000216268 001__ 216268
000216268 005__ 20181203024147.0
000216268 0247_ $$2doi$$a10.1016/j.neuroimage.2015.10.004
000216268 022__ $$a1053-8119
000216268 02470 $$2ISI$$a000366647500021
000216268 037__ $$aARTICLE
000216268 245__ $$aDistinct vestibular effects on early and late somatosensory cortical processing in humans
000216268 260__ $$aSan Diego$$bAcademic Press Inc Elsevier Science$$c2016
000216268 269__ $$a2016
000216268 300__ $$a12
000216268 336__ $$aJournal Articles
000216268 520__ $$aIn non-human primates several brain areas contain neurons that respond to both vestibular and somatosensory stimulation. In humans, vestibular stimulation activates several somatosensory brain regions and improves tactile perception. However, less is known about the spatio-temporal dynamics of such vestibular-somatosensory interactions in the human brain. To address this issue, we recorded high-density electroencephalography during left median nerve electrical stimulation to obtain Somatosensory Evoked Potentials (SEPs). We analyzed SEPs during vestibular activation following sudden decelerations from constant-velocity (90 degrees/s and 60 degrees/s) earth-vertical axis yaw rotations and SEPs during a non-vestibular control period. SEP analysis revealed two distinct temporal effects of vestibular activation: An early effect (28-32 ms post-stimulus) characterized by vestibular suppression of SEP response strength that depended on rotation velocity and a later effect (97-112 ms post-stimulus) characterized by vestibular modulation of SEP topographical pattern that was rotation velocity-independent. Source estimation localized these vestibular effects, during both time periods, to activation differences in a distributed cortical network including the right postcentral gyrus, right insula, left precuneus, and bilateral secondary somatosensory cortex. These results suggest that vestibular-somatosensory interactions in humans depend on processing in specific time periods in somatosensory and vestibular cortical regions. (C) 2015 Elsevier Inc. All rights reserved.
000216268 6531_ $$aEEG
000216268 6531_ $$aSomatosensory evoked potentials
000216268 6531_ $$aVestibular system
000216268 6531_ $$aMultisensory processing
000216268 6531_ $$aElectrical neuroimaging
000216268 6531_ $$aSomatosensory cortex
000216268 700__ $$0244851$$aPfeiffer, Christian$$g198754$$uUniv Lausanne, Dept Clin Neurosci, Lab Rech Neuroimagerie LREN, Lausanne, Switzerland
000216268 700__ $$aVan Elk, Michiel
000216268 700__ $$0248067$$aBernasconi, Fosco$$g246313$$uEPFL, Ctr Neuroprosthet, Sch Life Sci, CH-1202 Geneva, Switzerland
000216268 700__ $$0240593$$aBlanke, Olaf$$g165806$$uEPFL, Ctr Neuroprosthet, Sch Life Sci, CH-1202 Geneva, Switzerland
000216268 773__ $$j125$$q208-219$$tNeuroimage
000216268 909C0 $$0252325$$pLNCO$$xU11025
000216268 909C0 $$0252517$$pCNP$$xU12599
000216268 909CO $$ooai:infoscience.tind.io:216268$$pSV$$particle
000216268 917Z8 $$x242763
000216268 937__ $$aEPFL-ARTICLE-216268
000216268 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000216268 980__ $$aARTICLE