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Abstract In this paper, we prove global weighted Lorentz and Lorentz-Morrey estimates
for gradients of solutions to the quasilinear parabolic equations:

u; —div(A(x, t, Vu)) = div(F),

in a bounded domain Q x (0, T) € R¥*!, under minimal regularity assumptions on the
boundary of domain and on nonlinearity A. Then results yields existence of a solution to the
Riccati type parabolic equations:

u; —div(A(x, t, Vu)) = |Vu|? + div(F) + u,

where ¢ > 1 and u is a bounded Radon measure.

Mathematics Subject Classification Primary 35K59 - Secondary 42B37

1 Introduction and main results

In this article, we are concerned with the global weighted Lorentz space estimates for gradients
of weak solutions to quasilinear parabolic equations in divergence form:

‘ ur — div(A(x, t, Vu)) = div(F) in Qr, (1.1)

u=0 ond,(Qx(0,T)),

where Q7 = Q x (0, T) is a bounded open subset of RNTL N > 2, 0,(2 x (0,7)) =
BLX O, THUQx{t=0}),F e LY(Qr,RY)isa given vector field and the nonlinearity
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A RN x R x R¥Y — RY is a Carathéodory vector valued function, i.e. A is measurable
in (x, t) and continuous with respect to Vu for a.e. (x, t). We suppose in this paper that A
satisfies

|A(x, 1,0)] < A1lC], (1.2)
and
(A, 1,0) — A(x, 1,6), ¢ — &) > Aot — €2, (1.3)

forevery (£,¢) € RY xRY anda.e. (x, 1) € RN xR, where A| and A are positive constants.
In addtion, we also assume that the derivatives of A with respect to ¢ are bounded, that is,

|A§(x7ta§)| SAls (14)

for any ¢ € RY and (x, 1) € RY. We remark that the condition (1.4) is needed in order to
ensure that the reference problems (2.5) and (2.17) in the next section have C 0.1 regularity
solutions (see [11,12]), which will be used in the sequel.

Throughout the paper, we assume that A satisfies (1.2) and (1.3), (1.4). Besides, we
always denote Ty = diam(2) + T'/2 and Q,(x,1) = B,(x) x (t — p*, 1) Qp(x,1) =
B,(x) x (t — p?/2,t + p2/2) for (x,1) € RV and p > 0.

A weak solution u of (1.1) is understood in the standard weak (distributional) sense, that
isu e L0, T, Wy (R)) is a weak solution of (1.1) if

—/ ugo,dxdt—i—/ A(x,t, Vu)Vodxdt = —/ FVodxdt
Qr Qr Qr

forall p € CL([0, T) x Q).

The existence and uniqueness of weak solutions in L%, T, Hol (2)) to problem (1.1)
with F e L?(Qr, RV) is given at the beginning of the next section.

For our purpose, we need a condition on € which is expressed in the following way.
We say that 2 is a (8, Ro)—Reifenberg flat domain for § € (0, 1) and Ry > O if for every
x € 92 and every r € (0, Ro], there exists a system of coordinates {z1, z2, ..., Z,}, Which
may depend on r and x, so that in this coordinate system x = 0 and that

B.(0) N {zy > 8r} C B.(0)NQ C By (0) N {zp > —57). (1.5)

We notice that this class of flat domains is rather wide since it includes C! domains,
Lipschitz domains with sufficiently small Lipschitz constants and even fractal domains.
Besides, it has many important roles in the theory of minimal surfaces and free boundary
problems. This class appeared first in a work of Reifenberg (see [20]) in the context of Plateau
problem. Its properties can be found in [9,10,23].

We also require that the nonlinearity A satisfies a smallness condition of BMO type in the
x variable in the sense that A(x, t, ¢) satisfies a (§, Ry)-BMO condition for some §, Ry > 0
with exponent p > 0 if

[A]f0 = sup ( f (©(4, B,(»)(x, r))dedr) "<,
(y,5)€RN xR,0<r<Ry 0r(y,5)

where

O B (0= sup ANEO AR
ceRN\(0) 1]

)
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and Kgr(y) (¢, ¢) is denoted the average of A(t, ., ¢) over the ball B, (y), i.e,

Ap,(»(t. ) :=7[ A(x,t,0)dx = A(x,t,0)dx.

B, (») |Br(D)I /B, ()

The above condition appeared in our previous paper [19]. It is easy to see that the
(8, Ro)—BMO is satisfied when A is continuous or has small jump discontinuities with
respect to x. We recall that a positive function w € LIIOC(RN *1y is called an A, weight,
1 < p < oo if there holds

p—1
1
[w]a, := supg N+ 7[ w(y, s)dyds ][ w(y,s) P Tdyds
! i R 0, (x.1)

< oo when p>1,

1
[wla, = sup ( 7[ w(y,s)dyds) ess sup < oo when p=1.
Qp(XJ)CRNH JQp(x.1) (y,s)er(x.t) w(y’ 5)

The [w] A, is called the A, constant of w.

I (RN*1Y is called an Ao, weight if there are two positive

A positive function w € L;,.

constants C and v such that
(E)=C (|E|)U (Q)
w =< — w s
101
for all cylinder Q = Q o(x, t) and all measurable subsets E of Q. The pair (C, v) is called
the A, constant of w and is denoted by [w]a,
It is well known that this class is the union of A, for all p € (1, 00), see [7]. If w is a
weight function belonging to w € Ay, and E € RV*! aBorel set, 0 < ¢ < 00,0 < s < o0,
the weighted Lorentz space L%’ (E) is the set of measurable functions g on E such that

0 s 1/s .
L (q Jo (pfw{(x,1) € E : [gx, )] > p})4 d—”) <oo if 5§ < o0,
||g||L'{U’“(E) = o
sup,-op (w ({(x, 1) € E : |g(x, )] > p)'/ < 00 if s = oo.

Here we write w(0O) = fo w(x, t)dxdt for a measurable set O C RNt Obviously,
lgllaa gy = 118l e k) thus LEY(E) = LL(E). As usual, when w = 1 we write sim-
ply L9 (E) instead of LL* (E). In this paper, M denotes the parabolic Hardy-Littlewood
maximal function defined for each locally integrable function f in R¥*! by

M(F)(x. 1) = sup ][ (e s)ldyds V(x.1) € RV,

p>0.0,(x.1)

If p > 1and w € A, we verify that M is operator from L' (RN*!) into L1->°(R¥+1) and
LY RN into itself for 0 < s < oo, see [21,22,24].

We would like to mention that the use of the Hardy-Littlewood maximal function in non-
linear degenerate problems was started in the elliptic setting by T. Iwaniec in his fundamental
paper [8]. We now state the main result of the paper.

