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• A framework for tracking and modeling of human bodies from sequences of depth maps.
• Modular and extensible energy cost optimization, with depth and prior constraints.
• Compact semantic tags associated to the estimated body shape using L1 relaxation.
• Relies on the tools and algorithms provided by the Point Cloud Library (PCL).
• 3 fps performance for continuous tracking and modeling on the CPU.
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a b s t r a c t

The paper proposes a complete framework for tracking and modeling articulated human bodies from
sequences of rangemaps acquired from off-the-shelf depth cameras. In particular, we propose an original
approach for fitting a pre-defined parametric shape model to depth data by exploiting the 3D body pose
tracked through a sequence of range maps. To this goal, we make use of multiple types of constraints
and cues embedded into a unique cost function, which is then efficiently minimized. Our framework is
able to yield compact semantic tags associated to the estimated body shape by leveraging on semantic
body modeling from MakeHuman and L1 relaxation, and relies on the tools and algorithms provided by
the open source Point Cloud Library (PCL), representing a good integration of the functionalities available
therein.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction and related work

The task of 3D body modeling aims at automatically obtaining
an accurate 3D model of a person’s body. The possibility of
having at disposal an accurate 3D model adapted to the body
characteristics of a subject opens up new directions in a variety
of applications, such as in the fields of entertainment (e.g. 3D
avatar creation for videogaming and movie special effects),
fitness (e.g., for automatic estimation of the body mass), apparel
(e.g., for virtual changing room applications), interactive design,
and security (people detection and identification).

The output of this task is generally represented by a parametric
3D body model, with the parameters estimated so that the
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model adapts to the specific characteristics of the subject being
scanned. It is often the case that these parametric models are open
sourced and available to the community so to favor interchange
and standardization. While earlier parametric models [1] were
based on simple Principal Component Analysis (PCA) of standard
human poses (e.g., T/A poses), more recent approaches also model
minute body deformations such as muscle bulging under complex
poses, e.g., the SCAPE models [2,3]. Another possibility of sourcing
parametric body models is from semantic models, i.e., models
built by artists, where each body shape modifier has an associated
semantic tag, such as it is the case of MakeHuman [4].

Accurately estimating the 3D bodymodel traditionally requires
dedicated and expensive hardware to acquire high resolution scans
of the body, generally by means of 3D laser scanners or high
frame-rate structured light sensors. In addition, this procedure is
characterized by high processing time due to the re-positioning
of the scanner from different view points, the acquisition and
the joint 3D registration of the different scans. To overcome
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such limitations, the work of [5] proposed to fit a 3D parametric
model to a frame acquired by means of a monocular RGB camera.
Although not fully automatic due to the need of user interaction as
well as limited in themodeling accuracy due to the 2D to 3D fitting,
this work introduced the concept of using low-cost hardware for
the task of 3D body modeling.

Successively, thanks to the popularity of consumer depth
cameras originated by the development of the Microsoft Kinect,
other works [6–9] have tackled 3D body modeling by means of
the noisy range data acquired from such low-cost 3D sensors.
Initially, [6] proposed to fit each parametric 3D model obtained
from SCAPE [2] on a certain number of range depth maps (e.g. 4)
by optimizing an objective cost function relying on 3D data fitting
as well as silhouette fitting. The main limitations of such a method
are represented by the constraints imposed by the system, in the
form of a specific pose (T-pose) that the subject has to assume
throughout the sequence, and by the overall efficiency (more
than one hour is reported to process one subject). Successively,
in [8], simplified SCAPE shape models are estimated from two
depth maps of the subject (one frontal, one from the back) in
real time by optimizing a cost function composed of two terms,
respectively taking into account point-to-point and point-to-plane
fitting. Analogously to [6], this method carries out themodeling by
relying on a small number of slightly overlapping frames, hence
might suffer from the presence of noise in the data.

