Enantioselective Synthesis of Homoallylic Azides and Nitriles via Palladium-Catalyzed Decarboxylative Allylation

Maria Victoria Vita, Paola Caramenti and Jerome Waser,*†

†Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland.

Supporting Information Placeholder

ABSTRACT: Azides and nitriles are important building blocks for the synthesis of nitrogen-containing bioactive compounds. The first example of enantioselective palladium-catalyzed decarboxylative allylation of α-azido and cyano β-ketoesters is reported. Indanone derivatives were obtained in 50-88% yield/77-97% ee and 46-98% yield/78-93% ee for azide and nitrile substituents, respectively. The required starting materials were synthesized in one step from ketoesters via electrophilic azidation and cyanation using benziodoxole hypervalent iodine reagents. The products could be easily converted into useful nitrogen-containing building blocks, such as triazoles, amides or α- and β- amino ketones.

Nitrogen-containing functional groups are omnipresent in synthetic and natural bioactive compounds. Among them, azides1 and nitriles2 occupy a privileged position. They are highly useful as non-basic precursors of amines. In addition, they can be transformed in a multitude of other functional groups and can be used in cycloaddition reactions to give a broad range of heterocycles (Figure 1). New methods giving access to nitriles and azides, especially in enantiopure form, are therefore highly useful for both synthetic and medicinal chemistry. Whereas numerous methods are available for the enantioselective synthesis of secondary azides and nitriles, accessing tertiary derivatives is more challenging.

Figure 1. Enantiopure tertiary azides and cyanides: versatile building blocks, but challenging to access.

Among the methods used for the enantioselective synthesis of highly substituted stereocenters, the Tsuji-Trost decarboxylation has been especially successful.3 Nevertheless, to the best of our knowledge, this methodology has never been used for the synthesis of homoallylic azides, and there are only racemic examples for cyanides.3c,4 This is an important limitation when considering the versatility of these building blocks. In general, the Tsuji-Trost decarboxylation has been only rarely used to synthesize homo- and bis-homo allylic amines.3 In 2015, Stoltz and co-workers, developed in particular an elegant Mannich addition/asymmetric decarboxylative allylation sequence to access bis-homo allylic amines.5d

Indan(ones) are privileged structures in bioactive compounds, and nitrogen-substituted derivatives are especially important.6 Nevertheless, the enantioselective synthesis of α-azido and cyano indanones has been limited to the azidation of ketoester derivatives7 and the conjugate addition or Mannich reaction of α-cyano indanones.6 The Tsuji-Trost decarboxylation, although highly successful in the case of other type of substituents,3c,9 has never been reported in the case of cyanides and azides (Scheme 1). Herein, we would like to report the first example of highly enantioselective palladium-catalyzed decarboxylative allylation proceeding on cyano- and azido-substituted indanone derivatives. The required substrates were easily synthesized by the azidation or cyanation of ketoesters using hypervalent iodine reagents.

Scheme 1. Enantioselective synthesis of indanones via the Tsuji-Trost decarboxylative allylation.

We started our investigations with the synthesis of the required azido- and cyano- allyl ketoesters 4 and 5. The desired indanones could be accessed in good yield by the reaction with hypervalent iodine reagents 2 or 3 without any other additives using methods developed in our group10 and by Chen and co-workers (Scheme 2).11 Unfortunately, the method could not be used to access the corresponding tetralones, due to competitive elimination and aromatization to naphthol derivatives.
We then turned to the optimization of the decarboxylative allylation for azide 4a (Table 1). When using Pd(Cp)Cinnamyl as catalyst precursor as in our previous work on the decarboxylative allylation of alkynyl-substituted ketosteroids, only low conversion was observed. Better results were obtained using Pd3(dba)2 with Trost’s bisphosphine ligand 6a, and the desired product 7a was obtained in 31% yield and 71% ee, but 5 mol % catalyst were needed to reach full conversion (Table 1, entry 1). A strong dependence of both yield and enantioselectivity on solvent became apparent (Table 1, entries 2-7). Whereas moderate yields and ee were observed in toluene and acetonitrile (Table 1, entries 2 and 3), 93% yield of 7a was obtained in dichloromethane, albeit at the cost of ee (Table 1, entry 4). From the tested ether solvents, THF gave the best result, with 88% yield and 79% ee (Table 1, entry 7). Other Trost bisphosphine ligands gave inferior results (Table 1, entries 8-10). Finally, the enantioselectivity could be improved to 86% by working in more concentrated solution at -20 °C (Table 1, entry 11).

Table 1. Optimization of the decarboxylative allylation of azide 4a.

<table>
<thead>
<tr>
<th>entry</th>
<th>ligand</th>
<th>solvent</th>
<th>yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6a</td>
<td>MTBE</td>
<td>31</td>
<td>71</td>
</tr>
<tr>
<td>2</td>
<td>6a</td>
<td>toluene</td>
<td>38</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>6a</td>
<td>CH3CN</td>
<td>50</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>6a</td>
<td>CH3Cl</td>
<td>93</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>6a</td>
<td>Et2O</td>
<td>27</td>
<td>71</td>
</tr>
<tr>
<td>6</td>
<td>6a</td>
<td>dioxane</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>6a</td>
<td>THF</td>
<td>88</td>
<td>79</td>
</tr>
<tr>
<td>8c</td>
<td>6b</td>
<td>THF</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>6c</td>
<td>THF</td>
<td><5</td>
<td>nd</td>
</tr>
<tr>
<td>10</td>
<td>6d</td>
<td>THF</td>
<td>15</td>
<td>49</td>
</tr>
<tr>
<td>11</td>
<td>6a</td>
<td>THF</td>
<td>88</td>
<td>86c</td>
</tr>
</tbody>
</table>

*aReaction conditions: Substrate 4a (0.012 mmol), Pd3(dba)2 (5 mol %), 6 (11 mol %) and solvent (0.2 M) at 25 °C. The NMR yield is measured in comparison with the internal standard 1,3,5-trimethoxybenzene. Obtained by chiral HPLC. At 0.4 M at -20 °C for 12 h.

The scope of the decarboxylative allylation of azides was then examined (Scheme 3). The use of methallyl substrate 4b gave the desired product 7b in improved 97% ee. Product 7c and 7d bearing either a methyl group or no substituent in C5 position also gave the products in good yield and enantioselectivity. Interestingly, a 5-bromo group was also tolerated, despite the fact that a palladium(0) catalyst is used (product 7e). Substitution at the C6 position was also possible, although in some cases lower yields and ee’s were obtained (products 7f-i). The decarboxylative allylation was also successful with a 4-bromo substituent (product 7j). Finally, the use of a more functionalized allyl group bearing a protected alcohol was also possible, as demonstrated by the formation of product 7k in 51% yield and 95% ee.14

Scheme 3. Scope of the decarboxylative allylation with azides 4. Reaction conditions: Substrate 4 (0.20 mmol), Pd3(dba)2 (5 mol %), 6a (11 mol %) and THF (0.4 M) at -20 °C, 10-15 h. The isolated yields after column chromatography are given. ee are obtained by chiral HPLC.

In the case of cyano substrate 5a, the conditions used in our previous work for the decarboxylative allylation of α-alkynyl allyl ketoesters (2 mol % Pd(Cp)Cinnamyl, 2.5 mol % 6a, MTBE, 0.1 M, rt) did not need to be changed extensively. In fact, working in more diluted conditions (0.01 M) and with higher catalyst/ligand loading (5 and 5.5 mol % respectively) was enough to give the desired allyl cyanides 8a in 91% yield and 80% ee (Scheme 4). For methallyl-based substrates, however, better results were obtained with Pd2dba3 as catalyst precursor (92% yield and 89% ee for 8b). Irrespective of the...
substitution pattern or electronic properties of the substituents on the benzene ring, the desired methallyl cyanides 8b-f were obtained in very good yields (81-98%), but the ee’s were lower than for azides (78-89%). Modification of the substituent on the alkene was also possible as a protected alcohol, an aryl or a chloride group (products 8g-i). Protected alcohol 8g was obtained in 93% ee, which is the highest enantioselectivity observed for this class of substrates.

Scheme 4. Scope of the decarboxylative allylation with nitriles 5. Reaction conditions: Substrate 5 (0.20 mmol), Pd2(dba)3 (2.5 mol %), 6a (5.5 mol %) and THF (0.01 M) at 25 °C, 6-48 h. The isolated yields after column chromatography are given. ee are obtained by chiral HPLC. *Using 5 mol % PdCpCinnamyl as catalyst precursor.

The obtained products could be easily transformed into useful nitrogen-containing building blocks (Scheme 5). 7b,15 Copper-catalyzed [3+2]-cycloaddition of azides 7 with aromatic alkyne 9 gave triazoles 10a-c in 94-96% yield (Scheme 5, A). 7b Staudinger reduction of azide 7e led to α-amino ketone 11,15 whereas hydrogenation of nitrile 8h gave β-amino ketone 12 (Scheme 5, B and C).15b Finally, amide 13 was obtained in 83% yield by hydrazinolysis of nitrile 8f in presence of a palladium catalyst (Scheme 5, D). 15b

In conclusion, we have reported the first example of enantioselective palladium-catalyzed decarboxylative allylation proceeding next to cyano and azido groups. The reaction proceeded with indanone derivatives in 50-88% yield/77-97% ee and 46-98% yield/78-93% ee with azide and nitrile substituents, respectively. A broad range of functional groups was tolerated on the benzene ring and the alkene. The required indanone starting materials were obtained by the reaction of benziodoxole hypervalent iodine reagents with ketoesters. The obtained products were easily transformed into useful nitrogen-containing building blocks, such as triazoles, amides and amines.

ASSOCIATED CONTENT

Supporting Information
Experimental procedures and analytical data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

Scheme 5. Modifications of the obtained products.

AUTHOR INFORMATION

Corresponding Author
* jerome.waser@epfl.ch
M. V. V. and P. C. contributed equally to this work.

ACKNOWLEDGMENT

We thank EPFL and the Swiss National Science Foundation (SNSF, grant number 200020_134550) for financial support.

REFERENCES

(12) See Supporting Information for a full list of tested conditions for substrates 4a,b and 5a,b. A single crystal was grown by slow diffusion of the solution of 8c in EtOAc/heptane mixture to determine its absolute configuration. Supplementary crystallographic data for this compound have been deposited at the Cambridge Crystallographic Data Centre (CCDC 1418044) and can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. The absolute configuration of the other substrates was assigned by analogy.

(13) When Bu-PHOX (Pfaltz-Helmchen-Williams ligand) was used as ligand in the reaction, no product was obtained in the case of azide-substituted ketosteres. For cyano-substituted ketoesters, the product was obtained in 94% yield, but in racemic form.

(14) Preliminary experiments with linear ketoesters gave less than 10% conversion. Further investigations will be needed for this challenging class of substrates.

Table of Content Graphic
Supporting Information

239 pages

Enantioselective Synthesis of Homoallylic Azides and Nitriles via Palladium-Catalyzed Decarboxylative Allylation

Maria Victoria Vita, Paola Caramenti and Jérôme Waser

Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland.

jerome.waser@epfl.ch
Table of contents

1. General methods .. S3
2. Synthesis of hypervalent iodine reagents S4
3. Synthesis of starting material: allyl β-keto esters S8
4. General procedure for the synthesis of α-azido/cyano allyl β-keto esters S18
5. Pd-Catalyzed decarboxylation of allyl β-keto esters S32
6. Transformation of α-allyl azido/cyano ketones S56
7. Absolute stereochemistry .. S61
8. Spectra of new compounds (\(^1\)H, \(^{13}\)C, IR, HPLC) S62
1. General Methods

All reactions were carried out in oven dried glassware under an atmosphere of nitrogen, unless stated otherwise. For quantitative flash chromatography technical grade solvents were used. For flash chromatography for analysis, HPLC grade solvents from Sigma-Aldrich were used. THF, Et₂O, CH₃CN, toluene, hexane and CH₂Cl₂ were dried by passage over activated alumina under nitrogen atmosphere (H₂O content < 10 ppm, Karl-Fischer titration). All chemicals were purchased from Acros, Aldrich, Fluka, VWR, Fluorochem, Aplichem or Merck and used without further purification, unless stated otherwise. Chromatographic purification was performed as flash chromatography using Macherey-Nagel silica 40-63, 60 Å, using the solvents indicated as eluent with 0.1-0.5 bar pressure. TLC was performed on Merck silica gel 60 F₂₅₄ TLC aluminium plates and visualized with UV light and anisaldehyde stain. Melting points were measured on a calibrated Büchi B-540 melting point apparatus using open glass capillaries. ¹H-NMR spectra were recorded on a Bruker DPX-400 400 MHz spectrometer in chloroform-d and/or DMSO-d₆. All signals are reported in ppm with the internal chloroform signal at 7.26 ppm or the internal DMSO signal at 2.50 ppm as standard. The data is being reported as (s = singlet, d = doublet, t = triplet, q = quartet, qι = quintet, m = multiplet or unresolved, br = broad signal, app = apparent, coupling constant(s) in Hz, integration, interpretation). ¹³C-NMR spectra were recorded with ¹H-decoupling on a Bruker DPX-400 100 MHz spectrometer in chloroform-d and/or DMSO-d₆. All signals are reported in ppm with the internal chloroform signal at 77.0 ppm or the internal DMSO signal at 39.5 ppm as standard. Infrared spectra were recorded on a JASCO FT-IR B4100 spectrophotometer with an ATR PRO410-S and a ZnSe prisma and are reported as cm⁻¹ (w = weak, m = medium, s = strong, br = broad). Gas chromatographic and low resolution mass spectrometric measurements were performed on a Perkin-Elmer Clarus 600 gas chromatograph and mass spectrometer using a Perkin-Elmer Elite fused silica column (length: 30 m, diameter: 0.32 mm) and Helium as carrier gas. High resolution mass spectrometric measurements were performed by the mass spectrometry service of ISIC at the EPFL on a MICROMASS (ESI) Q-TOF Ultima API. All the chiral ligands used in this work are commercially available.
2. Synthesis of Hypervalent Iodine Reagents

2.1 Synthesis of 1-azido-3,3-dimethyl-3-(1H)-1,2-benziodoxole (2)

1-Chloro-1,3-dihydro-3,3-dimethyl-1,2-benziodoxole (15)

Following a reported procedure, methyl 2-iodobenzoate (14) (12 mL, 76 mmol) was dissolved under N₂ atmosphere in dry diethyl ether (400 mL) and then the solution was cooled to 0 °C with an ice bath. Methylmagnesium bromide (56.0 mL, 0.168 mol, 2.20 equiv.) was added dropwise and the reaction was stirred for 30 min at 0 °C. The reaction mixture was then allowed to warm to room temperature and it was further stirred for 2 h. The reaction was quenched with NH₄Cl in an iced bath. The organic layer was separated and extracted with Et₂O (3 x 100 mL), washed with water (2 x 200 mL), brine (1 x 100 mL) then dried over MgSO₄. The solvent was removed in vacuo. With no further purification the crude mixture was dissolved in CCl₄ (7 mL) and tert-butyl hypochlorite (0.010 L, 92 mmol, 1.2 equiv.) and the reaction mixture was stirred at room temperature. After one hour a yellow precipitate was collected by filtration and washed with hexane (60 mL) to afford compound 15 (7.7 g, 26 mmol, 34% yield) as a yellow solid.

1H NMR (400 MHz, CDCl₃) δ 8.03 (dd, 1 H, J = 8.1, 1.1 Hz, CHAr), 7.55 (m, 2 H, CHAr), 7.17 (dd, 1 H, J = 7.3, 1.7 Hz, CHAr), 1.55 (s, 6 H, (CH₃)₂).

13C NMR (101 MHz, CDCl₃) δ 149.5, 131.0, 130.5, 128.4, 126.1, 114.7, 85.2, 29.2.

IR νmax 3729 (w), 3626 (w), 2972 (w), 2924 (w), 2362 (w), 2055 (w), 2018 (w), 1742 (w), 1564 (w), 1464 (w), 1439 (w), 1379 (w), 1378 (w), 1366 (w), 1277 (w), 1276 (w), 1256 (w), 1181 (w), 1154 (m), 1112 (w), 1048 (w), 1003 (w), 982 (w), 943 (m), 866 (m), 808 (w), 790 (w), 789 (w), 762 (s), 745 (w), 724 (w), 718 (w).

The characterization data is in accordance with reported literature values.¹

1-Acetoxy-1,3-dihydro-3,3-dimethyl-1,2-benziodoxole (16)

Following a reported procedure, 1-chloro-1,3-dihydro-3,3-dimethyl-1,2-benziodoxole (15) (2.60 g, 8.77 mmol) was dissolved in dry acetonitrile (25 mL) under N₂ atmosphere. The reaction flask was covered with aluminum foils and protected from light. Silver acetate (1.46 g, 8.77 mmol, 1.00 equiv.) was then added in one portion. The reaction mixture was stirred in the dark at room

temperature for 16 h. Filtration over a Celite plug and evaporation of the solvent yielded compound 16 (2.6 g, 8.8 mmol, 93%) as a brownish solid.

\(^1\text{H NMR} \) (400 MHz, CDCl\(_3\)) \(\delta\) 7.79 (dd, 1 H, \(J = 8.0, 1.3\) Hz, CHAr), 7.47 (m, 2H, CHAr), 7.18 (dd, 1 H, \(J = 7.2, 1.7\) Hz, CHAr), 2.11 (s, 3 H, COCH\(_3\)), 1.52 (s, 6 H, (CH\(_3\))\(_2\)).

\(^{13}\text{C NMR} \) (101 MHz, CDCl\(_3\)) \(\delta\) 177.4, 149.4, 130.4, 130.0, 129.9, 126.2, 115.7, 84.6, 29.2, 21.5.

\(\text{IR } \nu_{\text{max}}\) 3099 (w), 3057 (w), 2975 (w), 2930 (w), 2865 (w), 1740 (w), 1640 (s), 1588 (w), 1566 (w), 1462 (w), 1438 (m), 1363 (s), 1294 (s), 1259 (m), 1158 (m), 1114 (w), 1047 (w), 1033 (w), 949 (m), 926 (w), 761 (s), 723 (w).

The characterization data is in accordance with reported literature values.\(^1\)

1-Azido-3,3-dimethyl-3-(1\(H\))-1,2-benziodoxole (2)

Caution: This reaction should be carried out behind a safety shield! Following a reported procedure\(^1\) 1-Acetoxy-1,3-dihydro-3,3-dimethyl-1,2-benziodoxole (16) (2.30 g, 7.18 mmol) was dissolved in dry CH\(_2\)Cl\(_2\) (36 mL) under N\(_2\) atmosphere. The reaction was placed in an iced bath and trimethylsilylazide (0.954 mL, 7.18 mmol, 1.00 equiv.) was added via syringe, followed by TMSOTf (0.065 mL, 0.36 mmol, 0.050 equiv.). The reaction was stirred for 15 min then the ice bath was removed and the stirring was continued for 1 h. The solvent was evaporated and the solid obtained was washed with n-hexane (2 x 30 mL, HPLC purity) to afford 2 as a yellow crystalline solid (2.10 g, 7.18 mmol, 96%).

\(^1\text{H NMR} \) (400 MHz, CDCl\(_3\)) \(\delta\) 7.77 (d, 1 H, \(J = 8.0\) Hz, CHAr), 7.55 (m, 2 H, CHAr), 7.23 (d, 1 H, \(J = 7.2\) Hz, CHAr), 1.53 (s, 7 H, (CH\(_3\))\(_2\)).

\(^{13}\text{C NMR} \) (101 MHz, CDCl\(_3\)) \(\delta\) 149.2, 130.9, 130.4, 127.8, 126.8, 114.0, 83.2, 29.6.

\(\text{IR } \nu_{\text{max}}\) 3254 (w), 3085 (w), 3051 (w), 2976 (w), 2928 (w), 2860 (w), 2486 (w), 2026 (s), 1918 (w), 1764 (w), 1697 (w), 1651 (w), 1589 (w), 1562 (w), 1462 (m), 1428 (m), 1380 (w), 1364 (w), 1312 (w), 1273 (w), 1248 (s), 1182 (w), 1151 (m), 1111 (m), 1031 (w), 1004 (w), 943 (m), 910 (m), 880 (w), 863 (m).

The characterization data is in accordance with reported literature values.\(^1\)

2.2 Synthesis of 1-Cyano-1,2-benziodoxol-3-(1\(H\))-one (3)

1-Hydroxy-1,2-benziodoxol-3-(1\(H\))-one (18)
Following a reported procedure,\(^2\) NaIO\(_4\) (25.8 g, 121 mmol, 1.05 eq.) and 2-iodobenzoic acid (17) (28.5 g, 115 mmol, 1.00 eq.) were suspended in 30% (v:v) aq. AcOH (175 mL). The mixture was vigorously stirred and refluxed for 4 h. The reaction mixture was then diluted with cold water (500 mL) and allowed to cool to room temperature, while protecting it from light. After 1 h, the crude product was collected by filtration. The crystals were washed with ice water (3 x 100 mL) followed by acetone (3 x 100 mL) and then air-dried in the dark affording 18 (29.3 g, 111 mmol, 96.5%) as a white solid.

\(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 8.04 (s, 1 H, OH), 8.01 (dd, 1 H, \(J = 7.6, 1.5\) Hz, ArH), 7.96 (ddd, 1 H, \(J = 8.5, 7.2, 1.5\) Hz, ArH), 7.84 (dd, 1 H, \(J = 8.2, 0.7\) Hz, ArH), 7.70 (td, 1 H, \(J = 7.3, 1.1\) Hz, ArH).

\(^{13}\)C NMR (100 MHz, (DMSO-\(d_6\)) \(\delta\) 167.7, 134.5, 131.5, 131.1, 130.4, 126.3, 120.4.

IR \(\nu_{\text{max}}\) 3083 (w), 3060 (w), 2867 (w), 2402 (w), 1601 (m), 1585 (m), 1564 (m), 1440 (m), 1338 (s), 1302 (m), 1148 (m), 1018 (w), 834 (m), 798 (w), 740 (s), 694 (s), 674 (m), 649 (m).

The characterization data is in accordance with reported literature values.\(^3\)

1-Acetoxy-1,2-benziodoxol-3-(1H)-one (19)

Following a reported procedure,\(^4\) 1-hydroxy-1,2-benziodoxol-3-(1H)-one (18), 10.3 g, 39.1 mmol, 1.00 equiv.) was suspended in acetic anhydride (35 mL) and heated to reflux for 30 minutes. The resulting clear, slightly yellow solution was slowly let to warm up to room temperature and then cooled to 0 °C for 30 minutes. The white suspension was filtered and the filtrate was again cooled to 0 °C for 30 minutes. The suspension was once again filtered and the combined two batches of solid product were washed with hexane (2 x 20 mL) and dried \textit{in vacuo} affording 19 (10.8 g, 35.3 mmol, 90%) as a white solid.