Theorem 1.1 Let F € L%*(Qr,RN). There exists a unique weak solution u €
L2(0, T, H(}(Q)) of (1.1). For any w € Ay, 0 < g < 00, 0 < 5 < 00 we find
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3930 Q.-H. Nguyen

8 = 08(N,A1,A2,q,5,[wla,) € (0,1) and so = so(N, A1, A2) > 0 such that if Q is
(8, Ro)-Reifenberg flat domain Q and [A]§)° < § for some Ro > O then

IMAVUP) 25 < CHIMAF P25 @y (1.6)
Here C depends only on N, A1, A2, q, s, [w]a,, and Ty/ Ro.

Since M is a bounded operator from L2 (RN ‘H) into itself for p > 1,0 < s < oo and
w € A, thus we obtain the following Theorem.

Theorem 1.2 Let F € L2(Q2r, RY) and s be in Theorem 1.1. There exists a unique weak
solution u € L*(0, T, HO1 (2)) of (1.1). Forany w € Ayp, 2 < g < 00,0 <5 < 00we

find 5 = 85(N, A1, A2, q, s, [w]Aq/z) € (0, 1) and such that if Q is (8, Ro)-Reifenberg flat

domain and [A]g)0 < 8 for some Ry > 0 then

1IVulll g5 @y < CHIENL @) (1.7)
Here C depends only on N, A1, A2, q, s, [w]Aq/2 and Ty/ Ro.

We remark that the global gradient estimates of solutions of (1.1) obtained in Theorem
1.2 extend results in [2—4] to more general nonlinear structure and in the setting of weighted
Lorentz spaces. Notice that Theorems 1.1 and 1.2 in the quasilinear elliptic framework are
obtained in [14]. In the linear case, we obtain global estimates for gradients of weak solutions
to problem

u; —div(A(x, t, Vu)) = div(F) + n in Q7,
u=0 ondQ2x (0,7), (1.8)
u(0) =0 in 2,

where F € LY(Qr, RY), n € Mp(R27) the set of bounded Radon measure in Q7, o €
M, (2) the set of bounded Radon measure in Q.

Theorem 1.3 Suppose that A is linear. Let F € LY(Qr, RM), u € Mp(Qr), 0 € Mp(RQ),
set w = || + |o| ® 8;=0). Let so be as in Theorem 1.1.

(a) Forany g > 2,0 < s < 00, w € Aypp and Mi[w], |F| € LE*(Qr) we find a § =
8(N, A1, A2, q,s, [w]Aq/z) € (0, 1) such that if Q is a (8, Ro)-Reifenberg flat domain

and [A]{f)0 < § forsome Ro > O there exists a unique weak solutionu € L%, T, HO1 (R2))
of (1.8) and there holds

1IVulll g2y < ClIMiToI g5 ;) + CHIFI 25 @ (1.9)

where C depends only on N, A1, A2, q, s, [w]Aq/2 and To/ Ry.

(b) For any ¢ € (0, l),szle) <qg <2,0<s < oo wr e Ay and Mi[w], |F| €

LE(Qr) we find a 8§ = 8(N, Ay, Az, q, s, & [w>]a,) € (0,1) such that if Q is a
(8, Ro)-flat domain and [A]g;” < 8 for some Ry > 0 there exists a unique weak solution

2(e+1)

ue LZ(ZIZU (0, T, W, “ (Q)) of (1.8) and there holds

IVulll g2y < ClMiLoIg5 ;) + CHIFI 25 @) (1.10)

where C depends only on N, A1, A2, q, s, &, [w2+'9]A1 and To/ Ro.
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In above Theorem, M denotes the first order fractional Maximal parabolic potential on
RN*1 of a positive Radon measure in RV *! by

w(Qp(x, 1)

N+1
e V(x,t) € R .

Mi[pul(x, 1) = sup
O<p<R

We can use estimates (1.7) in Theorem 1.2 and (1.9)—(1.10) in Theorem 1.3 and the following
Lemma to get upper bounds for gradients of the solutions in Lorentz-Morrey spaces.

Lemma 1.4 Let0 < g < 00,0 <5 <00,y > 1 and Hy, Hy be measurable functions in
Qr. If

IIH1 195 @) < C(N, g, s, W IADIH2 | 95 (0
Sfor any w¥ € Ay, then for any k € ((NH))/&, N +2] VNS (w, N] )

[ H1l| C(N, g5, v, )l Hll g5 (1.11)

q.51€ = s
Ly (1) (€27)

and
1] g0 ) < CNL g, 5, v, D Hall g g - (1.12)

In (1.11), L2%* (Q7) denotes Lorentz-Morrey space, is the set of measurable functions g in
Q7 such that

gl gusic o, = sup o0 gl e < o0.
Lo @0 oot (e La*(Q, x.NG2r)

In (1.12), LZ;FSHP(QT) is the Lorentz-Morrey space of measurable functions g in Q7 such
that

=N
gl g gy = sup  p 7 |IgllLes(B,0nR)x 0.7y < 0O
L (Qr) 0<p<diam(R2),xeQ "

This Lemma is inspired by [13, Proof of Theorem 2.3], its proof can be found in [19, Proof
of Theorem 2.21] and notice that for (xg, fp) € Qr and 0 < p < T

wi(x,t) = min{,o’N’H""‘1 ,max{|x — xo|, V2|t — to|}*N*2+K*K1 1

—N+v9 - |X—)C —N+l7—191}

wo(x, 1) = min{p ol

WhereO<K1<K_W’O<01<K_Wand

[w]1a, < C(N, k1,6, 7), [whla, < C(N, 91,0, ).

For example, from (1.9) in Theorem 1.3 and Lemma 1.4 we obtain for 2 < ¢ < oo,
O<s<ooand0 <k <N +2,0<® <N + 2 there hold

1Vl g.x g,y = CIMITI@IN g g+ CHIFIll goe g,

1Vl g0 gy = CIMILON g0 g + CUIFI g g

and from (1.10) in Theorem 1.3 we also have preceding estimates with1 < ¢ <2,0 < s < oo
and # <Kk <N +2, % < ¥ < N. Furthermore, according to [19, Proof of Theorem
2.21] we verify that for g > 1,0 < 9 < min{N, g} and ¢ € L' (0, T, Wy'' (%)) there holds

)
(1.13)

1
T q DA
1-2
(/0 |oschn§¢<r)|‘fdt) = Co' TVl ga g, (1.14)
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3932 Q.-H. Nguyen

for any ball B, C RYN, where C = C(N, q, V). Therefore, (1.13) implies a global Holder-
estimate in space variable and L7 —estimate in time, namely for all ball B, C RN

1
T 7 R
_ q =7
(/0 loscp it (1) dl) <Cp 1 (llMl[w]lng;Fq:ﬂ(QT) +|||F|||LZ;‘F”(QT))’

with 0 < ¥ < min{N, ¢}.

