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Abstract In this paper, we prove global weighted Lorentz and Lorentz-Morrey estimates
for gradients of solutions to the quasilinear parabolic equations:

ut − div(A(x, t,∇u)) = div(F),

in a bounded domain � × (0, T ) ⊂ R
N+1, under minimal regularity assumptions on the

boundary of domain and on nonlinearity A. Then results yields existence of a solution to the
Riccati type parabolic equations:

ut − div(A(x, t,∇u)) = |∇u|q + div(F) + μ,

where q > 1 and μ is a bounded Radon measure.

Mathematics Subject Classification Primary 35K59 · Secondary 42B37

1 Introduction and main results

In this article,we are concernedwith the globalweightedLorentz space estimates for gradients
of weak solutions to quasilinear parabolic equations in divergence form:{

ut − div(A(x, t,∇u)) = div(F) in �T ,

u = 0 on ∂p(� × (0, T )),
(1.1)

where �T := � × (0, T ) is a bounded open subset of RN+1, N ≥ 2, ∂p(� × (0, T )) =
(∂�× (0, T ))∪ (�×{t = 0}), F ∈ L1(�T ,RN ) is a given vector field and the nonlinearity
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A : RN × R × R
N → R

N is a Carathéodory vector valued function, i.e. A is measurable
in (x, t) and continuous with respect to ∇u for a.e. (x, t). We suppose in this paper that A
satisfies

|A(x, t, ζ )| ≤ �1|ζ |, (1.2)

and

〈A(x, t, ζ ) − A(x, t, ξ), ζ − ξ 〉 ≥ �2|ζ − ξ |2, (1.3)

for every (ξ, ζ ) ∈ R
N ×R

N and a.e. (x, t) ∈ R
N ×R, where�1 and�2 are positive constants.

In addtion, we also assume that the derivatives of A with respect to ζ are bounded, that is,

|Aζ (x, t, ζ )| ≤ �1, (1.4)

for any ζ ∈ R
N and (x, t) ∈ R

N . We remark that the condition (1.4) is needed in order to
ensure that the reference problems (2.5) and (2.17) in the next section have C0,1 regularity
solutions (see [11,12]), which will be used in the sequel.

Throughout the paper, we assume that A satisfies (1.2) and (1.3), (1.4). Besides, we
always denote T0 = diam(�) + T 1/2 and Qρ(x, t) = Bρ(x) × (t − ρ2, t) Q̃ρ(x, t) =
Bρ(x) × (t − ρ2/2, t + ρ2/2) for (x, t) ∈ R

N+1 and ρ > 0.
A weak solution u of (1.1) is understood in the standard weak (distributional) sense, that

is u ∈ L1(0, T,W 1,1
0 (�)) is a weak solution of (1.1) if

−
ˆ

�T

uϕt dxdt +
ˆ

�T

A(x, t,∇u)∇ϕdxdt = −
ˆ

�T

F∇ϕdxdt

for all ϕ ∈ C1
c ([0, T ) × �).

The existence and uniqueness of weak solutions in L2(0, T, H1
0 (�)) to problem (1.1)

with F ∈ L2(�T ,RN ) is given at the beginning of the next section.
For our purpose, we need a condition on � which is expressed in the following way.

We say that � is a (δ, R0)−Reifenberg flat domain for δ ∈ (0, 1) and R0 > 0 if for every
x ∈ ∂� and every r ∈ (0, R0], there exists a system of coordinates {z1, z2, . . . , zn}, which
may depend on r and x , so that in this coordinate system x = 0 and that

Br (0) ∩ {zn > δr} ⊂ Br (0) ∩ � ⊂ Br (0) ∩ {zn > −δr}. (1.5)

We notice that this class of flat domains is rather wide since it includes C1 domains,
Lipschitz domains with sufficiently small Lipschitz constants and even fractal domains.
Besides, it has many important roles in the theory of minimal surfaces and free boundary
problems. This class appeared first in a work of Reifenberg (see [20]) in the context of Plateau
problem. Its properties can be found in [9,10,23].

We also require that the nonlinearity A satisfies a smallness condition of BMO type in the
x variable in the sense that A(x, t, ζ ) satisfies a (δ, R0)-BMO condition for some δ, R0 > 0
with exponent p > 0 if

[A]R0
p := sup

(y,s)∈RN×R,0<r≤R0

(  
Qr (y,s)

(
(A, Br (y))(x, t))
p dxdt

) 1
p ≤ δ,

where


(A, Br (y))(x, t) := sup
ζ∈RN \{0}

|A(x, t, ζ ) − ABr (y)(t, ζ )|
|ζ | ,
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and ABr (y)(t, ζ ) is denoted the average of A(t, ., ζ ) over the ball Br (y), i.e,

ABr (y)(t, ζ ) :=
 
Br (y)

A(x, t, ζ )dx = 1

|Br (y)|
ˆ
Br (y)

A(x, t, ζ )dx .

The above condition appeared in our previous paper [19]. It is easy to see that the
(δ, R0)−BMO is satisfied when A is continuous or has small jump discontinuities with
respect to x . We recall that a positive function w ∈ L1

loc(R
N+1) is called an Ap weight,

1 ≤ p < ∞ if there holds

[w]Ap := supQ̃ρ(x,t)⊂RN+1

(  
Q̃ρ(x,t)

w(y, s)dyds

) (  
Q̃ρ(x,t)

w(y, s)−
1

p−1 dyds

)p−1

< ∞ when p > 1,

[w]A1 := sup
Q̃ρ(x,t)⊂RN+1

(  
Q̃ρ(x,t)

w(y, s)dyds

)
ess sup

(y,s)∈Q̃ρ(x,t)

1

w(y, s)
< ∞ when p = 1.

The [w]Ap is called the Ap constant of w.
A positive function w ∈ L1

loc(R
N+1) is called an A∞ weight if there are two positive

constants C and ν such that

w(E) ≤ C

( |E |
|Q|

)ν

w(Q),

for all cylinder Q = Q̃ρ(x, t) and all measurable subsets E of Q. The pair (C, ν) is called
the A∞ constant of w and is denoted by [w]A∞ .

It is well known that this class is the union of Ap for all p ∈ (1,∞), see [7]. If w is a
weight function belonging to w ∈ A∞ and E ⊂ R

N+1 a Borel set, 0 < q < ∞, 0 < s ≤ ∞,
the weighted Lorentz space Lq,s

w (E) is the set of measurable functions g on E such that

||g||Lq,s
w (E) :=

{(
q
´∞
0 (ρqw ({(x, t) ∈ E : |g(x, t)| > ρ})) s

q dρ
ρ

)1/s
< ∞ if s < ∞,

supρ>0 ρ (w ({(x, t) ∈ E : |g(x, t)| > ρ}))1/q < ∞ if s = ∞.

Here we write w(O) = ´
O w(x, t)dxdt for a measurable set O ⊂ R

N+1. Obviously,
||g||Lq,q

w (E) = ||g||Lq
w(E), thus Lq,q

w (E) = Lq
w(E). As usual, when w ≡ 1 we write sim-

ply Lq,s(E) instead of Lq,s
w (E). In this paper, M denotes the parabolic Hardy-Littlewood

maximal function defined for each locally integrable function f in R
N+1 by

M( f )(x, t) = sup
ρ>0

 
Q̃ρ(x,t)

| f (y, s)|dyds ∀(x, t) ∈ R
N+1.

If p > 1 and w ∈ Ap we verify that M is operator from L1(RN+1) into L1,∞(RN+1) and
L p,s

w (RN+1) into itself for 0 < s ≤ ∞, see [21,22,24].
We would like to mention that the use of the Hardy-Littlewood maximal function in non-

linear degenerate problems was started in the elliptic setting by T. Iwaniec in his fundamental
paper [8]. We now state the main result of the paper.

Theorem 1.1 Let F ∈ L2(�T ,RN ). There exists a unique weak solution u ∈
L2(0, T, H1

0 (�)) of (1.1). For any w ∈ A∞, 0 < q < ∞, 0 < s ≤ ∞ we find
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3930 Q.-H. Nguyen

δ = δ(N ,�1,�2, q, s, [w]A∞) ∈ (0, 1) and s0 = s0(N ,�1,�2) > 0 such that if � is
(δ, R0)-Reifenberg flat domain � and [A]R0

s0 ≤ δ for some R0 > 0 then

||M(|∇u|2)||Lq,s
w (�T ) ≤ C ||M(|F |2)||Lq,s

w (�T ). (1.6)

Here C depends only on N ,�1,�2, q, s, [w]A∞ and T0/R0.