\(^1\)H NMR (CDCl\(_3\), 400 MHz) \(\delta\) 8.24 (dd, 1 H, \(J = 7.6, 1.6\) Hz, ArH), 8.00 (dd, 1 H, \(J = 8.3, 1.0\) Hz, ArH), 7.92 (ddd, 1 H, \(J = 8.4, 7.2, 1.6\) Hz, ArH), 7.71 (td, 1 H, \(J = 7.3, 1.1\) Hz, ArH), 2.25 (s, 3 H, COCH\(_3\)).

\(^2\) L. Kraszkiewicz, L. Skulski, \textit{Arkivoc} \textbf{2003}, 120.

13C NMR (CDCl₃, 100 MHz) \(\delta 176.5, 168.2, 136.2, 133.3, 131.4, 129.4, 129.1, 118.4, 20.4. \)

The characterization data is in accordance with reported literature values.⁴

1-Cyano-1,2-benziodoxol-3-(1H)-one (3)

![Reaction Scheme](https://via.placeholder.com/150)

Following a reported procedure,⁴ 1-acetoxy-1,2-benziodoxol-3-(1H)-one (19), 10.5 g, 34.3 mmol, 1.00 equiv.) was dissolved under nitrogen in dry dichloromethane (80 mL). To the clear colorless solution was added *via* syringe trimethylsilyl cyanide (TMS-CN, 9.20 mL, 68.6 mmol, 2.00 equiv.) over a five minute time period. The reaction mixture was stirred at room temperature and under nitrogen for 72 hours. The resulting thick white suspension was filtered and the solid was washed with hexane (3 x 20 mL) and dried *in vacuo* affording 3 (8.89 g, 32.6 mmol, 95%) as a white solid.

1H NMR (DMSO-d₆, 400 MHz): \(\delta 8.29 \text{ (d, 1 H, } J = 8.3 \text{ Hz, Ar}H), 8.13 \text{ (dd, 1 H, } J = 7.4, 1.7 \text{ Hz, Ar}H), 8.06-7.97 \text{ (m, 1 H, Ar}H), 7.88 \text{ (t, 1 H, } J = 7.3 \text{ Hz, Ar}H). \)

13C NMR (DMSO-d₆, 100 MHz): \(\delta 166.7, 136.5, 132.0, 131.9, 130.2, 127.8, 117.5, 87.9. \)

IR \(\nu_{\text{max}} \): 3157 (w), 3093 (w), 2160 (w), 1629 (s), 1562 (m), 1439 (m), 1321 (s), 1298 (s), 1148 (m), 839 (m), 747 (s).

The characterization data is in accordance with reported literature values.¹

General procedure GP1 for the synthesis of β-allyl keto esters.

Following a reported procedure, potassium tert-butoxide (0.05 equiv) was added to a suspension of NaH (2.2 equiv) in diallyl carbonate 21 (2.0 equiv). The ketone 20 (1.0 equiv) was then added dropwise at 0 °C. The reaction was stirred at room temperature and followed by TLC (using the solvent mixture indicated below for the Rf value and UV or p-anisaldehyde stain for visualization). Then 1 M HCl was added until the pH of the solution became neutral or slightly acidic. The organic layers were collected and washed with brine (2 x 20 mL), dried over MgSO$_4$ and concentrated in vacuo. The crude product was purified by column chromatography, using the solvent indicated for the Rf value.

Allyl 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1a)

Following general procedure GP1, starting from commercially available 5-methoxy-2,3-dihydro-1H-inden-1-one (20a) (0.200 g, 1.23 mmol), allyl 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1a) (0.209 g, 0.851 mmol, 69% yield) was obtained as a brown solid.

Rf 0.3 (Pentane:Ethyl Acetate 3:2)

Mp: 53.5-55.9° C.

1H NMR (400 MHz, Chloroform-d) δ 7.70 (d, $J = 9.2$ Hz, 1H, ArH), 6.96 – 6.89 (m, 2H, ArH), 5.94 (ddt, $J = 17.3$, 10.5, 5.6 Hz, 1H, CHCH$_2$), 5.37 (dq, $J = 17.2$, 1.5 Hz, 1H, CHCH$_2$), 5.25 (dq, $J = 10.5$, 1.3 Hz, 1H, CHCH$_2$), 4.69 (tt, $J = 5.7$, 1.4 Hz, 2H, CH$_2$CH), 3.90 (s, 3H, OMe), 3.74 (dd, $J = 8.2$, 4.0 Hz, 1H, CH), 3.52 (dd, $J = 17.3$, 4.0 Hz, 1H, CH$_2$), 3.32 (dd, $J = 17.3$, 8.2 Hz, 1H, CH$_2$).

13C NMR (101 MHz, Chloroform-d) δ 197.4, 169.1, 165.9, 156.7, 131.7, 128.5, 126.4, 118.6, 116.0, 109.6, 66.2, 55.8, 53.5, 30.3.

IR ν_{max} 3021 (w), 3013 (w), 2842 (w), 1738 (m), 1705 (s), 1598 (s), 1491 (w), 1337 (w), 1307 (m), 1259 (s), 1224 (w), 1193 (m), 1156 (m), 1149 (m), 1105 (m), 1089 (m), 1025 (m), 989 (m).

The characterization data is corresponding to the reported values.

2-Methylallyl 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1b)

Following general procedure GP1, starting from commercially available 5-methoxy-2,3-dihydro-1H-inden-1-one (20b) (1.76 g, 10.9 mmol), 2-methylallyl 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1b) (2.17 g, 8.34 mmol, 77% yield) was obtained as a yellowish oil.

Rf 0.6 (Pentane:Ethyl Acetate 7:3).

1H NMR (400 MHz, Chloroform-d) δ 7.70 (d, $J = 9.1$ Hz, 1H, ArH), 6.96-6.92 (m, 2H, ArH), 5.03 (dd, $J = 1.6, 0.9$ Hz, 1H, CMeCH$_2$), 4.94 (m, 1H, CMeCH$_2$), 4.68 – 4.54 (m, 2H, CH$_2$CMe), 3.90 (s, 3H, OCH$_3$), 3.78 (dd, 1H, $J = 8.2, 4.0$ Hz, CH), 3.55 (dd, 1H, $J = 17.3, 4.0$ Hz, CH$_2$), 3.35 (dd, 1H, $J = 17.3, 8.2$ Hz), 1.78 (dd, $J = 1.6, 0.9$ Hz, 3H, CCH$_3$).

13C NMR (101 MHz, Chloroform-d) δ 197.3, 169.1, 165.9, 156.7, 139.6, 128.6, 126.4, 116.0, 113.3, 109.6, 68.7, 55.8, 53.5, 30.3, 19.5.

IR νmax 2978 (w), 2969 (w), 2942 (w), 1740 (m), 1706 (s), 1600 (s), 1306 (w), 1261 (s), 1156 (m), 1090 (m).

The characterization data is corresponding to the reported values.6

2-Methylallyl 5-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1c)

Following general procedure GP1, starting from commercially available 5-methyl-2,3-dihydro-1H-inden-1-one (20c) (0.50 g, 3.4 mmol), 2-methylallyl 5-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1c) (0.60 g, 2.3 mmol, 67% yield) was obtained as an orange oil.

Rf 0.66 (Pentane:Ethyl Acetate 4:1).

1H NMR (400 MHz, Chloroform-d) δ 7.66 (d, $J = 7.9$ Hz, 1H, ArH), 7.30 (s, 1H, ArH), 7.20 (d, $J = 7.9$ Hz, 1H, ArH), 5.02 (s, 1H, CMeCH$_2$), 4.96 – 4.89 (m, 1H, CMeCH$_2$), 4.69 – 4.52 (m, 2H, CH$_2$CMe), 3.75 (dd, $J = 8.2, 4.0$ Hz, 1H, CH), 3.60 – 3.44 (m, 1H, CH$_2$), 3.33 (dd, $J = 17.2, 8.2$ Hz, 1H, CH$_2$), 2.45 (s, 3H, CH$_3$), 1.77 (s, 3H, CH$_3$).

13C NMR (101.00 MHz, Chloroform-d) δ 198.8, 169.0, 154.1, 146.8, 139.6, 133.0, 129.1, 126.9, 124.5, 113.3, 68.7, 53.5, 30.2, 22.2, 19.5.

IR νmax 2933 (w), 1741 (m), 1712 (s), 1609 (m), 1269 (m), 1233 (m), 1196 (m), 1155 (m), 910 (w), 909 (w).
HRMS (ESI) calcd for C_{15}H_{17}O_3^+ [M+H]^+ 245.1172; found 245.1177.

2-Methylallyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1d)

Following general procedure GP1, starting from commercially available 2,3-dihydro-1H-inden-1-one (20d) (0.500 g, 3.78 mmol), 2-methylallyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1d) (0.653 g, 2.84 mmol, 75% yield) was obtained as a purple liquid.

R_F 0.3 (Pentane:Ethyl Acetate 3:2).

^1H NMR (400 MHz, Chloroform-d) (Ketone/Enol 1:0.2) Ketone: δ 7.78 (d, J = 7.7 Hz, 1H, ArH), 7.63 (dd, J = 8.1, 6.8 Hz, 1H, ArH), 7.51 (d, J = 7.7 Hz, 1H, ArH), 7.43 – 7.36 (m, 1H, ArH), 5.05 – 4.91 (m, 2H, CMeCH_2), 4.72 – 4.52 (m, 2H, CH_2CH), 3.77 (dd, J = 7.7 Hz, 1H, CHCH_2), 3.64 – 3.52 (m, 1H, CH_2CH), 3.40 (dd, J = 17.2, 8.2 Hz, 1H, CH_2CH), 1.78 (d, J = 1.4 Hz, 3H, CMe). Enol: δ 7.65 (m, 1H, ArH), 7.47 (d, J = 1.3 Hz, 1H, ArH), 7.44 (dd, J = 7.3, 1.4 Hz, 1H, ArH), 7.39 (m, 1H, ArH), 5.05 (d, J = 1.5 Hz, 1H, CMeCH_2), 4.98 (t, J = 1.4 Hz, 1H, CMeCH_2), 4.69 (s, 2H, CH_2CMe), 3.56 (s, 2H, CH_2), 1.82 (s, 3H, CMe).

^13C NMR (101.00 MHz, Chloroform-d) Ketone: δ 199.3, 168.8, 153.5, 139.5, 135.4, 135.3, 127.9, 126.6, 124.7, 113.4, 68.8, 53.3, 30.3, 19.5. Enol: δ 143.2, 140.0, 136.9, 129.5, 126.9, 124.8, 120.8, 112.8, 102.2, 67.1, 32.5, 29.7.7

IR ν_max 1746 (s), 1716 (s), 1464 (w), 1328 (w), 1314 (w), 1300 (w), 1286 (w), 1274 (w), 1248 (w), 1207 (m), 1186 (m), 1155 (m), 1128 (w), 991 (w), 990 (w), 917 (w), 908 (w), 765 (m).

The characterization data is corresponding to the reported values.6

2-Methylallyl 5-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1e)

Following general procedure GP1, starting from commercially available 5-bromo-2,3-dihydro-1H-inden-1-one (20e) (0.500 g, 2.37 mmol), 2-methylallyl 5-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1e) (0.501 g, 1.62 mmol, 68% yield) was obtained as a yellow solid.

R_F 0.3 (Pentane:Ethyl acetate 3:2).

M_p: 58.2-61.9 °C.

7 2C in the enol are missing, one possibly the ester.
1H NMR (400 MHz, Chloroform-d) Ketone/Enol form (1.5:1) Ketone: δ 7.69 (d, J = 1.6 Hz, 1H, ArH), 7.63 (d, J = 8.2 Hz, 1H, ArH), 7.56 – 7.51 (m, 1H, ArH), 5.02 (s, 1H, CCH2), 4.95 (s, 1H, CCH2), 4.68 – 4.54 (m, 2H, CH2C), 3.77 (dd, J = 8.3, 4.1 Hz, 1H, CH), 3.54 (dd, J = 17.4, 4.0 Hz, 1H, CH2), 3.37 (dd, J = 17.5, 8.3 Hz, 1H, CH2), 1.79 – 1.76 (m, 3H, CCH3). Enol: δ 10.31 (s, 1H, OMe), 10.24 (s, 1H, ArH). 5.05 – 5.03 (m, 1H, CCH2), 4.98 (t, J = 1.4 Hz, 1H, CCH2), 4.69 (s, 2H, CH2C), 3.53 (s, 2H, CH2), 1.82 (t, J = 1.1 Hz, 3H, CCH3).

13C NMR (101.00 MHz, Chloroform-d) δ 198.0, 168.3, 155.1, 144.9, 139.9, 139.4, 135.9, 134.1, 131.6, 131.0, 130.2, 129.9, 128.1, 125.8, 124.0, 122.0, 113.5, 113.0, 102.5, 68.9, 67.3, 53.3, 32.4, 30.0, 19.5, 19.5. 2

IR υmax 2977 (w), 2940 (w), 2934 (w), 1742 (m), 1717 (s), 1593 (m), 1585 (m), 1562 (m), 1513 (m), 1418 (m), 1316 (m), 1288 (m), 1260 (m), 1179 (s), 1159 (m), 1133 (m), 1101 (m), 992 (m), 911 (m).

The characterization data is corresponding to the reported values. 6

2-Methylallyl 6-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1f)

Following general procedure GP1, starting from commercially available 6-methoxy-2,3-dihydro-1H-inden-1-one (20f) (0.30 g, 1.9 mmol), 2-methylallyl 6-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1f) (0.30 g, 1.2 mmol, 66% yield) was obtained as a pink oil.

RF 0.43 (pentane: ethyl acetate 8:2).

1H NMR (400 MHz, Chloroform-d) (Ketone/Enol 1:0.2) Ketone δ 7.39 (dq, J = 8.3, 0.8 Hz, 1H, ArH), 7.22 (dd, J = 8.3, 2.6 Hz, 1H, ArH), 7.19 (d, J = 2.5 Hz, 1H, ArH), 5.03 (s, 1H, CMeCH2), 4.94 (s, 1H, CMeCH2), 4.68 – 4.52 (m, 2H, CH2CMe), 3.83 (s, 3H, OMe), 3.79 (dd, J = 8.1, 3.9 Hz, 1H, CH), 3.48 (ddd, J = 17.0, 4.0, 1.0 Hz, 1H, CH2), 3.32 (ddd, J = 16.9, 8.1, 0.9 Hz, 1H, CH2), 1.78 (s, 3H, CH3). Enol δ 10.38 (s, 1H, OMe), 7.35 (dd, J = 8.3, 0.7 Hz, 1H, ArH), 7.16 (d, J = 2.4 Hz, 1H, ArH), 7.00 (dd, J = 8.3, 2.5 Hz, 1H, ArH), 5.05 – 5.04 (m, 1H, CMeCH2), 4.97 (ddd, J = 2.5, 1.7, 1.0 Hz, 1H, CMeCH2), 4.69 (s, 2H, CH2CMe), 3.86 (s, 3H, OMe), 3.50 (s, 2H, CH2), 1.82 (dd, J = 1.6, 0.9 Hz, 3H, CH3).

13C NMR (101 MHz, Chloroform-d) Ketone δ 199.3, 168.9, 159.7, 146.5, 139.5, 136.5, 127.2, 125.0, 113.4, 105.7, 68.8, 55.7, 54.0, 29.7, 19.5. Enol δ 159.2, 140.0, 138.0, 135.5, 125.4, 117.2, 112.8, 104.5, 103.3, 67.1, 55.6, 31.8, 19.5. 9

IR υmax 2942 (w), 2941 (w), 1740 (m), 1711 (s), 1493 (w), 1438 (w), 1277 (m), 1229 (m), 1211 (m), 1187 (w), 1186 (w), 1156 (m), 1029 (w), 910 (s), 733 (s).

8 Aromatic C of the enol form are not resolved.
9 2 C in the aromatic region of the enol form are not resolved.
2-Methylallyl 6-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1g)

Following general procedure GP1, starting from commercially available 6-chloro-2,3-dihydro-1H-inden-1-one (20g) (0.50 g, 3.0 mmol), 2-methylallyl 6-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1g) (0.59 g, 2.2 mmol, 74% yield) was obtained as pink solid.

R_f 0.3 (Pentane:Ethyl Acetate 3:2).

Mp: 71.5-73.7° C.

^1^H NMR (400 MHz, Chloroform-d) Ketone/enol ratio (1:0.5) Ketone δ 7.73 (d, J = 2.1 Hz, 1H, ArH), 7.58 (dd, J = 8.2, 2.1 Hz, 1H, ArH), 7.39 (d, J = 1.3 Hz, 1H, ArH), 5.04 – 5.00 (s, 1H, CH), 4.68 – 4.52 (m, 2H, CH₂C), 3.80 (dd, J = 8.2, 4.0 Hz, 1H, CH), 3.54 (dd, J = 17.3, 4.0, 1H, CH₂), 3.36 (dd, J = 17.4, 8.1 Hz, 1H, CH₂), 1.77 (s, 3H, CH₃).

Enol: δ 10.25 (s, 1H, O), 7.62 (s, 1H, ArH), 7.45 (d, J = 8.1 Hz, 2H, ArH), 5.05 (s, 1H, CH₂C), 4.98 (s, 1H, CH₂), 4.69 (s, 2H, CH₂C), 3.54 (s, 2H, CH₂), 1.82 (d, J = 1.5 Hz, 3H, CH₃).

^13^C NMR (101.00 MHz, Chloroform-d) δ 198.0, 168.3, 151.6, 141.2, 139.9, 139.4, 138.6, 136.8, 135.5, 134.3, 133.1, 129.4, 127.7, 125.8, 124.4, 120.9, 113.5, 113.0, 103.7, 69.0, 67.3, 53.7, 32.3, 29.9, 19.5, 19.4.¹⁰

IR ν_max 2975 (w), 2935 (w), 2861 (w), 2860 (w), 1745 (m), 1720 (s), 1652 (m), 1620 (m), 1592 (m), 1568 (m), 1339 (m), 1255 (s), 1201 (s), 1187 (s), 1166 (m), 1131 (m), 1107 (m), 907 (w), 777 (w).

The characterization data is corresponding to the reported values.⁶

2-Methylallyl 6-trifluoromethyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1h)

Following general procedure GP1, starting from commercially available 6-(trifluoromethyl)-2,3-dihydro-1H-inden-1-one (20h) (0.23 mL, 1.5 mmol), 2-methylallyl 1-oxo-6-(trifluoromethyl)-2,3-dihydro-1H-indene-2-carboxylate (1h) (0.32 g, 1.1 mmol, 71% yield) was obtained as pink solid.

¹⁰ 2 aromatic C of the enol form are not resolved.
R_f 0.25 (Pentane:Ethyl Acetate 9:1).

Mp: 56.7-59.2° C.

¹H NMR (400 MHz, Chloroform-d) (Ketone/enol 0.5:1) Ketone δ 8.05 (d, J = 1.7 Hz, 1H, ArH), 7.66 (d, J = 8.2 Hz, 2H, ArH), 7.50 – 5.02 (m, 1H, CCH₂), 4.96 (t, J = 1.5 Hz, 1H, CCH₂), 4.65 (s, 1H, CH₂), 4.58 (d, J = 13.0 Hz, 1H, CCH₂), 3.85 (dd, J = 8.3, 4.0 Hz, 1H, CH₂), 3.71 – 3.64 (m, 1H, CH₂), 3.46 (dd, J = 17.7, 7.9 Hz, 1H, CH₂), 1.81 – 1.76 (m, 3H, CH₂).</p>
Enol: δ 10.29 (s, 1H, OH), 7.93 – 7.90 (m, 1H, ArH), 7.88 (dd, J = 8.2, 1.7 Hz, 1H, ArH), 7.59 (d, J = 7.9 Hz, 1H, ArH), 5.06 (p, J = 1.2 Hz, 1H, CMeCH₂), 5.00 (q, J = 1.3 Hz, 1H, CMeCH₂), 4.71 (s, 2H, CH₂), 3.63 (s, 2H, CH₂), 1.86 – 1.80 (m, 3H, CCH₃).

¹³C NMR (101 MHz, Chloroform-d) δ 198.0, 168.6, 168.5, 168.1, 156.6, 146.5, 139.8, 139.3, 137.6, 135.7, 131.9 (q, J = 3.6 Hz), 130.7 (t, J = 33.1 Hz), 129.7 (d, J = 32.4 Hz), 127.4, 126.10 (q, J = 3.8 Hz), 125.1, 124.2 (q, J = 272.2 Hz), 123.6 (q, J = 273 Hz), 122.0 (q, J = 4.0 Hz), 117.9 (q, J = 3.9 Hz), 113.6, 113.1, 103.7, 69.1, 67.4, 53.5, 32.8, 30.4, 19.5, 19.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.1, -62.6.

IR <i>ν_{max}</i> 2944 (w), 1724 (m), 1657 (m), 1324 (s), 1269 (s), 1254 (m), 1215 (m), 1189 (m), 1164 (s), 1128 (s), 1103 (s), 909 (m).

The characterization data is corresponding to the reported values.⁶

2-Methylallyl 6-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1i)

Following general procedure GP1, starting from commercially available 5-fluoro-2,3-dihydro-1H-inden-1-one (20i) (0.50 g, 3.3 mmol), 2-methylallyl 5-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1i) (0.50 g, 1.9 mmol, 57% yield) was obtained as a brown oil.

R_f 0.3 (Dichloromethane:Pentane 3:2).

¹H NMR (400 MHz, Chloroform-d) (Ketone/Enol 1:0.4) Ketone δ 7.48 (dd, J = 8.4, 4.4 Hz, 1H, ArH), 7.41 (dd, J = 7.3, 2.4 Hz, 1H, ArH), 7.36 (dd, J = 8.5, 2.6 Hz, 1H, ArH), 5.03 (s, 1H, CCH₂), 4.95 (s, 1H, CCH₂), 4.68 – 4.54 (m, 2H, OCH₂), 3.82 (dd, J = 8.2, 4.0 Hz, 1H, CH₂), 3.58 – 3.49 (m, 1H, CH₂), 3.36 (ddt, J = 17.1, 8.2, 1.2 Hz, 1H, CH₂), 1.78 (t, J = 1.1 Hz, 3H, CH₃).</p>
Enol δ 7.39 (m, 1H, ArH), 7.34 – 7.30 (m, 1H, ArH), 7.12 (dd, J = 9.3, 8.3, 2.5 Hz, 1H, ArH), 5.05 (t, J = 1.2 Hz, 1H, CCH₂), 4.98 (t, J = 1.4 Hz, 1H, CCH₂), 4.70 (s, 2H, OCH₂C), 3.51 (s, 2H, CH₂), 1.82 (t, J = 1.1 Hz, 3H, CH₃).