We would like to refer to [16,17] as the first papers which have been used the first order
factional maximal operators in order to obtain the Lorentz-Morrey estimates for gradients of
solutions to nonlinear elliptic equations with measure or L' data.

Finally, we use Theorem 1.3 to prove the existence of solutions of the Riccati type parabolic
equations

u; —div(A(x, 1, Vu)) = |Vul? + div(F) + n  in Qr,
u=0 ondQx (0,7), (1.15)
u(0) =0 in Q,

where ¢ > 1 and F € L1(Q7, RN), u € Mp(Q7), 0 € My().

Theorem 1.5 Suppose that A is linear. Letq > 1, F € LY(Q7,RY) and n € M, (Qr), 0 €
Mp(RQ2), set o = |u| + lo| ® Sy=0). There exist C; = C{(N,A1,A2,q,Tp), § =
8(N, A1, Ay, q) € (0, 1)and sy = so(N, A1, A2) > Osuchthatif Qis a (8, Ry)-Reifenberg
flat domain and [A]ﬁf)0 < § for some Ry > 0 and

o(K) < C) Capg, ,(K), (1.16)

and

/K Hydxdt < C{ Capg, ,(K), (1.17)

for any compact set K C RN where H, = (./\/l(|F|2))q/2 xaor ifq = % and H; =
|Fl9xq. if q < % , then problem (1.15) has a weak solution u € L1(0, T, Wol’q ()
satisfying

/ |Vulldxdt < Cp Capg, ,(K),
KNQr ’

for any compact set K C RY, here Cy = Co(N, A1, N2, q, To/Ro, Ty, C1) > 0.

In this Theorem, capacity Capg, ., denotes the (G1, q')-capacity where G; is the Bessel
parabolic kernel of first order (see [1])

=1 X(0.00) (1) (_t kP

_ N/2 AO,00)\F) : N+1
Gi(x, 1) = ((4n) F(1/2)) i e . ) for (x,7) in RN+,

It is defined by
Capg, ,/(E) :inf[/ |f19dxdt : f e LY RN, Gy« f > XE],
’ RN+1

for any Borel set E C RN where XE 1s the characteristic function on E.
Note that if 1 < g < %—ﬁ the capacity Capg, . of a singleton is positive thus (1.16)
and (1.17) hold for some constant C; > 0 provided u© € MMy(Q7), ug € Mp() and
|F| € L9(Q27). We remark that in case F' = 0 the existence of solutions to (1.15) has been

obtained in our paper [19].

@ Springer



Global estimates for quasilinear parabolic equations... 3933

Remark 1.6 The inequality (1.16) is equivalent to
[n|(K) < CCapg],q,(K), o =0 when g > 2, (1.18)
ln|(K) < CCapgl,q/(K), lo](0) < Casz;,l,q/(O) when 1 < g <2, (1.19)
q
for any compact sets K ¢ RVt 0 ¢ RV, where G-, is the Bessel kernel of order 2(1;‘1

q

and capacity Capg 2 god of O is defined by
q

Capg, , ,(0) = inf [/ 1f19dx: f e LY ®Y), Gag * f = X0
= RN a
see [19, Remark 4.34]. Moreover, if ¢ > 2, the inequality (1.17) is equivalent to

/ |Fldxdt < C Capg, ,+(K),
KNQr ’

for any compact set K C RY, see Lemma 4.1.

2 Interior estimates and boundary estimates for parabolic equations

In this section we present various local interior and boundary estimates for weak solution u
of (1.1). They will be used for our global estimates later. First we recall basic existence and
uniqueness result of problem (1.1).

Proposition 1 If F € LZ(QT, RN ), there exists a unique weak solution u €
L%, T; Hé (RQ)) of (1.1) and the following global estimate holds:

/ |Vu|2dxdt§A2_1/2/ |FPdxdt. @.1)
Qr Qr

The existence and uniqueness of a weak solution of problem (1.1) with F € L2(Qr,RY)
is obtained from the Lax-Milgram Theorem, version for parabolic framework. Using u as a
test function in (1.1), we get (2.1). Moreover, due to the embedding

lp:9 € L*(0,T; Hy(Q)), ¢ € L*(0, T; H™'(Q))} C C(0, T; L*(Q)),
thus, the unique weak solution u# of (1.1) belongs to C(0, T; LZ(Q)). We can see that u
is also the unique weak solution of (1.1) in 2 x (—oo, T) where F € L2(Q7,RN) and
F=0,u=0inQ x (—o0, 0).
For some technical reasons, throughout this section, we always assume that u €
C(—00, T; L*()) N L*(—o0, T; H} (Q)) is a weak solution to equation (1.1) in Q x
(=00, T) with F € L>(Q7,RN), F = 01in  x (—00, 0).

2.1 Interior estimates

For each ball Bog = Bag(xo) CC Q2 and 19 € (0, T), one considers the unique solution
w € Cltog — 4R?, 10; L*(Bag)) N L*(tg — 4R*, 1o; H' (Bag))
to the following equation

‘ wy; —div (A(x,t, Vw)) =0 in Qap,

w=u ond,Qp, (2.2)
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3934 Q.-H. Nguyen

where Qor = Bag x (to — 4R?, 19) and 3,02r = (3Bag x (to — 4R?, 19)) U (Bagx
{t =19 — 4R?}).
The following a variant of Gehring’s lemma was proved in [6, 18].

Lemma 2.1 Let w be in (2.2). There exist constants 61 > 2 and C depending only on
N, A1, Ay such that the following estimate

1

i
7[ \Vw|®dxdt | <cC 7[ \Vw|dxdt, 2.3)
J0u2(r.9) J0p(v.5)

holds for all Q,(y,s) C Q2g.
The next lemma gives an estimate for Vu — Vw.

Lemma 2.2 Let w be in (2.2). There exists a constant C = C(N, Ay, Ap) > 0 such that

][ |Vu — Vw|?dxdt < c][ |F|>dxdt. (2.4)
02r Q2r
Proof Using u — w as a test function in (1.1) and (2.2) and since

1
/ u;(u — w)dxdt — / wy(u — w)dxdt = — (u — w)z(to)dx >0,
O2r O2r 2 Bar

we find

/ (A(x,t,Vu) — A(x,t,Vw), Vu — Vw) dxdt < / (F,Vu — Vw)dxdt.
O2r O2r

Using (1.3) and Holder inequality we derive (2.4). ]

To continue, we denote by v the unique function
v e Clig— R* 10; L*(BR)) N L*(tg — R, 19; H' (Br))
solution of the following equation

v — div (Agg(xo) (1, Vv)) =0 in Qg, 2.5)
v=w ond,QR, '

where Qr = Bgr(xo) x (9 — R*,10) and 8,Q0r = (3Br x (f9 — R, 1)) U (Brx
{t =19 — R*}).

