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Abstract We construct families of integrable systems that interpolate between
N -dimensional harmonic oscillators and Neumann systems. This is achieved by studying
a family of integrable systems generated by the Casimir functions of the Lie algebra of real
skew-symmetric matrices and a certain deformation thereof. Involution is proved directly,
since the standard involution theorems do not apply to these families. It is also shown that
the integrals are independent.
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1 Introduction

The theory of integrable systems is a time-honored subject going back to the founders of the-
oretical mechanics. They are very important because, in principle, the differential or partial
differential equations describing them can be solved and because they are key systems around
which many other dynamic and geometric phenomena can be studied, such as perturbations,
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bifurcations, stability, numerics. In addition, integrability for systems on symplectic or Pois-
son manifolds is characterized by the Liouville–Mineur–Arnold Theorem (see, e.g., [1,4,5])
which states that on a generic leaf of the Poisson manifold, the given Hamiltonian system
has half the dimension many integrals that Poisson commute and whose differentials are
linearly independent on an open dense set. Many examples of integrable systems are known
and have been studied in detail, both in finite and infinite dimensions. The usual approach is
to prove involution of the integrals by means of some general involution theorem (such as the
Adler–Kostant–Symes theorem [2,7,18], the R-matrix method [17], the method of shifted
invariants [10,11], the Thimm method [6,19], or by the use of bi-Hamiltonian structures
[9,16]. If these methods do not apply, reduction methods could be employed (for example, in
the Calogero andMoser–Sutherland systems [8]), or one is left with the task of a direct proof.
The second step in showing that a system is integrable is the proof of the independence of
the differentials of the integrals on an open dense set. No general methods are known for this
and, with the exception of some algebraic geometric methods that also give the linearization
of the flow (see, e.g., [3] and references therein), the proof of independence has to be done
on a case by case basis.

In this paper we study a family of systems that interpolate between harmonic oscillators
and Neumann systems in arbitrary dimensions on a specific symplectic leaf in the dual of the
Lie algebra of skew-symmetric matrices viewed as upper triangular matrices endowed with
the “constant coefficient” Poisson bracket. The idea of considering these systems comes from
[14] who studied similar systems in the complex setting and for matrices with a different
internal structure. It is remarkable that for the systems we consider, even though they are
induced from Lie–Poisson systems, the general known involution theorems do not apply to
our knowledge, so we give a direct proof of involution. It turns out that we need two families
of functions in order to build a complete set of integrals: these are the usual ones given
by traces of powers and a new family of quadratic integrals. We consider two families of
integrable systems: one induced from the Lie algebra of real skew-symmetric matrices, the
other one from a special deformation of this Lie algebra. The generic independence of the
differentials of the integrals of motion is proved by a direct verification.

The paper is organized as follows. In Sect. 2 we determine the symplectic leaf of the
“constant coefficient” bracket in the space of upper triangular matrices. Then we construct
the first family of integrable systems, a hierarchy generated by the Casimir functions on
the dual of the Lie algebra of skew-symmetric matrices and certain quadratic functions. A
very particular case of this family is the harmonic oscillator. In Sect. 3 we construct another
hierarchy of functions in involution generated by the Casimir functions on a special Lie
algebraic deformation of the space of skew symmetric matrices and the same family of
quadratic functions. A special case of these systems is the classical Neumann system. The
involution of the integrals of both families is proved in the respective sections. Section 4 is
devoted to the proof of independence of their differentials on an open dense set of phase
space. Several examples are discussed throughout the paper.

2 Hierarchy Generated by Casimir Functions of so(n)

2.1 A Symplectic Leaf

Let L+ be the vector space of strictly upper triangular (n × n)-matrices. Relative to the
non-degenerate pairing
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〈χ, ρ〉 := Tr(ρχ), ρ ∈ L+, χ ∈ so(n), (2.1)

the space L+ is the dual of the Lie algebra so(n). We shall write a general element ρ ∈ L+
as

ρ =
(
Ã B
0 C̃

)
, (2.2)

where Ã ∈ gl(2,R) and C̃ ∈ gl(n−2,R) are strictly upper triangular and B ∈ Mat2×(n−2)(R)

(the vector space of 2 × (n − 2) real matrices).
Thus, if f ∈ C∞(L+), we have

∂ f

∂ρ
=

⎛
⎜⎜⎝

∂ f

∂A

∂ f

∂B

− ∂ f

∂B�
∂ f

∂C

⎞
⎟⎟⎠ , (2.3)

where A = Ã− Ã�,C = C̃ − C̃�, and ∂ f
∂B� =

(
∂ f
∂B

)�
. Having Lie algebra so(n) with dual

L+ one defines the Lie–Poisson bracket on C∞(L+) by

{ f, g}1 = Tr

(
ρ

[
∂ f

∂ρ
,
∂g

∂ρ

])
, f, g ∈ C∞(L+). (2.4)

For any fixed ρ0 ∈ L+, the Poisson bracket

{ f, g}2 = Tr

(
ρ0

[
∂ f

∂ρ
,
∂g

∂ρ

])
, f, g ∈ C∞(L+) (2.5)

is compatible with the Lie–Poisson bracket. In what follows we shall choose

ρ0 :=
(
Ã0 0
0 0

)
, (2.6)

where the 2 × 2 matrix Ã0 is given by

Ã0 :=
(
0 1
0 0

)
. (2.7)

A simple calculation shows that the Poisson bracket (2.5) can be written in the form

{ f, g}2 = Tr

(
∂ f

∂B� A0
∂g

∂B
− ∂g

∂A
A0

∂ f

∂A

)
, (2.8)

where A0 = Ã0 − Ã�
0 . The matrix ∂g

∂A A0
∂ f
∂A is antisymmetric because A and A0 are (2× 2)

antisymmetric matrices (and these always commute). Therefore,

{ f, g}2(B) = Tr

(
∂ f

∂B� A0
∂g

∂B

)
. (2.9)

Thus, we can think of this bracket as being defined onC∞ (
Mat2×(n−2)(R)

)
, i.e., the injective

smooth embedding

(
Mat2×(n−2)(R), { , }2

) � B �−→ ρ =
(
Ã B
0 C̃

)
∈ (L+, { , }2) ,

with Ã ∈ gl(2,R), C̃ ∈ gl(n−2,R) strictly upper triangular fixedmatrices, is Poisson. Since
A0 is invertible, the Poisson bracket (2.9) is also invertible, i.e., it is a symplectic form on the
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2(n − 2)-dimensional vector space
(
Mat2×(n−2)(R), { , }2

)
. We have proved hence the first

statement in the following result.

Proposition 2.1 The 2(n − 2)-dimensional vector space
(
Mat2×(n−2)(R), { , }2

)
is a sym-

plectic leaf of the Poisson manifold (L+, { , }2). The vectors in R
n−2 representing the two

lines of the matrix B give global symplectic coordinates.

Proof Let B ∈ Mat2×(n−2)(R) have rows 
p = (p1, . . . , pn−2), 
q = (q1, . . . , qn−2) ∈ R
n−2.

A direct verification shows that the Poisson bracket of f, g ∈ C∞ (
Mat2×(n−2)(R)

)
given by

(2.9) has the expression

{ f, g}2 ( 
p, 
q) =
n−2∑
i=1

(
∂ f

∂pi

∂g

∂qi
− ∂ f

∂qi

∂g

∂pi

)
,

i.e., it is the canonical bracket on R
n−2 × R

n−2. ��
2.2 The First Family of Functions in Involution

Next, we show that the Casimir functions

Hk(B) := Tr
(
ρ̃2k

)
, k ∈ N, ρ̃ := ρ − ρ� =

(
A B

−B� C

)
, (2.10)

of the Poisson bracket (2.4) are in involution with respect to the Poisson bracket (2.9). Since
the derivative of Hk is DHk = 2kρ̃2k−1, we get

∂Hk

∂B
= −4kP+ρ̃2k−1P−, (2.11)

∂Hk

∂B� = 4kP−ρ̃2k−1P+ (2.12)

respectively, where P+, P− are the orthogonal projectors given, in block matrix notation, by

P+ =
(
1 0
0 0

)
, P− =

(
0 0
0 1

)
. (2.13)

A direct calculation, using P+ + P− = 1, P+P− = 0, P2+ = P+, and P2− = P−, yields

{Hk, Hl}2 = Tr

(
∂Hk

∂B� A0
∂Hl

∂B

)
= −16kl Tr

(
P−ρ̃2k−1P+A0P+ρ̃2l−1P−

)

= −16kl Tr
(
ρ̃k+l−1P+A0P+ρ̃k+l−1

)
+ 16kl Tr

(
P+ρ̃2k−1P+A0P+ρ̃2l−1P+

)
= 0, (2.14)

because the matrix in the first term is antisymmetric and the matrix in the second term, as a
product of three antisymmetric 2 × 2 matrices, is also antisymmetric.