Since M is a bounded operator from L p,s
w (RN+1) into itself for p > 1, 0 < s ≤ ∞ and

w ∈ Ap , thus we obtain the following Theorem.

Theorem 1.2 Let F ∈ L2(�T ,RN ) and s0 be in Theorem 1.1. There exists a unique weak
solution u ∈ L2(0, T, H1

0 (�)) of (1.1). For any w ∈ Aq/2, 2 < q < ∞, 0 < s ≤ ∞ we
find δ = δ(N ,�1,�2, q, s, [w]Aq/2) ∈ (0, 1) and such that if � is (δ, R0)-Reifenberg flat

domain and [A]R0
s0 ≤ δ for some R0 > 0 then

|||∇u|||Lq,s
w (�T ) ≤ C |||F |||Lq,s

w (�T ). (1.7)

Here C depends only on N ,�1,�2, q, s, [w]Aq/2 and T0/R0.

We remark that the global gradient estimates of solutions of (1.1) obtained in Theorem
1.2 extend results in [2–4] to more general nonlinear structure and in the setting of weighted
Lorentz spaces. Notice that Theorems 1.1 and 1.2 in the quasilinear elliptic framework are
obtained in [14]. In the linear case, we obtain global estimates for gradients of weak solutions
to problem ⎧⎨

⎩
ut − div(A(x, t,∇u)) = div(F) + μ in �T ,

u = 0 on ∂� × (0, T ),

u(0) = σ in �,

(1.8)

where F ∈ L1(�T ,RN ), μ ∈ Mb(�T ) the set of bounded Radon measure in �T , σ ∈
Mb(�) the set of bounded Radon measure in �.

Theorem 1.3 Suppose that A is linear. Let F ∈ L1(�T ,RN ), μ ∈ Mb(�T ), σ ∈ Mb(�),
set ω = |μ| + |σ | ⊗ δ{t=0}. Let s0 be as in Theorem 1.1.

(a) For any q > 2, 0 < s ≤ ∞, w ∈ Aq/2 and M1[ω], |F | ∈ Lq,s
w (�T ) we find a δ =

δ(N ,�1,�2, q, s, [w]Aq/2) ∈ (0, 1) such that if � is a (δ, R0)-Reifenberg flat domain

and [A]R0
s0 ≤ δ for some R0 > 0 there exists a uniqueweak solution u ∈ L2(0, T, H1

0 (�))

of (1.8) and there holds

|||∇u|||Lq,s
w (�T ) ≤ C ||M1[ω]||Lq,s

w (�T ) + C |||F |||Lq,s
w (�T ), (1.9)

where C depends only on N ,�1,�2, q, s, [w]Aq/2 and T0/R0.

(b) For any ε ∈ (0, 1), 2(ε+1)
ε+2 < q ≤ 2, 0 < s ≤ ∞, w2+ε ∈ A1 and M1[ω], |F | ∈

Lq,s
w (�T ) we find a δ = δ(N ,�1,�2, q, s, ε, [w2+ε]A1) ∈ (0, 1) such that if � is a

(δ, R0)-flat domain and [A]R0
s0 ≤ δ for some R0 > 0 there exists a unique weak solution

u ∈ L
2(ε+1)
ε+2 (0, T,W

1, 2(ε+1)
ε+2

0 (�)) of (1.8) and there holds

|||∇u|||Lq,s
w (�T ) ≤ C ||M1[ω]||Lq,s

w (�T ) + C |||F |||Lq,s
w (�T ), (1.10)

where C depends only on N ,�1,�2, q, s, ε, [w2+ε]A1 and T0/R0.
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In above Theorem, M1 denotes the first order fractional Maximal parabolic potential on
R
N+1 of a positive Radon measure in R

N+1 by

M1[μ](x, t) = sup
0<ρ<R

μ(Q̃ρ(x, t))

ρN+1 ∀(x, t) ∈ R
N+1.

We can use estimates (1.7) in Theorem 1.2 and (1.9)–(1.10) in Theorem 1.3 and the following
Lemma to get upper bounds for gradients of the solutions in Lorentz-Morrey spaces.

Lemma 1.4 Let 0 < q < ∞, 0 < s ≤ ∞, γ ≥ 1 and H1, H2 be measurable functions in
�T . If

||H1||Lq,s
w (�T ) ≤ C(N , q, s, [wγ ]A1)||H2||Lq,s

w (�T ),

for any wγ ∈ A1, then for any κ ∈
(

(N+2)(γ−1)
γ

, N + 2
]
, ϑ ∈

(
N (γ−1)

γ
, N

]
,

||H1||Lq,s;κ∗ (�T )
≤ C(N , q, s, γ, κ)||H2||Lq,s;κ∗ (�T )

, (1.11)

and

||H1||Lq,s;ϑ∗∗ (�T )
≤ C(N , q, s, γ, ϑ)||H2||Lq,s;ϑ∗∗ (�T )

. (1.12)

In (1.11), Lq,s;κ∗ (�T ) denotes Lorentz-Morrey space, is the set of measurable functions g in
�T such that

||g||
Lq,s;κ∗ (�T )

:= sup
0<ρ<T0,(x,t)∈�T

ρ
κ−N−2

q ||g||Lq,s (Q̃ρ(x,t)∩�T )
< ∞.

In (1.12), Lq,s;ϑ∗∗ (�T ) is the Lorentz-Morrey space of measurable functions g in �T such
that

||g||
Lq,s;ϑ∗∗ (�T )

:= sup
0<ρ<diam(�),x∈�

ρ
ϑ−N
q ||g||Lq,s ((Bρ(x)∩�)×(0,T )) < ∞.

This Lemma is inspired by [13, Proof of Theorem 2.3], its proof can be found in [19, Proof
of Theorem 2.21] and notice that for (x0, t0) ∈ �T and 0 < ρ < T0

w1(x, t) = min{ρ−N−2+κ−κ1 ,max{|x − x0|,
√
2|t − t0|}−N−2+κ−κ1},

w2(x, t) = min{ρ−N+ϑ−ϑ1 , |x − x0|−N+ϑ−ϑ1},
where 0 < κ1 < κ − (N+2)(γ−1)

γ
, 0 < ϑ1 < κ − N (γ−1)

γ
and

[wγ
1 ]A1 ≤ C(N , κ1, κ, γ ), [wγ

2 ]A1 ≤ C(N , ϑ1, ϑ, γ ).

For example, from (1.9) in Theorem 1.3 and Lemma 1.4 we obtain for 2 < q < ∞,
0 < s ≤ ∞ and 0 < κ ≤ N + 2, 0 < ϑ ≤ N + 2 there hold

|||∇u|||
Lq,s;κ∗ (�T )

≤ C ||M1[|ω|]||
Lq,s;κ∗ (�T )

+ C |||F |||
Lq,s;κ∗ (�T )

,

|||∇u|||
Lq,s;ϑ∗∗ (�T )

≤ C ||M1[ω]||
Lq,s;ϑ∗∗ (�T )

+ C |||F |||
Lq,s;ϑ∗∗ (�T )

, (1.13)

and from (1.10) inTheorem1.3we also have preceding estimateswith 1 < q ≤ 2, 0 < s ≤ ∞
and N+2

2 < κ ≤ N + 2, N
2 < ϑ ≤ N . Furthermore, according to [19, Proof of Theorem

2.21] we verify that for q > 1, 0 < ϑ < min{N , q} and ϕ ∈ L1(0, T,W 1,1
0 (�)) there holds

(ˆ T

0
|oscBρ∩�ϕ(t)|qdt

) 1
q

≤ Cρ
1− ϑ

q |||∇ϕ|||
Lq,q;ϑ∗∗ (�T )

, (1.14)
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3932 Q.-H. Nguyen

for any ball Bρ ⊂ R
N , where C = C(N , q, ϑ). Therefore, (1.13) implies a global Holder-

estimate in space variable and Lq−estimate in time, namely for all ball Bρ ⊂ R
N

(ˆ T

0
|oscBρ∩�u(t)|qdt

) 1
q

≤ Cρ
1− ϑ

q

(
||M1[ω]||

Lq,q;ϑ∗∗ (�T )
+ |||F |||

Lq,q;ϑ∗∗ (�T )

)
,

with 0 < ϑ < min{N , q}.
We would like to refer to [16,17] as the first papers which have been used the first order

factional maximal operators in order to obtain the Lorentz-Morrey estimates for gradients of
solutions to nonlinear elliptic equations with measure or L1 data.