Lemma 2.3 Let 6 be the constant in Lemma 2. 1. There exist constants C1 = C1(N, Ay, A2)
and Cy = Cyr(Aq, A2) such that

2
][ IVw — Vo2dxdt < C, ([A]SRI) ][ |Vw|2dxdt, (2.6)
Or Oar
with s1 = (fi_lz and
c;l/ |Vv|2dxdt§/ |Vw|2dxdt§C2/ |Vo|*dxdt. Q2.7)
Or ORr ORr

Proof The proof can be found in [19, Lemma 7.3]. ]
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Theorem 2.4 Let 0; be the constant in Lemma 2.1. There exists a functions v € C(ty —
R?, 103 L*(BR)) N L2(to — R*, 105 H' (Br)) N L®(tg — 3 R?, t0; W"**(Br/2)) such that

||Vv||ioo(QR/2) < cfQ |Vul2dxdt + cf |F|>dxdt, (2.8)

Q2R

2R

and

2
][ \Vu — Vo2dxdr < c][ \F2dxdt + C ([A]fl)
Oa2r
Or

x (][ |vu|2dxdt+][ |F|2dxdt), (2.9)
Oor O2r

where s1 = 9?@2 and C = C(N, A1, A)).

Proof Let w and v be in Egs. (2.2) and (2.5). By standard interior regularity and inequality
(2.3) in Lemma 2.1 and (2.7) in Lemma 2.3 we have

1/2
||VU||L°°(QR/2) <C ( fQ |Vv|2dxdt)
R

1/2
< c( 7[ |Vw|2dxdt) }
J OR

Thus, we get (2.8) from inequality (2.4) in Lemma 2.2.
On the other hand, applying (2.6) in Lemma 2.3 yields

2
][ \Vu — Vo2dxdt < ][ Vi — Vw|2dxdt + ¢4 ([A]fl) ][ \Vw|2dxd.
Or Or Oor
Hence, we get (2.9) from (2.4) in Lemma 2.2. The proof is complete. ]

2.2 Boundary estimates

In this subsection, we focus on the corresponding estimates near the boundary.

Throughout this subsection, we always assume that Q2 is a (8, Ro)- Reifenberg flat domain
with 0 < § < 1/2. In particular, we can see that the complement of €2 is uniformly 2-thick
for some constants cg, rg, see [19]. Let xo € 92 be a boundary point and 0 < R < Ry/6

and to € (0, 7), we set Qer = Qer(x0,t0) = (N Ber(x0)) x (to — (6R)?, to) and

Qsr = Qer(x0, 10).
We now consider the unique solution w to the equation

[w, —div(A(x,t,Vw)) =0 in Qgr,

2.1
w=u ond,QR. (2.10)

In what follows we extend F and u by zero to (2 x (—oo, 7)) and then extend w by u to
RN+1 \QGR .

Lemma 2.5 Let w be in (2.10). There exist constants 6, > 2 and C > 0 depending only on
N, A1, Ay such that the following estimate

1
23
][ [Vw|®2dxdt | < cj[ [Vw|dxdt, 2.11)
Qp/2(y,5) 03p(y,$)

holds for all Q3,(z,s) C Qer.
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Above lemma was proved in [19, Theorem 7.5]. Analogous to Lemma 2.2 we obtain

Lemma 2.6 Ler w be in (2.10). There exists a constant C = C(N, A1, A2) > 0 such that

][ [Vu — Vw|?dxdt < c][ |F|?dxdt. (2.12)
O6r O6r

Next, we set p = R(1 —§) sothat 0 < p/(1 — &) < Ro/6. By the definition of Reifenberg
flat domains, there exists a coordinate system {yi, y2, ..., yy} with the origin 0 € 2 such

that in this coordinate system xo = (0, ..., 0, —p§/(1 — §)) and
B (0) C QN B,(0) C By(0) N {y = (y1,y2,..., yn) : yv > —2p8/(1 = §)}.
Since § < 1/2 we have
BF(0) C RN B,y (0) CBy(0)N{y = (Vi,y2,--, IN) : YN > —4p8}, (2.13)

where B;F(O) = B,(0)0N{y = (y1,y2,...,yn) : yn > 0}. Furthermore we consider the
unique solution

v e Clty — p?, t0; L* (2N B,(0) N L2 (1o — p*, to; H' (20 B, (0)))
to the following equation

[ v, — div(Ap, ) (1, Vv)) =0 in Q,(0), (2.14)

v=w on apr(O),

where Q,(0) = (2N B,(0)) x (tg — p*,19) (0 < 1o < T). We put v = w outside Q2,(0).
As Lemma 2.3 we have the following result.
Lemma 2.7 Let 6, be the constant in Lemma 2.5. There exist positive constants C1 =
Ci(N, Ay, Ap) and Cy = Co(A 1, Ap) such that
2 R 2 2
][ IVw — Vo|2dxdt < C; ([A]Sz) ][ \Vw|2dxdt, (2.15)
0,(0,10) 0,(0,10)

with s1 = 95% and

C;l/ |Vv|2dxdt§/ \Vw|>dxdt §C2/ Vo2 dxdt.  (2.16)
0,(0.10) 0, (0.10) 0, (0.10)

We can see that if the boundary of Q2 is irregular enough, then the L°-norm of Vv up to
0N B,(0) x (1o — pz, tp) may not exist. For our purpose, we will consider another equation:

[ V; —div (Ap,@)(t, VV)) =0 in QF(0, 1),

V=0 onT,(0,1), 2.17)

where 07(0, 10) = B (0) x (10 — 0%, 19) and T, (0, 19) = Q,(0, ) N {xy = 0}.

A weak solution V of above problem is understood in the following sense: the zero
extension of V to (0, t9) is in C(tg — p?, to; L>(B,(0))) N LE .(to — p*, to; H'(B,(0)))
and for every ¢ € Cg (Q;‘(O, tp)) there holds

—/ V(p,dxdt—l—/ Ap,)(t, VV)Vedxdt = 0.
0} (0.10) 0} (0.10)

We have the following L°° gradient estimate up to the boundary for V. The following Lemma
was obtained in [19, Lemma 7.12].
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Lemma 2.8 For any ¢ > 0 there exists a small 5o = §o(N, A1, A2, &) € (0, 1/2) such
that if v € C(ty — p2, to; L>(2 N B,(0)) N L%(to — p*, to; H' (R N B, (0))) is a solution
of (2.14) and under condition (2.13) with § € (0, &), there exists a weak solution V €
C(to — p*, to: L2(BF (0)) N L2 (10 — p*, 10: H' (B (0))) of (2.17), whose zero extension to
0,(0, to) satisfies

19V, 10 sc][ Vol2dxdr,
(Qp/4(0,10)) 0,0.0)

][ Vv — VV|?dxdt < 52][ |Vv|?dxdt,
0,/8(0,10) 0,(0,10)

for some C = C(N, Ay, Ap) > 0.