Differently, non-parametric shape modeling approaches have
been also proposed. This is the case of [7], where a moving voxel
grid is used for each body part to integrate together surface
measurements obtained from a depth map sequence within a
Truncated Signed Distance Function (TSDF) representation, thus
allowing to build volumetric models for both the background and
each piecewise body part. Due to the TSDF fusion, the output is
not a parametric body model, but a piecewise smooth 3D mesh
reconstruction of the body. Another non-parametric approach
is the one proposed in [9], where real-time pose and shape
estimation is obtained via a probabilistic approach based on a
Gaussian Mixture Model (GMM). Also in this case, the input is
represented by a sequence of RGB-D frames. A purely point-based
technique is proposed by [10] for the people re-identification task;
the authors use the Microsoft SDK to track and segment the body,
and then the points are accumulated by transforming each limb to
the standard A-pose.

In this work, we propose a framework aimed at efficient 3D
parametric body modeling from noisy depth sequences acquired
with consumer depth cameras. Conversely to [6,8], one main
contribution of this work is to leverage on the temporal cue
by explicitly tracking the 3D subject and estimating its 3D pose
through a sequence of frames. This allows us to integrate the noisy
body shape of the subject overmany temporally correlated frames,
effectively averaging out noise. The modeling procedure is carried
out by minimization of an energy cost which includes, as a second
contribution of our approach, additional set of cues with respect to
those used in previous works, based on silhouette and 3D surface
fitting, as well as skeleton similarity, PCA and smoothness. We
show that the combinations of these terms induce a more robust
estimation of the body model. Finally, and differently to [6,8],
we propose to use MakeHuman models [4] due to their better
integration with semantic information associated to each body
part. In conjunction with this, a third contribution is a specific
L1 minimization of the energy cost term associated with our
modeling scheme, so as to induce sparsity in the semantic tags
and automatically yield a compact semantic description of each
acquired body.

In Sections 2 and 3 we illustrate the entire proposed pipeline,
which tracks the body motion of the subject and estimates the
pose of its body joints over time, then, from the 3D estimated body
Fig. 1. Overview of the proposed tracking and modeling pipeline.

pose at each frame, it refines the parameters of a MakeHuman
body model by cost function optimization. A graphical overview
of the proposed pipeline is shown in Fig. 1. Our framework relies
on open-source computer vision and full body modeling libraries
such as the Point Cloud Library (PCL) and MakeHuman, and it is
easily customizable for different tasks requiring different precision
and performance due to the modularity of its nature. In our initial
implementation it is able to process frames at a speed of 3 fps and
does not require specific constraints on the pose of the subject.
To demonstrate the effectiveness of our approach, in Section 4 we
show some qualitative examples of body models estimated and
tracked from real data acquired from consumer depth cameras,
as well as measured accuracy of the estimated body model with
respect to specific body parts. We also demonstrate the usefulness
of compact semantic body tags associated to our estimated body
models.

2. Proposed methodology

2.1. Data representation

In our system, the articulated human bodies are represented
as quad and/or triangle meshes. The bodies can be articulated
via the underlying skeleton. Skeletons are composed of multiple
joints disposed in a tree hierarchy (see Fig. 2 for an example),
based on which local node transformations are propagated: T j

abs =

T parent(j)
abs T j

local, where T j
abs is the world transformation of joint j, and

T j
local is its local transformation with respect to its parent node in

the skeleton tree. Each joint influences a number of mesh vertices
in its vicinity, as defined by the linear blend skinning model:
vpose
i =


j w

j
iT

pose
j ∗ (T rest

j )−1
∗ vrest

i , where each joint j in the
skeleton has T rest

j as the transformation corresponding to the rest
pose (A or T-pose) and T pose

j the transformation of the joint in
the posed skeleton configuration, and w

j
i is the blend skinning

weight of joint j over mesh vertex vi. The joints are modeled by
their rest transformation (expressedusing rotationmatrixRrest

j and
translation vector t restj ) and the pose rotation parametrized using
Euler angles β: T pose

j = Rrest
j ∗ Rx(βx

j ) ∗ Ry(β
y
j ) ∗ Rz(βz

j ) + t restj .
The skeleton model deforms the mesh based on the pose of

the body, but does not take into account the deformations that
define the identity of a person. To this end, we employ a global
linear deformation model in which vertices vrest