¹³C NMR (101 MHz, Chloroform-d) Ketone: δ 198.3, 168.4, 162.5 (d, J = 248.8 Hz), 148.9 (d, J = 2.2 Hz), 139.4, 137.0 (d, J = 7.7 Hz), 127.9 (d, J = 8.0 Hz), 123.2 (d, J = 23.8 Hz), 113.5, 110.5 (d, J = 22.2 Hz), 68.9, 54.1, 29.8, 19.4. Enol: δ 162.3 (d, J = 244.7 Hz), 148.9, 139.9,
138.7, 138.5 (d, J = 2.4 Hz), 125.8 (d, J = 8.8 Hz), 116.6 (d, J = 23.3 Hz), 113.0, 107.7 (d, J = 23.8 Hz), 104.1, 67.3, 32.0, 19.5.

IR \(\nu_{\text{max}} \) 3075 (w), 2937 (w), 1742 (m), 1718 (s), 1655 (m), 1577 (m), 1488 (m), 1262 (s), 1198 (s), 1147 (s).

HRMS (ESI) calcd for C\(_{14}\)H\(_{14}\)FO\(_3\)^+ [M+H]^+ 249.0921; found 249.0927

2-Methylallyl 4-bromo-1-oxo-2,3-dihydro-1\(H\)-indene-2-carboxylate (1j)

Following general procedure GP1, starting from commercially available 4-bromo-2,3-dihydro-1\(H\)-inden-1-one (20j) (0.50 g, 2.4 mmol), 2-methylallyl 4-bromo-1-oxo-2,3-dihydro-1\(H\)-indene-2-carboxylate (1j) (0.60 g, 2.0 mmol, 83\% yield) was obtained as a pink solid.

\(R_F \) 0.3 (Pentane:Ethyl Acetate 9:1).

\textbf{Mp}: 51-54°C.

\textbf{\(^1\text{H NMR} \) (400 MHz, Chloroform-\(d \)) (Ketone/Enol 1:0.5) Ketone} \(\delta \) 7.90 (dd, \(J = 7.8, 0.9 \) Hz, 1H, ArH), 7.41 (dd, \(J = 8.9, 7.0 \) Hz, 1H, ArH), 7.38 (d, \(J = 9.5 \) Hz, 1H, ArH), 5.14 (t, \(J = 1.3 \) Hz, 1H, CMeCH\(_2\)), 5.06 (s, 1H, CMeCH\(_2\)), 4.77 (d, \(J = 13.0 \) Hz, 1H, CH\(_2\)CMe), 4.69 (d, \(J = 13.0 \) Hz, 1H, CH\(_2\)CMe), 3.91 (dd, \(J = 8.3, 4.0 \) Hz, 1H, CH), 3.60 (m, 1H, CH\(_2\)), 3.44 (dd, \(J = 17.8, 8.3 \) Hz, 1H, CH\(_2\)), 1.89 (t, \(J = 1.1 \) Hz, 3H, CH\(_3\)). \textbf{Enol} \(\delta \) 10.40 (s, 1H, OH), 7.83 (d, \(J = 7.5 \) Hz, 1H, ArH), 7.68 (m, 2H, ArH), 5.16 (t, \(J = 1.4 \) Hz, 1H, CMeCH\(_2\)), 5.12 – 5.07 (m, 1H, CMeCH\(_2\)), 4.81 (s, 2H, CH\(_2\)CMe), 3.62 (s, 2H, CH\(_2\)), 1.94 (d, \(J = 1.3 \) Hz, 3H, CH\(_3\)).

\textbf{\(^{13}\text{C NMR} \) (101.00 MHz, Chloroform-\(d \)) Ketone}: \(\delta \) 198.5, 168.3, 138.2, 132.5, 129.6, 128.8, 123.51, 119.9, 113.6, 113.1, 69.0, 53.2, 31.4, 19.5. \textbf{Enol}: \(\delta \) 153.2, 143.1, 139.9, 139.4, 138.5, 137.2, 122.0, 119.7, 102.9, 67.4, 34.1, 19.5.

IR \(\nu_{\text{max}} \) 3082 (w), 2979 (w), 1748 (s), 1723 (s), 1656 (m), 1563 (m), 1456 (m), 1262 (s), 1235 (s), 1188 (s), 910 (m), 772 (m).

HRMS (ESI) calcd for C\(_{14}\)H\(_{13}\)\(^{79}\)BrNaO\(_3\)^+ [M+Na]^+ 330.9940; found 330.9943

11 \(^{13}\)C in the enol form is not resolved.

12 Two C of the aromatic region of the enol form are not resolved.
3.1 Synthesis of substrates 1k, 1l and 1m.

![Chemical structure](image)

Ethyl 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (26)

Following a reported procedure, potassium tert-butoxide (6.9 mg, 0.062 mmol, 0.0050 equiv.) was added to a suspension of NaH (1.1 g, 27 mmol, 2.2 equiv.) and diethyl carbonate (7.5 mL, 62 mmol, 5.0 equiv.). Commercially available 5-Methoxy-2,3-dihydro-1H-inden-1-one (20b) (2.0 g, 12 mmol) was then added carefully at 0 °C. The reaction was stirred at room temperature and followed by TLC. The n 1 M HCl was added until the pH of the solution became neutral or slightly acidic. The organic layers were collected and washed with brine (2 x 20 mL), dried over MgSO₄ and concentrated in vacuum. The crude product was purified by column chromatography (7:3 Pentane/Ethyl acetate) to afford the pure compound 22 (2.8 g, 12 mmol, 96% yield) as a yellow resin.

1H NMR (400 MHz, Chloroform-d) δ 7.70 (d, J = 9.1 Hz, 1H, ArH), 6.94 – 6.89 (m, 2H, ArH), 4.29 (dd, 1H, J = 7.2, 0.9 Hz, CH₂CH₃), 4.25 (dd, 1H, J = 7.2, 0.8 Hz, CH₂CH₃), 3.89 (s, 3H, OMe), 3.70 (dd, J = 8.2, 3.9 Hz, 1H, CH), 3.50 (ddt, J = 17.2, 4.0, 1.0 Hz, 1H, CH₂), 3.33 (dd, 1H, J = 17.3, 8.1 Hz, CH₂), 1.31 (t, J = 7.1 Hz, 3H, CH₂CH₃).

The characterization data for compounds 22 is corresponding to the reported values.

2-(((tert-Butyldiphenylsilyl)oxy)methyl)prop-2-en-1-ol (24)

Following a reported procedure, 2-methylenepropane-1,3-diol 23 (0.50 mL, 6.1 mmol) was dissolved in THF (15 mL), the solution was cooled at 0 °C before the addition of NaH (0.25 g 60% dispersed in mineral oil, 6.1 mmol, 1.0 equiv.). After 1 h, TBDPSCI (1.6 mL, 6.1 mmol, 1.0 equiv.) was added and the reaction was stirred at room temperature for 18-20 h. The solution was then cooled to 0 °C and quenched with iced water and then extracted with diethyl ether (3 x 50 mL). The organic layers are recombined and washed with a saturated solution of K₂CO₃ (50 mL), brine (50 mL) and dried over Na₂SO₄. Evaporation of the solvent afforded compound 24 (2.0 g, 6.1 mmol, 99% yield) as a colorless oil which was used without further purification for the transesterification.

1H NMR (400 MHz, Chloroform-d) δ 7.82 – 7.62 (m, 4H, Ph), 7.52 – 7.30 (m, 6H, Ph), 5.16 (s, 1H, CH₂), 5.12 (s, 1H, CH₂), 4.26 (s, 2H, CH₂C), 4.20 – 4.16 (m, 2H, CH₂C), 1.08 (s, 9H, tBu).

The characterization data for compounds 24 is corresponding to reported values.

2-(((tert-Butyldiphenylsilyl)oxy)methyl)allyl 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1k)

Substrate 1k was synthetized following a reported procedure, in a 2 neck 50 mL flask compound 22 (0.30 g, 1.3 mmol) DMAP (0.16 g, 1.3 mmol, 1.0 equiv.), 2-(((tert-butyldiphenylsilyl)methyl)prop-2-en-1-ol (24) (0.44 g, 1.4 mmol, 1.1 equiv.) and c.a 200-300 mg of activated 5Å MS were suspended in dry toluene (6.5 mL, 0.2 M) and the reaction mixture heated to reflux till disappearance of the starting material (TLC Pentane:Ethyl Acetate 4:1). The reaction was quenched with 1 M HCl and water; the aqueous layer was extracted with diethyl ether (2 x 30 mL). The organic layers were collected and washed with NaHCO₃ and then dried over MgSO₄. Filtration and removal of the solvent under reduced pressure afforded the crude product which was purified by column chromatography (Pentane:Ethyl Acetate 4:1). The title compound 1k (0.28 g, 0.53 mmol, 42% yield) was obtained as a colorless oil

1H NMR (400 MHz, Chloroform-d) δ 7.71 – 7.64 (m, 4H, Ph+ ArH), 7.46 – 7.33 (m, 7H, PhH), 6.91 (ddd, J = 8.6, 1.9, 1.1 Hz, 1H, ArH), 6.90 – 6.88 (m, 1H, ArH), 5.30 (s, 1H, CMeCH₂), 5.22 (s, 1H, CMeCH₂), 4.77 – 4.67 (m, 2H, CH₂CMe), 4.21 (dt, J = 2.2, 1.4 Hz, 2H, CH₂OTBDPS), 3.89 (s, 3H, OMe), 3.68 (dd, J = 8.2, 4.0 Hz, 1H, CH), 3.44 (dd, J = 17.3, 4.1 Hz, 1H, CH₂), 3.33 – 3.21 (m, 1H, CH₂), 1.05 (s, 9H, 'Bu).

13C NMR (101 MHz, Chloroform-d) δ 197.2, 169.0, 165.9, 156.6, 142.3, 135.5, 133.4, 129.7, 128.5, 127.7, 126.4, 115.9, 113.1, 109.6, 65.6, 64.5, 55.8, 53.4, 30.3, 26.8, 19.3.

IR νmax 2956 (w), 2932 (w), 2858 (w), 1744 (w), 1709 (s), 1600 (s), 1261 (s), 1111 (s), 1090 (m).

The characterization data is corresponding to the reported values.

2-Phenylprop-2-en-1-ol (26)

Following a reported procedure, phenylmagnesium bromide (69 mL, 90 mmol, 3 equiv.) was added dropwise to a cooled (-78 °C) mixture of prop-2-yn-1-ol (25) (1.2 ml, 30 mmol) and copper(I) iodide (2.86 g, 15.0 mmol, 0.5 equiv.) in THF (40.0 mL). The resultant reaction
mixture was allowed to slowly warm to room temperature and stirred for 16 h. The reaction mixture was then cooled to 0 °C and quenched with sat. ammonium chloride (20 mL) and then extracted with diethyl ether (3 x 30 mL). The combined organic extracts were dried over anhydrous Na$_2$SO$_4$ and then concentrated under reduced pressure. Flash chromatography over silica gel (Hexane:EtOAc 80:20) afforded the desired compound 26 (3.1 g, 23 mmol, 77% yield) as a colorless oil.

R$_F$ 0.4 (Hexanes:Ethyl Acetate 75:25).

1H NMR (400 MHz, Chloroform-$_d$) δ 7.55–7.45 (m, 2H, Ph), 7.45–7.30 (m, 3H, Ph), 5.50 (s, 1H, CCH$_2$), 5.39 (s, 1H, CCH$_2$), 4.55 (s, 2H, CH$_2$C), 2.28 (br, 1H, OH).

The characterization data for compounds 26 corresponded to the reported values.15

2-Phenylallyl 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (11)

Substrate 11 was synthetized following a reported procedure,13 in a 2 neck 25 mL flask compound 22 (0.368 g, 2.00 mmol), DMAP (0.244 g, 2.00 mmol, 1.0 equiv.), 2-phenylprop-2-en-1-ol (26) (0.282 g, 2.10 mmol, 2.1 equiv.) and c.a 200-300 mg of activated 5Å MS were suspended in toluene (11.0 mL) and the reaction mixture heated to reflux until disappearance of the starting material (TLC Pentane:Ethyl Acetate 4:1). The reaction was quenched with 1 M HCl and water; the aqueous layer was extracted with diethyl ether (2 x 30 mL). The organic layers were collected and washed with NaHCO$_3$ and brine and then dried over MgSO$_4$. Filtration and removal of the solvent under reduced pressure afforded the title compound 11 (0.121 g, 0.375 mmol, 19% yield) that was obtained as a colorless oil used without further purification in the following step.

R$_F$ 0.2 (Pentane:Ethyl Acetate 2:1)

1H NMR (400 MHz, Chloroform-$_d$) δ 7.70 (d, J = 8.5 Hz, 1H, ArH), 7.48 – 7.40 (m, 3H, Ph), 6.95 – 6.85 (m, 2H, ArH), 5.55 (s, 1H, CPhCH$_2$), 5.44 (s, 1H, CPhCH$_2$), 5.15 – 5.01 (m, 2H, CH$_2$CPh), 3.89 (s, 3H, OMe), 3.74 (dd, J = 8.2, 3.9 Hz, 1H, CH), 3.44 (dd, J = 17.3, 3.9 Hz, 1H, CH$_2$), 3.28 (dd, J = 17.3, 8.2 Hz, 1H, CH$_2$).16

13C NMR (101 MHz, Chloroform-$_d$) δ 197.4, 169.3, 166.0, 156.7, 142.2, 138.1, 128.6, 128.2, 126.5, 126.2, 116.1, 115.4, 112.7, 109.7, 66.7, 55.9, 53.6, 30.4.

IR ν_{max} 3060 (w), 2941 (w), 2842 (w), 1741 (m), 1705 (s), 1600 (s), 1493 (w), 1307 (w), 1262 (s), 1156 (w), 1091 (m), 1027 (w)

16The compound was used in the next step without further purifications, compound 5l was obtained in a 1:0.78 ratio mixture with compound 30.
HRMS (ESI) calcd for C_{20}H_{19}O_{4}^+ [M+H]^+ 323.1278; found 323.1276.

2-Chloroallyl 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1m)

Substrate 1m was synthesized following a reported procedure, in a 2-neck 50 mL flask.

4. General procedures for the synthesis of α-substituted allyl β-keto esters.

General procedure GP2 for the synthesis of α-azido allyl β-keto esters.

In an open flask allyl β-keto ester 1 in toluene (1 M) is stirred for 1-2 minutes before the addition in one portion of the hypervalent iodine reagent 2 (1.3 equiv.). The reaction was stirred at room temperature till disappearance of the starting material by TLC. Upon completion the reaction was directly purified by flash chromatography in 100% pentane and then following the polarity of the R_F indicated for each compound.

Figure S1. Scope of the α-azidation of β-allyl keto esters with hypervalent iodine reagents.

Allyl 2-azido-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4a)

Following general procedure GP2, starting from 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1a) (0.52 g, 2.1 mmol), allyl 2-azido-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4a) (0.470 g, 1.65 mmol, 78% yield) was obtained as a brown solid

RF 0.3 (Pentane:Ethyl Acetate 9:1).

Mp = 55-57°C

1H NMR (400 MHz, Chloroform-d) δ 7.68 (d, $J = 8.6$ Hz, 1H, ArH), 6.92 (dd, $J = 8.6$, 2.3 Hz, 1H, ArH), 6.86 (d, $J = 2.4$ Hz, 1H, ArH), 5.80 (m, $J = 17.2$, 10.5, 5.6 Hz, 1H, CHCH$_2$), 5.28 – 5.09 (m, 2H, CHCH$_2$), 4.72 – 4.57 (m, 2H, CH$_2$CH), 3.86 (s, 3H, OMe), 3.59 (d, $J = 17.4$ Hz, 1H, CH$_2$), 2.93 (dd, $J = 17.4$, 0.9 Hz, 1H, CH$_2$).

13C NMR (101 MHz, Chloroform-d) δ 195.2, 168.4, 166.8, 155.3, 130.9, 127.3, 125.9, 119.0, 116.7, 109.6, 70.5, 66.9, 55.9, 38.4.

IR ν_{max} 3080 (w), 2944 (w), 2844 (w), 2108 (s), 1747 (m), 1711 (s), 1599 (s), 1307 (w), 1264 (s), 1231 (s), 1184 (m), 1152 (w), 1091 (m), 1045 (m), 1026 (m), 929 (w).

HRMS (ESI) calcd for C$_{14}$H$_{13}$N$_3$NaO$_4$ $^+$ [M+Na]$^+$ 310.0798; found 310.0795.
2-Methylallyl 2-azido-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4b)

Following general procedure GP2, starting from 2-methylallyl 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1b) (1.0 g, 3.9 mmol), 2-methylallyl 2-azido-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4b) (1.1 g, 3.8 mmol, 96% yield) was obtained as a yellow solid.

Rf 0.35 (Pentane:Ethyl Acetate 4:1).

Mp: 41-44°C.

1H NMR (400 MHz, Chloroform-d) δ 7.76 (d, $J = 8.6$ Hz, 1H, ArH), 6.97 (dd, $J = 8.6$, 2.2 Hz, 1H, ArH), 6.88 (d, $J = 2.3$ Hz, 1H, ArH), 4.91 (s, 2H, CCH$_2$), 4.63 (s, 2H, CH$_2$CMe), 3.91 (s, 3H, OMe), 3.64 (d, $J = 17.3$ Hz, 1H, CH$_2$), 2.99 (d, $J = 17.3$ Hz, 1H, CH$_2$), 1.69 (d, $J = 1.2$ Hz, 3H, CH$_3$).

13C NMR (101 MHz, Chloroform-d) δ 195.2, 168.5, 166.7, 155.2, 138.8, 127.4, 126.1, 116.6, 113.9, 109.6, 70.6, 69.7, 55.9, 38.5, 19.3.

IR ν_{max} 2108 (m), 1748 (m), 1710 (m), 1599 (s), 1493 (w), 1448 (w), 1342 (w), 1306 (w), 1265 (s), 1230 (m), 1184 (m), 1148 (w), 1092 (w), 1024 (w), 982 (w), 909 (w), 850 (w), 737 (w).

HRMS (ESI) calcd for C$_{15}$H$_{15}$N$_3$NaO$_4^+$ [M+Na]$^+$ 324.0955; found 324.0961.

2-Methylallyl 2-azido-5-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4c)

Following general procedure GP2, starting from 2-methylallyl 5-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1c) (0.158 g, 0.647 mmol), 2-methylallyl 2-azido-5-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4c) (0.162 g, 0.568 mmol, 88% yield) was obtained as a yellow solid.

Rf 0.52 (Pentane:Ethyl Acetate 4:1).

Mp: 36-39°C.

1H NMR (400 MHz, Chloroform-d) δ 7.24 – 7.20 (m, 1H, ArH), 6.79 – 6.72 (m, 2H, ArH), 4.40 (s, 2H, CMeCH$_2$), 4.12 (s, 2H, CH$_2$CMe), 3.15 (d, $J = 17.3$ Hz, 1H, CH$_2$), 2.50 (d, $J = 17.3$ Hz, 1H, CH$_2$), 1.97 (s, 3H, ArCH$_3$), 1.18 (s, 3H, CH$_3$).
13C NMR (101 MHz, Chloroform-d) δ 196.7, 168.3, 152.5, 148.2, 138.8, 130.8, 129.8, 126.8, 125.4, 113.9, 70.5, 69.7, 38.4, 22.3, 19.3.

IR v_{max} 2974 (w), 2973 (w), 2938 (w), 2938 (w), 2109 (s), 2108 (s), 1748 (s), 1716 (s), 1609 (m), 1270 (s), 1225 (s), 1181 (s), 1045 (m), 908 (m), 754 (m), 744 (m), 737 (m).

HRMS (APPI) calcd for C$_{15}$H$_{16}$NO$_3$ $^{+}$ [M-N$_2$]$^+$ 258.1125; found 258.1126

2-Methylallyl 2-azido-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4d)

Following general procedure GP2, starting from 2-methylallyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1d) (0.25 g, 1.1 mmol), 2-methylallyl 2-azido-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4d) (0.10 g, 1.1 mmol, >99% yield) was obtained as a yellow oil

R$_f$ 0.33 (Dichloromethane:Pentane 5:1).

1H NMR (400 MHz, Chloroform-d) δ 7.84 (dt, $J = 7.7$, 1.0 Hz, 1H, ArH), 7.68 (dd, $J = 7.6$, 1.2 Hz, 1H, ArH), 7.53 – 7.40 (m, 2H, ArH), 4.93 – 4.84 (m, 2H, CCH$_2$), 4.62 (s, 2H, C$_2$H$_2$C), 3.70 (d, $J = 17.3$ Hz, 1H, CH$_2$), 3.06 (d, $J = 17.3$ Hz, 1H, CH$_2$), 1.67 (s, 3H, CCH$_3$).

13C NMR (101 MHz, Chloroform-d) δ 197.4, 168.2, 152.0, 138.7, 136.5, 133.1, 128.5, 126.4, 125.6, 114.0, 70.3, 69.8, 38.6, 19.3.

IR v_{max} 3057 (w), 2985 (w), 2114 (w), 1750 (w), 1723 (w), 1266 (m), 1228 (w), 1185 (w), 738 (s).

HRMS (ESI) calcd for C$_{14}$H$_{14}$NO$_3$ $^{+}$ [M-N$_2$+H]$^+$ 244.0968; found 244.0957.

2-Methylallyl 2-azido-5-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4e)

Following general procedure GP2, starting from 2-methylallyl 5-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1e) (0.11 g, 0.36 mmol), 2-methylallyl 2-azido-5-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4e) (0.10 g, 0.29 mmol, 80 % yield) was obtained as a yellow solid.

R$_f$ 0.52 (Pentane:Ethyl Acetate 9:1).

Mp: 71-73°C.

1H NMR (400 MHz, Chloroform-d) δ 7.69 (d, $J = 8.2$ Hz, 1H, ArH), 7.66 (d, $J = 1.3$ Hz, 1H, ArH), 7.60 (dd, $J = 8.2$, 1.5 Hz, 1H, ArH), 4.92 (s, 1H, CCH$_2$), 4.90 (s, 1H, CCH$_2$), 4.63 (s, 2H,
CH_2CMe, 3.67 (d, $J = 17.5$ Hz, 1H, CH_2), 3.03 (d, $J = 17.5$ Hz, 1H, CH_2), 1.69 (t, $J = 1.1$ Hz, 3H, CH_3).

$\text{^{13}C NMR}$ (101 MHz, Chloroform-d) δ 196.3, 167.8, 153.4, 138.6, 132.2, 132.2, 131.9, 129.8, 126.7, 114.2, 70.2, 70.0, 38.2, 19.3.

$\text{IR } \nu_{\text{max}}$ 2946 (w), 2919 (w), 2114 (s), 1752 (s), 1726 (s), 1681 (w), 1597 (m), 1264 (s), 1230 (s), 1183 (m), 911 (m), 910 (m).

HRMS (APPI) calcd for C$_{14}$H$_{13}$N$_2$O$_3$ $[\text{M+H}]^+$ 349.0062; found [M-N$_2$+H]$^+$ 322.0072.