We obtain a hierarchy ofHamiltonian equations generated by theHamiltonians Hk , k ∈ N,
for the Poisson bracket (2.9), namely

∂B

∂tk
= A0

∂Hk

∂B
. (2.15)
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The Hamiltonians for k = 1, 2, 3 have the expressions

H1 = Tr A2 + TrC2 − 2 Tr B�B, (2.16)

H2 = Tr A4 + TrC4 − 4 Tr A2BB� − 4 TrC2B�B (2.17)

+2 Tr BB�BB� − 4 Tr ABCB�,

H3 = Tr A6 + TrC6 − Tr A4BB� − 6TrC4B�B

−2 Tr B�BB�BB�B + 6Tr A2BB�BB� + 6TrC2B�BB�B −
−6Tr A3BCB� − 6TrC3B�AB − 6Tr A2BC2B� + 3Tr ABB�ABB�

+3TrCB�BCB�B + Tr ABB�BCB� + Tr ABCB�BB�. (2.18)

For these Hamiltonians, the equations of motion are

∂B

∂t1
= −4A0B, (2.19)

∂B

∂t2
= 8

(
a2A0B − A0BC

2 + A0BB�B + aBC
)

, (2.20)

∂B

∂t3
= 12

(
−a4A0B − A0BC

4 − A0BB�BB�B − 2a2A0BB�B+
+A0BC

2B�B + A0BB�BC2 − a3BC + aBC3 + a2A0BC
2 −

−aBB�AB + A0BCB�BC − aBB�BC + A0BB�ABC +
+A0BCB�AB − aBCB�B

)
, (2.21)

respectively.

2.3 The Second Family of Functions in Involution

This hierarchy has an extra family of integrals of motion in involution given by

δk(B) := Tr
(
BC2k−1B�A0

)
, k ∈ N. (2.22)

To prove involutivity, note that

{δk, δl}2 = Tr

(
∂δk

∂B� A0
∂δl

∂B

)

= 4 Tr
(
(A0BC

2k−1)�A0(C
2l−1B�A0)

�)

= 4 Tr
(
C2k−1B�A3

0BC
2l−1

)
= −4 Tr

(
Ck+l−1B�A0BC

k+l−1
)

= 0, (2.23)

because A2
0 = −1 and the matrix Ck+l−1B�A0BCk+l−1 is antisymmetric.

2.4 Involution of All Functions

Finally, we prove that δk commutes with Hl . This will be done in two steps. First, we prove
a following recursion formula. Since C = P−ρ̃P−, B� = −P−ρ̃P+, and A2

0 = −1, using
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the relations P+ + P− = 1, P2+ = P+, P2− = P−, and P+P− = 0, we get for any k, l ∈ N,
k ≥ 2,

{δk , Hl}2 = Tr

(
∂δk

∂B� A0
∂Hl

∂B

)
= −8l Tr

(
C2k−1B�A2

0P+ρ̃2l−1P−
)

= −8l Tr
(
(P−ρ̃P−)2k−1P−ρ̃P+ρ̃2l−1

)

= −8l Tr
(
P−ρ̃P−(P−ρ̃P−)2k−2P−ρ̃P+ρ̃2l−1

)

= −8l Tr
(
ρ̃(P−ρ̃P−)2k−2P−ρ̃P+ρ̃2l−1

)

+8l Tr
(
P+ρ̃(P−ρ̃P−)2k−2P−ρ̃P+ρ̃2l−1P+

)

= −8l Tr
(
(P−ρ̃P−)2k−2P−ρ̃P+ρ̃2l

)

+8l Tr
(
(P−ρ̃P−)k−1ρ̃P+ρ̃2l−1P+ρ̃(P−ρ̃P−)k−1

)

= −8l Tr
(
P−ρ̃(P−ρ̃P−)2k−3ρ̃P+ρ̃2l

)

= −8l Tr
(
ρ̃(P−ρ̃P−)2k−3P−ρ̃P+ρ̃2l

)
+ 8l Tr

(
P+ρ̃(P−ρ̃P−)2k−3P−ρ̃P+ρ̃2l P+

)

= −8l Tr
(
(P−ρ̃P−)2(k−1)−1P−ρ̃P+ρ̃2(l+1)−1

)

+8l Tr
(
(P+ρ̃P−)(P−ρ̃P−)2k−3(P−ρ̃P+)(P+ρ̃2l P+)

)

= −8l Tr
(
C2(k−1)−1B�A2

0P+ρ̃2(l+1)−1P−
)

= l

l + 1
{δk−1, Hl+1}2. (2.24)

because (P+ρ̃P−)(P−ρ̃P−)2k−3(P−ρ̃P+) is an antisymmetric 2 × 2 matrix and P+ρ̃2l P+
is a symmetric 2 × 2 matrix. Note that many times we used the fact that a trace is invari-
ant under cyclic permutations and the matrix (P−ρ̃P−)n−1ρ̃P+ρ̃2m−1P+ρ̃(P−ρ̃P−)n−1 is
antisymmetric. Second, we show that δ1 commutes with Hl :

{δ1, Hl}2 = −8l Tr
(
CB�A2

0P+ρ̃2l−1P−
)

= −8l Tr
(
P−ρ̃P−ρ̃P+ρ̃2l−1

)

= −8l Tr
(
ρ̃P−ρ̃P+ρ̃2l−1

)
+ 8l Tr

(
P+ρ̃P−ρ̃P+ρ̃2l−1P+

)

= −8l Tr
(
P−ρ̃P+ρ̃2l

)
− 8l Tr

(
(P−ρ̃P+)ρ̃2l−1(P−ρ̃P+)�

)

= −8l Tr
(
ρ̃P+ρ̃2l

)
+ 8l Tr

(
(P+ρ̃P+)(P+ρ̃2l P+)

)

= −8l Tr
(
P+ρ̃2l+1P+

)
= 0, (2.25)

because (P−ρ̃P+)ρ̃2l−1(P−ρ̃P+)� is antisymmetric, P+ρ̃P+ is antisymmetric and P+ρ̃2l P+
is symmetric, and P+ρ̃2l+1P+ is antisymmetric.

Formulas (2.24) and (2.25) immediately imply that {δk, Hl}2 = 0 for any k, l ∈ N. Thus
the family of functions {Hl , δk | k, l ∈ N} are in involution.

The candidates for the independent integrals depend on whether n is even or odd. If n =
2p+1, we take H1, . . . , Hp, δ1, . . . , δp−1 as the system of integrals in involution. Hence we
have 2p−1 = n−2 integrals in involution. If n = 2p, we take H1, . . . , Hp−1, δ1, . . . , δp−1

as the system of integrals in involution. Hence we have 2p−2 = n−2 integrals in involution.
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Example 2.2 In this example we consider the case when ρ̃ is 3 × 3-matrix and assumes the
form

ρ̃ =
⎛
⎝ 0 a p1

−a 0 q1
−p1 −q1 0

⎞
⎠ . (2.26)

The Poisson bracket (2.9) becomes

{ f, g}2(p1, q1) = ∂ f

∂p1

∂g

∂q1
− ∂ f

∂q1

∂g

∂p1
(2.27)

for any f, g ∈ C∞(R2). In this case we have only one Hamiltonian

H1 = −2(a2 + p21 + q21 ), (2.28)

which generates Hamilton’s equations for the harmonic oscillator

∂p1
∂t

= {p1, H1}2 = −4q1, (2.29)

∂q1
∂t

= {q1, H1}2 = 4p1. (2.30)

Example 2.3 In this example we consider the case when ρ̃ is 4 × 4-matrix and assumes the
form

ρ̃ =

⎛
⎜⎜⎝

0 a p1 p2
−a 0 q1 q2
−p1 −q1 0 c
−p2 −q2 −c 0

⎞
⎟⎟⎠ . (2.31)

The Poisson bracket (2.9) becomes

{ f, g}2(pi , qi ) = ∂ f

∂p1

∂g

∂q1
− ∂ f

∂q1

∂g

∂p1
+ ∂ f

∂p2

∂g

∂q2
− ∂ f

∂q2

∂g

∂p2
(2.32)

for f, g ∈ C∞(R4). The integrals in involution are

H1 = −2(a2 + c2 + p21 + p22 + q21 + q22 ), (2.33)

δ1 = 2c(p2q1 − p1q2). (2.34)

Hamilton’s equations for H1 give again the equations for the harmonic oscillator.
Since ρ̃ ∈ so(4), the last invariant is the Pfaffian (the square root of the determinant),

which for the writing (2.31) equals ac+ p2q1 − p1q2 = ac+ 1
2c δ1, i.e., the Pfaffian is equal

to δ1 up to multiplication and addition with constants. If we take H2 = 2(a2 + c2 + p21 +
p22 +q21 +q22 )

2 −4(ac+ p2q1 − p1q2)2 = 1
2H

2
1 − (

2ac + 1
c δ1

)2
, the same situation occurs:

H2 is a function of H1 and δ1.

