L0}, and
k ∈ N for which LPk(G) has a feasible solution (x, y), in addition to the opening costs
C : V → R+, finds an integral distance-(3r + 2) transfer y′ of (G, L , y) satisfying∑

v∈V C(v)y′
v ≤ ∑

v∈V C(v)yv .

Our 9-approximation algorithm follows from Lemma 10.

Theorem 7 There exists a 9-approximation algorithm for the budgeted center problem
with uniform capacities.

Proof Let OPT denote the optimal solution value. As in Lemma 1, our algorithm
makes a guess τ at the optimal solution value and tries to decide if τ < OPT. In this
problem again, we consider the graph G≤τ representing the admissible assignments.
Consider the connected components ofG≤τ ; for each componentGi , we will compute
a lower bound Bi on the minimum budget necessary to have a feasible solution to the
subproblem induced by Gi . Observe that, if τ ≥ OPT, an optimal solution assigns
every vertex to a center that is in the same connected component. Thus, if

∑
i Bi > B,

we can certify that τ < OPT. Bi is determined by solving LPki (Gi), but with an
objective of minimizing the opening cost

∑
v∈Gi

C(v)yv rather than as a feasibility
LPwith no objective function; ki is chosen by trying all integers from 1 to |V (Gi)| and
selecting the one that gives the smallest opening cost. If we failed to certify τ < OPT,
this means

∑
i Bi ≤ B. Now for each Gi , Lemmas 2 and 10 let us find a set of vertices

to open for which there exists an assignment of every vertex to an open center that is
within the distance of 3r + 3, and the total opening cost of this set is no greater than
Bi . The union of these sets is the desired solution from the triangle inequality. Recall
that r can be taken as two, from Lemma 6.
�

Proof (of Lemma 10)We invoke our rounding procedure for the k-center problem, but
with the “fake” capacity function L̂ defined as L̂(v) := C̄max −C(v), where C̄max :=
1 + maxv∈V C(v). The output vector y′ is an integral distance-(3r + 2) transfer of
(G, L̂, y) from Lemma 4. Since y′ is a distance-(3r +2) transfer, we have

∑
v∈V yv =∑

v∈V y′
v = k, and by taking U = V in Condition (1b) of Definition 1, we also have∑

v∈V L̂(v)y′
v ≥ ∑

v∈V L̂(v)yv . Since
∑

v∈V L̂(v)y′
v = C̄max · k − ∑

v∈V C(v)y′
v

and
∑

v∈V L̂(v)yv = C̄max · k − ∑
v∈V C(v)yv , this implies that

∑
v∈V C(v)y′

v ≤∑
v∈V C(v)yv .
On the other hand, one can see that the decisions made by our rounding procedure

purely depend on the relative ordering of capacities, rather than their actual values.
Hence, the complete “execution history” of the rounding procedure with L̂ could also
be interpreted as a valid execution history with the true capacity function L as well:
if the procedure is executed with L , every comparison of capacities will always be a
tie since L is a constant function, and we can break them so that it will be consistent
with the ordering of L̂ . Therefore, it is possible that our rounding algorithm outputs y′
when it is run with L , and from Lemma 4, y′ is an integral distance-(3r + 2) transfer
of (G, L , y).
�

123

52 H.-C. An et al.

7 Conclusions and future directions

As was demonstrated in Sects. 6.1, 6.2, our techniques can be extended to obtain
approximation algorithms for different problems. We see this as further evidence that
the simplicity of our approach helps in designing better algorithms also for other
location problems.

As our 9-approximation algorithm comes close to settling the integrality gap, it is
natural to ask if our techniques can be used to obtain a tight result. Recall that our
framework consists of first reducing the general problem to tree instances and then
solving such instances. Since our algorithm for tree instances is the best possible, any
potential improvement must come from the reduction, and we raise this as an open
problem.