i are expressed as
linear combinations s of bases stacked as columns into matrix B:
vrest
i = mi+Bis. Previouswork such as [1–3] uses statisticalmodels

derived from a set of registered scans of people. The framework
we propose allows for such models to be used (they use the
same linear system), but in our implementation we employed
blendshapes exported from the popular human body modeling
software MakeHuman [4]. These blendshapes correspond to the
sliders in the MakeHuman application, that is used by numerous
artists and game developers to generate realistic character assets.
As a result, our model is based on a set of non-orthogonal bases
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Fig. 2. MakeHuman parametric body model with an overlaid example skeleton.

(blendshapes) that are linearly combined in order to obtain novel
shapes. The advantage of using such a technique as opposed to
statistical models is that the fitting weights s represent a certain
comprehensible body characteristic along each dimension (e.g.:
fat/slim middle, more/less muscular etc.). This enables applications
such as body shape retargeting, where the body parameters
computed with our system could be used by artists to model
bodies in semantically equivalent spaces (e.g., use the human
body blendshape weights to generate a semantically equivalent
cartoonish character, animal or monster) (see Section 2.7 for more
details).

We formulate the tracking and modeling problem as a global
energy minimization, which aims to estimate the pose of the
skeleton βi at each frame i, as well as the global shape of the
body, encoded by s: argmin{βi},s Etotal. Fig. 3 shows the different
energies that we propose to use in our framework. In the following
subsections we will explain the formulation of each energy
functional, aswell as offer an intuition on its contribution to solving
the global problem.

2.2. Feature constraints

In order to start with a good initial alignment and anchor the
tracking, we use a soft energy that keeps the global translations of
each joint close to the tracked sparse set of body landmarks. Several
off-the-shelf solutions are available for tracking body landmarks
over depth sequences. In our experiments, we have used the
Primesense NiTE body tracker (currently not available due to the
acquisition of the company). Alternatives are represented by the
People Tracking module in PCL, as well as the Microsoft Kinect
SDK.1 All these trackers process, as input, a sequence of depthmaps
as those provided by a consumer depth camera, and output, at
each frame, a set of tracked points representing the skeletal joints
of the human body appearing in the sequence. As such, any of
these methods could be used within our framework for the goal
of tracking 3D body landmarks.

1 https://www.microsoft.com/en-us/kinectforwindows/.
The energy term modeling the alignment between each
template body joint and the respective estimated body landmark
via tracking is formulated as follows:

Efeatures =


j

tposej − χj

2
2

(1)

where tposej are the world-space translations of each joint, and χj
are the corresponding tracked 3D features.

2.3. Point-to-plane constraints

The sampled scene surface obtained from the scanner is regis-
tered against the current estimate of the template body model. In
order to align those two surfaces, the point-to-plane error metric
is used:

Esurface =


i

nT
i (xi − vi)

2
2 (2)

where scan point xi with its normal ni is in correspondence with
the template vertex vi. Mesh vertices vi are expressed as functions
of the skeleton pose and linear blend skinning, as explained in the
previous subsection.

The PCL library offers multiple techniques for pre-processing
the input data, obtaining and filtering pairs of corresponding
points between the mesh and the depth map. The depth maps are
represented as organized grids of 3D points, offering the possibility
of using fast techniques such as integral images [11] to compute
the normals of the depth maps efficiently. Furthermore, the input
point cloud comes from a sensor that can be approximated via the
pinhole camera model, the correspondences can be estimated in
linear time by projecting the template vertices onto the depthmap.
Filtering is performed by discarding correspondences between
points with incompatible distances and orientations [12]. The
correspondences are computed at each outer iteration of the
tracking optimization algorithm.

2.4. Contour constraints

Due to the fact that the normals fromdepth data are noisy at the
boundaries, they do not constrain the movement of the template
body enough. To overcome this issue, an energy functional that
minimizes the point-to-plane distances between the silhouette of
the depth map and that of the template model is proposed.