Example 2.4 In this example we consider the case when ρ̃ is a 5×5-matrix and assumes the
form

ρ̃ =

⎛
⎜⎜⎜⎜⎝

0 a p1 p2 p3
−a 0 q1 q2 q3
−p1 −q1 0 −c3 c2
−p2 −q2 c3 0 −c1
−p3 −q3 −c2 c1 0

⎞
⎟⎟⎟⎟⎠ . (2.35)
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As usual, (2.9) is the standard Poisson bracket

{ f, g}2(pi , qi ) =
3∑

i=1

(
∂ f

∂pi

∂g

∂qi
− ∂ f

∂qi

∂g

∂pi

)
(2.36)

for f, g ∈ C∞(R6). The integrals in involution are

H1 = −2(a2 + ‖ 
C‖2 + ‖ 
p‖2 + ‖
q‖2), (2.37)

H2 = 1

2
H2
1 − 4(
q · 
C)2 − 4( 
p · 
C)2 − 4

∥∥∥−a 
C + 
q × 
p
∥∥∥2 , (2.38)

δ1 = −2 
C · (
q × 
p), (2.39)

where 
p = (p1, p2, p3), 
q = (q1, q2, q3), and 
C = (c1, c2, c3). Hamilton’s equations for
H2 are

∂ 
p
∂t

= 8

(
−1

2
H1 
q −

(

q · 
C

) 
C + 
p × ( 
p × 
q) − a 
C × 
p
)

, (2.40)

∂ 
q
∂t

= 8

(
1

2
H1 
p +

(

p · 
C

) 
C + 
q × ( 
p × 
q) − a 
C × 
q
)

. (2.41)

3 Hierarchy generated by Casimir functions of soε(n)

In this section we consider some deformation the Lie algebra so(n) and the hierarchy gener-
ated by the Casimir functions for this deformation.

3.1 The Deformed Lie Algebra

Consider the deformation of the Lie algebra so(n) given by⎛
⎝ 0 εa ε 
p

−a 0 
q
− 
p� −
q� C

⎞
⎠ ∈ soε(n), ε, a ∈ R, 
p, 
q ∈ R

n−2, C ∈ so(n − 2). (3.1)

Since⎡
⎣

⎛
⎝ 0 εa1 ε 
p1

−a1 0 
q1
− 
p�

1 −
q�
1 C1

⎞
⎠ ,

⎛
⎝ 0 εa2 ε 
p2

−a2 0 
q2
− 
p�

2 −
q�
2 C2

⎞
⎠

⎤
⎦

=

⎛
⎜⎜⎜⎜⎝

0 ε( 
p2 · 
q1 − 
p1 · 
q2) ε (a1 
q2 − a2 
q1 + 
p1C2 − 
p2C1)

−( 
p2 · 
q1 − 
p1 · 
q2) 0 ε (a2 
p1 − a1 
p2) + 
q1C2 − 
q2C1

− (a1 
q2 − a2 
q1
+ 
p1C2 − 
p2C1)

� − (ε (a2 
p1 − a1 
p2) ε
( 
p�

2 
p1 − 
p�
1 
p1

) + 
q�
2 
q1

+ 
q1C2 − 
q2C1)
� −
q�

1 
q1 + [C1,C2]

⎞
⎟⎟⎟⎟⎠

it follows that the set of elements of the form (3.1) is a Lie algebra relative to the standard
matrix commutator. This was proved in [13] in a more general situation. The space L+ is
also dual to the Lie algebra soε(n) by the pairing given by the trace of the product of matrices
(2.1). Thus C∞(L+) is endowed with the Lie–Poisson bracket

{ f, g}1,ε = Tr

(
ρ

[
∂ f

∂ρ
,
∂g

∂ρ

])
, (3.2)
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where

∂ f

∂ρ
=

⎛
⎜⎝

0 ε
∂ f
∂a ε

∂ f
∂ 
p

− ∂ f
∂a 0 ∂ f

∂ 
q
− ∂ f

∂ 
p� − ∂ f
∂ 
q�

∂ f
∂C

⎞
⎟⎠ . (3.3)

It easy to see that if ε = 1 then the Poisson bracket (3.2) coincides with (2.4). If ε = 0, the
Poisson bracket (3.2) coincides with the Lie–Poisson bracket on the dual of the Euclidean
algebra se(n−1). Considering the second compatible Poisson bracket associated to (3.2) for
the constant matrix ρ0 given in (2.6), we obtain the Poisson bracket (2.9).

If ρ ∈ L+, define

ρ̃ε :=
⎛
⎝ 0 a 
p

− 1
ε
a 0 
q

− 1
ε


p� −
q� C

⎞
⎠ ∈ soε(n).

It is easy to see that the elements of the form ρ̃ε are characterized among the matrices in
sl(n,R) by the condition

ρ̃εη + ηρ̃�
ε = 0, (3.4)

where

η :=
⎛
⎝ ε 0 
0

0 1 
0

0� 
0� 1

⎞
⎠ . (3.5)

3.2 The First Family of Functions in Involution

Let us show that the Casimir functions of (3.2) (see [13])

Hk,ε = εk Tr ρ̃2k
ε = εk Tr

⎛
⎝ 0 a 
p

− 1
ε
a 0 
q

− 1
ε


p� −
q� C

⎞
⎠

2k

, k ∈ N, (3.6)

are in involution with respect to the Poisson bracket (2.9). We begin by noticing that if
ρ̃ε ∈ soε(n) then ρ̃2k−1

ε ∈ soε(n). Indeed, since

ρ̃ε = −ηρ̃�
ε η−1, (3.7)

we get

ρ̃2k−1
ε = −η

(
ρ̃2k−1

ε

)�
η−1 (3.8)

which means that ρ̃2k−1
ε ∈ soε(n). The even powers of ρ̃ε are deformed symmetric matrices,

i.e., they satisfy the conditions

ρ̃2k
ε η − η

(
ρ̃2k

ε

)� = 0 (3.9)

as an easy verification shows.
Now we prove that {Hk,ε , Hl,ε}2 = 0. Since

∂Hk,ε

∂B
= −4kεk

( 1
ε
0

0 1

)
P+ρ̃2k−1

ε P−, (3.10)
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∂Hk,ε

∂B� = 4kεk P−ρ̃2k−1
ε P+, (3.11)

substitution in the Poisson bracket (2.9) yields

{Hk,ε , Hl,ε}2 = Tr

(
∂Hk,ε

∂B� A0
∂Hl,ε

∂B

)

= −16klεk+l Tr

(
P−ρ̃2k−1

ε P+A0

( 1
ε
0

0 1

)
P+ρ̃2l−1

ε P−
)

= −16klεk+l Tr

(
ρ̃2k−1

ε P+
(

0 1
− 1

ε
0

)
P+ρ̃2l−1

ε

)

+16kl Tr

(
P+ρ̃2k−1

ε P+
(

0 1
− 1

ε
0

)
P+ρ̃2l−1

ε P+
)

= −16klεk+l
(
Tr

(
0 1

− 1
ε
0

)
P+ρ̃2l+2k−2

ε P+
)

+16kl Tr

(
P+ρ̃2k−1

ε P+
(

0 1
− 1

ε
0

)
P+ρ̃2l−1

ε P+
)

= 0. (3.12)

The first summand vanishes because it is the product of two 2 × 2 matrices, one of them a
deformed antisymmetric matrix and the second a deformed symmetric matrix

(
0 1

−1

ε
0

) (
b c
1

ε
c d

)
=

⎛
⎜⎝

1

ε
c d

−1

ε
b −1

ε
c

⎞
⎟⎠ (3.13)

and hence the trace vanishes. The second summand vanishes because it is the product of three
deformed antisymmetric 2 × 2 matrices.