2-Methylallyl 2-azido-6-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4f)

Following general procedure GP2, starting from 2-methylallyl 6-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1f) (0.15 g, 0.58 mmol), 2-methylallyl 2-azido-6-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4f) (0.12 g, 0.41 mmol, 70% yield) was obtained as yellow solid.

Rf 0.85 (Pentane:Ethyl Acetate 4:1).

Mp: 50-53°C

^1H NMR (400 MHz, Chloroform-d) 7.36 (d, $J = 8.4$ Hz, 1H, ArH), 7.27 (dd, $J = 8.4$, 2.6 Hz, 1H, ArH), 7.23 (d, $J = 2.5$ Hz, 1H, ArH), 4.90 (m, 2H, CMe$_2$CH$_2$), 4.62 (s, 2H, CH$_2$CMe), 3.85 (s, 3H, OMe), 3.62 (d, $J = 17.0$ Hz, 1H, CH$_2$), 2.98 (d, $J = 16.9$ Hz, 1H, CH$_2$), 1.68 (t, $J = 1.2$ Hz, 3H, CH$_3$).

$\text{^{13}C NMR}$ (101 MHz, Chloroform-d) δ 197.3, 168.2, 160.1, 145.0, 138.7, 134.2, 127.1, 126.0, 113.9, 106.4, 71.0, 69.7, 55.7, 38.0, 19.3.

$\text{IR } \nu_{\text{max}}$ 3081 (w), 2943 (w), 2841 (w), 2112 (s), 1748 (s), 1302 (m), 1275 (s), 1228 (s), 1180 (s), 1029 (m).

HRMS (APPI) calcd for C$_{15}$H$_{16}$N$_3$O$_4$ $[\text{M+H}]^+$ 302.1135; found 302.1136.

2-Methylallyl 2-azido-6-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4g)

Following general procedure GP2, starting from 2-methylallyl 6-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1g) (0.167 g, 0.631 mmol), 2-methylallyl 2-azido-6-chloro-1-oxo-2,3-
dihydro-1H-indene-2-carboxylate (4g) (0.154 g, 0.504 mmol, 80% yield) was obtained as a dark brown oil.

Rf 0.4 (Dichloromethane:Pentane 1:1).

\(^1\)H NMR (400 MHz, Chloroform-d) \(\delta 7.79 (d, J = 2.0 \text{ Hz}, 1\text{H, ArH}), 7.64 (dd, J = 8.2, 2.1 \text{ Hz}, 1\text{H, ArH}), 7.42 (dd, J = 8.2, 0.8 \text{ Hz}, 1\text{H, ArH}), 4.92 (m, 1\text{H, CMeCH}_2), 4.63 (s, 2\text{H, CH}_2\text{CMe}), 3.66 (d, J = 17.6 \text{ Hz}, 1\text{H, CH}_2), 3.02 (dd, J = 17.4, 0.9 \text{ Hz}, 1\text{H, CH}_2), 1.78 – 1.60 (m, 3\text{H, CH}_3).

\(^13\)C NMR (101 MHz, Chloroform-d) \(\delta 196.3, 167.8, 150.1, 138.6, 136.5, 134.9, 134.6, 127.6, 125.2, 114.2, 70.7, 70.0, 38.2, 19.3.

IR \(\nu_{\text{max}}\) 3086 (w), 2954 (w), 2941 (w), 2114 (s), 1752 (s), 1724 (s), 1469 (w), 1429 (m), 1252 (s), 1227 (s), 1197 (s), 1185 (s), 1110 (w), 1047 (m), 910 (m), 826 (w), 714 (m).

HRMS (ESI) calcd for C\(_{14}\)H\(_{13}\)ClNO\(_3\) \([\text{M+H}]^+\) 278.0578; found 278.0581.

2-Methylallyl 2-azido-1-oxo-6-(trifluoromethyl)-2,3-dihydro-1H-indene-2-carboxylate (4h)

\[
\text{F}_3\text{C} \quad \text{O} \quad \text{N}_3 \quad \text{O} \quad \text{Me} \\
\text{4h}
\]

Following general procedure GP2, starting from 2-methylallyl 1-oxo-6-(trifluoromethyl)-2,3-dihydro-1H-indene-2-carboxylate (1h) (0.25 g, 0.83 mmol), 2-methylallyl 2-azido-1-oxo-6-(trifluoromethyl)-2,3-dihydro-1H-indene-2-carboxylate (4h) (0.20 g, 0.60 mmol, 72% yield) was obtained as dark brown oil.

Rf 0.35 (Pentane:Ethyl Acetate 9:1).

\(^1\)H NMR (400 MHz, Chloroform-d) \(\delta 8.08 (s, 1\text{H, ArH}), 7.93 (dd, J = 8.1, 1.7 \text{ Hz}, 1\text{H, ArH}), 7.64 (d, J = 8.1 \text{ Hz}, 1\text{H, ArH}), 4.93 (t, J = 1.4 \text{ Hz}, 1\text{H, CMeCH}_2), 4.90 (q, J = 1.2 \text{ Hz}, 1\text{H, CMeCH}_2), 4.63 (s, 2\text{H, CH}_2\text{CMe}), 3.76 (d, J = 17.8 \text{ Hz}, 1\text{H, CH}_2), 3.12 (d, J = 17.7 \text{ Hz}, 1\text{H, CH}_2), 1.67 (t, J = 1.1 \text{ Hz}, 3\text{H, CH}_3).

\(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta 196.4 , 167.6 , 155.1 , 138.5 , 133.5 , 132.8 (d, J = 3.5 \text{ Hz}), 131.4 (q, J = 33.5 \text{ Hz}), 127.3 , 123.5 (q, J = 272.9 \text{ Hz}), 122.8 (q, J = 4.0 \text{ Hz}), 114.3 , 70.4 , 70.1 , 38.6 , 19.3 .

\(^19\)F NMR (376 MHz, CDCl\(_3\)) \(\delta -62.7 .

IR \(\nu_{\text{max}}\) 2982 (w), 2945 (w), 2116 (m), 1752 (m), 1729 (m), 1626 (w), 1332 (s), 1254 (s), 1228 (m), 1173 (s), 1131 (s), 1054 (m), 912 (m).

HRMS (ESI) calcd for C\(_{15}\)H\(_{12}\)F\(_3\)N\(_3\)NaO\(_3\) \([\text{M+Na}]^+\) 362.0728; found 362.0731.
2-Methylallyl 2-azido-6-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4i)

Following general procedure GP2, starting from 2-methylallyl 6-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1i) (0.20 g, 0.80 mmol), 2-methylallyl 2-azido-6-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4i) (0.21 g, 0.75 mmol, 93% yield) was obtained as a yellow oil.

RF 0.3 (Dichloromethane:Pentane 5:1).

\[^1 \text{H NMR (400 MHz, Chloroform-}d) \delta 7.52 – 7.35 (m, 3H, ArH), 4.91 (m, 1H, CCH_2), 4.89 (m, 1H, CCH_2), 4.63 (s, 2H, CH_2CMe) 3.66 (dt, J = 17.1, 1.1 Hz, 1H, CH_2), 3.02 (dt, J = 17.2, 1.3 Hz, 1H, CH_2), 1.68 (t, J = 1.1 Hz, 3H, CH\textsubscript{3}). \]

\[^{13} \text{C NMR (101 MHz, Chloroform-}d) \delta 196.6, 167.8, 162.7 (d, J = 250.1 Hz), 147.5 (d, J = 2.4 Hz), 138.6, 134.8 (d, J = 7.7 Hz), 127.9 (d, J = 8.0 Hz), 124.3 (d, J = 23.7 Hz), 114.1, 111.34 (d, J = 22.4 Hz), 71.0, 70.0, 38.1, 19.3. \]

IR \(\nu_{\text{max}} \) 3081 (w), 2982 (w), 2945 (w), 2114 (s), 1750 (s), 1726 (s), 1490 (m), 1440 (w), 1331 (m), 1259 (s), 1226 (s), 1180 (s), 1132 (s), 1051 (m), 912 (m).

HRMS (ESI) calcd for C\textsubscript{14}H\textsubscript{13}FN\textsubscript{3}O\textsubscript{3}+ [M+H]+ 290.0935; found 290.1006.

2-Methylallyl 2-azido-4-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4j)

Following general procedure GP2, starting from 2-methylallyl 4-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1j) (0.11 g, 0.37 mmol), 2-methylallyl 2-azido-4-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4j) (0.11 g, 0.33 mmol, 90% yield) was obtained as a colorless oil.

RF 0.32 (Pentane:Ethyl Acetate 9:1).

\[^1 \text{H NMR (400 MHz, Chloroform-}d) \delta 7.84 (dd, J = 7.8, 1.0 Hz, 1H, ArH), 7.78 (dd, J = 7.7, 0.9 Hz, 1H, ArH), 7.36 (t, J = 7.7 Hz, 1H, ArH), 4.92 (s, 1H, CMeCH_2), 4.90 (s, 1H, CMeCH_2), 4.64 (s, 2H, CH_2CMe), 3.62 (d, J = 17.8 Hz, 1H, CH_2), 2.98 (d, J = 17.8 Hz, 1H, CH_2), 1.68 (s, 3H, CH\textsubscript{3}). \]

\[^{13} \text{C NMR (101 MHz, Chloroform-}d) \delta 196.8, 167.7, 151.7, 139.2, 138.6, 135.0, 130.2, 124.4, 121.7, 114.2, 70.1, 70.0, 39.7, 19.3. \]
IR ν_{max} 2116 (s), 1754 (s), 1727 (s), 1261 (s), 1184 (w), 1111 (w), 1045 (w), 918 (w), 779 (w), 716 (w).

HRMS (APPI) calcd for C_{14}H_{12}BrN_{3}NaO_{3}^{+} [M+Na]^{+} 371.9960; found 371.9962.

2-(((tert-butyldiphenylsilyloxy)methyl)allyl 2-azido-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4k)

Following general procedure GP2, starting from 2-(((tert-butyldiphenylsilyloxy)methyl)allyl 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1k) (0.17 g, 0.34 mmol), 2-(((tert-butyldiphenylsilyloxy)methyl)allyl 2-azido-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4k) (0.17 g, 0.31 mmol, 92% yield) was obtained as a yellow oil.

R$_f$ 0.3 (Pentane: Ethyl Acetate 9:1).

1H NMR (400 MHz, Chloroform-d) δ 7.70 (d, J = 8.6 Hz, 1H, ArH), 7.65 – 7.59 (m, 4H, Ph), 7.47 – 7.33 (m, 6H, Ph), 6.93 (dd, J = 8.6, 2.2 Hz, 1H, ArH), 6.81 – 6.77 (m, 1H, ArH), 5.27 – 5.24 (m, 1H, CCH$_2$), 5.09 (q, J = 1.3 Hz, 1H, CCH$_2$), 4.79 (dd, J = 13.0, 0.7 Hz, 1H, CH$_2$CCH$_2$), 4.71 (dd, J = 13.1, 0.6 Hz, 1H, CH$_2$CCH$_2$), 4.17 – 4.03 (m, 2H, CCH$_2$OTBDPS), 3.88 (s, 3H, OMe), 3.53 (dd, J = 17.4, 0.9 Hz, 1H, CH$_2$), 2.92 (d, J = 17.6 Hz, 1H, CH$_2$), 1.03 (s, 9H, 'Bu).

13C NMR (101 MHz, Chloroform-d) δ 195.1, 168.3, 166.6, 155.1, 141.6, 135.5, 133.3, 133.2, 129.8, 127.7, 127.4, 126.0, 116.5, 113.6, 109.5, 70.6, 66.6, 64.4, 55.9, 38.5, 26.8, 19.3.18

IR ν_{max} 3070 (w), 2960 (w), 2936 (w), 2860 (w), 2110 (m), 1749 (w), 1713 (m), 1601 (m), 1553 (w), 1109 (m), 1093 (m), 910 (s), 704 (s).

HRMS (ESI) calcd for C$_{31}$H$_{34}$NO$_5$Si+ [M+H-N$_2$]$^{+}$ 528.2201; found 528.2178

General procedure GP3 for the synthesis of α-cyano allyl β-keto esters.

Following a reported procedure GP3, in an open flask allyl β-keto ester 1 is stirred in DMF (0.5 M) for 1-2 minutes before the addition in one portion of the hypervalent iodine reagent 7 (1.1 equiv.) The reaction is stirred at room temperature till disappearance of the starting material by TLC. Upon completion the reaction is directly purified by flash chromatography in 100% pentane and then following the solvent polarity indicated for the R$_f$ of each compound.

18 3 C of the phenyls group of the TBDPS are not resolved.
Figure S2. Scope of the α-cyanation of β-allyl keto esters with hypervalent iodine reagents.

Allyl 2-cyano-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5a)

Following general procedure GP3, starting from allyl 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1a) (0.500 g, 2.03 mmol), allyl 2-cyano-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5a) (0.518 g, 1.91 mmol, 94% yield) was obtained as a light yellow oil.

R_F 0.30 (Pentane:Ethyl Acetate 4:1).

¹H NMR (400 MHz, Chloroform-d) δ 7.78 (d, J = 8.6 Hz, 1H, ArH), 7.00 (dd, J = 8.6, 2.2 Hz, 1H, ArH), 6.94 (d, J = 2.2 Hz, 1H, ArH), 5.92 (ddt, J = 17.0, 10.5, 5.6 Hz, 1H, CH₂H), 5.40 (dd, J = 17.0, 1.2 Hz, 1H, CCH₂), 5.30 (dd, J = 10.5, 1.2 Hz, 1H, CCH₂), 4.75 (dd, J = 5.6, 1.2 Hz, 2H, CH₂CH₂), 3.93 (s, 3H, OMe), 3.89 (d, J = 17.3 Hz, 1H, CH₂), 3.63 (d, J = 17.3 Hz, 1H, CH₂).

¹³C NMR (101.00 MHz, Chloroform-d) δ 188.5, 167.2, 164.2, 154.9, 130.5, 128.2, 125.1, 119.8, 117.4, 116.5, 109.7, 68.2, 56.1, 54.7, 37.6.

IR ν_{max} 3017 (w), 2949 (w), 2844 (w), 2249 (w), 1750 (m), 1722 (s), 1601 (s), 1494 (w), 1311 (m), 1269 (s), 1093 (m).

HRMS (ESI) calcd for C₁₅H₁₄N₄O₄ [M+H]⁺ 272.0917; found 272.0927.
2-Methylallyl 2-cyano-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5b)

Following general procedure GP3, starting from 2-methylallyl 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1b) (1.0 g, 3.8 mmol), 2-methylallyl 2-cyano-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5b) (0.981 g, 3.44 mmol, 90% yield) was obtained as a yellow resin.

Rf 0.25 (Pentane:Ethyl Acetate 4:1).

1H NMR (400 MHz, Chloroform-d) δ 7.70 (d, $J = 8.6$ Hz, 1H, ArH), 6.93 (dd, $J = 8.6$, 1.9 Hz, 1H, ArH), 6.89 – 6.85 (m, 1H, ArH), 4.98 – 4.95 (s, 1H, CCH$_2$), 4.92 – 4.89 (s, 1H, CCH$_2$), 4.64 – 4.54 (m, 2H, CH$_2$CMe), 3.86 (s, 3H, OMe), 3.83 (d, $J = 17.2$ Hz, 1H, CH$_2$), 3.56 (d, $J = 17.2$ Hz, 1H, CH$_2$), 1.70 (s, 3H, CH$_3$).

13C NMR (101.00 MHz, Chloroform-d) δ 188.5, 167.2, 164.2, 154.9, 138.5, 128.2, 125.1, 117.4, 116.2, 114.5, 109.6, 70.9, 56.2, 54.8, 37.5, 19.4.

IR ν_{max} 2983 (w), 2946 (w), 2844 (w), 2250 (w), 1751 (m), 1725 (s), 1600 (s), 1451 (w), 1268 (s), 1209 (m), 1093 (m).

HRMS (ESI) calcd for C$_{16}$H$_{16}$NO$_4$ $[M+H]^+$ 286.1074; found 286.1085.

2-Methylallyl 2-cyano-5-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5c)

Following general procedure GP3, starting from 2-methylallyl 5-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1c) (0.195 g, 0.800 mmol), 2-methylallyl 2-cyano-5-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5c) (0.204 g, 0.758 mmol, 95% yield) was obtained as a yellow oil.

Rf 0.3 (Pentane:Ethyl Acetate 4:1).

1H NMR (400 MHz, Chloroform-d) δ 7.74 (d, $J = 8.0$ Hz, 1H, ArH), 7.34 (s, 1H, ArH), 7.30 (d, $J = 8.0$ Hz, 1H, ArH), 5.03 (s, 1H, CCH$_2$), 4.97 (s, 1H, CCH$_2$), 4.66 (m, 2H, CH$_2$CMe), 3.90 (d, $J = 17.2$ Hz, 1H, CH$_2$), 3.64 (d, $J = 17.2$ Hz, 1H, CH$_2$), 2.49 (s, 3H, CH$_3$), 1.77 (s, 3H, CH$_3$).

13C NMR (101.00 MHz, Chloroform-d) δ 190.0, 164.1, 152.2, 149.1, 138.5, 130.5, 129.9, 126.9, 126.3, 116.0, 114.5, 70.9, 54.7, 37.5, 22.5, 19.4.
IR ν_{max} 2983 (w), 2944 (w), 2865 (w), 2248 (w), 1731 (s), 1609 (m), 1452 (w), 1266 (m), 1207 (m), 905 (w).

HRMS (ESI) calcd for C$_{16}$H$_{15}$NaO$_3$ [M+Na]^+ 292.0944; found 292.0951.

2-Methylallyl 2-cyano-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5d)

Following general procedure GP3, starting from 2-methylallyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1d) (0.184 g, 0.800 mmol), 2-methylallyl 2-cyano-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5d) (0.201 g, 0.787 mmol, 98% yield) was obtained as a pale yellow oil.

RF 0.2 (Pentane:Ethyl Acetate 4:1).

1H NMR (400 MHz, Chloroform-d) δ 7.86 (d, $J = 7.9$ Hz, 1H, ArH), 7.74 (td, $J = 7.5, 1.2$ Hz, 1H, ArH), 7.58 – 7.47 (m, 2H, ArH), 5.02 (s, 1H, CCH$_2$), 4.98 (s, 1H, CCH$_2$), 4.73 – 4.62 (m, 2H, CH$_2$CMe), 3.96 (d, $J = 17.2$ Hz, 1H, CH$_2$), 3.71 (d, $J = 17.3$ Hz, 1H, CH$_2$), 1.76 (s, 3H, CH$_3$).

13C NMR (101.00 MHz, Chloroform-d) δ 190.7, 163.9, 151.6, 138.4, 137.2, 132.3, 129.2, 126.6, 126.5, 115.8, 114.6, 71.0, 54.5, 37.7, 19.4.

IR ν_{max} 3082 (w), 2983 (w), 2945 (w), 2250 (w), 1733 (s), 1603 (w), 1466 (w), 1436 (w), 1263 (m), 1205 (m), 909 (m).

HRMS (ESI) HRMS (ESI) calcd for C$_{15}$H$_{13}$NaO$_3$ [M+Na]^+ 278.0788; found 278.0791.

2-Methylallyl 5-bromo-2-cyano-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5e)

Following general procedure GP3, starting from 2-methylallyl 5-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1e) (0.200 g, 0.647 mmol), 2-methylallyl 5-bromo-2-cyano-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5e) (0.190 g, 0.569 mmol, 88% yield) was obtained as an orange oil.

RF 0.7 (Pentane:Ethyl Acetate 9:1).
\(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta 7.76 – 7.68\) (m, 2H, ArH), 7.67 – 7.62 (m, 1H, ArH), 5.03 (s, 1H, CCH\(_2\)), 4.99 (s, 1H, CCH\(_2\)), 4.66 (s, 2H, CH\(_2\)CMe), 3.94 (d, \(J = 17.4\) Hz, 1H, CH\(_2\)), 3.68 (d, \(J = 17.5\) Hz, 1H, CH\(_2\)), 1.77 (s, 3H, CH\(_3\)).

\(^{13}\)C NMR (101.00 MHz, Chloroform-\(d\)) \(\delta 189.5, 163.5, 152.9, 138.3, 132.9, 131.1, 130.0, 127.4, 115.4, 114.7, 71.2, 54.5, 37.2, 19.4\).

IR \(\nu_{\text{max}}\) 3088 (w), 2982 (w), 2943 (w), 2251 (w), 1738 (s), 1595 (m), 1424 (w), 1255 (m), 1060 (w), 909 (m).

HRMS (ESI) calcd for C\(_{15}\)H\(_{13}\)BrNO\(_3\) [M+H]\(^+\) 334.0073; found 334.0087.

2-Methylallyl 2-cyano-6-fluoro-1-oxo-2,3-dihydro-1\(H\)-indene-2-carboxylate (5f)

![Structure of 5f]

Following general procedure GP3, starting from 2-methylallyl 6-fluoro-1-oxo-2,3-dihydro-1\(H\)-indene-2-carboxylate (1i) (0.199 g, 0.800 mmol), 2-methylallyl 2-cyano-6-fluoro-1-oxo-2,3-dihydro-1\(H\)-indene-2-carboxylate (5f) (0.153 g, 0.560 mmol, 70% yield) was obtained as a yellow oil.

R\(_F\) 0.7 (Pentane:Ethyl Acetate 4:1).

\(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta 7.54\) (m, 1H, ArH), 7.46 (m, 2H, ArH), 4.99 (s, 1H, CCH\(_2\)), 4.96 (s, 1H, CCH\(_2\)), 4.64 (s, 2H, CH\(_2\)CMe), 3.91 (d, \(J = 17.1\) Hz, 1H, CH\(_2\)), 3.67 (d, \(J = 17.1\) Hz, 1H, CH\(_2\)), 1.74 (s, 3H, CH\(_3\)).

\(^{13}\)C NMR (101.00 MHz, Chloroform-\(d\)) \(\delta 189.9, 163.4, 162.9\) (d, \(J = 251.2\) Hz), 147.2 (d, \(J = 1.9\) Hz), 138.2, 133.9 (d, \(J = 8.1\) Hz), 128.2 (d, \(J = 8.1\) Hz), 125.0 (d, \(J = 23.9\) Hz), 115.3, 114.5, 111.9 (d, \(J = 22.8\) Hz), 70.9, 55.2, 37.0, 19.2.

IR \(\nu_{\text{max}}\) 3089 (w), 2942 (w), 2869 (w), 2251 (w), 1737 (s), 1600 (w), 1491 (m), 1440 (m), 1298 (m), 1267 (s), 1205 (m).

HRMS (ESI) calcd for C\(_{15}\)H\(_{12}\)FNNaO\(_3\) [M+Na]\(^+\) 296.0693; found 296.0696.
2-(((Tert-butyldiphenylsilyl)oxy)methyl)allyl 2-cyano-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5g)

Following general procedure GP3, starting from 2-(((tert-butyldiphenylsilyl)oxy)methyl)allyl 2-cyano-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5g) (0.17 g, 0.32 mmol, 40% yield) was obtained as a yellow oil.