From our experiments, we concluded that computing the
silhouette by means of the following approach yields good enough
quality for the purpose of our application (see the graphical
example in Fig. 4, left). For the depth map, a pixel is considered
to be on the boundary if it has less than 7 neighbors in its 3 × 3
neighborhood with a small depth difference (we used 3 cm in
our experiments). For the template mesh, the boundary vertices
are detected by rendering the current pose of the mesh in a
framebuffer and extracting them using morphological operators.

The energy functional for Econtour is similar to the one in Eq. (2),
with the differences that the correspondences are computed on
the contour subsets as explained above, and the normals ni (shown
in green on the example contour image Īcontour in Fig. 4, right) are
computed using the blurred contour image gradients as follows,
with Īcontour = G(µ,σ) ◦ Icontour , and Gaussian kernel G(µ,σ):

n =
(∇x Īcontour , ∇y Īcontour , 0)T(∇x Īcontour , ∇y Īcontour , 0)

 . (3)

Furthermore, the correspondences are filtered by the angle
between the projection of the template normals to the image
plane and the depth pixel normals computed as above. Performing
the normal computations and rejection step in 2D ensures more
robustness to noisy input data.

https://www.microsoft.com/en-us/kinectforwindows/
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Fig. 3. Visualization of the registration energies used in our optimization.
Fig. 4. Left: computed contour from depth and mesh: the green points represent
the depth contour, the red points are the mesh contour, respectively. Right:
associated normals computed on the depth map contour. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

2.5. Prior energy

Principal Component Analysis (PCA) is a dimensionality reduc-
tion technique that has been employed numerous times in the
tasks ofmodeling [13,2] and tracking [14]. In particular, Douvantzis
et al. [14] use PCA to decrease the number of variables needed to
describe the pose of a human hand. On the one hand, by doing so,
the optimization problem becomes easier due to less variables that
lie within trained statistical boundaries. On the other hand, solu-
tions can only be picked from within the learnt subspace, limiting
the tracking algorithm to be able to follow only poses similar to
those in the training set. Furthermore, human bodies can undergo
more complex pose changes as compared to hands, and it is con-
sidered very difficult to generate a comprehensive training set that
contains all possible human poses. As such, in order to allow for
novel poses to be tracked while still penalizing unlikely poses, our
approach uses the PCA subspace as a regularizer instead of an op-
timization space.

To begin with, we train the PCA model by using multiple long
sequences tracked using the NiTE feature tracker. This tracker is
imprecise, but enough to enable the generation of a large collection
of plausible human poses. The covariancematrix of the de-meaned
data matrix D obtained by concatenating rows of joint angles βj
for each frame j in the training set is expressed using eigenvalue
decomposition as C = (D − 1µ)T (D − 1µ) = U6U−1. U
is the matrix formed of stacked columns of eigenvectors, 6 the
eigenvalues in a diagonal matrix,µ themean of β over the training
set. The eigenvectors are sorted in descending order by their
corresponding eigenvalues and the first p modes are selected to
form the PCA projection matrix M . The number of modes p is
chosen such thatM forms a basis that explains a consistent portion
of the training space (usually around 90%).
Fig. 5. Geometrical interpretation of the proposed PCA energy terms Eprior_proj and
Eprior_dev .

In order to keep the estimated skeleton pose β in the feasible
space of poses, we introduce an error term that measures the
distance between β and the back-projection of its projection to the
PCA space:

Eprior_proj =
(β − µ) − MMT (β − µ)

2
2 . (4)

The previous energy tries to push the current estimate of the
angles close to their projection in the PCA space. While this gives
a soft guarantee that the current estimate of β can be expressed
as the linear basis learnt in the PCA model, it does not regularize
the values to the variance seen in the training set. To this end,
we introduce an additional energy that penalizes the distance of
the projections of β to the mean of the PCA space. The projection
along each subspace dimension is weighted by the inverse of the
standard deviation of the corresponding PCA basis, which is the
square root of the elements in the diagonal eigenvalue matrix 6:

Eprior_dev =
6−1/2MT (β − µ)

2
2 . (5)

Adding those two terms together, the prior energy functional with
training becomes:

Eprior = λ5Eprior_proj + λ6Eprior_dev. (6)

A geometrical interpretation of the two terms Eprior_proj and Eprior_dev
is given in Fig. 5.