3.3 Involutivity of the Full Set of Functions

In addition to the involutive family of integrals Hk,ε we have the involutive family of integrals
δk given by (2.22), as we have seen in §2. Next, we prove that δ1 commutes with Hl,ε . Indeed,

{δ1, Hl,ε}2 = Tr

(
∂δ1

∂B� A0
∂Hl,ε

∂B

)
= −8lεl Tr

(
CB�A2

0

( 1
ε
0

0 1

)
P+ρ̃2l−1

ε P−
)

= −8lεl Tr
(
P−ρ̃εP−ρ̃εP+ρ̃2l−1

ε P−
)

= −8lεl Tr
(
ρ̃εP−ρ̃εP+ρ̃2l−1

ε

)
+ 8lεl Tr

(
P+ρ̃εP−ρ̃εP+ρ̃2l−1

ε P+
)

=−8lεl
[
Tr

(
ρ̃εP+ρ̃2l

ε

)
−Tr

(
P+ρ̃εP+ρ̃2l

ε P+
)
−Tr

(
P−ρ̃εP+ρ̃2l−1

ε P+ρ̃εP−
)]

= −8lεl Tr
(
ρ̃εP+ρ̃2l

ε

)
= −8lεl Tr

(
P+ρ̃2l+1

ε P+
)

= 0. (3.14)

In the proof we used the following properties:

1. in the third equality we used the identity

B�
( 1

ε
0

0 1

)
= −P−ρ̃εP+; (3.15)
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2. the matrix P−ρ̃εP+ρ̃2l−1
ε P+ρ̃εP− is antisymmetric because it is of the form

( 1
ε


p� 
q� ) (
0 c

− 1
ε
c 0

) ( 
p

q

)
= −1

ε
c
(

q� 
p − 
p�
q

)
; (3.16)

3. the matrix P+ρ̃εP+ρ̃2l
ε P+ is a product of a deformed antisymmetric and a deformed

symmetric matrix like in (3.13) which has zero trace.

Next, we show that {δk, Hl,ε}2 = 0. Indeed,

{δk, Hl,ε}2 = Tr

(
∂δk

∂B� A0
∂Hl,ε

∂B

)

= −8lεl Tr

(
C2k−1B�A2

0

( 1
ε
0

0 1

)
P+ρ̃2l−1

ε P−
)

(3.15)= −8lεl Tr
(
(P−ρ̃εP−)2k−1P−ρ̃εP+ρ̃2l−1

ε P−
)

= −8lεl Tr
(
P−ρ̃εP−(P−ρ̃εP−)2k−2P−ρ̃εP+ρ̃2l−1

ε P−
)

= −8lεl Tr
(
ρ̃ε(P−ρ̃εP−)2k−2P−ρ̃εP+ρ̃2l−1

ε

)

+8lεl Tr
(
P+ρ̃εP−(P−ρ̃εP−)2k−2P−ρ̃εP+ρ̃2l−1

ε P+
)

= −8lεl Tr
(
(P−ρ̃εP−)2k−2P−ρ̃εP+ρ̃2l

ε

)

+8lεl Tr
(
(P−ρ̃εP+)(P+ρ̃2l−1

ε P+)(P+ρ̃εP−)(P−ρ̃εP−)2k−2
)

= −8lεl Tr
(
P−ρ̃ε(P−ρ̃εP−)2k−3ρ̃εP+ρ̃2l

ε

)

= −8lεl Tr
(
ρ̃ε(P−ρ̃εP−)2k−3P−ρ̃εP+ρ̃2l

ε

)

+8lεl Tr
((

P+ρ̃εP−(P−ρ̃εP−)2k−3P−ρ̃εP+
)
P+ρ̃2l

ε P+
)

(3.15)= −8lεl Tr
(
(P−ρ̃εP−)2(k−1)−1P−ρ̃εP+ρ̃2(l+1)−1

ε

)

= −8lεl Tr

(
C2(k−1)−1B�A2

0

( 1
ε
0

0 1

)
P+ρ̃2(l+1)−1

ε P−
)

= l

(l + 1)ε
{δk−1, Hl+1,ε}2. (3.17)

In the seventh equality we use Tr
(
(P−ρ̃εP+)(P+ρ̃2l−1

ε P+)(P+ρ̃εP−)(P−ρ̃εP−)2k−2
) = 0,

because the matrix (P−ρ̃εP+)(P+ρ̃2l−1
ε P+)(P+ρ̃εP−) is antisymmetric (like in (3.16)) and

the matrix (P−ρ̃εP−)2k−2 = C2k−2 is symmetric. In the ninth equality, we use the vanishing
of the trace of the matrix

(
P+ρ̃εP−(P−ρ̃εP−)2k−3P−ρ̃εP+

)
P+ρ̃2l

ε P+. Indeed,

− P+ρ̃εP−(P−ρ̃εP−)2k−3P−ρ̃εP+ =
( 
p


q
)
C2k−3 ( 1

ε

p� 
q� )

=
( 1

ε

pC2k−3 
p� 
pC2k−3 
q�

1
ε

qC2k−3 
p� 
qC2k−3 
q�

)
(3.18)

is deformed antisymmetric and P+ρ̃2l
ε P+ is deformed symmetric, like in (3.13).

Equations (3.14) and (3.17) show that {δk, Hl,ε}2 = 0 for all k, l ∈ N. Thus the family of
functions {Hl,ε , δk | k, l ∈ N} are in involution.
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The candidates for the independent integrals depend on whether n is even or odd. If
n = 2p + 1, we take H1,ε , . . . , Hp,ε , δ1, . . . , δp−1 as the system of integrals in invo-
lution. Hence we have 2p − 1 = n − 2 integrals in involution. If n = 2p, we take
H1,ε , . . . , Hp−1,ε , δ1, . . . , δp−1 as the system of integrals in involution. Hence we have
2p − 2 = n − 2 integrals in involution.

Example 3.1 For k = 1, 2 the Hamiltonians Hk,ε are

H1,ε = −2
(
a2 + ‖ 
p‖2 + ε‖
q‖2) + ε TrC2 (3.19)

H2,ε = 2a4 + ε2 TrC4 + 2‖ 
p‖4 + 2ε2‖
q‖4 + 4a2‖ 
p‖2 + 4εa2‖
q‖2
+4ε ( 
p · 
q)2 + 8εa 
pC · 
q − 4ε2 
qC2 · 
q − 4ε 
pC2 · 
p. (3.20)

Let us consider the case when ρ̃ε is 5 × 5 matrix, so 
p, 
q ∈ R
3,

C =
⎛
⎝ 0 −c3 c2

c3 0 −c1
−c2 c1 0

⎞
⎠ ∈ so(3),

and define 
C := (c1, c2, c3). Thus, TrC2 = −2‖ 
C‖2,TrC4 = 2‖ 
C‖4, 
qC = 
q × 
C , and


qC2 =
( 
C · 
q

) 
C −
∥∥∥ 
C

∥∥∥2 
q .
The integrals (3.19) and (3.20) have thus the form

H1,ε = −2(a2 + ε‖ 
C‖2 + ‖ 
p‖2 + ε‖
q‖2), (3.21)

H2,ε = 1

2
H2
1,ε − 4ε

(
ε(
q · 
C)2 + ( 
p · 
C)2 +

∥∥∥−a 
C + 
q × 
p
∥∥∥2

)
, (3.22)

and we have an additional integral in involution

δ1 = −2 
C · (
q × 
p). (3.23)

Combining the Hamiltonians H1,ε, H2,ε with δ1, we find that the three following functions
are also in involution

h1,ε = 1

2

(‖ 
p‖2 + ε‖
q‖2) , (3.24)

h2,ε = 1

2
ε(
q · 
C)2 + 1

2
( 
p · 
C)2 + 1

2
‖
q × 
p‖2 (3.25)

and δ1. Hamilton’s equations for h2,ε are

∂ 
p
∂t

= ε
(

q · 
C

) 
C − 
p × ( 
p × 
q) , (3.26)

∂ 
q
∂t

= −
(


p · 
C
) 
C − 
q × ( 
p × 
q) . (3.27)

If we let ε = 0 then the functions

h1,0 = 1

2
‖ 
p‖2, (3.28)

h2,0 = 1

2
( 
p · 
C)2 + 1

2
‖
q × 
p‖2 (3.29)
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and δ1 are also in involution. Hamilton’s equations for h2,0 are