Finally,we useTheorem1.3 to prove the existence of solutions of theRiccati type parabolic
equations ⎧⎨

⎩
ut − div(A(x, t,∇u)) = |∇u|q + div(F) + μ in �T ,

u = 0 on ∂� × (0, T ),

u(0) = σ in �,

(1.15)

where q > 1 and F ∈ Lq(�T ,RN ), μ ∈ Mb(�T ), σ ∈ Mb(�).

Theorem 1.5 Suppose that A is linear. Let q > 1, F ∈ Lq(�T ,RN ) andμ ∈ Mb(�T ), σ ∈
Mb(�), set ω = |μ| + |σ | ⊗ δ{t=0}. There exist C1 = C1(N ,�1,�2, q, T0), δ =
δ(N ,�1,�2, q) ∈ (0, 1) and s0 = s0(N ,�1,�2) > 0 such that if� is a (δ, R0)-Reifenberg
flat domain and [A]R0

s0 ≤ δ for some R0 > 0 and

ω(K ) ≤ C1 CapG1,q ′(K ), (1.16)

and ˆ
K
Hqdxdt ≤ Cq

1 CapG1,q ′(K ), (1.17)

for any compact set K ⊂ R
N where Hq = (M(|F |2))q/2

χ�T if q ≥ N+2
N and Hq =

|F |qχ�T if q < N+2
N , then problem (1.15) has a weak solution u ∈ Lq(0, T,W 1,q

0 (�))

satisfying ˆ
K∩�T

|∇u|qdxdt ≤ C2 CapG1,q ′(K ),

for any compact set K ⊂ R
N , here C2 = C2(N ,�1,�2, q, T0/R0, T0,C1) > 0.

In this Theorem, capacity CapG1,q ′ denotes the (G1, q ′)-capacity where G1 is the Bessel
parabolic kernel of first order (see [1])

G1(x, t) =
(
(4π)N/2�(1/2)

)−1 χ(0,∞)(t)

t (N+1)/2
exp

(
−t − |x |2

4t

)
for (x, t) in R

N+1.

It is defined by

CapG1,q ′(E) = inf

{ˆ
RN+1

| f |q ′
dxdt : f ∈ Lq ′

+(RN+1),G1 ∗ f ≥ χE

}
,

for any Borel set E ⊂ R
N+1, where χE is the characteristic function on E .

Note that if 1 < q < N+2
N+1 , the capacity CapG1,q ′ of a singleton is positive thus (1.16)

and (1.17) hold for some constant C1 > 0 provided μ ∈ Mb(�T ), u0 ∈ Mb(�) and
|F | ∈ Lq(�T ). We remark that in case F ≡ 0 the existence of solutions to (1.15) has been
obtained in our paper [19].
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Remark 1.6 The inequality (1.16) is equivalent to

|μ|(K ) ≤ C CapG1,q ′(K ), σ ≡ 0 when q ≥ 2, (1.18)

|μ|(K ) ≤ C CapG1,q ′(K ), |σ |(O) ≤ CapG 2−q
q

,q ′(O) when 1 < q < 2, (1.19)

for any compact sets K ⊂ R
N+1, O ⊂ R

N , where G 2−q
q

is the Bessel kernel of order 2−q
q

and capacity CapG 2−q
q

,q ′ of O is defined by

CapG 2−q
q

,q ′(O) = inf

{ˆ
RN

| f |q ′
dx : f ∈ Lq ′

+(RN ),G 2−q
q

∗ f ≥ χO

}
,

see [19, Remark 4.34]. Moreover, if q > 2, the inequality (1.17) is equivalent toˆ
K∩�T

|F |qdxdt ≤ C CapG1,q ′(K ),

for any compact set K ⊂ R
N , see Lemma 4.1.

2 Interior estimates and boundary estimates for parabolic equations

In this section we present various local interior and boundary estimates for weak solution u
of (1.1). They will be used for our global estimates later. First we recall basic existence and
uniqueness result of problem (1.1).

Proposition 1 If F ∈ L2(�T ,RN ), there exists a unique weak solution u ∈
L2(0, T ; H1

0 (�)) of (1.1) and the following global estimate holds:ˆ
�T

|∇u|2dxdt ≤ �
−1/2
2

ˆ
�T

|F |2dxdt. (2.1)

The existence and uniqueness of a weak solution of problem (1.1) with F ∈ L2(�T ,RN )

is obtained from the Lax-Milgram Theorem, version for parabolic framework. Using u as a
test function in (1.1), we get (2.1). Moreover, due to the embedding

{ϕ : ϕ ∈ L2(0, T ; H1
0 (�)), ϕt ∈ L2(0, T ; H−1(�))} ⊂ C(0, T ; L2(�)),

thus, the unique weak solution u of (1.1) belongs to C(0, T ; L2(�)). We can see that u
is also the unique weak solution of (1.1) in � × (−∞, T ) where F ∈ L2(�T ,RN ) and
F = 0, u = 0 in � × (−∞, 0).

For some technical reasons, throughout this section, we always assume that u ∈
C(−∞, T ; L2(�)) ∩ L2(−∞, T ; H1

0 (�)) is a weak solution to equation (1.1) in � ×
(−∞, T ) with F ∈ L2(�T ,RN ), F = 0 in � × (−∞, 0).

2.1 Interior estimates

For each ball B2R = B2R(x0) ⊂⊂ � and t0 ∈ (0, T ), one considers the unique solution

w ∈ C(t0 − 4R2, t0; L2(B2R)) ∩ L2(t0 − 4R2, t0; H1(B2R))

to the following equation{
wt − div (A(x, t,∇w)) = 0 in Q2R,

w = u on ∂pQ2R,
(2.2)
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where Q2R = B2R × (t0 − 4R2, t0) and ∂pQ2R = (∂B2R × (t0 − 4R2, t0)) ∪ (B2R×
{t = t0 − 4R2}).

The following a variant of Gehring’s lemma was proved in [6,18].

Lemma 2.1 Let w be in (2.2). There exist constants θ1 > 2 and C depending only on
N ,�1,�2 such that the following estimate

(  
Qρ/2(y,s)

|∇w|θ1dxdt
) 1

θ1

≤ C
 
Qρ(y,s)

|∇w|dxdt, (2.3)

holds for all Qρ(y, s) ⊂ Q2R.

The next lemma gives an estimate for ∇u − ∇w.

Lemma 2.2 Let w be in (2.2). There exists a constant C = C(N ,�1,�2) > 0 such that 
Q2R

|∇u − ∇w|2dxdt ≤ C
 
Q2R

|F |2dxdt. (2.4)

Proof Using u − w as a test function in (1.1) and (2.2) and since
ˆ
Q2R

ut (u − w)dxdt −
ˆ
Q2R

wt (u − w)dxdt = 1

2

ˆ
B2R

(u − w)2(t0)dx ≥ 0,

we findˆ
Q2R

〈A(x, t,∇u) − A(x, t,∇w),∇u − ∇w〉 dxdt ≤
ˆ
Q2R

〈F,∇u − ∇w〉 dxdt.