Finally, as the {0, L}-case suggests, our preliminary results on additional pre-
processing indicate that further investigation is necessary to understand if these tech-
niques can help bring down the integrality gap to the tight factor of 3. More generally,
we believe that it is important not only for capacitated k-center but also for other
problems, such as facility location and k-median, to understand the power of lift-and-
project methods (applied to potentially different formulations). For example, do they
automatically capture these preprocessing steps and lead to stronger formulations?

Acknowledgments The authors thank the anonymous reviewers of this paper and of its preliminary
version [1] for their helpful comments.

References

1. An, H.C., Bhaskara, A., Chekuri, C., Gupta, S., Madan, V., Svensson, O.: Centrality of trees for
capacitated k-center. In: IPCO, pp. 52–63 (2014)

2. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for
k-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)

3. Bansal, M., Garg, N., Gupta, N.: A 5-approximation for capacitated facility location. In: ESA,
pp. 133–144 (2012)

4. Bar-Ilan, J., Kortsarz, G., Peleg, D.: How to allocate network centers. J. Algorithm. 15(3), 385–415
(1993)

5. Byrka, J.: An optimal bifactor approximation algorithm for the metric uncapacitated facility location
problem. In: Approx-Random, pp. 29–43 (2007)

6. Charikar, M., Guha, S.: Improved combinatorial algorithms for facility location problems. SIAM J.
Comput. 34(4), 803–824 (2005)

7. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation algorithm for the
k-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)

8. Chudak, F.A., Williamson, D.P.: Improved approximation algorithms for capacitated facility location
problems. Math. Program. 102(2), 207–222 (2005)

9. Chuzhoy, J., Rabani,Y.:Approximating k-medianwith non-uniformcapacities. In: SODA, pp. 952–958
(2005)

10. Cygan, M., Hajiaghayi, M., Khuller, S.: LP rounding for k-centers with non-uniform hard capacities.
In: FOCS, pp. 273–282 (2012)

11. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38,
293–306 (1985)

12. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms. J. Algorithm. 31(1),
228–248 (1999)

13. Hall, P.: On representatives of subsets. J. Lond. Math. Soc. 10, 26–30 (1935)

123

Centrality of trees for capacitated k-center 53

14. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Math. Oper. Res.
10, 180–184 (1985)

15. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problems. In: STOC,
pp. 731–740 (2002)

16. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems
using the primal-dual schema and lagrangian relaxation. J. ACM 48(2), 274–296 (2001)

17. Khuller, S., Sussmann, Y.J.: The capacitated k-center problem. SIAM J. Discret. Math. 13(3), 403–418
(2000)

18. Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Analysis of a local search heuristic for facility location
problems. J. Algorithm. 37(1), 146–188 (2000)

19. Levi, R., Shmoys, D.B., Swamy, C.: LP-based approximation algorithms for capacitated facility loca-
tion. In: IPCO, pp. 206–218 (2004)

20. Li, S.: A 1.488 approximation algorithm for the uncapacitated facility location problem. In: ICALP
(2), pp. 77–88 (2011)

21. Li, S., Svensson, O.: Approximating k-median problem via pseudo-approximation. In: STOC,
pp. 901–910 (2013)

22. Pál, M., Tardos, É., Wexler, T.: Facility location with nonuniform hard capacities. In: FOCS,
pp. 329–338 (2001)

23. Shmoys, D.B., Tardos, É., Aardal, K.: Approximation algorithms for facility location problems
(extended abstract). In: STOC, pp. 265–274 (1997)

24. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University
Press, New York (2011)

25. Zhang, J., Chen, B., Ye, Y.: Amultiexchange local search algorithm for the capacitated facility location
problem. Math. Oper. Res. 30(2), 389–403 (2005)

123

	Centrality of trees for capacitated k-center
	Abstract
	1 Introduction
	2 Preliminaries
	3 Reducing general instances to trees
	4 Algorithm for tree instances
	5 Better preprocessing for better algorithms
	5.1 Rounding procedure for the {0,L}-case

	6 Extensions to other problems
	6.1 Capacitated k-supplier
	6.2 Budgeted version with uniform capacities

	7 Conclusions and future directions
	Acknowledgments
	References