∂ 
p
∂t

= − 
p × ( 
p × 
q) = ‖ 
p‖2 
q − ( 
p · 
q) 
p, (3.30)

∂ 
q
∂t

= −
(


p · 
C
) 
C − 
q × ( 
p × 
q) = −

(

p · 
C

) 
C + ( 
p · 
q) 
q − ‖
q‖2 
p. (3.31)

The Hamiltonian h2,0 has the symmetry 
q �→ 
q + λ 
p and 
p �→ 
p whose momentum map is
h1,0 We can perform a Hamiltonian reduction at the value h1,0 = 1/2. The reduced equations
of motion are equivalent to the equation of motion for the classical Neumann system. Indeed,
the phase space of the reduced system is T S2, i.e., it is given by

{
(x, y) ∈ R

3 × R
3 | ‖x‖ = 1, x · y = 0

}
(3.32)

because the map h−1
1,0(1/2) � ( 
p, 
q) �→ (x, y) := (( 
p, 
q − ( 
p · 
q) 
p) ∈ T S2 descends to

a symplectic diffeomorphism of the reduced phase space h−1
1,0(1/2)/R onto T S2. A direct

verification shows that the reduced equations of motion induced by h2,0 are

∂x
∂t

= y, (3.33)

∂y
∂t

= −
(
x · 
C

) 
C −
(

‖y‖2 −
(
x · 
C

)2)
x, (3.34)

i.e., the classical Neumann system equations describing the motion of a particle on S2 under

the influence of the quadratic potential 1
2x

(
C2 + ‖ 
C‖21

)
· x ([12]; for the N -dimensional

generalization see [15]).
We have three functions h1,ε, h2,ε , δ1 and we calculate

∂h1,ε
∂ 
p� = 
p�, (3.35)

∂h2,ε
∂ 
p� = ( 
p · 
C) 
C� + 
q� ×

(

p� × 
q�)

= ( 
p · 
C) 
C� + ||
q||2 
p�−( 
p · 
q)
q�, (3.36)

∂δ1

∂ 
p� = −2 
C� × 
q�. (3.37)

The Jacobian of these functions is given by

J =
∣∣∣∣∣
∂

(
h1,ε , h2,ε , δ1

)
∂ 
p�

∣∣∣∣∣
= 2

(
( 
p · 
C) 
C� − ( 
p · 
q)
q�)

·
(


p� ×
( 
C� × 
q�))

= 2
(
( 
p · 
C) 
C� − ( 
p · 
q)
q�)

·
(
( 
p · 
q) 
C� − ( 
p · 
C)
q�)

. (3.38)

Setting the expression in (3.38) equal to zero yields a hypersurface in R
6 and hence on its

complement, which is a Zariski open set hence dense in R
6, the Jacobian does not vanish.

This proves the independence of the functions h1,ε , h2,ε, δ1.
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Example 3.2 In this example we consider the case when ρ̃ε is 6× 6-matrix then the Hamil-
tonians exactly have the form

H1,ε = −2
(
a2 + ‖ 
p‖2 + ε‖
q‖2 + ε(c21 + c22 + c23 + c24 + c25 + c26)

)
, (3.39)

H2,ε = 1

2
H2
1,ε − 4ε

⎛
⎝ε(c21 + c22 + c23 + c24 + c25 + c26)‖
q‖2 + ε 
qC2 
q� + 1

2

∑
k �=l

J 2kl+

+(c21 + c22+c23 + c24 + c25 + c26)‖ 
p‖2+ 
pC2 
p�+ε(c1c6 + c3c4−c2c5)
2
)

, (3.40)

and we have additional integrals in involution

δ1 = 2
qC 
p�, (3.41)

δ2 = 2
qC3 
p� = −2(c21 + c22 + c23 + c24 + c25 + c26)δ1

+2(c1c6 + c3c4 − c2c5)
q

⎛
⎜⎜⎝

0 c6 −c5 c4
−c6 0 c3 −c2
c5 −c3 0 c1

−c4 c2 −c1 0

⎞
⎟⎟⎠ 
p�, (3.42)

where

C :=

⎛
⎜⎜⎝

0 c1 c2 c3
−c1 0 c4 c5
−c2 −c4 0 c6
−c3 −c5 −c6 0

⎞
⎟⎟⎠ , (3.43)

Jkl := aCkl + plqk − pkql , (3.44)

and Ckl is (k, l) entry of the matrix C . Hamilton’s equations for H2,ε are again connected to
the Neumann model.

Note that

H3,ε =
(
1

4
− 3

8
ε

)
H3
1,ε + 3

4
εH2,εH1,ε

−ε2
[
a(c1c6 + c3c4−c2c5)+ 1

2
(δ3 + (c21 + c22 + c23 + c24 + c25 + c26)δ1)

]2
. (3.45)

4 Independence of integrals

4.1 Independence of the Integrals δ1, . . . , δp−1

Let n = 2p + 1 or n = 2p. We shall prove that the functions δ1, . . . , δp−1 are independent.
Note that δk given by formula (2.22) can be rewritten in the form

δk( 
p, 
q) = −2 
pC2k−1 
q�. (4.1)

From the above we obtain

∂δk

∂ 
p = 2
qC2k−1. (4.2)
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The (n − 2) × (n − 2) matrix C is antisymmetric, so it can be presented in the form

C = Q�DQ = Q�
(

0 	

−	 0

)
Q if n = 2p,

C = Q�DQ = Q�
⎛
⎝ 0 	 0

−	 0 0
0 0 0

⎞
⎠ Q if n = 2p + 1,

(4.3)

where Q ∈ SO(n − 2) and 	 = diag(λ1, . . . , λp−1). Therefore we have

∂δk

∂ 
p = 2
qQ�D2k−1Q = 2vD2k−1Q, (4.4)

where v := 
qQ�. We consider the generic case 0 < λ1 < λ2 < · · · < λp−1. Now we check
the linear independence of δ1, . . . , δp−1. Suppose

(
α1v + α2vD2 + · · · + αp−1vD2p−4) DQ = 0 (4.5)

for α1, . . . , αp−1 ∈ R. Because

D2m = (−1)m
(

	2m 0
0 	2m

)
if n = 2p,

D2m = (−1)m

⎛
⎝	2m 0 0

0 	2m 0
0 0 0

⎞
⎠ if n = 2p + 1,

(4.6)

if we denote v = (u,w) or v = (u,w, v3), respectively, then the equality (4.5) implies

α1u − α2u	2 + · · · + (−1)pαp−1u	2(p−2) = 0, (4.7)

or in matrix form⎛
⎜⎜⎜⎝

u1 λ21u1 . . . λ
2(p−2)
1 u1

u2 λ22u2 . . . λ
2(p−2)
2 u2

. . . . . . . . . . . .

u p−1 λ2p−1u p−1 . . . λ
2(p−2)
p−1 u p−1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

α1

−α2
...

(−1)pαp−1

⎞
⎟⎟⎟⎠ = 0, (4.8)

where u = (
u1, . . . , u p−1

)
. This is a (p − 1) × (p − 1) linear homogeneous system with

unknowns α1,−α2, α3, . . . , (−1)pαp−1. The determinant of this system is

u1 · · · · · u p−1

∣∣∣∣∣∣∣∣∣

1 λ21 . . . λ
2(p−2)
1

1 λ22 . . . λ
2(p−2)
2

. . . . . . . . . . . .

1 λ2p−1 . . . λ
2(p−2)
p−1

∣∣∣∣∣∣∣∣∣
= u1 · · · · · u p−1

∏
1≤i< j≤p−1

(
λ2j − λ2i

)
. (4.9)

Generically, all ui �= 0 for i = 1, . . . , p−1, which implies thatαi = 0 for all i = 1, . . . p−1,
thus proving that δ1, . . . , δp−1 are independent.

