000216170 001__ 216170
000216170 005__ 20180913063554.0
000216170 0247_ $$2doi$$a10.2140/gt.2015.19.2535
000216170 022__ $$a1465-3060
000216170 02470 $$2ISI$$a000365637300003
000216170 037__ $$aARTICLE
000216170 245__ $$aMotivic Donaldson-Thomas invariants for the one-loop quiver with potential
000216170 260__ $$aCoventry$$bGeometry & Topology Publications$$c2015
000216170 269__ $$a2015
000216170 300__ $$a21
000216170 336__ $$aJournal Articles
000216170 520__ $$aWe compute the motivic Donaldson-Thomas invariants of the one-loop quiver, with an arbitrary potential. This is the first computation of motivic Donaldson-Thomas invariants to use in an essential way the full machinery of (mu) over cap -equivariant motives, for which we prove a dimensional reduction result similar to that of Behrend, Bryan and Szendroi in their study of degree- zero motivic Donaldson-Thomas invariants. Our result differs from theirs in that it involves nontrivial monodromy.
000216170 700__ $$aDavison, Ben$$uEcole Polytech Fed Lausanne, Sect Math, CH-1015 Lausanne, Switzerland
000216170 700__ $$aMeinhardt, Sven
000216170 773__ $$j19$$k5$$q2535-2555$$tGeometry & Topology
000216170 909C0 $$0252345$$pGEOM$$xU10122
000216170 909CO $$ooai:infoscience.tind.io:216170$$pSB$$particle
000216170 937__ $$aEPFL-ARTICLE-216170
000216170 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000216170 980__ $$aARTICLE