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We prove that the number of rational points of bounded height on certain del Pezzo

surfaces of degree 1 defined over Q grows linearly, as predicted by Manin’s conjecture.

1 Introduction

1.1 Rational points on elliptic fibrations

The main goal of this article is to establish sharp bounds for the number of rational

points of bounded height on certain del Pezzo surfaces of degree 1 defined over Q. In

their anticanonical embedding, these surfaces are defined by sextic forms in P(3, 2, 1, 1).

More precisely, they are isomorphic to a surface V given by an equation of the shape

y2 = x3 + F4(u, v)x + F6(u, v), (1.1)

where the coordinates in P(3, 2, 1, 1) are denoted by (y : x : u: v) to highlight the elliptic

fibration and where F4, F6 ∈ Z[u, v] are, respectively, a quartic and a sextic form such that

4F 3
4 + 27F 2

6 is not identically 0.

For x = (y : x : u: v) ∈ P(3, 2, 1, 1)(Q), we can choose coordinates y, x, u, v ∈ Z such

that for every prime p, either p � u or p � v or p2 � x or p3 � y. Then we can define an expo-

nential height function H : P(3, 2, 1, 1)(Q) → R>0 by setting

H(x) = max{|y|1/3, |x|1/2, |u|, |v|}.
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For any Zariski open subset U of V , we can introduce the number of rational points of

bounded height on U , that is,

NU,H (B) = #{x ∈ U (Q), H(x) ≤ B}.

A conjecture of Manin (see [2]) predicts the asymptotic behavior of NU,H (B) as B tends

to +∞, for some well-chosen Zariski open subset U of V , but the current technology is

very far from allowing us to approach it for any surface V . A weaker version states that

V has linear growth, by which we mean that there should exist an open subset U of V

such that, for any fixed ε > 0,

NU,H (B) � B1+ε. (1.2)

The only authors who have addressed this problem seem to be Munshi (see [7, 8])

and Mendes da Costa (see [6]).

More precisely, Mendes da Costa established that for any surface V given by

an equation of the shape (1.1), there exists δ > 0 such that NV,H (B) � B3−δ, where the

constant involved in the notation � is independent of the forms F4 and F6. This bound

is far from the expectation (1.2) but is not at all trivial, which illustrates the difficulty

of this problem in general.

As already remarked by Munshi, it is easier to deal with certain specific exam-

ples of singular surfaces. The most striking result in Munshi’s works is the following

(see [8, Corollary 3]). Let Ve,λ,R ⊂ P(3, 2, 1, 1) be the surface defined by

y2 = (x − eR(u, v))(x − λR(u, v))(x − λR(u, v)), (1.3)

where e ∈ Z, λ is a generator of the ring of integers of an imaginary quadratic field, and

R∈ Z[u, v] is a positive-definite quadratic form. Then we have

NUe,λ,R,H (B) � B5/4+ε,

where Ue,λ,R is defined by removing from Ve,λ,R the subset defined by y= 0. Although

impressive, this result is still far from the conjectured upper bound (1.2).

Let e1, e2, e3 ∈ Z be three distinct integers and set e = (e1, e2, e3). We also let

Q ∈ Z[u, v] be a nondegenerate quadratic form. In this article, we are interested in the

surfaces Ve,Q ⊂ P(3, 2, 1, 1) defined by

y2 = (x − e1 Q(u, v))(x − e2 Q(u, v))(x − e3 Q(u, v)). (1.4)
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We let Ue,Q be the open subset defined by removing from Ve,Q the two subsets given

by y= 0 and Q(u, v) = 0. It is straightforward to check that all the surfaces defined by

Equation (1.3) or (1.4) have two singularities of type D4 over Q.

Let us note that, all along this article, the constants involved in the notation �
and 	 may depend on ε, e, and Q.

The main result of this article is the following.

Theorem 1. Let ε > 0 be fixed. We have the upper bound

NUe,Q,H (B) � B1+ε. �

As in the works of Munshi, the proof of Theorem 1 makes use of the natural

elliptic fibration to parameterize the rational points on Ue,Q. This leads us to investigate

integral points of bounded height on quadratic twists of a fixed elliptic curve with full

rational 2-torsion. This is the purpose of Section 1.2.

It is worth mentioning that the analysis of the parameterization of the ratio-

nal points given by Munshi in [8] shows that it should be easy to adapt Lemma 3 (see

Section 2.2) to prove that the surfaces defined by (1.3), and considered by Munshi, also

have linear growth.

Another interesting problem is to prove sharp lower bounds for NUe,Q,H (B). A

simpler way to state this is to ask what can be said about the quantity

βUe,Q(B) = log NUe,Q,H (B)

log B
. (1.5)

In the following, we choose to take Q(u, v) = uv, even though similar results could be

proved for other choices of Q. We, respectively, call Ve and Ue the surface and the open

subset corresponding to this choice. We establish the following result.