Theorem 2.9 Let 5o be as in Lemma 2.7. For any ¢ > 0 there exists a small 59 =
80(N, A1, Ao, e) € (0,1/2) such that the following holds. If Q2 is a (8§, Ro)-Reifenberg
flat domain with § € (0, &), there is a function V € L%(1g — (R/9)2, fo; HI(BR/Q(X()))) N
L®(tg — (R/9), to; W1 (Bg9(x0))) such that

||VV||2;00(QR/9(X0,,0» < c][ [Vul?dxdt + C][ |F|>dxdt,  (2.18)
Q6r (x0,20) Q6r (x0,10)
and
][ |Vu — VV > dxdt
ORry9(x0,t0)
< C(e + ([A12)?) |Vul*dxdt + C(e* + 1 + ([A]f)?) |F|dxdr,
Q6r (x0,70) Q6r (x0,10)
(2.19)

for some C = C(N, Ay, Ap) > 0.

Proof Let xg € 02,0 < t9 < T and p = R(1 — §), we may assume that 0 € Q, xo =
©,...,=8p/(1 —§)) and

B;(O) C QN By0) C By(0) N{xy > —4ps}. (2.20)
‘We have also

ORry9(x0,10) C Qp/8(0,10) C Qp4(0, 1) C Q,(0, 10) C Q6p(0,170) C Qer (X0, o),
(2.21)
provided that 0 < § < 1/625. Let w and v be as in Lemmas 2.6 and 2.7. By Lemma 2.8 for
any ¢ > 0 we can find a small positive § = §(N, A1, A2, ) < 1/625 such that there is a
function V € L%(tg — p?, to; H'(B,(0))) N L>®(tg — p?, to; W1 (B,(0))) satisfying

IVVIE o o sq][ \Vol2dxd.
(Qp/4(0,10)) 0,0.10)

f Vv — VV|]? < 82][ |Vv|2dxdt.
0,/8(0,10) 0,(0,10)
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Then, by (2.16) in Lemma 2.7 and (2.21) we get

IVV]]? §C27[ [Vw|?>dxdt
L (QR/9(x0,10)) 0,0.10)
<c3 7[ |Vw|?dxdt, (2.22)
7 Q6R (x0,10)
and
][ Vv — VV|2dxdt < css’ ][ |Vw|?dxdt. (2.23)
OR/9(x0,10) Q6r (x0,70)

Therefore, from (2.12) in Lemma 2.6 and (2.22) we get (2.18).
Next we prove (2.19). Since (2.21), we have

][ |Vu — VV |*dxdt §C5][ |Vu — VV |*dxdt
QRr/9(x0,10) Q,/8(0,10)

< c6][ |Vu — lezdxdl
0,/8(0,10)

+ c6][ [Vw — Vv|2dxdt
Q,/8(0,10)

+ c6][ |Vv — VV |?dxdr.
0Q,/8(0,10)

Using (2.12) in Lemma 2.6 and (2.15), (2.16) in Lemma 2.7 and (2.23) we find that

][ [Vu — Vw|?dxdt < cg 7[ |F|2dxdt,

0Q,/8(0,20) J Q6r (x0,10)

][ |Vv — Vw|*dxdt < c7([A]R0)? IVw|?dxdt
0,/8(0,10) Q6r(0,10)

< cg([A1R0)? (][ |Vu|2dxdt+][ |F|2dxdt) ,
O6r (x0,10) Q6r (x0,70)

and

][ Vv — VV|2dxdt < cos® ( ][ |Vu|>dxdt +][ |F|2dxdt) )
0,/5(0.10) Q6r (x0,20) Q6r (x0,10)
/80,10

Then we derive (2.19). This completes the proof. O

3 Global integral gradient bounds for parabolic equations

The following good-A type estimate will be essential for our global estimates later.

Theorem 3.1 Let s1, sy be as in Lemma 2.3, 2.7 and s9 = max{si, s2}. Let w € Ao,
F € LZ(QT, RM). Let u € LQ(O, T; HOI(Q)) be the weak solution to equation (1.1) in
Qr. For any ¢ > 0, Ry > 0 one finds 61 = §1(N, A1, Az, ¢, [wla,) € (0,1/2) and
8 = 82(N, A1, Ao, &, [wla,,, To/Ro) € (0, 1) and A = A(N, A1, Ay) > 0 such that if Q

is a (81, Ro)-Reifenberg flat domain and [A]ﬁf;’ < 6| then

w({(M(Vu?) > Ar, M(IFI?) < 82} N Q7) < Bew({M(Vul®) > 21N Qr) (3.1
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forall A > 0, where the constant B depends only on N, A1, Ay, To/Ro, [W]AL,-

To prove above estimate, we will use L. Caddarelli and 1. Peral’s technique in [5]. Namely,
it is based on the following technical lemma whose proof is a consequence of Lebesgue
Differentiation Theorem and the standard Vitali covering lemma, can be found in [3, 15] with
some modifications to fit the setting here.

Lemma 3.2 Let 2 be a (8, Ro)-Reifenberg flat domain with § < 1/4 and let w be an A
weight. Suppose that the sequence of balls { B, (y,-)}l.L:1 with centers y; € 2 and radius

r < Ro/4 covers Q. Setsi = T — ir?/2 foralli = 0,1,..., [%] Let EC F C Qr
be measurable sets for which there exists 0 < ¢ < 1 such that w(E) < sw(Q, Vi»sj))
foralli =1,...,L, j=0,1,..., [%], and for all (x,t) € Qr, p € (0,2r], we have

0,(x,1) N Qr C Fif w(EN Qp(x,1)) > ew(Q,(x,1). Then w(E) < eBw(F) fora
constant B depending only on N and [w]a. .

Proof Note that [A]R0 [A1R0 < [A)R0 Let & € (0. 1). Set E;5, = (M(IVu?) >
Ab, M(IF?) < &1 N Q7 and F, = (M(Vul?) > A} N Qp for & € (0,1),A > 0
and A > 0. Let {y,-}l.L=1 C 2 and a ball By with radius 27 such that

L
QC U By, (yi) C By,

i=1

where ro = min{Ry/1080, Tp}. Lets; =T — jr§/2 forall j =0,1,..., [275] and Qo =
0
By x (T — 4T3, T). So,
Qr C U Or, (yi,» 5j) C Qory-

i,j

We verify that ~
w(Exs,) = ew(Qr(issj)) YA>0 (3.2)

for some &, small enough depending on n, p, «, B, €, [w]a.,, To/Ro.
In fact, we can assume that E; 5, # ¥ so fSZr |F|?dxdt < c11Q21,|82A. Recalling that