4.2 Independence of the Integrals H1, . . . Hp

Let n = 2p + 1 or n = 2p. We shall prove that the functions H1, . . . , Hp are independent
(we will consider only the case when ε = 1; the proof when the ε �= 1 is similar). Since Hk
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and ∂Hk
∂B are given by formulas (2.10) and (2.11), respectively, we get

∂Hk

∂ 
p = −4kP1+ρ̃2k−1P− , (4.10)

where P1+, P− are the orthogonal projectors given, in block matrix notation, by

P1+ =
⎛
⎝ 1 0 0
0 0 0
0 0 0

⎞
⎠ , P− =

⎛
⎝ 0 0 0
0 0 0
0 0 1

⎞
⎠ . (4.11)

The n × n matrix ρ̃ is antisymmetric, so it can be presented in the form

ρ̃ = R�ER = R�

⎛
⎜⎜⎝

0 ω1 0 0
−ω1 0 0 0
0 0 0 �

0 0 −� 0

⎞
⎟⎟⎠ R if n = 2p,

ρ̃ = R�ER = R�

⎛
⎜⎜⎜⎜⎝

0 ω1 0 0 0
−ω1 0 0 0 0
0 0 0 � 0
0 0 −� 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ R if n = 2p + 1,

(4.12)

where R ∈ SO(n) and � = diag(ω2, . . . , ωp). Therefore, by (4.10), we have

∂Hk

∂ 
p = −4kP1+R�E2k−1RP−. (4.13)

We consider the generic case 0 < ω1 < ω2 < · · · < ωp and we write the matrix R� in block
form as

R� =
⎛
⎝ a1 a2 b1

a3 a4 b2
d�
1 d�

2 G

⎞
⎠ , (4.14)

with b1 = (
b11, · · · , b1,n−2

)
,b2 = (

b21, · · · , b2,n−2
)
,d1 = (

d11, · · · , d1,n−2
)
,d2 =(

d21, · · · , d2,n−2
)
and G ∈ gl(n − 2,R). After a simple calculation, formula (4.13) can be

rewritten in the form

∂Hk

∂ 
p = (−1)k4k

(
(−ωk

1a2, ω
k
1a1)

(
d1
d2

)

+(−ωk
2b1p,−ωk

3b1,p+1, . . . ,−ωk
pb1,2p−2, ω

k
2b11, ω

k
3b12, . . . , ω

k
pb1,p−1)G�

)
,

(4.15)

if n = 2p and in the form

∂Hk

∂ 
p = (−1)k4k

(
(−ωk

1a2, ω
k
1a1)

(
d1
d2

)

+(−ωk
2b1p,−ωk

3b1,p+1, . . . ,−ωk
pb1,2p−2, ω

k
2b11, ω

k
3b12, . . . , ω

k
pb1,p−1, 0)G�

)
,

(4.16)
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if n = 2p + 1. Assume, generically, that G� has an inverse and denote(
d

′
1

d
′
2

)
=

(
d1
d2

) (
G�)−1

. (4.17)

Now we check the linear independence of the differentials of H1, . . . , Hp at a generic point( 
p

q

)
∈ R

2(n−2). Suppose

β1
∂H1

∂ 
p + β2
∂H2

∂ 
p + · · · + βp
∂Hp

∂ 
p = 0. (4.18)

For n = 2p, this is equivalent to the linear homogeneous system
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1d
′′
1 − ω2b1p ω3

1d
′′
1 − ω3

2b1p . . . ω
2p−1
1 d

′′
1 − ω

2p−1
2 b1p

ω1d
′′
2 − ω3b1,p+1 ω3

1d
′′
2 − ω3

3b1,p+1 . . . ω
2p−1
1 d

′′
2 − ω

2p−1
3 b1,p+1

. . . . . . . . . . . .

ω1d
′′
p−1 − ωpb1,2p−2 ω3

1d
′′
p−1 − ω3

pb1,2p−2 . . . ω
2p−1
1 d

′′
p−1 − ω

2p−1
p b1,2p−2

ω1d
′′
p + ω2b11 ω3

1d
′′
p + ω3

2b11 . . . ω
2p−1
1 d

′′
p + ω

2p−1
2 b11

ω1d
′′
p+1 + ω3b12 ω3

1d
′′
p+1 + ω3

3b12 . . . ω
2p−1
1 d

′′
p+1 + ω

2p−1
3 b12

. . . . . . . . . . . .

ω1d
′′
2p−2 + ωpb1,p−1 ω3

1d
′′
2p−2 + ω3

pb1,p−1 . . . ω
2p−1
1 d

′′
2p−2 + ω

2p−1
p b1,p−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎝

β1
−β2

.

.

.

(−1)p+1βp

⎞
⎟⎟⎠ = 0 (4.19)

and if n = 2p + 1 to the linear homogeneous system
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1d
′′
1 − ω2b1p ω3

1d
′′
1 − ω3

2b1p . . . ω
2p−1
1 d

′′
1 − ω

2p−1
2 b1p

ω1d
′′
2 − ω3b1,p+1 ω3

1d
′′
2 − ω3

3b1,p+1 . . . ω
2p−1
1 d

′′
2 − ω

2p−1
3 b1,p+1

. . . . . . . . . . . .

ω1d
′′
p−1 − ωpb1,2p−2 ω3

1d
′′
p−1 − ω3

pb1,2p−2 . . . ω
2p−1
1 d

′′
p−1 − ω

2p−1
p b1,2p−2

ω1d
′′
p + ω2b11 ω3

1d
′′
p + ω3

2b11 . . . ω
2p−1
1 d

′′
p + ω

2p−1
2 b11

ω1d
′′
p+1 + ω3b12 ω3

1d
′′
p+1 + ω3

3b12 . . . ω
2p−1
1 d

′′
p+1 + ω

2p−1
3 b12

. . . . . . . . . . . .

ω1d
′′
2p−2 + ωpb1,p−1 ω3

1d
′′
2p−2 + ω3

pb1,p−1 . . . ω
2p−1
1 d

′′
2p−2 + ω

2p−1
p b1,p−1

ω1d
′′
2p−1 ω3

1d
′′
2p−1 . . . ω

2p−1
1 d

′′
2p−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎝

β1
−β2

.

.

.

(−1)p+1βp

⎞
⎟⎟⎠ = 0, (4.20)

where d
′′
i := −a2d

′
1i + a1d

′
2i . Note that the big matrices have p columns and 2p − 2,

respectively 2p − 1, rows. For the proof, it suffices to show that the p × p determinant∣∣∣∣∣∣∣∣∣∣∣

ω1d
′′
1 − ω2b1p ω3

1d
′′
1 − ω3

2b1p . . . ω
2p−1
1 d

′′
1 − ω

2p−1
2 b1p

ω1d
′′
2 − ω3b1,p+1 ω3

1d
′′
2 − ω3

3b1,p+1 . . . ω
2p−1
1 d

′′
2 − ω

2p−1
3 b1,p+1

. . . . . . . . . . . .

ω1d
′′
p−1 − ωpb1,2p−2 ω3

1d
′′
p−1 − ω3

pb1,2p−2 . . . ω
2p−1
1 d

′′
p−1 − ω

2p−1
p b1,2p−2

ω1d
′′
p + ω2b11 ω3

1d
′′
p + ω3

2b11 . . . ω
2p−1
1 d

′′
p + ω

2p−1
2 b11

∣∣∣∣∣∣∣∣∣∣∣
(4.21)
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does not vanish for generic values of b1 j . Operating on the columns gives the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1d
′′
1 − ω2b1p

(−ω3
2 + ω2ω

2
1

)
b1p . . .

(
−ω

2p−1
2 + ω

2p−3
2 ω2

1

)
b1p

ω1d
′′
2 − ω3b1,p+1

(−ω3
3 + ω3ω

2
1

)
b1,p+1 . . .

(
−ω

2p−1
3 + ω

2p−3
3 ω2

1

)
b1,p+1

. . . . . . . . . . . .

ω1d
′′
p−1 − ωpb1,2p−2

(
−ω3

p + ωpω
2
1

)
b1,2p−2 . . .

(
−ω

2p−1
p + ω

2p−3
p ω2

1

)
b1,2p−2

ω1d
′′
p + ω2b11 − (−ω3

2 + ω2ω
2
1

)
b11 . . . −

(
−ω

2p−1
2 + ω

2p−3
2 ω2

1

)
b11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.22)

and, assuming that b1p �= 0 and operating on the rows, yields∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1d
′′
1 − ω2b1p

(−ω3
2 + ω2ω

2
1

)
b1p . . .

(
−ω

2p−1
2 + ω

2p−3
2 ω2

1

)
b1p

ω1d
′′
2 − ω3b1,p+1

(−ω3
3 + ω3ω

2
1

)
b1,p+1 . . .

(
−ω

2p−1
3 + ω

2p−3
3 ω2

1

)
b1,p+1

. . . . . . . . . . . .

ω1d
′′
p−1 − ωpb1,2p−2

(
−ω3

p + ωpω
2
1

)
b1,2p−2 . . .

(
−ω

2p−1
p + ω

2p−3
p ω2

1

)
b1,2p−2

ω1

(
d

′′
1
b11
b1p

+ d
′′
p

)
0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)p+1ω1

(
d

′′
1
b11
b1p

+ d
′′
1

)
∣∣∣∣∣∣∣∣∣∣∣

(−ω3
2 + ω2ω

2
1

)
b1p . . .