Rf 0.5 (Pentane:Ethyl Acetate 4:1).

^1H NMR (400 MHz, Chloroform-d) δ 7.73 (d, J = 8.6 Hz, 1H, ArH), 7.68 – 7.62 (m, 4H, ArH), 7.40 (m, 6H, ArH), 6.98 (dd, J = 8.6, 2.1 Hz, 1H, ArH), 6.89 (m, 1H, ArH), 5.28 (s, 1H, CCH2), 5.21 (s, 1H, CCH2), 4.80 (m, 2H, CH2CCH2), 4.19 (m, 2H, CH2CCH2), 3.92 (s, 3H, OMe), 3.82 (d, J = 17.3 Hz, 1H, CH2), 3.58 (d, J = 17.3 Hz, 1H, CH2), 1.05 (s, 9H, SiC(CH3)3).

^13C NMR (101.00 MHz, Chloroform-d) δ 188.4, 167.2, 164.2, 154.8, 141.4, 135.6, 133.4, 129.9, 127.9, 125.1, 117.4, 116.1, 114.1, 109.7, 67.6, 64.6, 56.2, 54.8, 37.5, 26.9, 19.4.

IR νmax 3726 (w), 3708 (w), 3626 (w), 2933 (w), 2857 (w), 2361 (w), 2297 (w), 1752 (m), 1728 (s), 1600 (s), 1429 (w), 1268 (s), 1114 (m).

2-Phenylallyl 2-cyano-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5h)

Following general procedure GP3, starting from 2-phenylallyl 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (11) (0.258 g, 0.800 mmol), 2-phenylallyl 2-cyano-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5h) (0.139 g, 0.400 mmol, 50% yield) was obtained as a yellow oil.

Rf 0.5 (Pentane:Ethyl Acetate 4:1).
\textbf{1H NMR (400 MHz, Chloroform-}d\textbf{)} δ 7.74 (d, \(J = 8.7\) Hz, 1H, Ar\(H\)), 7.39 – 7.29 (m, 5H, Ar\(H\)), 6.98 (dd, \(J = 8.7, 2.2\) Hz, 1H, Ar\(H\)), 6.87 (d, \(J = 2.2\) Hz, 1H, Ar\(H\)), 5.55 (s, 1H, CCH\(H\)), 5.43 (s, 1H, CCH\(H\)), 5.18 – 5.05 (m, 2H, CH\(H\)_2CPh\), 3.92 (s, 3H, O\(Me\)), 3.66 (d, \(J = 17.3\) Hz, 1H, CH\(H\)), 3.50 (d, \(J = 16.8\) Hz, 1H, CH\(H\)).

\textbf{13C NMR (101.00 MHz, Chloroform-}d\textbf{)} δ 188.4, 167.2, 164.2, 154.8, 141.3, 137.7, 128.7, 128.4, 126.2, 125.2, 117.4, 116.2, 116.0, 109.6, 68.7, 56.2, 54.9, 37.5.

\textbf{IR} \(\nu_{\text{max}}\) 2923 (w), 2853 (w), 2249 (w), 1749 (m), 1724 (m), 1494 (w), 1265 (s), 1205 (m), 1092 (m), 908 (w).

\textbf{HRMS (ESI)} calcd for C\(21\)H\(17\)NNaO\(4\) \([M+Na]^+\) 370.1050; found 370.1047

2-Chloroallyl 2-cyano-5-methoxy-1-oxo-2,3-dihydro-1\(H\)-indene-2-carboxylate (5i)

\[
\begin{array}{c}
\text{O} \\
\text{C} \\
\text{H} \\
\text{C} \\
\text{N} \\
\text{O} \\
\text{Cl}
\end{array}
\]

Following general procedure GP3, starting from 2-chloroallyl 5-methoxy-1-oxo-2,3-dihydro-1\(H\)-indene-2-carboxylate (1m) (0.224 g, 0.798 mmol), 2-phenylallyl 2-cyano-5-methoxy-1-oxo-2,3-dihydro-1\(H\)-indene-2-carboxylate (5i) (0.095 g, 0.31 mmol, 39% yield) was obtained as a yellow oil.

\(R_f\) 0.27 (Pentane:Ethyl Acetate 4:1).

\textbf{1H NMR (400 MHz, Chloroform-}d\textbf{)} 7.78 (d, \(J = 8.6\) Hz, 1H, Ar\(H\)), 7.01 (dd, \(J = 8.6, 2.3\) Hz, 1H, Ar\(H\)), 6.95 (m, 1H, Ar\(H\)), 5.59 (s, 1H, CCH\(H\)), 5.46 (s, 1H, CCH\(H\)), 4.80 (q, \(J = 13.8\) Hz, 2H, CH\(H\)_2Cl\), 3.94 (m, 4H, O\(Me\) + CH\(H\)), 3.66 (d, \(J = 17.4\) Hz, 1H, CH\(H\)).

\textbf{13C NMR (101.00 MHz, Chloroform-}d\textbf{)} δ 187.9, 167.2, 163.7, 154.7, 133.8, 128.2, 124.8, 117.4, 115.7, 115.7, 109.6, 68.0, 56.1, 54.5, 37.4.

\textbf{IR} \(\nu_{\text{max}}\) 2949 (w), 2845 (w), 2250 (w), 1756 (m), 1726 (s), 1604 (s), 1494 (w), 1449 (w), 1311 (m), 1269 (s), 1205 (m), 1093 (m).

\textbf{HRMS (ESI)} calcd for C\(15\)H\(13\)ClNO\(4\) \([M+H]^+\) 306.0528; found 306.0517.
5. Pd-Catalyzed decarboxylation of allyl β-keto esters.

5.1 Synthesis of Pd$_2$(dba)$_3$

Pd$_2$(dba)$_3$ (29)

Following a reported procedure,19 palladium acetate (28) (0.20 g, 0.89 mmol) was placed into a 25 mL round-bottom flask with a magnetic stirrer. Sodium acetate (0.070 g, 0.89 mmol) was added followed by (1E,4E)-1,5-diphenylpenta-1,4-dien-3-one (27) (0.420 g, 1.78 mmol) and MeOH (10 ml). The reaction mixture was stirred at 40 °C for 3 h. After completion of the reaction a brown solid was formed. The solid was filtered off and washed with MeOH (2 x 3 mL) followed by water (3 x 3 mL). The residue was completely washed off the filter with CHCl$_3$ (25 mL), and the solution was evaporated on a rotary evaporator. The solid that formed was re-dissolved in a minimum amount of freshly distilled chloroform (ca. 5 mL), and 20 mL of acetone was added to the solution. The mixture that was obtained was left overnight in a refrigerator at -18 °C. The crystals of Pd$_2$(dba)$_3$:CHCl$_3$ (29) (0.28 g, 0.31 mmol, 34% yield) were filtered off, washed with 2×5 mL of cold acetone (5 °C), and dried under vacuum at 40 °C.

5.2 General procedure GP4 for the asymmetric decarboxylation of α-azido allyl β-keto esters catalyzed by Pd.

19S.S. Zalesskiy, V.P. Ananikov, Organometallics 2012, 31, 2302.
Substrate 4 (0.2 mmol), Pd$_2$(dba)$_3$ (29, 5 mol%) and ligand 6a (11 mol%) were placed in a micro wave vial which was sealed. The solvent THF (0.5 mL) was added and the reaction was immediately degased three times. The mixture was placed in a refrigerator at -20 °C and monitored by TLC. Upon completeness (10-15 h) the reaction was filtered through a plug of silica and the solvent evaporated. Purification by column chromatography yielded the product that was analyzed by chiral HPLC. The procedure used for optimization and scope are the same.

Supplementary Table S1 | Screening of the Solvent

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>NMR % Yield</th>
<th>e.e%a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>THF</td>
<td>88</td>
<td>79%</td>
</tr>
<tr>
<td>2</td>
<td>DCM *(0 °C)</td>
<td>60</td>
<td>63%</td>
</tr>
<tr>
<td>3</td>
<td>Toluene</td>
<td>38</td>
<td>70%</td>
</tr>
<tr>
<td>4</td>
<td>CH$_3$CN</td>
<td>50</td>
<td>68%</td>
</tr>
<tr>
<td>5</td>
<td>Et$_2$O</td>
<td>27</td>
<td>71%</td>
</tr>
<tr>
<td>6</td>
<td>MTBE</td>
<td>31</td>
<td>71%</td>
</tr>
<tr>
<td>7</td>
<td>Me-THF</td>
<td>35</td>
<td>70%</td>
</tr>
<tr>
<td>8</td>
<td>THPyran</td>
<td>35</td>
<td>70%</td>
</tr>
<tr>
<td>9</td>
<td>Dioxane</td>
<td>38</td>
<td>42%</td>
</tr>
</tbody>
</table>

a) Substrate 4a (0.012 mmol), Pd$_2$(dba)$_3$ (29 5 mol%), 6a (11 mol%) and solvent (0.2 M) at 25 °C. The ee are measured with chiral HPLC.

Supplementary Table S2 | Screening of the Temperature

<table>
<thead>
<tr>
<th>entry</th>
<th>temperature</th>
<th>NMR % Yield</th>
<th>e.e%a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-20°C</td>
<td>88</td>
<td>86%</td>
</tr>
<tr>
<td>2</td>
<td>0°C</td>
<td>89</td>
<td>82%</td>
</tr>
<tr>
<td>3</td>
<td>25°C</td>
<td>80</td>
<td>82%</td>
</tr>
</tbody>
</table>
a) Substrate 4a (0.012 mmol), Pd$_2$(dba)$_3$ (29 5 mol%), 6a (11 mol%) and THF (0.4 M) at 25 °C. The ee are measured with chiral HPLC.

Supplementary Table S3 | Screening of Ligands

<table>
<thead>
<tr>
<th>entry</th>
<th>Ligand</th>
<th>NMR % Yield</th>
<th>ee%a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dach 6b</td>
<td>10</td>
<td>30%</td>
</tr>
<tr>
<td>2</td>
<td>Dach Naphtyl 6a</td>
<td>88</td>
<td>79%</td>
</tr>
<tr>
<td>3</td>
<td>Anden 6d</td>
<td>15</td>
<td>49%</td>
</tr>
<tr>
<td>4</td>
<td>DiPhenyl 6c</td>
<td>n.r.</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Stoltz 6e</td>
<td>n.r.</td>
<td>-</td>
</tr>
</tbody>
</table>

a) Substrate 10a (0.012 mmol), Pd$_2$(dba)$_3$ (29 5 mol%), L (11 mol%) and THF (0.4 M) at 25 °C. The ee are measured with chiral HPLC.
Supplementary Table S4 | Screening of Concentrations

<table>
<thead>
<tr>
<th>entry</th>
<th>Concentration</th>
<th>NMR % Yield</th>
<th>e.e%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1 M</td>
<td>80</td>
<td>82%</td>
</tr>
<tr>
<td>2</td>
<td>0.2 M</td>
<td>88</td>
<td>79%</td>
</tr>
<tr>
<td>3</td>
<td>0.4 M</td>
<td>94</td>
<td>82%</td>
</tr>
</tbody>
</table>

a) Substrate 4a (0.012 mmol), Pd\(_{2}\)(dba)\(_3\) (29 5 mol%), 6a (11 mol%) and THF (X M) at 25 °C. The ee are measured with chiral HPLC.

(R)-2-Allyl-2-azido-5-methoxy-2,3-dihydro-1H-inden-1-one (7a)

Following general procedure GP4, starting from substrate 4a (0.057 g, 0.20 mmol), (R)-2-allyl-2-azido-5-methoxy-2,3-dihydro-1H-inden-1-one (7a) (0.042 g, 0.17 mmol, 86% yield, 86% ee) was obtained as a yellow oil.

Chiral HPLC conditions: ee: 86%. Chiralcel IA 95:5 Hexane/iPrOH, 1 mL/min, 15 min \(t_R1 = 8.9\) min and \(t_R2 = 10.5\) min. \(\lambda = 280\) cm\(^{-1}\).

\(R_F\) 0.4 (Dichloromethane: Pentane 2:1).

\(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.73 (d, \(J = 8.6\) Hz, 1H, ArH), 6.94 (dd, \(J = 8.6, 2.2\) Hz, 1H, ArH), 6.83 (d, \(J = 2.2\) Hz, 1H, ArH), 5.73 (ddt, \(J = 17.2, 10.1, 7.2\) Hz, 1H, CHCH\(_2\)), 5.29 – 5.08 (m, 2H, CHCH\(_2\)), 3.89 (s, 3H, OCH\(_3\)), 3.20 (d, \(J = 17.5\) Hz, 1H, CH\(_2\)), 2.92 (d, \(J = 17.5\) Hz, 1H, CH\(_2\)), 2.82 – 2.69 (m, 1H, CH\(_2\)CH), 2.61 – 2.47 (m, 1H, CH\(_2\)CH).

\(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 200.5, 166.4, 154.3, 131.3, 127.1, 126.8, 120.3, 116.2, 109.6, 67.8, 55.8, 39.0, 37.7.

IR \(\nu_{\text{max}}\) 2939 (w), 2927 (w), 2844 (w), 2097 (s), 1708 (s), 1598 (s), 1265 (s), 1093 (m), 1024 (m), 927 (m).

HRMS (ESI) calcd for C\(_{13}\)H\(_{13}\)N\(_3\)NaO\(_2\)\(^+\) [M+Na]\(^+\) 266.0900; found 266.0898.

\([\alpha]_D^{25.0}\) +10.7 (c = 3.38, CHCl\(_3\)).
(R)-2-azido-5-methoxy-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7b)

Following general procedure **GP4**, starting from substrate 4b (0.061 g, 0.20 mmol) (R)-5-methoxy-2-(2-methylallyl)-2-((triisopropylsilyl)ethynyl)-2,3-dihydro-1H-inden-1-one (7b) (0.066 mg, 0.26 mmol, 86% yield, 97% ee) was obtained as a yellow oil.

Chiral HPLC conditions. ee: 97%; Chiralcel IA 95:5 Hexane/iPrOH, 1 mL/min, 20 min. $t_{R1} = 8.6$ min and $t_{R2} = 10.0$ min. $\lambda = 254$ cm$^{-1}$.

R_f 0.4 (Dichloromethane:Pentane 2:1).

1H NMR (400 MHz, Chloroform-d) δ 7.72 (d, $J = 8.6$ Hz, 1H, ArH), 6.93 (dd, $J = 8.6$, 2.2 Hz, 1H, ArH), 6.82 (d, $J = 2.2$ Hz, 1H, ArH), 4.92 (t, $J = 1.7$ Hz, 1H, CCH$_2$), 4.88 – 4.82 (m, 1H, CCH$_2$), 3.88 (s, 3H, OCH$_3$), 3.29 (d, $J = 17.5$ Hz, 1H, CH$_2$), 2.88 (d, $J = 17.6$ Hz, 1H, CH$_2$), 2.78 (d, $J = 14.4$ Hz, 1H, CH$_2$C), 2.49 (dd, $J = 14.5$, 1.0 Hz, 1H, CH$_2$C), 1.81 – 1.74 (m, 3H, CH$_3$).

13C NMR (101 MHz, CDCl$_3$) δ 200.4, 166.4, 154.6, 140.3, 126.9, 126.7, 116.2, 116.0, 109.7, 67.6, 55.8, 41.5, 37.6, 23.4.

IR ν_{max} 3076 (w), 3075 (w), 3016 (w), 3016 (w), 2970 (w), 2941 (w), 2940 (w), 2929 (w), 2928 (w), 2927 (w), 2845 (w), 2844 (w), 2101 (s), 1708 (s), 1600 (s), 1599 (s), 1445 (w), 1266 (s), 1093 (m), 1026 (w), 903 (m), 757 (s).

HRMS (ESI) calcd for C$_{14}$H$_{15}$N$_3$NaO$_2$ $^+ [M+Na]^+$ 280.1056; found 280.1057.

$[\alpha]_D^{25.0}$ +15.3 (c = 3.86, CHCl$_3$).

(R)-2-Azido-5-methyl-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7c)

Following the general procedure **GP4**, starting from substrate 4c (0.057 g, 0.20 mmol) (R)-2-azido-5-methyl-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7c) (0.039 g, 0.16 mmol, 81% yield, 96% ee) was obtained as a yellow oil.

Chiral HPLC conditions: ee: 96%; Chiralcel IA 95:5 Hexane/iPrOH, 1 mL/min, 10 min. $t_{R1} = 5.7$ min and $t_{R2} = 6.6$ min. $\lambda = 280$ cm$^{-1}$.
\(\text{RF} 0.85 \) (Pentane:Diethyl Ether 9:1).

\(^1\text{H NMR} \) (400 MHz, Chloroform-\(\text{d} \)) \(\delta \) 7.70 \((d, J = 7.8 \text{ Hz, 1H, ArH}) \), 7.25 – 7.19 \((m, 2\text{H, ArH}) \), 4.93 \((t, J = 1.6 \text{ Hz, 1H, CMeCH}_2) \), 4.85 \((dd, J = 1.9, 1.0 \text{ Hz, 1H, CMeCH}_2) \), 3.30 \((d, J = 17.5 \text{ Hz, 1H, CH}_2) \), 2.90 \((d, J = 18.0 \text{ Hz, 1H, CH}_2) \), 2.79 \((dd, J = 14.4, 1.0 \text{ Hz, 1H, CH}_2\text{CMe}) \), 2.50 \((dd, J = 14.4, 1.1 \text{ Hz, 1H, CH}_2\text{CMe}) \), 2.45 \((s, 3\text{H, ArCH}_3) \), 1.77 \((t, J = 1.1 \text{ Hz, 3H, CH}_3) \).

\(^{13}\text{C NMR} \) (101 MHz, Chloroform-\(\text{d} \)) \(\delta \) 201.9, 152.0, 147.6, 140.2, 131.4, 129.4, 126.9, 125.0, 116.1, 67.5, 41.5, 37.4, 23.5, 22.3.

\(\text{IR} \) \(\nu_{\text{max}} \) 2943 (w), 2924 (w), 2852 (w), 2101 (s), 1715 (s), 1609 (s), 1255 (s), 1254 (s), 904 (m).

\(\text{HRMS (ESI)} \) calcd for C\(_{14}\)H\(_{15}\)N\(_3\)NaO\(^+\) [M+Na\(^+\)] 264.1107; found 264.1110.

\([\alpha]D^{25.0} +10.4 \) \((c = 2.78, \text{CHCl}_3) \).

\((R)-2-\text{Azido}-2-(2-\text{methylallyl})-2,3-\text{dihydro-1H-inden-1-one (7d)}\)

Following the general procedure \(\text{GP4} \), starting from substrate \(4\text{d} \) (0.054 g, 0.20 mmol) \((R)-2-\text{Azido}-2-(2-\text{methylallyl})-2,3-\text{dihydro-1H-inden-1-one (7d)}\) (0.035 g, 0.15 mmol, 77% yield, 95\% \(ee \)) was obtained as a yellow oil.

\(\text{Chiral HPLC conditions: } ee: 95\%; \text{Chiralcel IA 99:1 Hexane/iPrOH, 1 mL/min, 15 min } t_{R1} = 7.0 \text{ min and } t_{R2} = 8.4 \text{ min. } \lambda = 254 \text{ cm}^{-1}. \)

\(\text{RF} 0.33 \) (Pentane:Ethyl Acetate 95:5).

\(^1\text{H NMR} \) (400 MHz, Chloroform-\(\text{d} \)) \(\delta \) 7.81 \((dd, J = 7.9, 1.1 \text{ Hz, 1H, ArH}) \), 7.64 \((td, J = 7.5, 1.3 \text{ Hz, 1H, ArH}) \), 7.48 – 7.37 \((m, 2\text{H, ArH}) \), 4.94 \((m, 1\text{H, CCH}_2) \), 4.86 \((m, 1\text{H, CCH}_2) \), 3.35 \((d, J = 17.5 \text{ Hz, 1H, CH}_2) \), 2.95 \((d, J = 17.5 \text{ Hz, 1H, CH}_2) \), 2.81 \((dd, J = 14.5, 1.0 \text{ Hz, 1H, CH}_2\text{C}) \), 2.51 \((dd, J = 14.6, 1.0 \text{ Hz, 1H, CH}_2\text{C}) \), 1.77 \((t, J = 1.1 \text{ Hz, 3H, CH}_3) \).

\(^{13}\text{C NMR} \) (101 MHz, Chloroform-\(\text{d} \)) \(\delta \) 202.4, 151.5, 140.1, 136.1, 133.7, 128.2, 126.6, 125.2, 116.2, 67.3, 41.4, 37.6, 23.5.

\(\text{IR} \) \(\nu_{\text{max}} \) 3076 (w), 2928 (w), 2856 (w), 2101 (s), 1718 (s), 1606 (m), 1301 (w), 1255 (m), 1222 (w), 908 (s), 734 (s).

\(\text{HRMS (ESI)} \) calcd for C\(_{13}\)H\(_{13}\)N\(_3\)NaO\(^+\) [M+Na\(^+\)] 250.0951; found 250.0949.

\([\alpha]D^{25.0} +10.5 \) \((c = 2.83, \text{CHCl}_3) \).
(R)-2-Azido-5-bromo-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7e)

Following general procedure GP4, starting from substrate 4e (0.070 g, 0.20 mmol) (R)-2-azido-5-bromo-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7e) (0.052 g, 0.17 mmol, 85% yield, 90% ee) was obtained as a yellow oil.

Chiral HPLC conditions: ee: 90%; Chiralcel IA 99:1 Hexane/iPrOH, 1 mL/min, 15 min t_{R1} = 8.9 min and t_{R2} = 10.6 min. λ = 254 cm⁻¹.

R_f 0.7 (Pentane:Ethyl Acetate 95:5).

1H NMR (400 MHz, Chloroform-<i>d</i>) δ 7.67 (dd, <i>J</i> = 8.2, 0.6 Hz, 1H, ArH), 7.62 – 7.52 (m, 2H, ArH), 4.94 (t, <i>J</i> = 1.6 Hz, 1H, CMeCH₂), 4.87 – 4.80 (m, 1H, CMeCH₂), 3.33 (dd, <i>J</i> = 17.6, 0.7 Hz, 1H, CH₂), 2.92 (d, <i>J</i> = 17.7 Hz, 1H, CH₂), 2.79 (dd, <i>J</i> = 14.5, 1.1 Hz, 1H, CH₂CMe), 2.52 (dd, <i>J</i> = 14.4, 1.0 Hz, 1H, CH₂CMe), 1.76 (dd, <i>J</i> = 1.5, 0.8 Hz, 3H, CH₃).

13C NMR (101 MHz, Chloroform-<i>d</i>) δ 201.3, 153.0, 139.8, 132.5, 131.9, 131.6, 129.9, 126.3, 116.4, 67.3, 41.3, 37.2, 23.5.