Using (1.3) and Hölder inequality we derive (2.4). ��
To continue, we denote by v the unique function

v ∈ C(t0 − R2, t0; L2(BR)) ∩ L2(t0 − R2, t0; H1(BR))

solution of the following equation{
vt − div

(
ABR(x0)(t,∇v)

) = 0 in QR,

v = w on ∂pQR,
(2.5)

where QR = BR(x0) × (t0 − R2, t0) and ∂pQR = (∂BR × (t0 − R2, t0)) ∪ (BR×
{t = t0 − R2}).
Lemma 2.3 Let θ1 be the constant in Lemma 2.1. There exist constants C1 = C1(N ,�1,�2)

and C2 = C2(�1,�2) such that 
QR

|∇w − ∇v|2dxdt ≤ C1

(
[A]Rs1

)2  
Q2R

|∇w|2dxdt, (2.6)

with s1 = 2θ1
θ1−2 and

C−1
2

ˆ
QR

|∇v|2dxdt ≤
ˆ
QR

|∇w|2dxdt ≤ C2

ˆ
QR

|∇v|2dxdt. (2.7)

Proof The proof can be found in [19, Lemma 7.3]. ��
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Theorem 2.4 Let θ1 be the constant in Lemma 2.1. There exists a functions v ∈ C(t0 −
R2, t0; L2(BR)) ∩ L2(t0 − R2, t0; H1(BR)) ∩ L∞(t0 − 1

4 R
2, t0;W 1,∞(BR/2)) such that

||∇v||2L∞(QR/2)
≤ C

 
Q2R

|∇u|2dxdt + C
 
Q2R

|F |2dxdt, (2.8)

and  

QR

|∇u − ∇v|2dxdt ≤ C
 
Q2R

|F |2dxdt + C
(
[A]Rs1

)2

×
(  

Q2R

|∇u|2dxdt +
 
Q2R

|F |2dxdt
)

, (2.9)

where s1 = 2θ1
θ1−2 and C = C(N ,�1,�2).

Proof Let w and v be in Eqs. (2.2) and (2.5). By standard interior regularity and inequality
(2.3) in Lemma 2.1 and (2.7) in Lemma 2.3 we have

||∇v||L∞(QR/2) ≤ C

(  
QR

|∇v|2dxdt
)1/2

≤ C

(  
QR

|∇w|2dxdt
)1/2

.

Thus, we get (2.8) from inequality (2.4) in Lemma 2.2.
On the other hand, applying (2.6) in Lemma 2.3 yields 

QR

|∇u − ∇v|2dxdt ≤
 
QR

|∇u − ∇w|2dxdt + c4
(
[A]Rs1

)2  
Q2R

|∇w|2dxdt.

Hence, we get (2.9) from (2.4) in Lemma 2.2. The proof is complete. ��
2.2 Boundary estimates

In this subsection, we focus on the corresponding estimates near the boundary.
Throughout this subsection, we always assume that� is a (δ, R0)- Reifenberg flat domain

with 0 < δ ≤ 1/2. In particular, we can see that the complement of � is uniformly 2-thick
for some constants c0, r0, see [19]. Let x0 ∈ ∂� be a boundary point and 0 < R < R0/6
and t0 ∈ (0, T ), we set �̃6R = �̃6R(x0, t0) = (� ∩ B6R(x0)) × (t0 − (6R)2, t0) and
Q6R = Q6R(x0, t0).

We now consider the unique solution w to the equation{
wt − div (A(x, t,∇w)) = 0 in �̃6R,

w = u on ∂p�̃6R .
(2.10)

In what follows we extend F and u by zero to (� × (−∞, T ))c and then extend w by u to
R
N+1\�̃6R .

Lemma 2.5 Let w be in (2.10). There exist constants θ2 > 2 and C > 0 depending only on
N ,�1,�2 such that the following estimate

(  
Qρ/2(y,s)

|∇w|θ2dxdt
) 1

θ2

≤ C
 
Q3ρ(y,s)

|∇w|dxdt, (2.11)

holds for all Q3ρ(z, s) ⊂ Q6R.
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Above lemma was proved in [19, Theorem 7.5]. Analogous to Lemma 2.2 we obtain

Lemma 2.6 Let w be in (2.10). There exists a constant C = C(N ,�1,�2) > 0 such that 
Q6R

|∇u − ∇w|2dxdt ≤ C
 
Q6R

|F |2dxdt. (2.12)

Next, we set ρ = R(1 − δ) so that 0 < ρ/(1 − δ) < R0/6. By the definition of Reifenberg
flat domains, there exists a coordinate system {y1, y2, . . . , yN } with the origin 0 ∈ � such
that in this coordinate system x0 = (0, . . . , 0,−ρδ/(1 − δ)) and

B+
ρ (0) ⊂ � ∩ Bρ(0) ⊂ Bρ(0) ∩ {y = (y1, y2, . . . , yN ) : yN > −2ρδ/(1 − δ)}.

Since δ < 1/2 we have

B+
ρ (0) ⊂ � ∩ Bρ(0) ⊂ Bρ(0) ∩ {y = (y1, y2, . . . , yN ) : yN > −4ρδ}, (2.13)

where B+
ρ (0) := Bρ(0) ∩ {y = (y1, y2, . . . , yN ) : yN > 0}. Furthermore we consider the

unique solution

v ∈ C(t0 − ρ2, t0; L2(� ∩ Bρ(0))) ∩ L2(t0 − ρ2, t0; H1(� ∩ Bρ(0)))

to the following equation{
vt − div(ABρ(0)(t,∇v)) = 0 in �̃ρ(0),
v = w on ∂p�̃ρ(0),

(2.14)

where �̃ρ(0) = (
� ∩ Bρ(0)

) × (t0 − ρ2, t0) (0 < t0 < T ). We put v = w outside �̃ρ(0).
As Lemma 2.3 we have the following result.

Lemma 2.7 Let θ2 be the constant in Lemma 2.5. There exist positive constants C1 =
C1(N ,�1,�2) and C2 = C2(�1,�2) such that 

Qρ(0,t0)
|∇w − ∇v|2dxdt ≤ C1

(
[A]Rs2

)2  
Qρ(0,t0)

|∇w|2dxdt, (2.15)

with s1 = 2θ2
θ2−2 and

C−1
2

ˆ
Qρ(0,t0)

|∇v|2dxdt ≤
ˆ
Qρ(0,t0)

|∇w|2dxdt ≤ C2

ˆ
Qρ(0,t0)

|∇v|2dxdt. (2.16)

We can see that if the boundary of � is irregular enough, then the L∞-norm of ∇v up to
∂�∩Bρ(0)×(t0−ρ2, t0)may not exist. For our purpose, we will consider another equation:{

Vt − div
(
ABρ(0)(t,∇V )

) = 0 in Q+
ρ (0, t0),

V = 0 on Tρ(0, t0),
(2.17)

where Q+
ρ (0, t0) = B+

ρ (0) × (t0 − ρ2, t0) and Tρ(0, t0) = Qρ(0, t0) ∩ {xN = 0}.
A weak solution V of above problem is understood in the following sense: the zero

extension of V to Qρ(0, t0) is in C(t0 − ρ2, t0; L2(Bρ(0))) ∩ L2
loc(t0 − ρ2, t0; H1(Bρ(0)))

and for every ϕ ∈ C1
c (Q

+
ρ (0, t0)) there holds

−
ˆ
Q+

ρ (0,t0)
Vϕt dxdt +

ˆ
Q+

ρ (0,t0)
ABρ(0)(t,∇V )∇ϕdxdt = 0.

We have the following L∞ gradient estimate up to the boundary for V . The following Lemma
was obtained in [19, Lemma 7.12].
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Lemma 2.8 For any ε > 0 there exists a small δ0 = δ0(N ,�1,�2, ε) ∈ (0, 1/2) such
that if v ∈ C(t0 − ρ2, t0; L2(� ∩ Bρ(0))) ∩ L2(t0 − ρ2, t0; H1(� ∩ Bρ(0))) is a solution
of (2.14) and under condition (2.13) with δ ∈ (0, δ0), there exists a weak solution V ∈
C(t0 − ρ2, t0; L2(B+

ρ (0))) ∩ L2(t0 − ρ2, t0; H1(B+
ρ (0))) of (2.17), whose zero extension to

Qρ(0, t0) satisfies

||∇V ||2L∞(Qρ/4(0,t0)) ≤ C
 
Qρ(0,t0)

|∇v|2dxdt,
 
Qρ/8(0,t0)

|∇v − ∇V |2dxdt ≤ ε2
 
Qρ(0,t0)

|∇v|2dxdt,

for some C = C(N ,�1,�2) > 0.

Theorem 2.9 Let s2 be as in Lemma 2.7. For any ε > 0 there exists a small δ0 =
δ0(N ,�1,�2, ε) ∈ (0, 1/2) such that the following holds. If � is a (δ, R0)-Reifenberg
flat domain with δ ∈ (0, δ0), there is a function V ∈ L2(t0 − (R/9)2, t0; H1(BR/9(x0))) ∩
L∞(t0 − (R/9)2, t0;W 1,∞(BR/9(x0))) such that

||∇V ||2L∞(QR/9(x0,t0)) ≤ C
 
Q6R(x0,t0)

|∇u|2dxdt + C
 
Q6R(x0,t0)

|F |2dxdt, (2.18)

and
 
QR/9(x0,t0)

|∇u − ∇V |2dxdt

≤ C(ε2 + ([A]R0
s2 )2)

 
Q6R(x0,t0)

|∇u|2dxdt + C(ε2 + 1 + ([A]R0
s2 )2)

 
Q6R(x0,t0)

|F |2dxdt,
(2.19)

for some C = C(N ,�1,�2) > 0.