(
−ω

2p−1
2 + ω

2p−3
2 ω2

1

)
b1p(−ω3

3 + ω3ω
2
1

)
b1,p+1 . . .

(
−ω

2p−1
3 + ω

2p−3
3 ω2

1

)
b1,p+1

. . . . . . . . .(
−ω3

p + ωpω
2
1

)
b1,2p−2 . . .

(
−ω

2p−1
p + ω

2p−3
p ω2

1

)
b1,2p−2

∣∣∣∣∣∣∣∣∣∣∣

= (−1)p+1ω1

(
d

′′
1
b11
b1p

+ d
′′
1

)
b1p · · · b1,2p−2

∣∣∣∣∣∣∣∣∣

−ω3
2 + ω2ω

2
1 . . . −ω

2p−1
2 + ω

2p−3
2 ω2

1

−ω3
3 + ω3ω

2
1 . . . −ω

2p−1
3 + ω

2p−3
3 ω2

1
. . . . . . . . .

−ω3
p + ωpω

2
1 . . . −ω

2p−1
p + ω

2p−3
p ω2

1

∣∣∣∣∣∣∣∣∣

= ω1

(
d

′′
1
b11
b1p

+ d
′′
1

)
b1p · · · b1,2p−2

(
ω3
2 − ω2ω

2
1

) · · ·
(
ω3
p − ωpω

2
1

)
∣∣∣∣∣∣∣∣∣

1 ω2
2 . . . ω

2(p−2)
2

1 ω2
3 . . . ω

2(p−2)
3

. . . . . . . . .

1 ω2
p . . . ω

2(p−2)
p

∣∣∣∣∣∣∣∣∣
= ω1 · · · ωp

(
ω2
2 − ω2

1

) · · ·
(
ω2
p − ω2

1

) ∏
2≤i< j≤p

(
ω2

j − ω2
i

) (
d

′′
1b11 + d

′′
1b1p

)
b1,p+1 · · · b1,2p−2.

(4.23)

Because of the generic choice 0 < ω1 < · · · < ωp , all factors involving the ωk are strictly
positive. Thus, assuming the generic conditions b1 j �= 0 for all j = p, . . . , 2p − 2 and
d

′′
1b11 + d

′′
1b1p �= 0, this determinant does not vanish.

This proves that the functions H1, . . . , Hp are independent.

4.3 Independence of the Functions H1, . . . , Hp, δ1, . . . δp−1 if n = 2p + 1 and
H1, . . . , Hp−1, δ1, . . . δp−1 if n = 2p

We begin with the case n = 2p + 1 and show that H1, . . . , Hp, δ1, . . . δp−1 are independent
functions. As we shall see, we shall use in this proof the separate independence of the sets
of functions {δ1, . . . , δp−1} and {H1, . . . , Hp} proved so far. Suppose that

β1
∂H1

∂ 
p +β2
∂H2

∂ 
p + · · · + βp
∂Hp

∂ 
p + α1
∂δ1

∂ 
p + α2
∂δ2

∂ 
p + · · · + αp−1
∂δp−1

∂ 
p =0, (4.24)
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where ∂Hk
∂ 
p is given by formula (4.13) and ∂δ1

∂ 
p by formula (4.2). This is a (2p−1)×(2p−1) lin-
ear homogeneous system with unknowns β1,−β2, β3, . . . ,

(−1)p−1βp, α1,−α2, α3, . . . , (−1)pαp−1 given by the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1d
′′
1 − ω2b1p . . . ω

2p−1
1 d

′′
1 − ω

2p−1
2 b1p

ω1d
′′
2 − ω3b1,p+1 . . . ω

2p−1
1 d

′′
2 − ω

2p−1
3 b1,p+1

. . . . . . . . .

ω1d
′′
p−1 − ωpb1,2p−2 . . . ω

2p−1
1 d

′′
p−1 − ω

2p−1
p b1,2p−2

⎛
⎜⎜⎜⎝

u1 . . . λ
2(p−2)
1 u1

u2 . . . λ
2(p−2)
2 u2

. . . . . . . . .

u p−1 . . . λ
2(p−2)
p−1 u p−1

⎞
⎟⎟⎟⎠ (−1)

2k DQ(G�)−1

ω1d
′′
p + ω2b11 . . . ω

2p−1
1 d

′′
p + ω

2p−1
2 b11

ω1d
′′
p+1 + ω3b12 . . . ω

2p−1
1 d

′′
p+1 + ω

2p−1
3 b12

. . . . . . . . .

ω1d
′′
2p−2 + ωpb1,p−1 . . . ω

2p−1
1 d

′′
2p−2 + ω

2p−1
p b1,p−1

⎛
⎜⎜⎜⎝

w1 . . . λ
2(p−2)
1 w1

w2 . . . λ
2(p−2)
2 w2

. . . . . . . . .

wp−1 . . . λ
2(p−2)
p−1 wp−1

⎞
⎟⎟⎟⎠ 1

2k DQ(G�)−1

ω1d
′′
2p−1 . . . ω

2p−1
1 d

′′
2p−1 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where D, Q are introduced in (4.3) andG in (4.14). We must show that its determinant does
not vanish, generically. Operating on the columns and rows yields

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1d
′′
1 − ω2b1p . . .

(
−ω

2p−1
2 + ω

2p−3
2 ω2

1

)
b1p

ω1d
′′
2 − ω3b1,p+1 . . .

(
−ω

2p−1
3 + ω

2p−3
3 ω2

1

)
b1,p+1

. . . . . . . . .

ω1d
′′
p−1 − ωpb1,2p−2 . . .

(
−ω

2p−1
p + ω

2p−3
p ω2

1

)
b1,2p−2

⎛
⎜⎜⎜⎝

u1 . . . λ
2(p−2)
1 u1

u2 . . . λ
2(p−2)
2 u2

. . . . . . . . .

u p−1 . . . λ
2(p−2)
p−1 u p−1

⎞
⎟⎟⎟⎠ (−1)

2k DQ(G�)−1

ω1d
′′
p + ω2b11 . . . −

(
−ω

2p−1
2 + ω

2p−3
2 ω2

1

)
b11

ω1d
′′
p+1 + ω3b1,2 . . . −

(
−ω

2p−1
3 + ω

2p−3
3 ω2

1

)
b1,2

. . . . . . . . .

ω1d
′′
2p−2 + ωpb1,p−1 . . . −

(
−ω

2p−1
p + ω

2p−3
p ω2

1

)
b1,p−1

⎛
⎜⎜⎜⎝

w1 . . . λ
2(p−2)
1 w1

w2 . . . λ
2(p−2)
2 w2

. . . . . . . . .

wp−1 . . . λ
2(p−2)
p−1 wp−1

⎞
⎟⎟⎟⎠ 1

2k DQ(G�)−1

ω1d
′′
2p−1 . . . 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= ω1d
′′
2p−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1g1 − ω2 f1 . . .
(
−ω

2p−1
2 + ω

2p−3
2 ω2

1

)
f1

ω1g2 − ω3 f2 . . .
(
−ω

2p−1
3 + ω

2p−3
3 ω2

1

)
f2

. . . . . . . . .

ω1gp−1 − ωp f p−1 . . .
(
−ω

2p−1
p + ω

2p−3
p ω2

1

)
f p−1

0

ω1d
′′
p + ω2b11 . . . −

(
−ω

2p−1
2 + ω

2p−3
2 ω2

1

)
b11

ω1d
′′
p+1 + ω3b1,2 . . . −

(
−ω

2p−1
3 + ω

2p−3
3 ω2

1

)
b1,2

. . . . . . . . .

ω1d
′′
2p−2 + ωpb1,p−1 . . . −

(
−ω

2p−1
p + ω

2p−3
p ω2

1

)
b1,p−1

⎛
⎜⎜⎜⎝

w1 . . . λ
2(p−2)
1 w1

w2 . . . λ
2(p−2)
2 w2

. . . . . . . . .

wp−1 . . . λ
2(p−2)
p−1 wp−1

⎞
⎟⎟⎟⎠ 1

2k DQ(G�)−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= ω1d
′′
2p−1

∣∣∣∣∣∣∣∣∣∣∣

ω1g1 − ω2 f1 . . .
(
−ω

2p−1
2 + ω

2p−3
2 ω2

1

)
f1

ω1g2 − ω3 f2 . . .
(
−ω

2p−1
3 + ω

2p−3
3 ω2

1

)
f2

. . . . . . . . .