IR v_{max} 3079 (w), 2927 (w), 2857 (w), 2105 (s), 1724 (s), 1596 (m), 1251 (m), 907 (m).

HRMS (ESI) calcd for C₁₃H₁₃BrNO⁺ [M-N₂+H⁺]⁺ 278.0175; found 278.0180.

[α]₂₅ ⁰ +12.4 (c = 4.26, CHCl₃).

(R)-2-Azido-6-methoxy-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7f)

Following general procedure GP4, starting from substrate 4f (0.060 g, 0.20 mmol), (R)-2-azido-6-methoxy-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7f) (0.029 g, 0.11 mmol, 56% yield, 89% ee) was obtained as a yellow oil.

Chiral HPLC conditions: ee: 89%; Chiralcel IC 99.9:0.1 Hexane/iPrOH, 1 mL/min, 20 min t_{R1} = 5.4 min and t_{R2} = 5.9 min. λ = 280 cm⁻¹.

R_f 0.65 (Pentane:Ethyl Acetate 9:1).
1H NMR (400 MHz, Chloroform-d) δ 7.30 (ddd, $J = 8.0, 1.7, 0.9$ Hz, 1H, ArH), 7.25 – 7.21 (m, 2H, ArH), 4.93 (t, $J = 1.6$ Hz, 1H, CMeH$_2$), 4.85 (d, $J = 1.0$ Hz, 1H, CMeCH$_2$), 3.84 (s, 3H, OMe), 3.27 (dd, $J = 12.2, 1.0$ Hz, 1H, CH$_2$), 2.88 (d, $J = 10.4$ Hz, 1H, CH$_2$), 2.79 (dd, $J = 14.5, 1.0$ Hz, 1H, CH$_2$), 1.76 (t, $J = 1.1$ Hz, 3H, CH$_3$).

13C NMR (101 MHz, Chloroform-d) δ 202.4, 159.9, 144.4, 134.8, 127.3, 125.6, 116.1, 106.0, 68.1, 55.6, 41.5, 37.0, 23.5.

IR $\nu$$_{max}$ 3075 (w), 2933 (w), 2841 (w), 2103 (s), 1717 (s), 1491 (s), 1437 (m), 1276 (s), 1242 (s), 902 (m), 771 (m).

HRMS (ESI) calcd for C$_{14}$H$_{15}$N$_3$NaO$_2$ \pm [M+Na]$^+$ 280.1056; found 280.1060.

$[\alpha]_{D}^{25.0}$ $+3.1$ (c = 1.03, CHCl$_3$).

(R)-2-Azido-6-chloro-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7g)

Following general procedure GP4, starting from substrate 4g (0.061 mg, 0.20 mmol) (R)-2-azido-6-chloro-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7g) (0.046 g, 0.18 mmol, 88% yield, 87% ee) was obtained as a yellow oil.

Chiral HPLC conditions: ee: 87%; Chiralcel IA 99:1 Hexane/iPrOH, 1 mL/min, 20 min t_R = 6.4 min and t_R = 7.9 min. λ = 254 cm$^{-1}$.

R$_f$ 0.6 (Pentane:Dichloromethane 1:1).

1H NMR (400 MHz, Chloroform-d) δ 7.76 (d, $J = 2.0$ Hz, 1H, ArH), 7.59 (dd, $J = 8.2, 1.0$ Hz, 1H, ArH), 7.36 (d, $J = 8.2$ Hz, 1H, ArH), 4.94 (t, $J = 1.6$ Hz, 1H, CMeCH$_2$), 4.85 (dd, $J = 1.9, 1.0$ Hz, 1H, CMeCH$_2$), 3.30 (d, $J = 17.6$ Hz, 1H, CH$_2$), 2.90 (d, $J = 17.6$ Hz, 1H, CH$_2$), 2.79 (dd, $J = 14.5, 1.0$ Hz, 1H, CH$_2$CMe), 2.51 (dd, $J = 14.5, 1.1$ Hz, 1H, CH$_2$CMe), 1.76 (t, $J = 1.1$ Hz, 3H, CH$_3$).

13C NMR (101 MHz, Chloroform-d) δ 201.2, 149.6, 139.8, 136.1, 135.2, 134.5, 127.8, 124.8, 116.4, 67.8, 41.3, 37.2, 23.5.

IR $\nu$$_{max}$ 3080 (w), 2925 (w), 2102 (s), 1723 (s), 1469 (w), 1430 (m), 1429 (m), 1285 (w), 1250 (m), 1208 (m), 1186 (m), 903 (m), 822 (w), 821 (w), 737 (w).

HRMS (ESI) calcd for C$_{13}$H$_{13}$ClNO \pm [M-N$_2$+H]$^+$ 234.0686; found 234.0688.

$[\alpha]_{D}^{25.0}$ $+11.7$ (c = 3.52, CHCl$_3$).
(R)-2-Azido-2-(2-methylallyl)-6-(trifluoromethyl)-2,3-dihydro-1H-inden-1-one (7h)

Following general procedure GP4, starting from substrate 4h (0.076 g, 0.22 mmol), (R)-2-azido-2-(2-methylallyl)-6-(trifluoromethyl)-2,3-dihydro-1H-inden-1-one (7h) (0.033 g, 0.11 mmol, 50% yield, 77% ee) was obtained as a brown oil.

Chiral HPLC conditions: ee: 77%; Chiralcel IA 99:1 Hexane/iPrOH, 1 mL/min, 10 min. t_{R1} = 5.3 min and t_{R2} = 6.2 min, \(\lambda = 254 \) cm\(^{-1}\).

RF 0.35 (Pentane:Dichloromethane 2:1).

\(^1\)H NMR (400 MHz, Chloroform-d) \(\delta \) 8.07 (d, \(J = 1.7 \) Hz, 1H, ArH), 7.88 (dd, \(J = 8.1, 1.7 \) Hz, 1H, ArH), 7.57 (d, \(J = 8.0 \) Hz, 1H, ArH), 4.99 – 4.91 (m, 1H, CMeCH\(_2\)), 4.92 – 4.82 (m, 1H, CMeCH\(_2\)), 3.40 (d, \(J = 17.9 \) Hz, 1H, CH\(_2\)), 3.00 (d, \(J = 17.9 \) Hz, 1H, CH\(_2\)), 2.82 (dd, \(J = 14.6, 1.0 \) Hz, 1H, CH\(_2\)CMe), 2.54 (dd, \(J = 14.5, 1.1 \) Hz, 1H, CH\(_2\)CMe), 1.77 (t, \(J = 1.1 \) Hz, 3H, CH\(_3\)).

\(^1^3\)C NMR (101 MHz, Chloroform-d) \(\delta \) 201.3, 154.7, 139.7, 134.2, 132.4, 131.0 (q, \(J = 33.2 \) Hz), 127.4, 123.5 (q, \(J = 272.9 \) Hz), 122.4, 116.5, 67.5, 41.1, 37.7, 23.5.

\(^1^9\)F NMR (376 MHz, Chloroform-d) \(\delta \) -62.2.

IR \(\nu_{\text{max}} \) 3019 (w), 2970 (w), 2939 (w), 2930 (w), 2103 (m), 1708 (m), 1600 (m), 1266 (s), 1221 (m), 756 (s).

HRMS (ESI) calcd for C\(_{13}\)H\(_{11}\)F\(_3\)N\(_3\)O\(^+\) [M+H]\(^+\) 282.0849; found 282.0844.

[\(\alpha \)]\(_{D}^{25.0}\) +6.5 (c = 2.8, CHCl\(_3\)).

(R)-2-azido-6-fluoro-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7i)

Following general procedure GP4, starting from substrate 4i (0.058 g, 0.20 mmol), (R)-2-azido-6-fluoro-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7i) (0.036 g, 0.15 mmol, 73% yield, 92% ee) was obtained as a yellow oil.

Chiral HPLC conditions: ee: 92%; Chiralcel IA 99:1 Hexane/iPrOH, 1 mL/min, 30 min. t_{R1} = 6.3 min and t_{R2} = 6.9 min, \(\lambda = 230 \) cm\(^{-1}\).

RF 0.3 (Pentane: Dichloromethane 2:1).
1H NMR (400 MHz, Chloroform-d) δ 7.44 (dd, $J = 7.2$, 2.4 Hz, 1H, ArH, ArH), 7.42 – 7.32 (m, 2H, ArH), 4.94 (t, $J = 1.6$ Hz, 1H, CMeCH$_2$), 4.85 (dt, $J = 2.0$, 1.0 Hz, 1H, CMeCH$_2$), 3.31 (d, $J = 17.3$ Hz, 1H, CH$_2$), 2.91 (d, $J = 17.4$ Hz, 1H, CH$_2$), 2.79 (dd, $J = 14.4$, 1.0 Hz, 1H, CH$_2$CMe), 2.52 (dd, $J = 14.6$, 1.0 Hz, 1H, CH$_2$CMe), 1.76 (s, 3H, CH$_3$).

13C NMR (101 MHz, Chloroform-d) δ 201.7, 162.6 (d, $J = 249.4$ Hz), 147.0, 139.8, 135.4, 128.1, 123.9 (d, $J = 23.8$ Hz), 116.4, 110.9 (d, $J = 22.0$ Hz), 68.1, 41.3, 37.1.

19F NMR (376 MHz, Chloroform-d) δ -113.0.

IR ν_{max} 3076 (w), 2929 (w), 2858 (w), 2104 (m), 1723 (m), 1488 (m), 1441 (w), 1265 (m), 1227 (m), 758 (s).

HRMS (ESI) calcd for C$_{13}$H$_{13}$FNO$^+$ [M-N$_2$+H]$^+$ 218.0976; found 218.0980.

$[\alpha]_D^{25.0}$ +10.5 (c = 3.11, CHCl$_3$).

(R)-2-Azido-4-bromo-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7j)

Following general procedure GP4, starting from substrate 4j (0.070 g, 0.20 mmol), (R)-2-azido-4-bromo-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7j) (0.052 g, 0.12 mmol, 85% yield, 87% ee) was obtained as a yellow oil.

Chiral HPLC conditions: ee: 87%; Chiralcel IA 99:1 Hexane/iPrOH, 1 mL/min, 10 min t_{R1} = 5.5 min and t_{R2} = 6.2 min, $\lambda = 254$ cm$^{-1}$.

R$_f$ 0.75 (Pentane:Ethyl Acetate 95:5).

1H NMR (400 MHz, Chloroform-d) δ 7.81 (dd, $J = 7.8$, 1.0 Hz, 1H, ArH), 7.77 (dd, $J = 7.6$, 0.9 Hz, 1H, ArH), 7.38 – 7.29 (m, 1H, ArH), 5.00 – 4.94 (m, 1H, CMeCH$_2$), 4.89 (dd, $J = 1.8$, 0.9 Hz, 1H, CMeCH$_2$), 3.27 (d, $J = 18.0$ Hz, 1H, CH$_2$), 2.89 (d, $J = 18.0$ Hz, 1H, CH$_2$), 2.83 (dd, $J = 14.5$, 1.1 Hz, 1H, CH$_2$CMe), 2.53 (dd, $J = 14.6$, 1.1 Hz, 1H, CH$_2$CMe), 1.78 (s, 2H, CH$_3$).

13C NMR (101 MHz, Chloroform-d) δ 201.8, 151.3, 139.6, 138.8, 135.7, 129.9, 123.9, 122.0, 116.5, 67.2, 41.2, 38.8, 23.5.

IR ν_{max} 3076 (w), 3020 (w), 2941 (w), 2858 (w), 2103 (m), 1709 (w), 1602 (m), 1333 (w), 1267 (m), 1219 (m), 1135 (w), 1109 (w), 1095 (w), 905 (w), 756 (s).

HRMS (ESI) calcd for C$_{13}$H$_{12}$NO79Br$^+$ [M-N$_2$+H]$^+$ 280.0161; found 280.0165.

$[\alpha]_D^{25.0}$ +4.0 (c = 1.58, CHCl$_3$).
(S)-2-Azido-2-(2-(((tert-butyldiphenylsilyl)oxy)methyl)allyl)-5-methoxy-2,3-dihydro-1H-inden-1-one (7k)

Following general procedure GP4, starting from substrate 4k (0.11 g, 0.20 mmol), (S)-2-azido-2-(2-(((tert-butyldiphenylsilyl)oxy)methyl)allyl)-5-methoxy-2,3-dihydro-1H-inden-1-one (7k) (0.052 g, 0.10 mmol, 51% yield, 97% ee) was obtained as a yellow oil.

Chiral HPLC conditions: ee: 97%; Chiralcel IA 95:5 Hexane/iPrOH, 1 mL/min, 15 min $t_R1 = 7.0$ min and $t_R2 = 8.4$ min. $\lambda = 254$ cm$^{-1}$.

Rf 0.37 (Dichloromethane:Pentane 5:1).

1H NMR (400 MHz, Chloroform-d) δ 7.70 (d, $J = 8.6$ Hz, 1H, ArH), 7.65 (m, 4H, Ph), 7.47 – 7.34 (m, 6H, Ph), 6.92 (dd, $J = 8.6, 2.3$ Hz, 1H, ArH), 6.77 (d, $J = 2.2$ Hz, 1H, ArH), 5.36 (d, $J = 1.7$ Hz, 1H, CCH$_2$), 5.08 (d, $J = 1.3$ Hz, 1H, CCH$_2$), 4.20 (d, $J = 14.2$ Hz, 1H, CH$_2$OTBDPS), 4.10 (d, $J = 14.3$ Hz, 1H, CH$_2$OTBDPS), 3.88 (s, 3H, OMe), 3.26 (d, $J = 17.5$ Hz, 1H, CH$_2$), 2.81 (d, $J = 17.7$ Hz, 1H, CH$_2$), 2.80 (d, $J = 14.9$ Hz, 1H, CH$_2$CCH$_2$), 2.51 (dd, $J = 14.9, 1.0$ Hz, 1H, CH$_2$CCH$_2$), 1.06 (s, 9H, tBu).

13C NMR (101 MHz, Chloroform-d) δ 200.2, 166.4, 154.6, 142.6, 135.5, 135.5, 133.4, 133.4, 129.7, 127.7, 126.9, 126.7, 116.2, 114.4, 109.7, 67.7, 66.7, 55.8, 37.8, 36.7, 26.9, 19.3.20

IR ν_{max} 2950 (w), 2102 (m), 1709 (m), 1600 (s), 1266 (s), 1109 (s), 912 (m), 824 (s).

HRMS (ESI) calcd for C$_{30}$H$_{33}$N$_3$NaO$_3$Si$^+$ [M+Na]$^+$ 534.2183; found 534.2177.

$[\alpha]_D^{25.0} +8.10$ (c = 4.40, CHCl$_3$).

5.3 General procedure GP5 for the asymmetric decarboxylation of α-cyano allyl β-keto esters catalyzed by Pd.

20 Two C in the aromatic region are not resolved.
Substrate 5 (0.2 mmol), Pd\(_2\)(dba)\(_3\) (29, 2.5 mol%) and ligand 6a (5.5 mol%) were placed in a micro wave vial which was sealed. The solvent MTBE (20 mL, 0.01M) was added and the reaction was immediately degased three times. The reaction was then monitored by TLC. After 12 hours the starting material was consumed and the solvent evaporated. Purification by column chromatography using the solvent mixture indicated for the R\(_f\) of each compound yielded the product that was analyzed by chiral HPLC. The procedure used for optimization and scope is the same.

Reaction Optimization for Allyl substrate

Supplementary Table S5 | Screening of the Solvent

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Yield(^{%})(^a)</th>
<th>ee(^{%})(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>THF</td>
<td>99</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>DCM</td>
<td>95</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Toluene</td>
<td>n.r.</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>CH(_3)CN</td>
<td>82</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>Et(_2)O</td>
<td>98</td>
<td>61-78(^b)</td>
</tr>
<tr>
<td>6</td>
<td>MTBE</td>
<td>93</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>iPr(_2)O</td>
<td>99</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>nBu(_2)O</td>
<td>>99</td>
<td>67</td>
</tr>
<tr>
<td>9</td>
<td>Ph(_2)O</td>
<td>94</td>
<td>49</td>
</tr>
<tr>
<td>10</td>
<td>dioxane</td>
<td>94</td>
<td>39</td>
</tr>
</tbody>
</table>

\(^a\) Substrate 5a (0.037 mmol), Pd\([\text{Cinnamyl}Cp]\) (30, 10 mol%), 6a (11 mol%) and solvent (0.4 M) at 25 \(^\circ\)C. Isolated yield after flash chromatography is given, the ee are measured with chiral HPLC. \(^b\) Not reproducible.
Supplementary Table S6 | Screening of the Temperature

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temperature</th>
<th>Yield%</th>
<th>ee %<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-20°C</td>
<td>97</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>0°C</td>
<td>98</td>
<td>59</td>
</tr>
<tr>
<td>3</td>
<td>r.t</td>
<td>98</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>40°C</td>
<td>>99</td>
<td>57</td>
</tr>
</tbody>
</table>

^a Substrate 5a (0.037 mmol), Pd[(Cinnamyl)Cp] (30, 10 mol%), 6a (11 mol%) and Et₂O (0.4 M). Isolated yield after flash chromatography is given, the ee are measured with chiral HPLC.

Supplementary Table S7 | Screening of Ligands

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Yield%</th>
<th>ee %<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stoltz 6e</td>
<td>94</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Dach 6b</td>
<td>92</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>Dach Naphtyl 6a</td>
<td>98</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>Anden 6d</td>
<td>94</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>DiPhenyl 6c</td>
<td>>99</td>
<td>47</td>
</tr>
</tbody>
</table>

^a Substrate 11a (0.037 mmol), Pd[(Cinnamyl)Cp] (34, 10 mol%), L (11 mol%) and Et₂O (0.4 M) at 25 °C. Isolated yield after flash chromatography is given, the ee are measured with chiral HPLC.
Supplementary Table S8 | Screening of Concentrations

<table>
<thead>
<tr>
<th>Entry</th>
<th>Concentration</th>
<th>Yield%</th>
<th>ee %(^{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.04 M</td>
<td>98</td>
<td>59</td>
</tr>
<tr>
<td>2</td>
<td>0.1 M</td>
<td>98</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>0.3 M</td>
<td>93</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>0.4 M</td>
<td>98</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>0.5 M</td>
<td>91</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>1 M</td>
<td>91</td>
<td>49</td>
</tr>
</tbody>
</table>

\(^{a}\) Substrate 5a (0.037 mmol), Pd[(Cinnamyl)Cp] (30, 10 mol\%), 6a (11 mol\%) and Et\(_2\)O (X M) at 25 °C. Isolated yield after flash chromatography is given, the ee are measured with chiral HPLC.
Supplementary Table S9 | Pd:Ligand loading and ratio

<table>
<thead>
<tr>
<th>Entry</th>
<th>Pd:Ligand</th>
<th>Yield%</th>
<th>ee %a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5/2.75%</td>
<td>n.r.b</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>5/5.5%</td>
<td>92</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>5/10%</td>
<td>97</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>5/20%</td>
<td>93</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>10/11%</td>
<td>98</td>
<td>78</td>
</tr>
</tbody>
</table>

a) Substrate 5a (0.037 mmol), Pd[(Cinnamyl)Cp] (30, X mol%), 6a (X mol%) and Et₂O (0.4 M) at 25 °C. Isolated yield after flash chromatography is given, the ee are measured with chiral HPLC. b) No complete conversion after 48 hours.

Reaction Optimization for Methylallyl Substrate

Supplementary Table S10 | Screening of the Solvent

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Yield%</th>
<th>ee %a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>THF</td>
<td>84</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>DCM</td>
<td>77</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>Toluene</td>
<td>86</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>CH₃CN</td>
<td>82</td>
<td>61</td>
</tr>
<tr>
<td>5</td>
<td>Et₂O</td>
<td>71</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>MTBE</td>
<td>89</td>
<td>78</td>
</tr>
<tr>
<td>7</td>
<td>Methyl-Cyclopentyl ether</td>
<td>94</td>
<td>53</td>
</tr>
<tr>
<td>8</td>
<td>DMF</td>
<td>80</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>DMSO</td>
<td>78</td>
<td>29</td>
</tr>
</tbody>
</table>
a) Substrate 5b (0.035 mmol), Pd[(Cinnamyl)Cp] (30, 10 mol%), 6a (11 mol%) and solvent (0.4 M) at 25 °C. Isolated yield after flash chromatography is given, the ee are measured with chiral HPLC.

Supplementary Table S11 | Screening of the Temperature

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temperature</th>
<th>Yield%</th>
<th>ee %a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-10°C</td>
<td>84</td>
<td>72%</td>
</tr>
<tr>
<td>2</td>
<td>0°C</td>
<td>83</td>
<td>59%</td>
</tr>
<tr>
<td>3</td>
<td>r.t.</td>
<td>89</td>
<td>78%</td>
</tr>
<tr>
<td>4</td>
<td>40°C</td>
<td>82</td>
<td>74%</td>
</tr>
</tbody>
</table>

a) Substrate 5b (0.035 mmol), Pd[(Cinnamyl)Cp] (30, 10 mol%), 6a (11 mol%) and MTBE (0.4 M). Isolated yield after flash chromatography is given, the ee are measured with chiral HPLC.

Supplementary Table S12 | Screening of Ligands

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Yield%</th>
<th>ee %a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stoltz 6e</td>
<td>86</td>
<td>1.4%</td>
</tr>
<tr>
<td>2</td>
<td>Dach 6b</td>
<td>83</td>
<td>48%</td>
</tr>
<tr>
<td>3</td>
<td>Dach Naphtyl 6a</td>
<td>89</td>
<td>78%</td>
</tr>
<tr>
<td>4</td>
<td>Anden 6c</td>
<td>84</td>
<td>40%</td>
</tr>
<tr>
<td>5</td>
<td>DiPhenyl 6d</td>
<td>82</td>
<td>41%</td>
</tr>
<tr>
<td>6</td>
<td>6f</td>
<td>95</td>
<td>1.6%</td>
</tr>
<tr>
<td>7</td>
<td>6g</td>
<td>n.r.b</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>6h</td>
<td>90</td>
<td>38%</td>
</tr>
<tr>
<td>9</td>
<td>6i</td>
<td>85</td>
<td>25%</td>
</tr>
</tbody>
</table>

a) Substrate 5b (0.035 mmol), Pd[(Cinnamyl)Cp] (30, 10 mol%), L (11 mol%) and MTBE (0.4 M) at 25 °C. Isolated yield after flash chromatography is given, the ee are measured with chiral HPLC. b) No complete conversion after 48 hours.
Supplementary Table S13 | Screening of Concentrations

<table>
<thead>
<tr>
<th>Entry</th>
<th>Concentration</th>
<th>Yield%</th>
<th>ee %*</th>
</tr>
</thead>
</table>

6a (11 mol %)

5b \(\text{Pd}[(\text{Cinnamyl})\text{Cp}] (30, 10 \text{ mol} \%)\), X M, MTBE, N₂ → 8b
Supplementary Table S14 | Screening of Catalyst/Ligand Loading

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst/Ligand</th>
<th>Yield%</th>
<th>ee %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5/2.75%</td>
<td>n.r b</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>5/5.5%</td>
<td>n.r b</td>
<td>86%</td>
</tr>
<tr>
<td>3</td>
<td>5/10%</td>
<td>91</td>
<td>83%</td>
</tr>
<tr>
<td>4</td>
<td>5/20%</td>
<td>86</td>
<td>85%</td>
</tr>
<tr>
<td>5</td>
<td>10/11%</td>
<td>89</td>
<td>86%</td>
</tr>
</tbody>
</table>

a) Substrate 5b (0.035 mmol), Pd[(Cinnamyl)Cp] (30, 10 mol%), 6a (11 mol%) and MTBE (X M) at 25 °C. Isolated yield after flash chromatography is given, the ee are measured with chiral HPLC.

b) No complete conversion after 48 hours.