M is a bounded operator from L' (R¥*!) into L1 (RN *1), we find
1) 2
E < — Vu|“dxdt.
| A,azl_A)L/er ul?dx
Using (2.1) in Proposition 1, we get

c3 2
E <= F|“dxdt
| x,azl_A)L/QTI |
< 462|027,
which implies

|E)»,52| ! v
W(Eys) <Cl—— ) w(Qan) < C(cad2)” w(Qam),
| Q21|
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where (C, v) = [w]a,. Itis well-known that (see, e.g [7]) there exist C; = C1(N, C, v) and
vi = v (&, C, v) such that

uj(QQTo) - Cl( ~ |Q2T0| )v1 i
w(Qr(yir ) [Oro (Vis $j)]

Therefore,

107,

V]
——0 ) w(Qy i) < ew(Qyp(viysi) Vi, J,
|Qr0(yi,s,->|) o o

w(Ey 35) < C(c482)’ C (

where 8, < g!/v (ZCCch(Toral)(N”)”‘ Y~1/V Thus (3.2) follows.
Next we verify thatforall (x, ) € Qr,r € (0, 2rg]and 2 > 0O wehave Q,-(x, H)NQr C Fy,
provided

w(E; 5 N 0r(x,1) > ew(Q,(x, 1)),

for some 8, < min{1, e/ (2CCyc(Tory YN F2"1) =1/} Indeed, take (x, 1) € Q7 and 0 <
r < 2rp. Now assume that Q, (x,)NQr NF{ #@and E; 5,N Q, (x, 1) # @ i.e, there exist
(x1,11), (x2, 12) € Qy(x, 1) N Qr such that M(|Vu|?)(x1, 1) < A and M(|F[?)(x2, 1) <
821. We need to prove that

w(Exrs, N Qr(x, 1)) < ew(Q,(x,1)). 3.3)
Using M(IVuIz)(xl, t1) < A, we can see that
MAVuP)( ) = max {M (xg, 0 [VuP) 09.3V422) ¥Gs) € O,x0),
Therefore, forall A > 0 and A > 3V +2,

Erss 0 0006, 0) = [M (g, .0 Vul?) > A% MAFP) < 822} 0 @7 0 0, (3.0,
(3.4)
In particular, E; s, N Q, (x,1) = @ if Bg,(x) cC RM\Q. Thus, it is enough to consider the
case Bg,(x) CC 2 and the case Bg, (x) N Q # @.

First assume Bg,(x) CC 2. Let v be as in Theorem 2.4 with Qg = Qs (x, tp) and
fo = min{r + 2r2, T'}. We have

|Vu|>dxdt + 5 ][ |F|*dxdt, (3.5)

V]2 < 05][
(Q2r(x,10)) Qs (x,10)

O3y (x,10)

and

f |Vu — Vo|?dxdt < 65][ |F|>dxdt
Qur(x,10) Qs (x,10)

+cs([A1F)? ( ]L |Vul*dxdt +][ |F|2dxdt) :
Qsr(x,10) Qsr(x,10)
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Thanks to M(|Vu|?)(x1, 1) < X and M(lflz)(xz,fz) < &i with (x1,11), (x2, 1) €
O, (x, 1), we find Qg (x, to) C Q17,(x1, t1), Q17-(x2, 2) and

VU2 500 ey < C6 T |Vul>dxdt + co £ |F|?dxdt
(Qa2r(x,10))
Q17 (x1,11) Q17 (x2,12)
= ce(l +82)1
<c7A, 3.6)

and
][ |Vu — Vu[*dxdt < cg$rn+ cs([AIR)2(1 + 62)n
Qur(x,10)
< c9(82 + 87 (1 + 82))A. (3.7

Here we used [A]ﬁf)O < 41 in the last inequality.
In view of (3.6) we see that for A > max{3V2, 4¢7},

UM (X5, (0| VVIP) > AL/410 O, (x, 1) = 0.
Leads to
|Es.5, 0 0r (6, D < UM (X g, ()| Vit = VUIP) > AR/4} 0 01 (x, 1))

Therefore, by bound of operator M from L' (R¥+1) to L1-*°(RN+1) and (3.7), Qo (x, 1) C
Quy(x, o) we deduce

Q2r(xat)
< (824 87(1+82)) 10r(x, D).

|Exs, N 0,(x,1)| < C)\ﬂ/ |Vu — Vo|?dxdt

Thus,

|Ej5, 0 Or(x, 1)
10r(x, 1)

< C(c11 (82 +87(1+62)) w(Or(x, 1)

< ew(Qr(x,t)).

w(Es s N Or(x,1) < C( ) w(Q0,(x, 1))

where 85, §; are appropriately chosen and (C, v) = [w]a -
Next assume Bg,(x) N Q2 # @. Let x3 € 9 such that |[x3 — x| = dist(x, 92). Set
fo = min{r 4+ 2r2, T'}. We have

02 (x, 10) C Q1or(x3, 10) C Qsa0r(x3, 10) C Q1080r (X3, 1) C Qrossr (x, 1)
C Qiosor (x1, 1), (3.8)

and
Os40r(x3, 10) C O1080r(¥3, 1) C Q1ossr (X, 1) C Qrosor (x2, 12). (3.9)

Let V be as in Theorem 2.9 with Qgr = Qs40r(x3, fp) and € = §3 € (0, 1). We have

2
||VV||L°°(Q|0r(x3,to)) =cn ][

Os40r (x3,10)

|Vul?dxdt + 612][ |F|*dxdt,

Os40r (x3,10)
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and

][ |Vu — VV |*dxdt
Q10r (x3,10)

< c12(83 + ([A15)%) \VulPdxdt + c12(85 + 1+ ([A]5)%)

0540, (x3,10)
][ |F|?dxdt.
Q5401 (x3,10)

Since M(|Vu|?)(x1, 11) < A, M(IF|*)(x2, 1) < 8> and (3.8), (3.9) we get

2 2 2
||VV||L°°(Q10,(X3,10)) < 613][~ |Vul|“dxdt + 613][~ |F|“dxdt
Q10897 (x1,11) Qi089r (x1,11)
<cp(l+8)A
< ci54,

and
7[ Vi — VV Pdxdr < ci6 (63 + (A1) + (63 + 1+ (41R))52) 1
J Q1o (x3,10)

<ci6((83+8D) + (B3 +1+8D)82) . (3.10)
Notice that we have used [A]ff)0 < 41 in the last inequality.
Now set A = max{3V12, 4¢7, 4c;5}. As above we also have

|Exsy 00,0601 = 1M (g, 0| Vit = VVI2) = AR/410 Oy (x, 1,
Therefore using (3.10) we obtain

|Exs, N 0,(x,1)| < c}\ﬂ/ |Vu — VV |*dxdt

er(x’t)
<15 (63 + 8D + (63 + 1 +8D)82) 10, (x, 1.