Proof Let x0 ∈ ∂�, 0 < t0 < T and ρ = R(1 − δ), we may assume that 0 ∈ �, x0 =
(0, . . . ,−δρ/(1 − δ)) and

B+
ρ (0) ⊂ � ∩ Bρ(0) ⊂ Bρ(0) ∩ {xN > −4ρδ}. (2.20)

We have also

QR/9(x0, t0) ⊂ Qρ/8(0, t0) ⊂ Qρ/4(0, t0) ⊂ Qρ(0, t0) ⊂ Q6ρ(0, t0) ⊂ Q6R(x0, t0),
(2.21)

provided that 0 < δ < 1/625. Let w and v be as in Lemmas 2.6 and 2.7. By Lemma 2.8 for
any ε > 0 we can find a small positive δ = δ(N ,�1,�2, ε) < 1/625 such that there is a
function V ∈ L2(t0 − ρ2, t0; H1(Bρ(0))) ∩ L∞(t0 − ρ2, t0;W 1,∞(Bρ(0))) satisfying

||∇V ||2L∞(Qρ/4(0,t0)) ≤ c1

 
Qρ(0,t0)

|∇v|2dxdt,
 
Qρ/8(0,t0)

|∇v − ∇V |2 ≤ ε2
 
Qρ(0,t0)

|∇v|2dxdt.
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Then, by (2.16) in Lemma 2.7 and (2.21) we get

||∇V ||2L∞(QR/9(x0,t0)) ≤ c2

 
Qρ(0,t0)

|∇w|2dxdt

≤ c3

 
Q6R(x0,t0)

|∇w|2dxdt, (2.22)

and  
QR/9(x0,t0)

|∇v − ∇V |2dxdt ≤ c4ε
2
 
Q6R(x0,t0)

|∇w|2dxdt. (2.23)

Therefore, from (2.12) in Lemma 2.6 and (2.22) we get (2.18).
Next we prove (2.19). Since (2.21), we have 

QR/9(x0,t0)
|∇u − ∇V |2dxdt ≤ c5

 
Qρ/8(0,t0)

|∇u − ∇V |2dxdt

≤ c6

 
Qρ/8(0,t0)

|∇u − ∇w|2dxdt

+ c6

 
Qρ/8(0,t0)

|∇w − ∇v|2dxdt

+ c6

 
Qρ/8(0,t0)

|∇v − ∇V |2dxdt.

Using (2.12) in Lemma 2.6 and (2.15), (2.16) in Lemma 2.7 and (2.23) we find that 
Qρ/8(0,t0)

|∇u − ∇w|2dxdt ≤ c6

 
Q6R(x0,t0)

|F |2dxdt,
 
Qρ/8(0,t0)

|∇v − ∇w|2dxdt ≤ c7([A]R0
s2 )2

 
Q6R(0,t0)

|∇w|2dxdt

≤ c8([A]R0
s2 )2

( 
Q6R(x0,t0)

|∇u|2dxdt+
 
Q6R(x0,t0)

|F |2dxdt
)

,

and  

Qρ/8(0,t0)

|∇v − ∇V |2dxdt ≤ c9ε
2
(  

Q6R(x0,t0)
|∇u|2dxdt +

 
Q6R(x0,t0)

|F |2dxdt
)

.

Then we derive (2.19). This completes the proof. ��

3 Global integral gradient bounds for parabolic equations

The following good-λ type estimate will be essential for our global estimates later.

Theorem 3.1 Let s1, s2 be as in Lemma 2.3, 2.7 and s0 = max{s1, s2}. Let w ∈ A∞,
F ∈ L2(�T ,RN ). Let u ∈ L2(0, T ; H1

0 (�)) be the weak solution to equation (1.1) in
�T . For any ε > 0, R0 > 0 one finds δ1 = δ1(N ,�1,�2, ε, [w]A∞) ∈ (0, 1/2) and
δ2 = δ2(N ,�1,�2, ε, [w]A∞ , T0/R0) ∈ (0, 1) and � = �(N ,�1,�2) > 0 such that if �
is a (δ1, R0)-Reifenberg flat domain and [A]R0

s0 ≤ δ1 then

w({M(|∇u|2) > �λ,M(|F |2) ≤ δ2λ} ∩ �T ) ≤ Bεw({M(|∇u|2) > λ} ∩ �T ) (3.1)
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for all λ > 0, where the constant B depends only on N ,�1,�2, T0/R0, [w]A∞ .

To prove above estimate, we will use L. Caddarelli and I. Peral’s technique in [5]. Namely,
it is based on the following technical lemma whose proof is a consequence of Lebesgue
Differentiation Theorem and the standard Vitali covering lemma, can be found in [3,15] with
some modifications to fit the setting here.

Lemma 3.2 Let � be a (δ, R0)-Reifenberg flat domain with δ < 1/4 and let w be an A∞
weight. Suppose that the sequence of balls {Br (yi )}Li=1 with centers yi ∈ � and radius

r ≤ R0/4 covers �. Set si = T − ir2/2 for all i = 0, 1, . . . ,
[
2T
r2

]
. Let E ⊂ F ⊂ �T

be measurable sets for which there exists 0 < ε < 1 such that w(E) < εw(Q̃r (yi , s j ))

for all i = 1, . . . , L, j = 0, 1, . . . ,
[
2T
r2

]
; and for all (x, t) ∈ �T , ρ ∈ (0, 2r ], we have

Q̃ρ(x, t) ∩ �T ⊂ F if w(E ∩ Q̃ρ(x, t)) ≥ εw(Q̃ρ(x, t)). Then w(E) ≤ εBw(F) for a
constant B depending only on N and [w]A∞ .

Proof Note that [A]R0
s1 , [A]R0

s2 ≤ [A]R0
s0 . Let ε ∈ (0, 1). Set Eλ,δ2 = {M(|∇u|2) >

�λ,M(|F |2) ≤ δ2λ} ∩ �T and Fλ = {M(|∇u|2) > λ} ∩ �T for δ2 ∈ (0, 1),� > 0
and λ > 0. Let {yi }Li=1 ⊂ � and a ball B0 with radius 2T0 such that

� ⊂
L⋃

i=1

Br0(yi ) ⊂ B0,

where r0 = min{R0/1080, T0}. Let s j = T − jr20/2 for all j = 0, 1, . . . , [ 2T
r20

] and Q2T0 =
B0 × (T − 4T 2

0 , T ). So,

�T ⊂
⋃
i, j

Qr0(yi , s j ) ⊂ Q2T0 .

We verify that
w(Eλ,δ2) ≤ εw(Q̃r0(yi , s j )) ∀ λ > 0 (3.2)

for some δ2 small enough depending on n, p, α, β, ε, [w]A∞ , T0/R0.
In fact, we can assume that Eλ,δ2 �= ∅ so

´
�T

|F |2dxdt ≤ c1|Q2T0 |δ2λ. Recalling that

M is a bounded operator from L1(RN+1) into L1,∞(RN+1), we find

|Eλ,δ2 | ≤ c2
�λ

ˆ
�T

|∇u|2dxdt.

Using (2.1) in Proposition 1, we get

|Eλ,δ2 | ≤ c3
�λ

ˆ
�T

|F |2dxdt
≤ c4δ2|Q2T0 |,

which implies

w(Eλ,δ2) ≤ C

( |Eλ,δ2 |
|Q2T0 |

)ν

w(Q2T0) ≤ C (c4δ2)
ν w(Q2T0),
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where (C, ν) = [w]A∞ . It is well-known that (see, e.g [7]) there exist C1 = C1(N ,C, ν) and
ν1 = ν1(N ,C, ν) such that

w(Q̃2T0)

w(Q̃r0(yi , s j ))
≤ C1

(
|Q̃2T0 |

|Q̃r0(yi , s j )|

)ν1

∀i, j.