Supplementary Table S15 | Screening of the Palladium Source

<table>
<thead>
<tr>
<th>Entry</th>
<th>Palladium Source</th>
<th>Yield%</th>
<th>ee %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(dba) 10% - Dach Naphtyl 11 %</td>
<td>87</td>
<td>77%</td>
</tr>
<tr>
<td>2</td>
<td>Pd₂(dba) 5% - Dach</td>
<td>87</td>
<td>88%</td>
</tr>
<tr>
<td>3</td>
<td>Pd$_2$(dba)$_3$ 2.5% - Dach Naphtyl 5.5%</td>
<td>87</td>
<td>89%</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

a) Substrate 5b (0.035 mmol), Pd source (X mol%), L 6a (X mol%) and MTBE (0.01 M) at 25 °C. Isolated yield after flash chromatography is given, the ee are measured with chiral HPLC.

(S)-2- Allyl-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8a)

Following general procedure GP5, but using PdCynnamylCp (30) (0.006 g, 0.02 mmol, 5 mol%) as catalyst, starting from substrate 5a (0.054 g, 0.20 mmol), (S)-5-methoxy-2-(2-methylallyl)-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8a) (0.041 g, 0.18 mmol, 91 % yield, 79% ee) was obtained as an yellow oil.

R$_f$ 0.5 (Pentane: Ethyl acetate 4:1).

Chiral HPLC conditions: ee: 79%; Chiralcel IA 95:5 Hexane/iPrOH, 1 mL/min, 30 min. $t_{R1} = 19.1$ min and $t_{R2} = 23.4$ min. $\lambda = 280$ cm$^{-1}$.

1H NMR (400 MHz, Chloroform-d) δ 7.76 (d, $J = 8.6$ Hz, 1H, ArH), 6.98 (dd, $J = 8.7, 2.2$ Hz, 1H, ArH), 6.92 – 6.82 (m, 1H, ArH), 6.81 (m, 1H, CHCH$_2$), 5.35 – 5.16 (m, 2H, CCH$_2$), 3.91 (s, 3H, OMe), 3.52 (d, $J = 17.4$ Hz, 1H, CH$_2$), 3.29 (d, $J = 17.4$ Hz, 1H, CH$_2$), 2.82 (dd, $J = 13.9, 6.7$ Hz, 1H, CH$_2$CH), 2.47 (dd, $J = 13.9, 7.6$ Hz, 1H, CH$_2$CH).

13C NMR (101.00 MHz, Chloroform-d) δ 195.5, 166.8, 153.9, 130.9, 127.4, 126.5, 121.2, 119.8, 116.9, 109.8, 56.0, 47.5, 40.8, 37.2.

IR ν_{max} 3084 (w), 2945 (w), 2929 (w), 2845 (w), 2239 (w), 1718 (s), 1601 (s), 1492 (w), 1437 (w), 1268 (s), 1150 (w), 1093 (m), 1025 (m).

HRMS (ESI) calcd for C$_{14}$H$_{14}$NO$_2$ [M+H]$^+$ 228.1019; found 228.1022.

[α]$_{D}^{25.0}$ +50.4 (c = 11.0, CHCl$_3$).

(S)-5-Methoxy-2-(2-methylallyl)-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8b)
Following general procedure GP5, starting from substrate 5b (0.057 g, 0.20 mmol), (S)-5-methoxy-2-(2-methylallyl)-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8b) (0.044 g, 0.18 mmol, 92% yield, 89% ee) was obtained as an orange resin.

RF 0.4 (Pentane: Ethyl acetate 4:1).

Chiral HPLC conditions: ee: 89%; Chiralcel IA 95:5 Hexane/iPrOH, 1 mL/min, 30 min. \(t_{R1} = 16.4 \) min and \(t_{R2} = 22.8 \) min. \(\lambda = 254 \) cm\(^{-1} \).

\(^1\)H NMR (400 MHz, Chloroform-\(d \)) \(\delta \) 7.75 (d, \(J = 8.6 \) Hz, 1H, ArH), 6.98 (dd, \(J = 8.6, 2.2 \) Hz, 1H, ArH), 6.88 (s, 1H, ArH), 4.99 (s, 1H, CCH\(_2\)), 4.88 (s, 1H, CCH\(_2\)), 3.91 (s, 3H, OMe), 3.53 (d, \(J = 17.5 \) Hz, 1H, CMe), 2.84 (d, \(J = 14.5 \) Hz, 1H, CH\(_2\)CMe), 1.84 (d, \(J = 1.5 \) Hz, 3H, CH\(_3\)).

\(^13\)C NMR (101.00 MHz, Chloroform-\(d \)) \(\delta \) 195.8, 166.8, 154.1, 139.9, 127.5, 126.1, 120.4, 116.9, 116.6, 109.8, 56.0, 46.9, 43.7, 37.3, 23.3.

IR \(\nu_{\text{max}} \) 3082 (w), 2945 (w), 2922 (w), 2844 (w), 2238 (w), 1715 (s), 1599 (s), 1492 (w), 1265 (s), 1089 (m), 1023 (m), 909 (m).

HRMS (ESI) calcd for C\(_{15}\)H\(_{16}\)NO\(_2\) [M+H]\(^+\) 242.1176; found 242.1169.

\([\alpha]_D^{25.0}\) +61.6 (c = 3.1, CHCl\(_3\)).

\((S)-5\)-Methyl-2-(2-methylallyl)-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8c)

Following general procedure GP5, starting from substrate 5c (0.054 g, 0.20 mmol), (S)-5-methyl-2-(2-methylallyl)-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8c) (0.044 g, 0.19 mmol, 98% yield, 82% ee) was obtained as white crystal.

RF 0.35 (Pentane: Ethyl acetate 4:1).

Mp 42-45 °C.

Chiral HPLC conditions: ee: 82%; Chiralcel IA 95:5 Hexane/iPrOH, 1 mL/min, 30 min. \(t_{R1} = 10.0 \) min and \(t_{R2} = 15.4 \) min. \(\lambda = 254 \) cm\(^{-1} \).

\(^1\)H NMR (400 MHz, Chloroform-\(d \)) \(\delta \) 7.73 (d, \(J = 8.2 \) Hz, 1H, ArH), 7.26 (m, 2H, ArH\(^{21}\)), 5.00 (s, 1H, CCH\(_2\)), 4.87 (s, 1H, CCH\(_2\)), 3.55 (d, \(J = 17.4 \) Hz, 1H, CH\(_2\)), 3.38 (d, \(J = 17.4 \) Hz, 1H, CH\(_2\)), 2.84 (d, \(J = 14.4 \) Hz, 1H, CH\(_2\)CMe), 2.47 (s, 3H, ArCH\(_3\)), 2.43 – 2.29 (m, 1H, CH\(_2\)CMe), 1.85 (d, \(J = 1.1 \) Hz, 3H, CH\(_3\)).

\(^{21}\) CDCl\(_3\) peak overlaps with the aromatic protons of the molecule.
13C NMR (101.00 MHz, Chloroform-d) δ 197.3, 151.5, 148.3, 139.9, 130.9, 130.1, 127.1, 125.6, 120.3, 116.7, 46.9, 43.7, 37.2, 23.3, 22.4.

IR ν_{max} 3079 (w), 2975 (w), 2924 (w), 2857 (w), 2238 (w), 1720 (s), 1609 (s), 1435 (w), 1275 (m), 1120 (w), 909 (m)

HRMS (ESI) calcd for C$_{15}$H$_{16}$NO $^{+}$ [M+H]$^+$ 226.1226; found 226.1220.

$\left[\alpha\right]_D^{25.0} +52.2$ (c = 3.6, CHCl$_3$).

(S)-2-(2-Methylallyl)-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8d)

Following general procedure GP5, starting from substrate 5d (0.051 g, 0.20 mmol), (S)-2-(2-methylallyl)-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8d) (0.041 g, 0.19 mmol, 96% yield, 85% ee) was obtained as an orange oil.

R_F 0.25 (Pentane: Ethyl acetate 4:1).

Chiral HPLC conditions: ee: 85%; Chiralcel IA 95:5 Hexane/iPrOH, 1 mL/min, 30 min. $t_{R1} = 8.5$ min and $t_{R2} = 11.3$ min. $\lambda = 254$ cm$^{-1}$.

1H NMR (400 MHz, Chloroform-d) 7.84 (d, $J = 7.7$ Hz, 1H, ArH), 7.77 – 7.66 (m, 1H, ArH), 7.57 – 7.41 (m, 2H, ArH), 5.01 (s, 1H, CCH_2), 4.89 (s, 1H, CCH_2), 3.61 (d, $J = 17.4$ Hz, 1H, CH_2), 3.44 (d, $J = 17.4$ Hz, 1H, CH_2), 2.85 (d, $J = 14.5$, 1H, CH_2CMe), 2.39 (d, $J = 14.5$, 1H, CH_2CMe), 1.85 (s, 3H, CH_3).

13C NMR (101.00 MHz, Chloroform-d) δ 197.8, 151.0, 139.8, 136.6, 133.2, 128.8, 126.8, 125.8, 120.1, 116.8, 46.7, 43.7, 37.4, 23.3

IR ν_{max} 3076 (w), 2974 (w), 2923 (w), 2856 (w), 2239 (w), 1731 (s), 1612 (w), 1466 (w), 1436 (w), 1301 (w), 1214 (w), 1016 (w), 912 (w)

HRMS (ESI) calcd for C$_{14}$H$_{14}$NO $^{+}$ [M+H]$^+$ 212.1070; found 212.1063.

$\left[\alpha\right]_D^{25.0} +9.3$ (c = 3.1, CHCl$_3$).
(S)-5-Bromo-2-(2-methylallyl)-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8e)

Following general procedure GP5, starting from substrate 5e (0.067 mg, 0.20 mmol), (S)-5-bromo-2-(2-methylallyl)-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8e) (0.052 mg, 0.18 mmol, 90% yield, 78% ee) was obtained as an orange oil.

RF 0.75 (Pentane:Ethyl acetate 9:1).

Chiral HPLC conditions: ee: 78%; Chiralcel IA 95:5 Hexane/iPrOH, 1 mL/min, 30 min. tR1 = 10.0 min and tR2 = 16.9 min. λ = 280 cm⁻¹.

1H NMR (400 MHz, Chloroform-d) δ 7.75 – 7.66 (m, 2H, ArH), 7.62 (d, J = 8.2 Hz, 1H, ArH), 5.01 (s, 1H, CCH₂), 4.87 (s, 1H, CCH₂), 3.58 (d, J = 17.8 Hz, 1H, CH₂), 3.42 (d, J = 17.6 Hz, 1H, CH₂), 2.84 (d, J = 14.4 Hz, 1H, CH₂CMe), 2.40 (d, J = 14.4 Hz, 1H, CH₂CMe), 1.84 (s, 3H, CH₃).

13C NMR (101.00 MHz, Chloroform-d) δ 196.6, 152.4, 139.5, 132.6, 132.3, 132.1, 130.1, 126.9, 119.6, 117.1, 46.8, 43.7, 36.9, 23.3.

IR νmax 3081 (w), 2925 (w), 2852 (w), 2239 (w), 1729 (s), 1596 (s), 1578 (m), 1416 (w), 1318 (m), 1265 (m), 1209 (m), 1061 (m), 912 (m).

HRMS (ESI) calcd for C₁₄H₁₃⁷⁹BrNO [M+H]⁺ 290.0175; found 290.0174.

[α]D²⁵⁺ 26.9 (c = 2.3, CHCl₃).

(S)-6-Fluoro-2-(2-methylallyl)-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8f)

Following general procedure GP5, starting from substrate 5f (0.055 g, 0.20 mmol), (S)-6-fluoro-2-(2-methylallyl)-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8f) (0.037 g, 0.16 mmol, 81% yield, 78% ee) was obtained as an orange oil.

RF 0.8 (Pentane:Ethyl acetate 4:1).

Chiral HPLC conditions: ee: 78%; Chiralcel IA 95:5 Hexane/iPrOH, 1 mL/min, 30 min. tR1 = 8.2 min and tR2 = 9.6 min. λ = 280 cm⁻¹.
\(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.54 – 7.35 (m, 3H, ArH), 5.01 (s, 1H, C\(CH_2\)), 4.87 (s, 1H, C\(CH_2\)), 3.57 (d, \(J = 17.5\) Hz, 1H, CH\(_2\)), 3.40 (d, \(J = 17.5\) Hz, 1H, CH\(_2\)), 2.83 (d, \(J = 14.5\) Hz, 1H, CH\(_2\)CMe), 2.41 (d, \(J = 14.5\) Hz, 1H, CH\(_2\)CMe), 1.84 (s, 3H, CH\(_3\)).

\(^{13}\)C NMR (101.00 MHz, Chloroform-\(d\)) \(\delta\) 196.8, 162.8 (d, \(J = 250.5\) Hz), 146.3 (d, \(J = 2.0\) Hz), 139.4, 134.9, 134.8 (d, \(J = 7.8\) Hz), 128.2 (d, \(J = 8.1\) Hz), 124.4 (d, \(J = 23.8\) Hz), 119.6, 116.9, 111.3 (d, \(J = 22.4\) Hz), 128.2 (d, \(J = 8.1\) Hz), 124.4 (d, \(J = 23.8\) Hz), 119.6, 116.9, 111.3 (d, \(J = 22.4\) Hz), 47.5, 43.5, 36.7, 23.2.

IR \(\nu_{\text{max}}\) 3730 (w), 3625 (w), 3076 (w), 2926 (w), 2856 (w), 2241 (w), 1732 (s), 1614 (w), 1490 (m), 1442 (m), 1268 (m), 908 (w).

HRMS (ESI) calcd for C\(_{14}\)H\(_{13}\)FNO\(^+\) [M+H]\(^+\) 230.0976; found 230.0975.

\([\alpha]_D^{25.0}\) +21.5 (c = 3.6, CHCl\(_3\)).

\((R)-2-(2-(((\text{tert-butyldiphenylsilyl})\text{oxy})\text{methyl})\text{allyl})-5\text{-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8g)}\)

Following general procedure GP5, starting from substrate 5g (0.108 g, 0.200 mmol), \((R)-2-(2-(((\text{tert-butyldiphenylsilyl})\text{oxy})\text{methyl})\text{allyl})-5\text{-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8g)}\) (0.046 g, 0.090 mmol, 46% yield, 93% ee) was obtained as white oil after 48 hours of reaction.

RF 0.55 (Pentane:Ethyl acetate 4:1).

Chiral HPLC conditions: ee: 93%; Chiralcel IC 95:5 Hexane/iPrOH, 1 mL/min, 25 min. \(t_{R1}\) = 8.2 min and \(t_{R2}\) = 9.6 min. \(\lambda = 254\) cm\(^{-1}\).

\(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.73 (d, \(J = 8.6\) Hz, 1H, ArH), 7.68 – 7.60 (m, 4H, ArH), 7.47 – 7.33 (m, 6H, ArH), 6.96 (dd, \(J = 8.6, 2.2\) Hz, 1H, ArH), 6.80 (d, \(J = 2.2\) Hz, 1H, ArH), 5.38 (s, 1H, C\(CH_2\)), 5.16 (s, 1H, C\(CH_2\)), 4.21 (d, \(J = 14.3\) Hz, 1H, CH\(_2\)O), 4.10 (d, \(J = 14.1\) Hz, 1H, CH\(_2\)O), 3.90 (s, 3H, OMe), 3.46 (d, \(J = 17.5\) Hz, 1H, CH\(_2\)CCH\(_2\)), 3.35 (d, \(J = 17.5\) Hz, 1H, CH\(_2\)CCH\(_2\)), 2.86 (d, \(J = 14.8\) Hz, 1H, CH\(_2\)), 2.42 (d, \(J = 14.8\) Hz, 1H, CH\(_2\)), 1.05 (s, 9H, SiC(CH\(_3\))\(_3\)).
13C NMR (101.00 MHz, Chloroform-d) δ 195.7, 166.8, 154.2, 142.2, 135.6, 133.4, 133.3, 129.9, 127.9, 127.5, 126.2, 120.1, 116.9, 115.2, 109.8, 77.4, 66.7, 56.0, 47.4, 38.5, 37.6, 27.0, 19.4.

IR νmax 3072 (w), 2958 (w), 2932 (w), 2857 (w), 2238 (w), 1718 (s), 1601 (s), 1429 (m), 1267 (s), 1113 (s), 912 (m), 827 (m)

HRMS (ESI) calcd for C₃₁H₃₃NNaO₃Si⁺ [M+Na]+ 518.2122; found 518.2138.

[α]D²⁵ +30.6 (c = 1.1, CHCl₃).

(S)-5-Methoxy-1-oxo-2-(2-phenylallyl)-2,3-dihydro-1H-indene-2-carbonitrile (8h)

![Chemical Structure](https://example.com/structure.png)

Following general procedure GP5, starting from substrate 5h (0.070 g, 0.20 mmol), (S)-5-methoxy-1-oxo-2-(2-phenylallyl)-2,3-dihydro-1H-indene-2-carbonitrile (8h) (0.052 g, 0.17 mmol, 86% yield, 88% ee) was obtained as yellow oil after 48 hours of reaction.

R⁰ F 0.55 (Pentane:Ethyl acetate 4:1).

Chiral HPLC conditions: ee: 88%; Chiralcel IA 95:5 Hexane/iPrOH, 1 mL/min, 35 min. tᵣ₁ = 23.7 min and tᵣ₂ = 30.0 min. λ = 254 cm⁻¹.

**¹H NMR (400 MHz, Chloroform-d) δ 7.63 (d, J = 8.6 Hz, 1H, ArH), 7.31 – 7.20 (m, 5H, ArH), 6.92 (dd, J = 8.7, 2.2 Hz, 1H, ArH), 6.72 (d, J = 2.2 Hz, 1H, ArH), 5.39 (s, 1H, C(CH₂)₃), 5.32 (s, 1H, C(CH₂)₃), 3.87 (s, 3H, OMe), 3.39 – 3.26 (m, 2H, CH₂CPh+ CH₂), 3.17 (d, J = 17.5 Hz, 1H, CH₂CPh), 2.98 (dd, J = 14.3, 1.0 Hz, 1H, CH₂).

**¹³C NMR (101.00 MHz, Chloroform-d) δ 195.6, 166.7, 154.2, 143.1, 140.7, 135.7, 128.6, 128.2, 127.3, 126.7, 119.9, 119.1, 116.9, 109.5, 56.0, 48.1, 41.3, 37.2.

IR 3057 (w), 3022 (w), 2930 (w), 2851 (w), 2239 (w), 1719 (s), 1601 (s), 1493 (w), 1447 (w), 1268 (s), 1092 (m), 1026 (w), 914 (w).

HRMS (ESI) calcd for C₂₀H₁₉NO₂⁺ [M+H]+ 304.1332; found 304.1321.

[α]D²⁵ +32.0 (c = 1.2, CHCl₃).

²² Not all carbons resolved in the spectra.

²³ CDCl₃ peak overlaps with the aromatic protons of the molecule.
(R)-2-(2-Chloroallyl)-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8i)

Following general procedure GP5, starting from substrate 5i (0.061 g, 0.20 mmol), (R)-5-methoxy-1-oxo-2-(2-phenylallyl)-2,3-dihydro-1H-indene-2-carbonitrile (8i) (0.039 g, 0.15 mmol, 75% yield, 92% ee) was obtained as yellow oil after 6 hours of reaction.

Rf 0.30 (Pentane:Ethyl acetate 4:1).

Chiral HPLC conditions: ee: 92%; Chiralcel IA 95:5 Hexane/iPrOH, 1 mL/min, 35 min. tR1 = 20.6 min and tR2 = 33.4 min. λ = 254 cm⁻¹.

1H NMR (400 MHz, Chloroform-d) δ 7.77 (d, J = 8.6 Hz, 1H, ArH), 6.99 (dd, J = 8.6, 2.3 Hz, 1H, ArH), 6.95 – 6.87 (m, 1H, ArH), 5.45 (s, 2H, CH2Cl), 3.92 (s, 3H, OMe), 3.63 (s, 2H, CH2CCl), 3.21 (d, J = 14.8 Hz, 1H, CH2), 2.71 (d, J = 14.8 Hz, 1H, CH2).

13C NMR (101.00 MHz, Chloroform-d) δ 194.6, 167.0, 154.3, 135.9, 127.6, 126.1, 119.2, 118.5, 117.2, 109.8, 56.1, 47.6, 44.3, 37.6.

IR νmax 2923 (w), 2849 (w), 2239 (w), 1717 (s), 1599 (s), 1493 (w), 1434 (w), 1303 (m), 1263 (s), 1149 (w), 1092 (m), 1022 (m), 908 (w).

HRMS (ESI) calcd for C14H13ClNO2⁺ [M+H]⁺ 262.0629; found 262.0621.

[α]D 25.0° +98.0 (c = 1.6, CHCl3).

6. Product Modifications

(R)-2-(4-(4-Bromophenyl)-1H-1,2,3-triazol-1-yl)-6-chloro-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (10a)

Following a reported procedure,²⁴ in an open flask (R)-2-azido-6-chloro-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7g) (0.020 g, 0.075 mmol), 1-bromo-4-ethynylbenzene 9 (0.014 g, 0.080 mmol, 1.2 equiv) and TBTA (0.4 mg, 0.7 µmol, 0.01 equiv) were dissolved in ¹BuOH (0.3

mL, then sodium ascorbate (0.006 g, 0.03 mmol, 0.4 equiv) and copper sulphate pentahydrate (0.004 g, 0.02 mmol, 0.2 equiv) dissolved in H₂O (0.15 mL), were added under vigorous stirring and the reaction monitored by TLC (4:1 Pentane:EtOAc). Upon consumption of the starting material the reaction mixture was diluted with water (5 mL) and extracted with DCM (3x5 mL). The combined organic layers were dried over MgSO₄ and the solvent removed in vacuo. The crude was then purified with flash chromatography (4:1 Pentane:EtOAc) to afford (R)-2-(4-(4-bromophenyl)-1H-1,2,3-triazol-1-yl)-6-fluoro-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (10a) as a white oil (0.031 g, 0.070 mmol, 94% yield)

Rf: 0.31 (Pentane:Ethyl Acetate 4:1).