Thus

|Es5, N Or(x,1)]
10, (x, 1)

<Ce1s (B 4+ + @3 +14+68D8)) w(Q,(x,1)

< ew(Q,(x, 1)),

where 683, 81, 8, are appropriately chosen and (C, v) = [w]a,,.
Therefore, for all (x, 1) € Qp,r € (0,2rp] and A > 0, if

w(E; 5 N 0r(x,1) > ew(0r(x, 1)),

w(E; 5, N 0r(x,1) < c( ) w(0r(x,1))

then

0,(x,) N Q7 C F,
where §1 = 61 (N, A1, Az, ¢, [w]a,,) € (0, 1) and 85 = 62(N, Ay, Ag, €, [w]a,,, To/Ro) €
(0, 1). Combining this with (3.2), we can apply Lemma 3.2 to get the result. O
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Proof of Theorem 1.1 By Theorem 3.1, for any ¢ > 0,Ry > O one finds § =
S1(N, A1, Az, e, [wla,,) € (0,1/2) and 62 = 82(N, Ay, Az, &, [w]a,,, To/Ro) € (0, 1)
and A = A(N, A1, Ar) > 0,50 = so(N, A1, Ap) such that if Q is a (5§, Ry)- Reifenberg

flat domain and [A]ﬁ)o < § then

wM((Vul®) > A, M[|F*] < 80} N Q7) < Bew(M(Vul?) > A} NQr), (3.11)

for all A > 0, where the constant B depends only on N, Ay, Az, To/Ro, [w]a,,. Thus, for

s < 00,
o /g dA
IMAVUP) g g, = 4A° / 2 (wdM(VuP) > Ax @) 2
w 0 A.

> 2 s/q A\
< qASZS/q(Be)S/q/ A (wdM(Vul?) > 2} N Q7)) -
0
58/ * s 2 s/q dx
+gAf2% 2 (w{MFI%) > 80} N Q7)) -
0

_ / / 2

= A2V (Be) IMAVUI g5 g

$7S/q g—s 25118
+ A2 IMAF P g -

It implies
MV a5 g, < 2'°A2Y4 (B MAVUP) 05 gy

+ 215 A2V MAF P o )

and this inequalities is also true when s = oo.
We can choose ¢ = ¢(N, A, s, ¢, B) > 0 such that 21/SA21/‘1(B.9)]/‘1 < 1/2, then we get
the result. ]

Proof of Theorem 1.3 We recall that A(x, t, &) = A(x, t)§ where A(x, t) is a matrix.
a.Fixg > 2,0 <s <00, w € Ay/2. Assume |”F”|LZ:S(SZT) < 0. 50, F € Lz(QT,RN)
and problem (1.8) with © = 0, ¢ = 0 has a unique weak solution v; € L%, T, HO1 ().
By Theorem 1.2, we find a §; = §1(N, A1, Az, q, s, [w]Aq/z) € (0, 1) such that if Q2 is a
(81, Ro)-Reifenberg flat domain and [A]ﬁjo < §; for some Ry > 0O then

|||Vvl|||L‘]{)"‘(QT) §C1|||F|||LZ}"Y(QT)7 (3.12)

where c1 = ¢1(N, A1, A2, q, 5, [wla,,, To/Ro).
Moreover, by [19, Theorem 2.20], there exists a distribution solution v, €
L'(0.T, Wy () of (1.8) with F = 0 and 8 = 8&(N, A1, Az, q, 5, [wla,,) € (0. 1)

such that if Q2 is a (§2, Rp)-Reifenberg flat and [A]ﬁjo < §p for some Ry > 0, then there holds
|||VU2|||LZ;S(QT) = C2||M1[a)]||quvS(QT), (3.13)

where ¢y = c2(N, A1, A2, q. s, [wla, . To/Ro). In particular, vy € L*(0, T, Hj ().
Obviously, u := v; + v, is a unique weak solution of (1.8) in L2(0, T, H} (2)) and from
(3.12)—(3.13) we obtain (1.9) where Q is a (8, Ry)-flat and [A]ﬁgo < § with § = min{dy, 87}.
(b) Using the previous argument, we only show statement b in case u = 0,0 = 0. Fix
e e (0,1), % <qg<2,0<s <00, wte ¢ A and assume M[w], |F| € LZ;S(QT).

2(e+1)
e+2

Set p =
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(b.1) We prove that there is a §3 = 63(N, A1, Az, &) € (0, 1) such that if Q is a (§, Ro)-
Reifenberg flat domain for some Ry > 0, then problem (1.8) with © = 0, o = 0 has a unique
weak solution v3 € L?(0, T, Wol’p(Q)).
Clearly, if A*(x,t,&) = A*(x, )&, where A*(x, 1) is the transposed matrix of A(x, r) then
A* satisfies (1.2) and (1.3) with the same constants and [A* 5;0 = [A]go.
By Theorem 1.2 there exists 63 = 83(N, A1, Az, ) € (0, 1) such that if Q is (83, Rp)-flat
and [A];E" < §3 for some Ry > O there holds

1Y@l Ly ) < IIGH Ly g, YG € CP@r,RY), (3.14)
for some constant c3, where ¢ is a unique solution to the problem

—¢r — div(A*(x, t)Vep) = div(G) in Qr,
u=0 onadQ2 x (0,7), (3.15)
u(T)=0 inQ.

Let F,, € CX(Qr, RM) converge to F in L?(Qr, RY) and u,, be a solution of problem (1.8)
with F = F,, and © = 0, 0 = 0. We can choose ¢ for test function,

—/ Vu,Gdxdt = —/ ungatdxdt—l—/ A*(x,)VoVu,dxdt
Qr Qr Qr

= —/ u,,(p,dxdt—l—/ A(x, t)Vu,Vodxdt
Qr

Qr
—/ VoF,.
Qr

Using Holder inequality and (3.14) yield

/ Vu,Gdxdt
Qr

< aslllGlll Ly o 1 Falllrr) VG € C¥@Qr, RY),
it implies
IVuplllLr@r) < cslllFalllLe@r)-
By linearity of A we get
NVuy — VulllLr@ry < c3lllFy — FulllLr@r) — 0 asn,m — oo.