Therefore,

w(Eλ,δ2) ≤ C (c4δ2)
ν C1

(
|Q̃T0 |

|Q̃r0(yi , s j )|

)ν1

w(Q̃r0(yi , s j )) < εw(Q̃r0(yi , s j )) ∀ i, j,

where δ2 ≤ ε1/ν(2CC1cν
4(T0r

−1
0 )(N+2)ν1)−1/ν . Thus (3.2) follows.

Nextweverify that for all (x, t) ∈ �T , r ∈ (0, 2r0] andλ > 0wehave Q̃r (x, t)∩�T ⊂ Fλ

provided

w(Eλ,δ2 ∩ Q̃r (x, t)) ≥ εw(Qr (x, t)),

for some δ2 ≤ min{1, ε1/ν(2CC1cν
4(T0r

−1
0 )(N+2)ν1)−1/ν}. Indeed, take (x, t) ∈ �T and 0 <

r ≤ 2r0. Now assume that Q̃r (x, t)∩�T ∩ Fc
λ �= ∅ and Eλ,δ2 ∩ Q̃r (x, t) �= ∅ i.e, there exist

(x1, t1), (x2, t2) ∈ Q̃r (x, t) ∩ �T such that M(|∇u|2)(x1, t1) ≤ λ and M(|F |2)(x2, t2) ≤
δ2λ. We need to prove that

w(Eλ,δ2 ∩ Q̃r (x, t))) < εw(Q̃r (x, t)). (3.3)

Using M(|∇u|2)(x1, t1) ≤ λ, we can see that

M(|∇u|2)(y, s) ≤ max
{
M

(
χQ̃2r (x,t)

|∇u|2
)

(y, s), 3N+2λ
}

∀(y, s) ∈ Q̃r (x, t).

Therefore, for all λ > 0 and � ≥ 3N+2,

Eλ,δ2 ∩ Q̃r (x, t) =
{
M

(
χQ̃2r (x,t)

|∇u|2
)

> �λ,M(|F |2) ≤ δ2λ
}

∩ �T ∩ Q̃r (x, t).

(3.4)

In particular, Eλ,δ2 ∩ Q̃r (x, t) = ∅ if B8r (x) ⊂⊂ R
N\�. Thus, it is enough to consider the

case B8r (x) ⊂⊂ � and the case B8r (x) ∩ � �= ∅.
First assume B8r (x) ⊂⊂ �. Let v be as in Theorem 2.4 with Q2R = Q8r (x, t0) and

t0 = min{t + 2r2, T }. We have

||∇v||2L∞(Q2r (x,t0)) ≤ c5

 
Q8r (x,t0)

|∇u|2dxdt + c5

 
Q8r (x,t0)

|F |2dxdt, (3.5)

and
 
Q4r (x,t0)

|∇u − ∇v|2dxdt ≤ c5

 
Q8r (x,t0)

|F |2dxdt

+ c5([A]Rs1)2
(  

Q8r (x,t0)
|∇u|2dxdt +

 
Q8r (x,t0)

|F |2dxdt
)

.
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Thanks to M(|∇u|2)(x1, t1) ≤ λ and M(|F |2)(x2, t2) ≤ δ2λ with (x1, t1), (x2, t2) ∈
Qr (x, t), we find Q8r (x, t0) ⊂ Q̃17r (x1, t1), Q̃17r (x2, t2) and

||∇v||2L∞(Q2r (x,t0)) ≤ c6

 
Q̃17r (x1,t1)

|∇u|2dxdt + c6

 
Q̃17r (x2,t2)

|F |2dxdt
≤ c6(1 + δ2)λ

≤ c7λ, (3.6)

and  
Q4r (x,t0)

|∇u − ∇v|2dxdt ≤ c8δ2λ + c5([A]Rs0)2(1 + δ2)λ

≤ c9(δ2 + δ21(1 + δ2))λ. (3.7)

Here we used [A]R0
s0 ≤ δ1 in the last inequality.

In view of (3.6) we see that for � ≥ max{3N+2, 4c7},
|{M(χQ̃2r (x,t)

|∇v|2) > �λ/4} ∩ Q̃r (x, t)| = 0.

Leads to

|Eλ,δ2 ∩ Q̃r (x, t)| ≤ |{M(χQ̃2r (x,t)
|∇u − ∇v|2) > �λ/4} ∩ Q̃r (x, t)|.

Therefore, by bound of operatorM from L1(RN+1) to L1,∞(RN+1) and (3.7), Q̃2r (x, t) ⊂
Q4r (x, t0) we deduce

|Eλ,δ2 ∩ Q̃r (x, t)| ≤ c10
λ

ˆ
Q̃2r (x,t)

|∇u − ∇v|2dxdt

≤ c11
(
δ2 + δ21(1 + δ2)

) |Qr (x, t)|.
Thus,

w(Eλ,δ2 ∩ Q̃r (x, t)) ≤ C

(
|Eλ,δ2 ∩ Q̃r (x, t)|

|Q̃r (x, t)|

)ν

w(Q̃r (x, t))

≤ C
(
c11

(
δ2 + δ21(1 + δ2)

))ν
w(Q̃r (x, t))

< εw(Q̃r (x, t)).

where δ2, δ1 are appropriately chosen and (C, ν) = [w]A∞ .
Next assume B8r (x) ∩ � �= ∅. Let x3 ∈ ∂� such that |x3 − x | = dist(x, ∂�). Set

t0 = min{t + 2r2, T }. We have

Q2r (x, t0) ⊂ Q10r (x3, t0) ⊂ Q540r (x3, t0) ⊂ Q̃1080r (x3, t) ⊂ Q̃1088r (x, t)

⊂ Q̃1089r (x1, t1), (3.8)

and

Q540r (x3, t0) ⊂ Q̃1080r (x3, t) ⊂ Q̃1088r (x, t) ⊂ Q̃1089r (x2, t2). (3.9)

Let V be as in Theorem 2.9 with Q6R = Q540r (x3, t0) and ε = δ3 ∈ (0, 1). We have

||∇V ||2L∞(Q10r (x3,t0)) ≤ c12

 
Q540r (x3,t0)

|∇u|2dxdt + c12

 
Q540r (x3,t0)

|F |2dxdt,
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and  
Q10r (x3,t0)

|∇u − ∇V |2dxdt

≤ c12(δ
2
3 + ([A]R0

s2 )2)

 
Q540r (x3,t0)

|∇u|2dxdt + c12(δ
2
3 + 1 + ([A]R0

s2 )2)

 
Q540r (x3,t0)

|F |2dxdt.

Since M(|∇u|2)(x1, t1) ≤ λ, M(|F |2)(x2, t2) ≤ δ2λ and (3.8), (3.9) we get

||∇V ||2L∞(Q10r (x3,t0)) ≤ c13

 
Q̃1089r (x1,t1)

|∇u|2dxdt + c13

 
Q̃1089r (x1,t1)

|F |2dxdt
≤ c14(1 + δ2)λ

≤ c15λ,

and  
Q10r (x3,t0)

|∇u − ∇V |2dxdt ≤ c16
(
(δ23 + ([A]R0

s2 )2) + (δ23 + 1 + ([A]R0
s2 )2)δ2

)
λ

≤ c16
(
(δ23 + δ21) + (δ23 + 1 + δ21)δ2

)
λ. (3.10)

Notice that we have used [A]R0
s0 ≤ δ1 in the last inequality.