In the case a training set is not available for computing the PCA
model, an alternative prior energy Ẽprior is used to keep the skeleton
close to its neutral A/T-pose:

Ẽprior = ∥β∥
2
2 . (7)

However, it is important to point out that this method is less
desirable than the data-driven technique described above as it
allows for implausible human poses.

2.6. Smoothness energy

Tracking each frame independently leads to jitter due to high
frequency differences between the values of β from one frame
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to another. To overcome this, we introduce a soft constraint that
penalizes large jumps of β between consecutive frames:

Esmoothness =
β(t) − β(t−1)

2
2 . (8)

This is a first order smoothness term, enforcing that the angular
velocity of the limbs is zero. More complex smoothness terms
could be used in order to regularize the problem using acceleration
or even higher order derivatives of the pose vector. We deemed
the energy in Eq. (8) to be sufficient for the purpose of this system,
as we do not expect excessively fast motions for the scenario of
dynamic body scanning.

The smoothness energy term could be omitted, and the se-
quence could be smoothed as a post-processing stage, via temporal
Laplacian filtering, for example. However, the smoothness energy
included into the optimization acts as a soft prior term, adjusting
the angular velocities of the limbs, and attracting the variables to
the solution of the previous frame.

2.7. Tracking and modeling

The optimization is split into two stages: tracking, aimed at
estimating the pose βi of the skeleton for each frame i, and
modeling, aimed at estimating the body shape parameters s over
the whole sequence. These two stages are briefly outlined in the
following.

Tracking The tracking is performed sequentially for each
frame, by keeping s fixed and finding values of β for which
Etotal is minimized. The Levenberg–Marquardt algorithm is used to
optimize for the tracking, in which the linear system to be solved is
computed analytically. The adaptive damping technique present in
this algorithm is needed as the problem is unstable because of the
chain of variables that influences all the nodes below in the tree. If
the smoothness term Esmoothness is removed from the total energy,
then the tracking can be solved for each frame independently,
allowing for heavy parallelization of this stage of the pipeline.

Modeling As mentioned before, the modeling stage refers to
finding the optimal blendshape weights s such that the mesh
vertices vrest

i = mi + Bis minimize the modeling error over
the sequence of frames tracked so far. Note that the modeling
error does not contain some of the terms in Etotal, as those were
pertaining to regularizing the solutions for β:

Emodeling = γ1Esurface + γ2Econtour + γ3Ebs_reg . (9)
The tracking and modeling paradigm we proposed can be used

for both online and offline modeling. Similar to [15], one option is
to use a temporal weighting scheme for the accumulation of the
per frame constraints, giving more weight to more recent frames.
In such a scheme, the modeling is done after each tracked frame,
continuously updating the body model during the tracking. This is
expressed mathematically as solving the linear system at time t ,
M t

lhs1st = M t
rhs. The update is done as follows, with:

J t =
∂Et

modeling

∂st
(10)

bt
= Et

modeling (11)

the left and right-hand-side of the linearized constraints for frame
t , respectively; wt

γ is the temporal weight determined by the
parameter γ < 1, which quantifies the influence of recent frames
in the detriment of old frames:

wt
γ = γwt−1

γ + 1 (12)

M t
lhs = γ

wt−1
γ

wt
γ

M t−1
lhs +

1
wt

γ

(J t)T J t (13)

M t
rhs = γ

wt−1
γ

wt
γ

M t−1
rhs +

1
wt

γ

(J t)Tbt . (14)
Fig. 6. Unrealistic estimated body model due to not regularizing the blendshape
weights s.

The second option is to accumulate all the frames of the sequence
with equal weights (γ = 1 in the equations above), and solve
for the modeling only at the end of the tracked input sequence.
The main disadvantage of this scheme is that multiple tracking
passes of the sequence are required, but the results will be more
consistent with the whole dataset.