1H NMR (400 MHz, Chloroform-d) δ 8.34 (s, 1H, ArH), 7.78 (d, J = 2.0 Hz, 1H, ArH), 7.77 – 7.70 (m, 2H, ArH), 7.67 (dd, J = 8.2, 2.1 Hz, 1H, ArH), 7.62 – 7.45 (m, 3H, ArH), 4.89 (s, 1H, CH₂), 4.69 (s, 1H, CH₂), 4.63 (d, J = 18.0 Hz, 1H, CH₂CMe), 3.78 (d, J = 18.0 Hz, 1H, CH₂CMe), 2.98 (d, J = 14.5 Hz, 1H, CH₂), 2.80 (dd, J = 14.6, 1.1 Hz, 1H, CH₂), 1.49 (s, 3H, CH₃).

13C NMR (101.00 MHz, Chloroform-d) δ 199.5, 150.2, 147.2, 138.7, 136.9, 135.0, 134.7, 132.1, 129.6, 128.0, 127.4, 125.2, 122.3, 119.1, 117.6, 71.1, 46.3, 36.5, 23.3.

IR νmax 3148 (w), 3080 (w), 2921 (w), 1726 (s), 1477 (s), 1428 (s), 1256 (m), 1200 (m), 1184 (m), 1070 (m), 1010 (s)

HRMS (ESI) calcd for C₂₁H₁₈⁷⁹BrClN₃O⁺ [M+H]⁺ 442.0316; found 442.0308.

[a]D²⁵.0 +53.2 (c = 0.2, CHCl₃).

(R)-2-(4-(4-Bromophenyl)-1H-1,2,3-triazol-1-yl)-6-fluoro-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (10b)

Following a reported procedure, in an open flask (R)-2-azido-6-fluoro-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7i) (0.017 g, 0.070 mmol), 1-bromo-4-ethylbenzene 9 (0.013 g, 0.071 mmol, 1.2 equiv) and TBTA (0.4 mg, 0.7 µmol, 0.01 equiv) were dissolved in tBuOH (0.3 mL), then sodium ascorbate (0.006 g, 0.03 mmol, 0.4 equiv) and copper sulphate pentahydrate (0.003 g, 0.01 mmol, 0.2 equiv) dissolved in H₂O (0.15 mL), were added under vigorous stirring and the reaction monitored by TLC (4:1 Pentane:EtOAc). Upon consumption of the starting material the reaction mixture was diluted with water (5 mL) and extracted with DCM (3x5 mL). The combined organic layers were dried over MgSO₄ and the solvent removed in vacuo. The crude was then purified with flash chromatography (4:1 Pentane:EtOAc) to afford (R)-2-(4-(4-bromophenyl)-1H-1,2,3-triazol-1-yl)-6-fluoro-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (10b) as a white oil (0.029 g, 0.070 mmol, 96% yield)

Rf: 0.35 (4:1 Pentane:Ethyl Acetate 4:1).
1H NMR (400 MHz, Chloroform-d) δ 8.34 (s, 1H, ArH), 7.73 (d, $J = 8.5$ Hz, 2H, ArH), 7.55 (m, 3H, ArH), 7.50 – 7.39 (m, 2H, ArH), 4.89 (s, 1H, CCH$_2$), 4.70 (s, 1H, CCH$_2$), 4.63 (d, $J = 17.7$ Hz, 1H, CCH$_2$), 3.78 (d, $J = 17.7$ Hz, 1H, CCH$_2$), 2.99 (d, $J = 14.5$ Hz, 1H, CH$_2$), 2.82 (d, $J = 14.5$ Hz, 1H, CH$_2$), 1.49 (s, 3H, CH$_3$).

13C NMR (101.00 MHz, Chloroform-d) δ 199.9 (d, $J = 3.0$ Hz), 162.8 (d, $J = 250.0$ Hz), 147.6 (d, $J = 2.2$ Hz), 147.2, 138.7, 134.9 (d, $J = 7.7$ Hz), 132.1, 129.6, 128.4 (d, $J = 7.9$ Hz), 127.4, 124.8 (d, $J = 23.8$ Hz), 122.3, 119.1, 117.6, 111.2 (d, $J = 22.2$ Hz), 71.4, 46.3, 36.4, 23.3.

IR $\nu$$_{max}$ 3149 (w), 3076 (w), 2922 (w), 2854 (w), 1726 (s), 1488 (s), 1441 (m), 1267 (s), 1070 (m), 1011 (m).

HRMS (ESI) calcd for C$_{21}$H$_{18}$BrFN$_3$O$^+$ [M+H]$^+$ 426.0612; found 426.0608.

[α]$_D$$^25.0$ +15.0 (c = 0.1 g/mL, CHCl$_3$).

(R)-4-Bromo-2-(4-(4-bromophenyl)-1H-1,2,3-triazol-1-yl)-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (10c)

Following a reported procedure,21 in an open flask, (R)-2-azido-4-bromo-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7j) (0.043 g, 0.14 mmol), 1-bromo-4-ethynylbenzene 9 (0.025 g, 0.14 mmol, 1.2 equiv) and TBTA (0.70 mg, 1.4 µmol, 0.01 equiv) were dissolved in tBuOH (0.6 mL, then sodium ascorbate (0.011 g, 0.060 mmol, 0.4 equiv) and copper sulphate pentahydrate (0.007 g, 0.03 mmol, 0.2 equiv) dissolved in H$_2$O (0.3 mL, were added under vigorous stirring and the reaction monitored by TLC (4:1 Pentane:EtOAc). Upon consumption of the starting material the reaction mixture was diluted with water (5 mL) and extracted with DCM (3x5 mL). The combined organic layers were dried over MgSO$_4$ and the solvent removed in vacuo. The crude was then purified with flash chromatography (4:1 Pentane:EtOAc) to afford (R)-4-bromo-2-(4-(4-bromophenyl)-1H-1,2,3-triazol-1-yl)-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (10c) as an orange oil (0.065 g, 0.13 mmol, 96% yield).

Rf: 0.35 (4:1 Pentane:Ethyl Acetate 4:1).

1H NMR (400 MHz, Chloroform-d) δ 8.33 (s, 1H, ArH), 7.87 (dd, $J = 7.8, 1.0$ Hz, 1H, ArH), 7.82 – 7.68 (m, 3H, ArH), 7.54 (d, $J = 8.5$ Hz, 2H, ArH), 7.41 – 7.31 (m, 1H, ArH), 4.90 (s, 1H, CCH$_2$), 4.72 (s, 1H, CCH$_2$), 4.58 (d, $J = 18.3$ Hz, 1H, CH$_2$CMe), 3.75 (d, $J = 18.3$ Hz, 1H, CH$_2$CMe), 3.08 – 2.93 (m, 1H, CH$_2$), 2.86 – 2.75 (m, 1H, CH$_2$), 1.50 (dd, $J = 1.5, 0.8$ Hz, 3H, CH$_3$).
\(^{13}\text{C NMR} \text{ (101.00 MHz, Chloroform-}d) \delta \) 200.0, 171.2, 151.7, 147.1, 139.4, 138.4, 135.0, 132.0, 130.1, 129.5, 124.2, 122.1, 119.0, 117.6, 70.5, 60.4, 46.0, 38.0, 23.3, 21.1, 14.2.

\(\text{IR} \nu_{\text{max}} \) 3157 (w), 3078 (w), 2975 (w), 1727 (s), 1597 (m), 1459 (m), 1266 (s), 1126 (m), 1070 (s), 1010 (s).

\(\text{HRMS (ESI)} \) calcd for C\(_{21}\)H\(_{18}\)Br\(_2\)N\(_3\)O\(_+\) [M+H]\(^+\) 485.9811; found 442.9795.

\([\alpha]_{D}^{25.0} +40.2 \) (c = 0.2, CHCl\(_3\)).

\((R)-2\text{-Amino-5-bromo-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (11)}\)

Following a reported procedure,\(^{25}\) 2-azido-5-bromo-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (7e) (0.050 mg, 0.16 mmol) was dissolved in 3 mL of anhydrous THF under N\(_2\) in an 10 mL flask. Then triphenylphosphine (0.129 mg, 0.490 mmol, 3 equiv) was added under vigorous stirring at 0 °C. The clear solution was monitored by TLC (Pentane:EtOAc 2:1) and left stirring until consumption of the starting material. Then the reaction was quenched with water (3 mL) and the water phase was extracted three times with EtOAc (3x5 mL). The crude was then purified with flash chromatography (2:1 Pentane:EtOAc) to afford \((R)-2\text{-amino-5-bromo-2-(2-methylallyl)-2,3-dihydro-1H-inden-1-one (11)}\) (0.024 g, 0.086 mmol, 53% yield) as a yellow oil.

\(\text{Rf: } 0.40 \) (Pentane:Ethyl Acetate 2:1).

\(^1\text{H NMR (400 MHz, Chloroform-}d) \delta \) 7.70 − 7.59 (m, 2H, ArH), 7.58 − 7.49 (m, 1H, ArH), 4.87 (s, 1H, C\(_{CH_2}\)), 4.75 (s, 1H, C\(_{CH_2}\)), 3.40 (d, \(J = 17.6 \text{ Hz} \), 1H, C\(_{CH_2}\)), 2.92 (d, \(J = 17.6 \text{ Hz} \), 1H, C\(_{CH_2}\)), 2.41 (s, 2H, CH\(_2\)CMe), 1.71 − 1.64 (m, 5H, NH\(_2\)+CH\(_3\)).

\(^{13}\text{C NMR (101.00 MHz, Chloroform-}d) \delta \) 208.1, 153.5, 141.2, 133.6, 131.6, 131.0, 130.1, 126.1, 116.0, 62.9, 46.7, 40.3, 24.3.

\(\text{IR} \nu_{\text{max}} \) 3072 (w), 2926 (w), 2850 (w), 2078 (w), 1719 (s), 1596 (s), 1574 (m), 1416 (w), 1317 (m), 1205 (m), 1060 (w), 933 (m), 900 (m).

\(\text{HRMS (ESI)} \) calcd for C\(_{13}\)H\(_{14}\)\(^{79}\)BrNN\(_2\)O\(_+\) [M+Na]\(^+\) 302.0151; found 302.0153.

\([\alpha]_{D}^{25.0} +4.67 \) (c = 2.4, CHCl\(_3\)).

(S)-2-(Aminomethyl)-2-isobutyl-5-methoxy-2,3-dihydro-1H-inden-1-one (12)

![Chemical Structure Image]

Following a reported procedure, substrate 8b (0.040 g, 0.16 mmol) was dissolved in anhydrous MeOH (0.6 mL) and CHCl3 (0.9 mL). Then PtO2 (15 mg, 0.066 mmol, 0.4 equiv.) was added in one portion and the resulting suspension bubbled with hydrogen for one hour. Then the reaction was left stirring under hydrogen atmosphere for 36 hours. The suspension was then filtrated on a celite pad that was washed with MeOH (3x5 mL). Flash chromatography in pure EtOAc afforded (S)-2-(aminomethyl)-2-isobutyl-5-methoxy-2,3-dihydro-1H-inden-1-one (12) (0.017 g, 0.068 mmol, 41% yield) as a light yellow oil.

Rf: 0.2 (Ethyl Acetate 100%).

1H NMR (400 MHz, Chloroform-d) δ 7.68 (d, J = 9.2 Hz, 1H, ArH), 6.95 – 6.86 (m, 2H, ArH), 3.89 (s, 3H, OMe), 3.19 – 2.93 (m, 3H, CH2), 2.73 (d, J = 12.9 Hz, 1H, CH2), 2.12 (br s, 2H, NH2), 1.64 – 1.63 (m, 2H, CH2), 1.25 (m, 1H, CH), 0.89 (d, J = 6.4 Hz, 3H, CH3), 0.75 (d, J = 6.4 Hz, 3H, CH3).

13C NMR (101.00 MHz, Chloroform-d) δ 209.0, 165.8, 156.6, 130.2, 125.8, 115.8, 109.7, 55.8, 54.2, 49.4, 43.3, 36.6, 25.2, 25.0, 23.8.

IR νmax 3441 (w), 2940 (w), 2886 (m), 1697 (m), 1599 (s), 1492 (w), 1440 (w), 1262 (s), 1092 (w), 1027 (w), 844 (w)

HRMS (ESI) calcd for C15H22NO2 [M+H]+ 248.1645; found 248.1645.

[α]D25.0 +1.1 (c = 1.7, CHCl3).

(R)-6-Fluoro-2-(2-methylallyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (13)

![Chemical Structure Image]

Following a reported procedure, a mixture of (S)-6-fluoro-2-(2-methylallyl)-1-oxo-2,3-dihydro-1H-indene-2-carbonitrile (8f) (0.050 g, 0.22 mmol), (Z+E)-acetaldehyde oxime (0.026 mL, 0.44 mmol, 2 equiv), Pd(OAc)2 (4.9 mg, 0.022 mmol, 0.1 equiv) and triphenylphosphine (0.011 g, 0.044 mmol, 0.2 equiv) in EtOH:Water in an 1 mL flask (3:1 0.4 mL) were heated to reflux for 3

h under nitrogen atmosphere. The reaction mixture was filtered through a Celite pad and washed with EtOH/DCM (5 mL). After removal of solvent and column chromatographic purification process (Pentane:EtOAc 1:1) (R)-6-fluoro-2-(2-methylallyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (13) (0.045 g, 0.18 mmol, 83% yield) was obtained as a yellow oil.

Rf: 0.15 (Pentane:Ethyl Acetate 1:1).

1H NMR (400 MHz, Chloroform-d) δ 7.45 (m, 1H, ArH), 7.42 – 7.30 (m, 2H, ArH), 6.98 (s, 1H, NH2), 5.57 (s, 1H, NH2), 4.86 (s, 1H, CCH2), 4.78 (s, 1H, CCH2), 3.99 (d, J = 17.8 Hz, 1H, CH2), 3.16 (d, J = 17.8 Hz, 1H, CH2), 2.73 (d, J = 13.0 Hz, 1H, CH2CMe), 2.63 (d, J = 13.0 Hz, 1H, CH2CMe), 1.63 (s, 3H, CH3).

13C NMR (101.00 MHz, Chloroform-d) δ 205.7, 171.5, 162.4 (d, J = 248.8 Hz), 149.5 (d, J = 2.0 Hz), 140.6, 136.3 (d, J = 7.3 Hz), 128.1 (d, J = 7.9 Hz), 123.8 (d, J = 23.8 Hz), 116.9, 110.19 (d, J = 22.0 Hz), 61.8, 46.9, 33.7, 23.2.

IR νmax 3726 (w), 3629 (w), 3599 (w), 3449 (w), 3347 (w), 2271 (w), 1705 (s), 1685 (s), 1610 (w), 1489 (m), 1444 (w), 1371 (w), 1267 (m), 904 (w), 881 (w).

HRMS (ESI) calcd for C14H14FNNaO2 [M+Na]+ 270.0901; found 270.0903.

\([\alpha]_D^{25.0} +26.1\) (c = 2.6, CHCl3).

7. Result of the XRD experiment

A single crystal was grown by slow diffusion of the solution of 8c in EtOAc/heptane mixture. Supplementary crystallographic data for this compound have been deposited at Cambridge Crystallographic Data Centre (CCDC 1418044) and can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.
9. Spectra of new compounds
13C 101 MHz
CDCl$_3$
13C 101 MHz
CDCl$_3$
1H 400 MHz
CDCl$_3$
13C 101 MHz
CDCl$_3$
1H 400 MHz
CDCl$_3$
13C 101 MHz
CDCl$_3$
1C 101 MHz
CDCl$_3$
13C 101 MHz
CDCl$_3$
13C 101 MHz
CDCl$_3$
1H 400 MHz
CDCl$_3$
13C 101 MHz

CDCl$_3$
13C 101 MHz
CDCl$_3$
13C 101 MHz
CDCl$_3$
13C 101 MHz
CDCl$_3$
13C 101 MHz
CDCl$_3$
13C 101 MHz
CDCl$_3$
<table>
<thead>
<tr>
<th>#</th>
<th>Peak Name</th>
<th>C17</th>
<th>IR</th>
<th>Area</th>
<th>Height</th>
<th>Area%</th>
<th>Height%</th>
<th>Quantity</th>
<th>NRT</th>
<th>Resolution</th>
<th>Symmetry Factor</th>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unknown</td>
<td>1</td>
<td>7.50</td>
<td>20603</td>
<td>19230</td>
<td>2.433</td>
<td>2.697</td>
<td>N/A</td>
<td>100</td>
<td>3.320</td>
<td>1.294</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Unknown</td>
<td>1</td>
<td>8.489</td>
<td>11252777</td>
<td>868836</td>
<td>97.567</td>
<td>97.460</td>
<td>N/A</td>
<td>100</td>
<td>1.159</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Peak Information

<table>
<thead>
<tr>
<th>#</th>
<th>Peak Name</th>
<th>C17</th>
<th>IR</th>
<th>Area</th>
<th>Height</th>
<th>Area%</th>
<th>Height%</th>
<th>Quantity</th>
<th>NRT</th>
<th>Resolution</th>
<th>Symmetry Factor</th>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unknown</td>
<td>1</td>
<td>7.040</td>
<td>6946127</td>
<td>348483</td>
<td>48.908</td>
<td>48.934</td>
<td>N/A</td>
<td>334</td>
<td>2.873</td>
<td>1.270</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Unknown</td>
<td>1</td>
<td>8.990</td>
<td>67565797</td>
<td>360329</td>
<td>50.414</td>
<td>50.766</td>
<td>N/A</td>
<td>4487</td>
<td>N/A</td>
<td>1.109</td>
<td></td>
</tr>
</tbody>
</table>
13C 101 MHz
CDCl$_3$
<table>
<thead>
<tr>
<th>#</th>
<th>Peak Name</th>
<th>CH</th>
<th>Int.</th>
<th>Area</th>
<th>Height</th>
<th>Area%</th>
<th>Height%</th>
<th>Quantity</th>
<th>MTF</th>
<th>Resolution</th>
<th>Symmetry Factor</th>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unknown</td>
<td>1</td>
<td>9.817</td>
<td>128659</td>
<td>6802</td>
<td>8.130</td>
<td>7.804</td>
<td>N/A</td>
<td>6541</td>
<td>3.917</td>
<td>1.156</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Unknown</td>
<td>1</td>
<td>11.897</td>
<td>1997349</td>
<td>73586</td>
<td>92.882</td>
<td>93.058</td>
<td>N/A</td>
<td>8750</td>
<td>1.329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Peak Name</td>
<td>CH</td>
<td>IR</td>
<td>Area</td>
<td>Height</td>
<td>Area%</td>
<td>Height%</td>
<td>Quantity</td>
<td>NRT</td>
<td>Resolution</td>
<td>Symmetry Factor</td>
<td>Warning</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>-----------</td>
<td>-----</td>
<td>------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Unknown</td>
<td>1</td>
<td></td>
<td>6.413</td>
<td>2340205</td>
<td>23088</td>
<td>8.501</td>
<td>8.945</td>
<td>N/A</td>
<td>9715</td>
<td>4.996</td>
<td>1.165</td>
</tr>
<tr>
<td>2</td>
<td>Unknown</td>
<td>1</td>
<td></td>
<td>7.947</td>
<td>3169714</td>
<td>194903</td>
<td>92.728</td>
<td>91.068</td>
<td>N/A</td>
<td>7687</td>
<td>N/A</td>
<td>1.479</td>
</tr>
</tbody>
</table>
$^{13}\text{C} 101 \text{ MHz}$

CDCl$_3$
<table>
<thead>
<tr>
<th>#</th>
<th>Peak Name</th>
<th>CRT</th>
<th>IR</th>
<th>Area</th>
<th>Area%</th>
<th>Height</th>
<th>Height%</th>
<th>Quantity</th>
<th>NTF</th>
<th>Resolution</th>
<th>Symmetry Factor</th>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unknown 1</td>
<td>7.048</td>
<td>28469</td>
<td>19220</td>
<td>2.433</td>
<td>2.967</td>
<td>N/A</td>
<td>461</td>
<td>3.320</td>
<td>1.294</td>
<td>1.159</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Unknown 2</td>
<td>8.490</td>
<td>11262377</td>
<td>605636</td>
<td>97.567</td>
<td>97.403</td>
<td>N/A</td>
<td>6061</td>
<td>N/A</td>
<td>1.159</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Peak Name</th>
<th>CRT</th>
<th>IR</th>
<th>Area</th>
<th>Area%</th>
<th>Height</th>
<th>Height%</th>
<th>Quantity</th>
<th>NTF</th>
<th>Resolution</th>
<th>Symmetry Factor</th>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unknown 1</td>
<td>7.526</td>
<td>45991</td>
<td>4488</td>
<td>60.884</td>
<td>47.894</td>
<td>N/A</td>
<td>11184</td>
<td>N/A</td>
<td>1.187</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S185
1H 400 MHz
CDCl$_3$
$\text{C} \ 101 \text{ MHz}$

CDCl_3
\(^{13}\)C 101 MHz
CDCl$_3$
13C 101 MHz
CDCl$_3$
<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU*s]</th>
<th>Height [mAU]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.845</td>
<td>MM</td>
<td>0.3339</td>
<td>6.66354</td>
<td>3.32654e-1</td>
<td>3.4625</td>
</tr>
<tr>
<td>2</td>
<td>15.622</td>
<td>BB</td>
<td>0.3825</td>
<td>185.78767</td>
<td>7.56524</td>
<td>96.5375</td>
</tr>
</tbody>
</table>
1H 500 MHz
CDCl$_3$
<table>
<thead>
<tr>
<th>Peak Name</th>
<th>CH</th>
<th>TR</th>
<th>Area</th>
<th>Height</th>
<th>Area%</th>
<th>Height%</th>
<th>Quantity</th>
<th>NTP</th>
<th>Resolution</th>
<th>Symmetry Factor</th>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>2</td>
<td>20.897</td>
<td>70907</td>
<td>2784</td>
<td>3.096</td>
<td>6.237</td>
<td>N/A</td>
<td>14682</td>
<td>14.624</td>
<td>1.148</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>2</td>
<td>33.447</td>
<td>175383</td>
<td>41555</td>
<td>96.114</td>
<td>93.763</td>
<td>N/A</td>
<td>18296</td>
<td>N/A</td>
<td>1.198</td>
<td></td>
</tr>
</tbody>
</table>
1H 400 MHz
CDCl$_3$
13C 101 MHz
CDCl$_3$
\[\text{H} 400 \text{ MHz} \\
\text{CDCl}_3 \]
13C 101 MHz
CDCl$_3$
1H 101 MHz
CDCl$_3$
1H 400 MHz

CDCl$_3$