Now set � = max{3N+2, 4c7, 4c15}. As above we also have

|Eλ,δ2 ∩ Q̃r (x, t)| ≤ |{M
(
χQ̃2r (x,t)

|∇u − ∇V |2
)

> �λ/4} ∩ Q̃r (x, t)|.
Therefore using (3.10) we obtain

|Eλ,δ2 ∩ Q̃r (x, t)| ≤ c17
λ

ˆ
Q̃2r (x,t)

|∇u − ∇V |2dxdt

≤ c18
(
(δ23 + δ21) + (δ23 + 1 + δ21)δ2

) |Q̃r (x, t)|.
Thus

w(Eλ,δ2 ∩ Q̃r (x, t)) ≤ C

(
|Eλ,δ2 ∩ Q̃r (x, t)|

|Q̃r (x, t)|

)ν

w(Q̃r (x, t))

≤ C
(
c18

(
(δ23 + δ21) + (δ23 + 1 + δ21)δ2

))ν
w(Q̃r (x, t))

< εw(Q̃r (x, t)),

where δ3, δ1, δ2 are appropriately chosen and (C, ν) = [w]A∞ .
Therefore, for all (x, t) ∈ �T , r ∈ (0, 2r0] and λ > 0, if

w(Eλ,δ2 ∩ Q̃r (x, t)) ≥ εw(Q̃r (x, t)),

then

Q̃r (x, t) ∩ �T ⊂ Fλ,

where δ1 = δ1(N ,�1,�2, ε, [w]A∞) ∈ (0, 1) and δ2 = δ2(N ,�1,�2, ε, [w]A∞ , T0/R0) ∈
(0, 1). Combining this with (3.2), we can apply Lemma 3.2 to get the result. ��
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Proof of Theorem 1.1 By Theorem 3.1, for any ε > 0, R0 > 0 one finds δ =
δ1(N ,�1,�2, ε, [w]A∞) ∈ (0, 1/2) and δ2 = δ2(N ,�1,�2, ε, [w]A∞ , T0/R0) ∈ (0, 1)
and � = �(N ,�1,�2) > 0, s0 = s0(N ,�1,�2) such that if � is a (δ, R0)- Reifenberg
flat domain and [A]R0

s0 ≤ δ then

w({M(|∇u|2) > �λ,M[|F |2] ≤ δ2λ} ∩ �T ) ≤ Bεw({M(|∇u|2) > λ} ∩ �T ), (3.11)

for all λ > 0, where the constant B depends only on N ,�1,�2, T0/R0, [w]A∞ . Thus, for
s < ∞,

||M(|∇u|2)||s
Lq,s

w (�T )
= q�s

ˆ ∞

0
λs

(
w({M(|∇u|2) > �λ} ∩ �T )

)s/q dλ

λ

≤ q�s2s/q(Bε)s/q
ˆ ∞

0
λs

(
w({M(|∇u|2) > λ} ∩ �T )

)s/q dλ

λ

+ q�s2s/q
ˆ ∞

0
λs

(
w({M(|F |2) > δ2λ} ∩ �T )

)s/q dλ

λ

= �s2s/q(Bε)s/q ||M(|∇u|2)||s
Lq,s

w (�T )

+ �s2s/qδ−s
2 ||M(|F |2)||s

Lq,s
w (�T )

.

It implies

||M(|∇u|2)||Lq,s
w (�T ) ≤ 21/s�21/q(Bε)1/q ||M(|∇u|2)||Lq,s

w (�T )

+ 21/s�21/qδ−1
2 ||M(|F |2)||Lq,s

w (�T )

and this inequalities is also true when s = ∞.
We can choose ε = ε(N ,�, s, q, B) > 0 such that 21/s�21/q(Bε)1/q ≤ 1/2, then we get
the result. ��
Proof of Theorem 1.3 We recall that A(x, t, ξ) = A(x, t)ξ where A(x, t) is a matrix.
a. Fix q > 2, 0 < s ≤ ∞, w ∈ Aq/2. Assume |||F |||Lq,s

w (�T ) < ∞. So, F ∈ L2(�T ,RN )

and problem (1.8) with μ ≡ 0, σ ≡ 0 has a unique weak solution v1 ∈ L2(0, T, H1
0 (�)).

By Theorem 1.2, we find a δ1 = δ1(N ,�1,�2, q, s, [w]Aq/2) ∈ (0, 1) such that if � is a

(δ1, R0)-Reifenberg flat domain and [A]R0
s0 ≤ δ1 for some R0 > 0 then

|||∇v1|||Lq,s
w (�T ) ≤ c1|||F |||Lq,s

w (�T ), (3.12)

where c1 = c1(N ,�1,�2, q, s, [w]Aq/2 , T0/R0).
Moreover, by [19, Theorem 2.20], there exists a distribution solution v2 ∈

L1(0, T,W 1,1
0 (�)) of (1.8) with F ≡ 0 and δ2 = δ2(N ,�1,�2, q, s, [w]Aq/2) ∈ (0, 1)

such that if� is a (δ2, R0)-Reifenberg flat and [A]R0
s0 ≤ δ2 for some R0 > 0, then there holds

|||∇v2|||Lq,s
w (�T ) ≤ c2||M1[ω]||Lq,s

w (�T ), (3.13)

where c2 = c2(N ,�1,�2, q, s, [w]Aq/2 , T0/R0). In particular, v2 ∈ L2(0, T, H1
0 (�)).

Obviously, u := v1 + v2 is a unique weak solution of (1.8) in L2(0, T, H1
0 (�)) and from

(3.12)–(3.13) we obtain (1.9) where � is a (δ, R0)-flat and [A]R0
s0 ≤ δ with δ = min{δ1, δ2}.

(b) Using the previous argument, we only show statement b in case μ ≡ 0, σ ≡ 0. Fix
ε ∈ (0, 1), 2(ε+1)

ε+2 < q ≤ 2, 0 < s ≤ ∞, w2+ε ∈ A1 and assume M1[ω], |F | ∈ Lq,s
w (�T ).

Set p = 2(ε+1)
ε+2 .
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(b.1) We prove that there is a δ3 = δ3(N ,�1,�2, ε) ∈ (0, 1) such that if � is a (δ, R0)-
Reifenberg flat domain for some R0 > 0, then problem (1.8) withμ ≡ 0, σ ≡ 0 has a unique
weak solution v3 ∈ L p(0, T,W 1,p

0 (�)).
Clearly, if A∗(x, t, ξ) = A∗(x, t)ξ , where A∗(x, t) is the transposed matrix of A(x, t) then
A∗ satisfies (1.2) and (1.3) with the same constants and [A∗]R0

s0 = [A]R0
s0 .

By Theorem 1.2 there exists δ3 = δ3(N ,�1,�2, ε) ∈ (0, 1) such that if � is (δ3, R0)-flat
and [A]R0

s0 ≤ δ3 for some R0 > 0 there holds

|||∇ϕ|||L p′ (�T )
≤ c3|||G|||L p′ (�T )

∀G ∈ C∞(�T ,RN ), (3.14)

for some constant c3, where ϕ is a unique solution to the problem⎧⎨
⎩

−ϕt − div(A∗(x, t)∇ϕ) = div(G) in �T ,

u = 0 on ∂� × (0, T ),

u(T ) = 0 in �.

(3.15)

Let Fn ∈ C∞
c (�T ,RN ) converge to F in L p(�T ,RN ) and un be a solution of problem (1.8)

with F = Fn and μ ≡ 0, σ ≡ 0. We can choose ϕ for test function,

−
ˆ

�T

∇unGdxdt = −
ˆ

�T

unϕt dxdt +
ˆ

�T

A∗(x, t)∇ϕ∇undxdt

= −
ˆ

�T

unϕt dxdt +
ˆ

�T

A(x, t)∇un∇ϕdxdt

= −
ˆ

�T

∇ϕFn .

Using Hölder inequality and (3.14) yield∣∣∣∣
ˆ

�T

∇unGdxdt

∣∣∣∣ ≤ c3|||G|||L p′ (�T )
|||Fn |||L p(�T ) ∀G ∈ C∞(�T ,RN ),

it implies

|||∇un|||L p(�T ) ≤ c3|||Fn |||L p(�T ).

By linearity of A we get

|||∇un − ∇um |||L p(�T ) ≤ c3|||Fn − Fm |||L p(�T ) → 0 as n,m → ∞.

Thus, un converges to some function v3 in L p(0, T,W 1,p
0 (�)). Obviously, v3 is a unique

weak solution in L p(0, T,W 1,p
0 (�)) of problem (1.8) withμ ≡ 0, σ ≡ 0. b.2. Setw(x, t) =

(w(x, t))−
1

p−1 . We have w ∈ Ap′/2 and [w]Ap′/2 = [w2+ε]
1
ε

A1+ε
≤ [w2+ε]

1
ε

A1
. By Theorem

1.2 there exists δ4 = δ4(N ,�1,�2, ε, [w2+ε]A1) ∈ (0, 1) such that if � is (δ4, R0)-flat and
[A]R0

s0 ≤ δ4 for some R0 > 0 there holds

|||∇ϕ|||
L p′

w (�T )
≤ c4|||G|||

L p′
w (�T )

∀G ∈ C∞(�T ,RN ), (3.16)

where ϕ is a unique solution to problem (3.15) and c4 = c4(N ,�1,�2, ε, [w2+ε]A1).
Using

´
�T

∇uGdxdt = ´
�T

∇ϕF , Hölder inequality and (3.16) we find
∣∣∣∣
ˆ

�T

∇uGdxdt

∣∣∣∣ ≤ c4|||F |||L p
w(�T )|||G|||

L p′
w (�T )

∀G ∈ C∞(�T ,RN ).
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Thus, we obtain

|||∇u|||L p
w(�T ) ≤ c4|||F |||L p

w(�T ).