ω1gp−1 − ωp f p−1 . . .
(
−ω

2p−1
p + ω

2p−3
p ω2

1

)
f p−1

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

w1 . . . λ
2(p−2)
1 w1

w2 . . . λ
2(p−2)
2 w2

. . . . . . . . .

wp−1 . . . λ
2(p−2)
p−1 wp−1

∣∣∣∣∣∣∣∣∣

∣∣∣∣ 1

2k
DQ(G�)−1

∣∣∣∣ ,

where gi = d
′′
i + ui

wi
d

′′
p+i−1, fi = b1,p+i−1 − ui

wi
b1,i , i = 1, . . . , p − 1 and we required

the generic condition that all wi �= 0. These types of determinants were calculated in the
previous two special cases and shown that they do not vanish, generically.

If n = 2p, the independence of the functions H1, . . . , Hp−1, δ1, . . . , δp−1 is shown in a
similar manner. The relevant determinant is now
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1d
′′
1 − ω2b1p . . . ω

2(p−2)
1 d

′′
1 − ω

2(p−2)
2 b1p

ω1d
′′
2 − ω3b1,p+1 . . . ω

2(p−2)
1 d

′′
2 − ω

2(p−2)
3 b1,p+1

. . . . . . . . .

ω1d
′′
p−1 − ωpb1,2p−2 . . . ω

2(p−2)
1 d

′′
p−1 − ω

2(p−2)
p b1,2p−2

⎛
⎜⎜⎜⎝

u1 . . . λ
2(p−2)
1 u1

u2 . . . λ
2(p−2)
2 u2

. . . . . . . . .

u p−1 . . . λ
2(p−2)
p−1 u p−1

⎞
⎟⎟⎟⎠ (−1)

2k DQ(G�)−1

ω1d
′′
p + ω2b11 . . . ω

2(p−2)
1 d

′′
p + ω

2(p−2)
2 b11

ω1d
′′
p+1 + ω3b12 . . . ω

2(p−2)
1 d

′′
p+1 + ω

2(p−2)
3 b12

. . . . . . . . .

ω1d
′′
2p−2 + ωpb1,p−1 . . . ω

2(p−2)
1 d

′′
2p−2 + ω

2(p−2)
p b1,p−1

⎛
⎜⎜⎜⎝

w1 . . . λ
2(p−2)
1 w1

w2 . . . λ
2(p−2)
2 w2

. . . . . . . . .

wp−1 . . . λ
2(p−2)
p−1 wp−1

⎞
⎟⎟⎟⎠ 1

2k DQ(G�)−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and the proof proceeds following analogous steps as in the case n = 2p + 1.

Note that there is no contradiction of the independence of the complete set of functions
{H1, . . . , Hp−1, δ1, . . . δp−1} with the fact that the two sets of functions {H1, . . . , Hp} and
{δ1, . . . δp−1} are separately independent. As pointed out in examples, Hp and the Pfaffian
are both expressible in terms of the other integrals.

Theorem 4.1 The collection of functions {H1, . . . , Hp, δ1, . . . δp−1} if n = 2p + 1 and
{H1, . . . , Hp−1, δ1, . . . δp−1} if n = 2p is an integrable system on the 2(n − 2)-dimensional
vector spaceMat2×(n−2)(R) endowed with the canonical symplectic structure.

The case for general ε ∈ R is treated in a similar manner. The proofs are identical but the
writing is more cumbersome.

Theorem 4.2 The collection of functions {H1,ε , . . . , Hp,ε , δ1, . . . , δp−1} if n = 2p + 1
and {H1,ε , . . . , Hp−1,ε , δ1, . . . , δp−1} if n = 2p is an integrable system on the 2(n − 2)-
dimensional vector spaceMat2×(n−2)(R) endowed with the canonical symplectic structure.

Acknowledgments Alina Dobrogowska was supported by Swiss SCIEX grant 10.246 POL and Tudor S.
Ratiu was partially supported by Swiss NSF grant 200021-140238, and by the government grant of the
Russian Federation for support of research projects implemented by leading scientists, Lomonosov Moscow
State University under the agreement No. 11.G34.31.0054.

References

1. Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn., revised and enlarged. With the assis-
tance of Tudor Ratiu and Richard Cushman. Benjamin/Cummings Publishing Co., Inc., Advanced Book
Program, Reading, MA (1978)

2. Adler, M.: On a trace functional for formal pseudo differential operators and the symplectic structure of
the Korteweg-de Vries type equations. Invent. Math. 50(3), 219–248 (1978/79)

3. Adler,M., vanMoerbeke, P., Vanhaecke, P.: Algebraic Integrability, Painlevé Geometry and Lie Algebras,
Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 47. Springer, Berlin (2004)

4. Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd ed., Graduate Texts in Mathematics,
vol. 60. Springer, New York (1989)

5. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics
(Dynamical Systems III), 3rd edn. Encyclopaedia of Mathematical Sciences, vol. 3. Springer, Berlin
(2006)

6. Guillemin, V., Sternberg, S.: On collective complete integrability according to the method of Thimm.
Ergod. Theory Dyn. Syst. 3(2), 219–230 (1983)

7. Kostant, B.: The solution to a generalized Toda lattice and representation theory. Adv. Math. 34(3),
195–338 (1979)

8. Kazhdan, D., Kostant, B., Sternberg, S.: Hamiltonian group actions and dynamical systems of Calogero
type. Commun. Pure Appl. Math. 31(4), 481–507 (1978)

9. Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19(5), 1156–1162
(1978)

123



J Dyn Diff Equat (2015) 27:533–553 553

10. Mishchenko, A.S., Fomenko, A.T.: Euler equation on finite-dimensional Lie groups (Russian). Izv. Akad.
Nauk SSSR Ser. Mat. 42(2), 396–415, 471 (1978)

11. Mishchenko, A.S., Fomenko, A.T.: Integrability of Euler’s equations on semisimple Lie algebras
(Russian). Trudy Sem. Vektor. Tenzor. Anal. 19, 3–94 (1979)

12. Neumann, C.: De problemate quodammechanica, quod ad primam integralium ultra-ellipticorum classem
revocatur. J. Reine u. Angew. Math. 56, 54–66 (1859)

13. Odzijewicz, A., Dobrogowska, A.: Integrable Hamiltonian systems related to the Hilbert-Schmidt ideal.
J. Geom. Phys. 61, 1426–1445 (2011)

14. Odzijewicz, A., Goliński, T.: Hierarchy of integrable Hamiltonians describing the nonlinear n-wave
interaction. J. Phys. A 45(4), 045204 (2012)

15. Ratiu, T.S.: The, C. Neumann problem as a completely integrable system on an adjoint orbit. Trans. Am.
Math. Soc. 264(2), 321–329 (1981)

16. Reyman, A.G., Semenov-Tian-Shansky, M.A.: Group-theoretical methods in the theory of finite-
dimensional integrable systems. In:Dynamical Systems.VII. Integrable Systems,NonholonomicDynam-
ical Systems. Encyclopaedia of Mathematical Sciences, vol. 16. Springer, Berlin (1994)

17. Semenov-Tian-Shansky, M.A.: What is a classical r-matrix? Funct. Anal. Appl. 17(4), 259–272 (1983)
18. Symes, W.W.: Hamiltonian group actions and integrable systems. Phys. D 1(4), 339–374 (1980)
19. Thimm, A.: Integrable geodesic flows on homogeneous spaces. Ergod. Theory Dyn. Syst. 1(4) (1981),

495–517 (1982)

123


	Integrable Systems of Neumann Type
	Abstract
	1 Introduction
	2 Hierarchy Generated by Casimir Functions of mathfrakso(n)
	2.1 A Symplectic Leaf
	2.2 The First Family of Functions in Involution
	2.3 The Second Family of Functions in Involution
	2.4 Involution of All Functions

	3 Hierarchy generated by Casimir functions of mathfraksoε(n)
	3.1 The Deformed Lie Algebra
	3.2 The First Family of Functions in Involution
	3.3 Involutivity of the Full Set of Functions

	4 Independence of integrals
	4.1 Independence of the Integrals δ1, �, δp-1
	4.2 Independence of the Integrals H1, �Hp
	4.3 Independence of the Functions H1,�, Hp, δ1, �δp-1 if n=2p+1 and H1,�, Hp-1, δ1, �δp-1 if n = 2p

	Acknowledgments
	References