Thus, u, converges to some function v3 in L”(0, T, Wol’p (£2)). Obviously, v3 is a unique
weak solution in L? (0, T, Wol‘p(Q)) of problem (1.8) with © =0, 0 = 0.b.2. Setw(x, t) =

1 1 1
(w(x,1))” 7~T. We have w € A/, and [Wla,, = [w2+5]1§1+€ < [w2+5]1§1. By Theorem
1.2 there exists 4 = 84(N, A1, Ay, &, [w2+5]A1) € (0, 1) such that if Q is (84, Rp)-flat and
[A]§)° < 84 for some Ry > O there holds

< c4ll|G]l| VG € C®(Qr,RY), (3.16)

1901l g =<

LY @r)
where ¢ is a unique solution to problem (3.15) and ¢4 = c4(N, Ay, Ao, &, [wZ“]Al).
Using [, VuGdxdt = [, VeF, Holder inequality and (3.16) we find

/ VuGdxdt VG € C®(Qr, RM).
Qr

< aalllFlll o ) 1G]

!
LY (@r)
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Thus, we obtain
Vel pp < calllF 17 -

On the other hand, by statement a there exist 65 = d5(N, A1, A, [w2+5]A1) € (0, 1) such
that if 2 is (85, Ro)-flat and [A]g;" < §5 for some Ry > O there holds

NVulllzs @) = oslFIL3 @)

for some ¢5 = c¢s5(N, Ay, Ao, &, [w2+£]A1). We now denote map J : L@y —
LE(Qr) by J(f) := |Vv| for any f € (L5(©27r)N where v is the unique weak solu-
tion of problem (1.8) with u = 0,0 = 0and F = f. We see that 7 is a sublinear operator
and

TNy @) < eslllfillly@p ¥ i€ (Lo @r)Y

and

T2

w

@n <clllfolllp @, ¥ e Lh@Y

where Q is (8§, Rp)-Reifenberg flat and [A]ﬁf,0 < 6 with § = min{d4, 5}. Thank to the
interpolation Theorem, see [7, Theorem 1.4.19] we get the statement b. This completes the
proof. O

4 Quasilinear Riccati type parabolic equations

To prove Theorem 1.5 we need the following Lemma:

Lemma 4.1 Lety > 1 and H,, Hy be measurable functions in RN . If

/ |Hy|wdxdt < C(y, [wV]Al)/ |Hr|lwdxdt Y w? € Ay,
Qr Qr

then for any p > W,
[|H1|]Capglyp = C[|H2|]Capglyp,
where C = C(N, p, y, To), for measurable function H in RV, [H]Capgl,p is denoted by

fK |H|dxdt
Capgl,p(K)

the suprema being taken over all compact sets K € RNT1,

[|H|]Capgl_1, = sup

)

Its proof can be found in [19, Proof of Propostion 4.24]. Using this Lemma we obtain

Theorem 4.2 Suppose that A is linear. Let F € LY (Qr, RN), u € Mp(Qr), 0 € Mp(Q),
set w = || + |o| ® 8y;=0). Let so be in Theorem 1.1.

(a) Foranyq > land Mi[w], M(|F|)'/? € L1(Qr)wefinds = §(N, Ay, Aa,q) € (0, 1)
such that if Q2 is a (8, Ry)-Reifenberg flat domain and [A]ff)o < 8 for some Ry > 0 then
there exists a unique weak solutionu € L4(0, T, Wol’q) of (1.8) and there holds

2 2
[Vl xer legpg, , = C1IMAF] )4/ xarleag, , T 110l @D

where C1 = C1(N, A1, Az, q, To/Ro, Tp).
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(b) Foranyl < q < NT"'Z and My[w], |F| € L1(Q2r) we finds = §(N, A1, Az, q) € (0, 1)
such that if Q is a (8, Ro)-flat domain and [A]ff)o < 8 for some Rog > O then there exists
a unique weak solutionu € L1(0, T, W(}’q (2)) of (1.8) and there holds

q
[IVul XQT]Capgl,q, <G [|F|qng]Capgl‘q, + C [0l 4.2)
where C; = Co(N, Ay, Az, q, To/Ro, To).
Proof of Theorem 3.1 We have
q
(Mo Ko |y, |, < €Ll -

where ¢ = ¢(N, ¢q, To), see [19, Corollary 4.39]. Therefore, thanks to Theorems 1.1, 1.3 and
Lemma 4.1 we get the results. O

Proof of Theorem 1.5 By Theorem 4.2, there exists § = §(N, A1, A2, q) € (0, 1) such that
Q is (8, Ro)- Reifenberg flat domain and [A]f;0 < § for some Rp and a sequence {uy},

obtained by induction of the weak solutions of

(u1)r —div(A(x, t, Vuy)) = div(F) + u in Qr,
ur =0 on 92 x (0,7),
u1(0) =0 in Q,

and

(Unt1)r — div(A(x, t, Vipi1)) = [Vuy|? +div(F) + 1 in Qr,
up+1 =0 on 92 x (0,7),
up1(0) =0 in Q,

for any which satisfy

q q q q
[|Vu"+1| XQT]Capg]vq/ =c [H‘I]Capg]_q/ tc [IVun| XQT]Canl,q/ tc [a)]Capgliqr Vn =0,

4.3)
where ug = 0 and the constant ¢ depends only on N, Ay, Az, g and Ty/Ro, To. Since,
Up+1 — Up is the unique weak solution of

up —div (A(x, 1, Vu)) = [Vu|? — [Vu, 1|7 in Qr,

u=0 on 9Qx(0,7T), 4.4)
u(0) =0 in€,
we have
q
[IVitns1 — Vuan|? XQT]Cang, < c[lIVu, |9 - |Vu,171|‘1|><g,]cﬁpgl‘q, n>0. (4.5)
If
q—1
H, 4 < 4.6
[ q]Capgl,t]’ + [U)]Capglﬂ, = (cq)q” ( )
then from (4.3) we can show that
/ q
[lvullquQT]Capgl_q/ =cq ([H‘I]Capglvq/ + [w]Capglyq/) Vn = 1. (47)
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Using Holder inequality and (4.5) yield

—1 —1 q
(Vi1 — Vu”|qXQT]Capglyq/ <cq [1Vun — Vi1 |(1Vun |7 + |V, |7 )XQT]Capg]vq,
<cq [|Vbln — Vun—l IqXQT]Capgl y
g-1 g—1\q' 4
X | (Vun [T + [Vup 1177 xar c
apgl'q/
< cq2? 1 [|Vuy — Vip—y |qXQ7~]Capglyq,

-1 -1
o (™ T TP (i §
Hence, by (4.6)-(4.7) we find

— q
[|Vun+1 VMn' XQT]Canl,q’

IA

q—1
29 (ca’ )i~} q — q
¢q2% (cq') ([Hfl]Capgl.q/ + [w]Capgl_q/) [|Vu" Vitn—1] XQT]Capgl.q/

< 2 [IVutn = V119 xy ]
= 2 n n— T Capgl.q’,

provided that

q : "+1 iy 41
W&%W+M%mfmﬂwv @“>q“wwl .8)

Hence, if (4.8) holds, u,, converges to u = u; + ZZOZI(unH —uy,)in L1(0, T, Wol’q (R))
satisfying

/ q
[|Vu|qXQT]Capgl.q/ =cq ([HCI]Capgl,q/ + [w]Capglyq/) :
Obviously, u is a weak solution of problem (1.15). This completes the proof. O
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