On the other hand, by statement a there exist δ5 = δ5(N ,�1,�2, [w2+ε]A1) ∈ (0, 1) such
that if � is (δ5, R0)-flat and [A]R0

s0 ≤ δ5 for some R0 > 0 there holds

|||∇u|||L3
w(�T ) ≤ c5|||F |||L3

w(�T ).

for some c5 = c5(N ,�1,�2, ε, [w2+ε]A1). We now denote map J : (L p
w(�T ))N →

L p
w(�T ) by J ( f ) := |∇v| for any f ∈ (L p

w(�T ))N where v is the unique weak solu-
tion of problem (1.8) with μ ≡ 0, σ ≡ 0 and F = f . We see that J is a sublinear operator
and

||J ( f1)||L3
w(�T ) ≤ c5||| f1|||L3

w(�T ) ∀ f1 ∈ (L3
w(�T ))N

and

||J ( f2)||L p
w(�T ) ≤ c4||| f2|||L p

w(�T ) ∀ f2 ∈ (L p
w(�T ))N

where � is (δ, R0)-Reifenberg flat and [A]R0
s0 ≤ δ with δ = min{δ4, δ5}. Thank to the

interpolation Theorem, see [7, Theorem 1.4.19] we get the statement b. This completes the
proof. ��

4 Quasilinear Riccati type parabolic equations

To prove Theorem 1.5 we need the following Lemma:

Lemma 4.1 Let γ ≥ 1 and H1, H2 be measurable functions in R
N . Ifˆ

�T

|H1|wdxdt ≤ C(γ, [wγ ]A1)

ˆ
�T

|H2|wdxdt ∀ wγ ∈ A1,

then for any p >
(N+2)(γ−1)

γ
,

[|H1|]CapG1,p
≤ C[|H2|]CapG1,p

,

where C = C(N , p, γ, T0), for measurable function H in R
N , [H ]CapG1,p

is denoted by

[|H |]CapG1,p
= sup

´
K |H |dxdt

CapG1,p(K )
,

the suprema being taken over all compact sets K ⊂ R
N+1.

Its proof can be found in [19, Proof of Propostion 4.24]. Using this Lemma we obtain

Theorem 4.2 Suppose that A is linear. Let F ∈ L1(�T ,RN ), μ ∈ Mb(�T ), σ ∈ Mb(�),
set ω = |μ| + |σ | ⊗ δ{t=0}. Let s0 be in Theorem 1.1.

(a) Foranyq > 1andM1[ω],M(|F |2)1/2 ∈ Lq(�T )wefind δ = δ(N ,�1,�2, q) ∈ (0, 1)
such that if � is a (δ, R0)-Reifenberg flat domain and [A]R0

s0 ≤ δ for some R0 > 0 then

there exists a unique weak solution u ∈ Lq(0, T,W 1,q
0 ) of (1.8) and there holds[|∇u|qχ�T

]
CapG1,q′ ≤ C1

[
(M(|F |2))q/2χ�T

]
CapG1,q′ + C1 [ω]

q
CapG1,q′ (4.1)

where C1 = C1(N ,�1,�2, q, T0/R0, T0).
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(b) For any 1 < q < N+2
N andM1[ω], |F | ∈ Lq(�T )we find δ = δ(N ,�1,�2, q) ∈ (0, 1)

such that if � is a (δ, R0)-flat domain and [A]R0
s0 ≤ δ for some R0 > 0 then there exists

a unique weak solution u ∈ Lq(0, T,W 1,q
0 (�)) of (1.8) and there holds

[|∇u|qχ�T

]
CapG1,q′ ≤ C2

[|F |qχ�T

]
CapG1,q′ + C2 [ω]

q
CapG1,q′ (4.2)

where C2 = C2(N ,�1,�2, q, T0/R0, T0).

Proof of Theorem 3.1 We have
[
(M1[ω])qχ�T

]
CapG1,q′ ≤ c [ω]qCapG1,q′ ,

where c = c(N , q, T0), see [19, Corollary 4.39]. Therefore, thanks to Theorems 1.1, 1.3 and
Lemma 4.1 we get the results. ��

Proof of Theorem 1.5 By Theorem 4.2, there exists δ = δ(N ,�1,�2, q) ∈ (0, 1) such that
� is (δ, R0)- Reifenberg flat domain and [A]R0

s0 ≤ δ for some R0 and a sequence {un}n
obtained by induction of the weak solutions of⎧⎨

⎩
(u1)t − div(A(x, t,∇u1)) = div(F) + μ in �T ,

u1 = 0 on ∂� × (0, T ),

u1(0) = σ in �,

and ⎧⎨
⎩

(un+1)t − div(A(x, t,∇un+1)) = |∇un |q + div(F) + μ in �T ,

un+1 = 0 on ∂� × (0, T ),

un+1(0) = σ in �,

for any which satisfy
[|∇un+1|qχ�T

]
CapG1,q′ ≤ c

[
Hq

]
CapG1,q′ + c

[|∇un |qχ�T

]q
CapG1,q′ + c [ω]qCapG1,q′ ∀n ≥ 0,

(4.3)
where u0 ≡ 0 and the constant c depends only on N ,�1,�2, q and T0/R0, T0. Since,
un+1 − un is the unique weak solution of⎧⎨

⎩
ut − div (A(x, t,∇u)) = |∇un |q − |∇un−1|q in �T ,

u = 0 on ∂� × (0, T ),

u(0) = 0 in �,

(4.4)

we have
[|∇un+1 − ∇un |qχ�T

]
CapG1,q′ ≤ c

[||∇un |q − |∇un−1|q |χ�T

]q
CapG1,q′ ∀n ≥ 0. (4.5)

If

[
Hq

]
CapG1,q′ + [ω]qCapG1,q′ ≤ q − 1

(cq)q
′ , (4.6)

then from (4.3) we can show that

[|∇un |qχ�T

]
CapG1,q′ ≤ cq ′

([
Hq

]
CapG1,q′ + [ω]qCapG1,q′

)
∀n ≥ 1. (4.7)
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Using Hölder inequality and (4.5) yield
[|∇un+1 − ∇un |qχ�T

]
CapG1,q′ ≤cq

[||∇un − ∇un−1|(|∇un |q−1+|∇un−1|q−1)χ�T

]q
CapG1,q′

≤ cq
[|∇un − ∇un−1|qχ�T

]
CapG1,q′

×
[
(|∇un |q−1 + |∇un−1|q−1)q

′
χ�T

]q−1

CapG1,q′

≤ cq2q
′−1 [|∇un − ∇un−1|qχ�T

]
CapG1,q′

×
([|∇un |qχ�T

]q−1
CapG1,q′ + [|∇un−1|qχ�T

]q−1
CapG1,q′

)
.

Hence, by (4.6)-(4.7) we find
[|∇un+1 − ∇un |qχ�T

]
CapG1,q′

≤ cq2q
′
(cq ′)q−1

([
Hq

]
CapG1,q′ + [ω]qCapG1,q′

)q−1 [|∇un − ∇un−1|qχ�T

]
CapG1,q′

≤ 1

2

[|∇un − ∇un−1|qχ�T

]
CapG1,q′ ,

provided that

[
Hq

]
CapG1,q′ + [ω]qCapG1,q′ ≤ min

{
(cq ′2q ′+1(cq ′)q−1)

− 1
q−1 ,

q − 1

(cq)q
′

}
. (4.8)

Hence, if (4.8) holds, un converges to u = u1 + ∑∞
n=1(un+1 − un) in Lq(0, T,W 1,q

0 (�))

satisfying [|∇u|qχ�T

]
CapG1,q′ ≤ cq ′

([
Hq

]
CapG1,q′ + [ω]qCapG1,q′

)
.

Obviously, u is a weak solution of problem (1.15). This completes the proof. ��
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