Allowing for any values of s can lead to unrealistic models such
as the one depicted in Fig. 6. Regularization is needed to keep the
optimization from converging to such unwanted solutions. To this
end, we suggest two options:

Ebs_reg_L2 = ∥s∥2
2 (15)

Ebs_reg_L1 = ∥s∥1 . (16)

The effect of using either one of these regularization energies
is explained in Fig. 7. By employing Ebs_reg_L2, the linear system
can be solved with the Gauss–Newton solver, with no damping
necessary. Using the L1 norm present in Ebs_reg_L1 necessitates a
different solver. In our implementation we use the Gauss–Seidel
method with successive over-relaxation adapted to the L1 norm
regularization [16], along with iterative reprojections to keep the
blendshape weights in the [0, 1] range. Another option, albeit
usually considered slower, would have been Gauss–Newton with
iterative reweighting [17].

In some situations the tracking does fail, and using those wrong
constraints for themodeling phasemight lead to erroneous results.
In order to avoid such situations, we skip the frames for which the
global tracking error Etotal is higher than a certain threshold and the
percentage of the overlap between the depthmap and the template
model surface is below a certain value. (in our experiments we
chose 45%).

3. Implementation

The skeleton is scaled once at the beginning of the pipeline by
taking the median distances between the NiTe features at each
frame over the whole sequence as being the limb lengths. From
our experiments, this proved to be sufficient, and no further limb
size adaptation was necessary during the tracking refinement and
modeling iterations. Such a solution would not be possible in the
case of online modeling and a different heuristic for the limb size
adaptation should be employed.

The current implementation of the framework uses PCL exclu-
sively, by relying on multiple components for the pre-processing,
correspondence estimation and visualization stages. In particular,
for efficient Nearest Neighbor search in the point cloud 3D domain
we rely on the FLANN library included in PCL. Normals on the depth
maps and on the point clouds are estimated, respectively, with the
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(a) Template model avg. tracking error:
0.39.

(b) L2 fitting avg. tracking error: 0.32. (c) L1 fitting avg. tracking error: 0.34.

Fig. 7. Visualization of the effect of the different norms on the blendshape weights for the body modeling of subject S4. Displayed are the resulting body meshes, along
with a graphical representation of the blendshape weights and the average tracking error across the whole depth sequence obtained by using the respective body model
estimation. (a) shows the scaled template model. (b) shows the modeling result with the classical L2 norm energy on the blendshape weights. (c) showcases the bodymodel
obtained by regularizing the blendshape weights with an L1 norm. The tracking error becomes slightly higher, but notice the smaller number of activated blendshapes with
high values, compared to the L2 fitting, where a lot of blendshapes are activated with small values.
multithread method pcl::NormalEstimationOMP and with the inte-
gral images-based method pcl::IntegralImageNormalEstimation. All
the solvers are implemented using the Eigen C++ linear algebra li-
brary, with no other external dependencies. For parallelization, we
used the OpenMP library.

We have performed all our experiments on data collected from
an Asus Xtion PRO LIVE sensor, which consists of synchronized
depth and color images at a resolution of 640× 480 each, delivered
at 30 Hz. For the performed experiments, the blendshape model
used for fitting contained 18 meshes selected from MakeHuman,
representing macro shape variations of the body. The template
mesh has 13380 vertices and 26756 triangles. The skeleton
structure used is the second_life rig provided in the MakeHuman
application, which has beenmanuallymapped to the NiTE tracking
features. The pose prior has been trained from a database of
about 2300 frames with 18 3D feature locations per frame. The
compressed PCAmodel retains 91% of the variability of the motion
database by using 12 modes.

4. Experimental results

In this section, we provide some experimental results and
applications of our tracking and body shape estimation framework.
To this goal, we have acquired multiple sequences of around
500–600 frames for each person of a group of four males
and two female subjects (subjects S1 · · · S6). Fig. 8 shows one
frame relatively from each acquired subject, together with the
corresponding estimated bodymodel. As it can be seen, the setting
is that of a typical indoor environment, which includes cluttered
background. Aswitnessedby the figure, the estimatedbodymodels
are different to fit the specific body traits of each subject. In
addition, we show, in Fig. 9, multiple examples of tracked and
estimated body models for different sequences, along with the
corresponding RGB frames. As it can be seen, the method can track
the 3D body also in complex poses, and also when the person’s
back is facing the camera. For a more clear view of the incremental
tracking and modeling process, Fig. 10 shows the evolution of the
template silhouette with respect to the depth map contour as the
optimization converges.

To evaluate quantitatively the modeling precision of our
framework, we computed the standard deviations measured on a
few key locations of the body model estimated along each of the
4 sequences associated to each of the 4 subjects for which such
number of sequences was available (i.e., subjects S1 · · · S4). The
results are reported in Table 1, along with a visualization of the
location of the body features (on the left). The reported results
range between a minimum of 0.36 cm and a maximum of 2.35 cm,
with an average over all locations and all subjects of 1.10 cm,
which demonstrates an encouraging repeatability of the proposed
modeling algorithm, leading us to believe that this framework has
the potential to obtain relatively accurate results, evenwithout the
need of a complicated setup or scripted actor movement.

We wish to point out here that our framework does not
explicitly take into account the presence of clothes. Indeed, precise
body pose measurements should be taken without clothes or
wearing garments that are tight to the body. Indeed, loose clothes
might easily lead to errors in both the tracking andmodeling stages
of the pipeline, thus resulting in decreasing the accuracy of body
measurements. The same problem would occur if the subject has
long/voluminous hair, or in presence of any accessory with a non
negligible size, such as bags, hats, glasses, belts, etc.

As mentioned before, the L1 semantic body modeling we
propose opens up multiple avenues for applications that could
have not been possible with L2 statistical models. A simple
such example is depicted in Fig. 11, where the word clouds
corresponding to the blendshape weights of the body fitted in
Fig. 7 have been created. Note the compactness of the semantic
representation yielded by the use of the L1 relaxation with respect
to the one yielded by the L2 model.

Moreover, by having the body mesh modeled and tracked
throughout the sequence, and being the associated RGB frame
available as well in correspondence with each depth frame
(i.e., RGB-D data), our framework allows to build a complete
texture of the mesh (see Fig. 12). A simple technique is employed
that projects each RGB frame into the UV-space of the mesh,
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(a) S1. (b) S2. (c) S3.

(d) S4. (e) S5. (f) S6.

Fig. 8. Modeling results showing the six experimental subjects (S1 · · · S6) together with their modeled 3D body shape.
accumulating color contributions weighted by the foreshortening
angle (angle between the normal at the mesh surface and the
viewing direction of the camera). Note the presence of artifacts
such as blurring and black regions. These are due to inaccuracies
in the tracking and the fact there are regions that have not been
captured during the sequence.
4.1. Effect of each tracking energy

Finally, in Fig. 13 we show some results relatively to the
influence of the most relevant energy terms employed in the
proposed cost function, obtained by deactivating them one at a
time and highlighting themost remarkable qualitative differences.



546 A.E. Ichim, F. Tombari / Robotics and Autonomous Systems 75 (2016) 539–549
Fig. 9. The proposed framework is able to track bodies and estimate their parametric bodymodel from a depth sequence. In each row of the figure, we report three examples
of a sequence corresponding to one of the evaluated subjects (S1, S2, S3, S4, and S4, respectively). For each example, we show the input RGB frames, the posed body and its
corresponding skeleton.
Table 1
Mean and average standard deviation of all the measurements for 4 test subjects with 4 recorded sequences
each. All reported values are in cm. On the left: locations of the five measurements taken on the subjects.
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Fig. 10. Each row of images shows the progress of the tracking and modeling optimization for the contours of single frames of actor S4, starting from the initial estimate
given by the 3D feature locations and the template mesh, up to convergence for both the pose and the body shape parameters. The template mesh silhouette is drawn in
red, and the depth map contour is green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Example application of the proposed semantic body modeling. (a), (b) show word clouds created using the activated blendshape names and their weights for the
L2 blendshapes regularization, and the L1, respectively.
As witnessed by Fig. 13(a), the surface registration energy
encapsules the most important set of constraints of the proposed
optimization. Its purpose is to align the underlying scene surface
sampled by the depth sensor with the template mesh. The contour
and feature constraints in addition to the tracking priors are
not enough for precise tracking. Differently, the contour energy
is useful because the depth map normals are rather flat at the
silhouette of the objects in the scene, thus not constraining the
tracking enough in those regions. As such, misalignments like the
one in Fig. 13(c) can occur as the point to plane energy isminimized
even if the hand alignment is off. The contour correspondences
shown in the zoomed in part of the figure would have pulled the
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Fig. 12. Our framework allows for texturing the bodymeshes using a weighted average of the color contributions from each RGB frame. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
(a) Without and with Esurface . (b) Not using the Eprior energies
(left) may lead to implausible
poses.

(c) Effect of not tracking the
contours.

Fig. 13. Influence of the proposed energy terms on the resulting tracking.
Table 2
Performance benchmarking results for each stage of the pipeline. The average number of iterations is
per frame. The rest of the total per frame average time is spent with other book-keeping operations.

Step Average number of iterations Average time (ms)

Normal estimation 1 24
Initialize IK with 3D Features 1 1
Point to plane correspondences 3.5 3
Contour correspondences 3.5 26
IK with all energies 3.5 27
Accumulate modeling constraints 1 3

Tracking per frame – 279
Modeling per frame – 3
template body to its correct location. These effects can accumulate
in time and lead to a complete loss of tracking.

Moreover, the prior energy is needed in order to avoid
implausible poses to be outputted. In the situationswhen the input
data is lacking information about certain regions of the body due
to occlusions, the statistical pose priors we propose help keep the
body in a reasonable pose. An example is shown in Fig. 13(b),where
the 3D features were wrong. Without priors the tracker moves
the arm in an impossible pose, but employing the priors (right
side) converged to a more plausible solution. Finally, although
not shown in the Figure, the feature energy that keeps the joint
position close to the NiTE 3D features detected for each frame is
especially useful for initial alignment, after which its weight can
be decreased to zero during the optimization. Without it, manual
intervention would be mandatory to pose the body so that the
iterative optimization tracking can have a warm start.

4.2. Performance evaluation

We have performed our experiments on a laptop with an
8-core Intel Core i7-4940MX processor, with 32 GB of RAM, and
a GeForce GTX 880 M graphics card, running Ubuntu 14.10. The
code uses the CPU for all of the computation, with the exception
of the framebuffer rendering for extracting the mesh silhouette,
which is done using primitive OpenGL calls. Table 2 collects the
timing information from our experiments. Furthermore, it is worth
mentioning that the IK optimization using only the 3D features
was tuned to use an average number of 24.1 Levenberg Marquardt
iterations, and the IK optimization with all the energies performed
with an average of 10.44 internal iterations.

5. Conluding remarks

In this paper we have presented a modular framework for 3D
body tracking and parametric modeling. Our framework can run
efficiently, and thanks to the use of MakeHuman models together
with L1 relaxation allows for new applications such as semantic
body part tagging of the acquired subjects, as well as body model
texturing.Moreover, our framework can be easily adapted to fitting
posed bodies that have been scanned using technologies such
as PCL’s Kinect Fusion [18] implementation, KinFu, or multiview
reconstruction using external tools such as 123DCatch [19].

The code is modularized in a logical structure that allows
for further experimentation and extensions. We are planning on
releasing the code as open-source, and integrate it in the pcl::bodies
module of the PCL library. Indeed, we believe that our contribution
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can lead to a higher interest from developers and researchers to
dive into more complex body tracking and modeling applications.
Also, we believe that due to its customizability, it will enable future
workwhich includes novel research, better benchmarkingdata and
interesting new applications.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.robot.2015.09.029.
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