Corollary 1. The limit of βUe(B) as B tends to +∞ exists and equals 1. More precisely,

we have

βUe(B) = 1 + O
(

1

log log B

)
. �

To prove the lower bound B(log B)8 � NUe,H (B), which is conjecturally best pos-

sible, a natural idea is to make use of universal torsors above Ve. Indeed, this strategy

has been successful to establish Manin’s conjecture for several examples of singular del

Pezzo surfaces of low degree (see [1, 4] for the most striking results). Hausen and Süss [3,

Example 5.5] have computed the equations of such a torsor and it turns out that proving

this lower bound does not seem to be easy. It would be interesting to solve this problem.
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1.2 Integral points on quadratic twists

For n≥ 1, we introduce the elliptic curve En,e defined by the equation

y2 = (x − e1n)(x − e2n)(x − e3n).

We instantly check that the curves E1,e and En,e are isomorphic over Q(
√

n).

Let P∞ be the point at infinity on En,e. Given a point P ∈ En,e(Q) � {P∞}, we denote

its coordinates by (x, y). Our interest lies in the set of integral points on En,e, so we define

En,e(Z) = {P ∈ En,e(Q) � {P∞}, x ∈ Z},

and also

E∗
n,e(Z) = {P ∈ En,e(Z), y 
= 0}.

The elements of E∗
n,e(Z) will be referred to as the nontrivial integral points on En,e.

A difficult problem is to obtain upper bounds for the cardinality of the set of

n≤ N such that En,e has at least one nontrivial integral point. It is reasonable to expect

that this set has density 0 but the proof of this statement seems to be out of reach. An

easier problem is to investigate this question for integral points of bounded height.

Given P ∈ En,e(Z), we define its exponential naive height H(P ) by setting

H(P ) = max{|y|1/3, |x|1/2}.

The following result will be the key tool in the proof of Theorem 1. It gives lower and

upper bounds for the number of nontrivial integral points of bounded height on the

curves En,e on average over n.

Proposition 1. We have the bounds

B �
∑
n≥1

#{P ∈ E∗
n,e(Z),H(P ) ≤ B} � B(log B)δe ,

where δe = 4 if e1e2e3 
= 0 and δe = 6 otherwise. �

Note that the interest of Proposition 1 mainly lies in the upper bound, and the

lower bound implies that it is sharp up to the factor (log B)δe .

One can immediately check that there exist integers n	 B2 for which the set

{P ∈ E∗
n,e(Z),H(P ) ≤ B} is not empty. Therefore, the upper bound in Proposition 1 states

that most quadratic twists of E1,e do not have a nontrivial integral point of bounded

height.
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1.3 Outline of the article

We start by establishing Proposition 1. The proof of this result goes in two steps. The

first step consists in using the fact that En,e has full rational 2-torsion to parameterize

the integral points on En,e using a complete 2-descent. This is achieved in Section 2.1. In

the second step, we bound the number of nontrivial integral points of bounded height

on the curves En,e on average over n. To achieve this, we appeal to the recent result of

the author [5, Lemma 4]. This lemma is stated in Section 2.2.

Then, we prove Theorem 1 using the natural elliptic fibration and the upper

bound in Proposition 1. Finally, Corollary 1 also follows from this upper bound, together

with the lower bound B � NUe,H (B).

2 Preliminaries

2.1 Descent argument

In this section, we derive a convenient parameterization of the integral points on En,e

using the fact that En,e has full rational 2-torsion. We start by proving the following

elementary lemma.

Lemma 1. Let (y, x1, x2, x3) ∈ Z4

=0 be such that y2 = x1x2x3. There exists a unique way to

write

xi = djdkw
2a2

i ajakb2
i ,

for {i, j, k} = {1, 2, 3} and

y= d1d2d3w
3a2

1a2
2a2

3b1b2b3,

where (d1, d2, d3, w, a1, a2, a3, b1, b2, b3) ∈ Z4

=0 × Z6

>0 is subject to the conditions |μ(ai)| = 1

and gcd(diajbj, djaibi) = 1 for i, j ∈ {1, 2, 3}, i 
= j, and d1d2d3 > 0. �

Proof. Let us set x = gcd(x1, x2, x3) and let us write xi = xx′
i for i ∈ {1, 2, 3}, where

gcd(x′
1, x′

2, x′
3) = 1. We see that x | y and we can thus write y= xy′. We obtain

y′2 = xx′
1x′

2x′
3.

Let us now set di = sign(x′
i) gcd(x′

j, x′
k) for {i, j, k} = {1, 2, 3}. Let us note that we

have d1d2d3 > 0. We can write x′
i = djdkξi with ξi > 0 for {i, j, k} = {1, 2, 3}, where

gcd(diξ j, djξi) = 1 for i, j ∈ {1, 2, 3}, i 
= j. Since d1d2d3 | y′, we can write y′ = d1d2d3z. We
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thus get

z2 = xξ1ξ2ξ3.

There is a unique way to write ξi = aib2
i with ai, bi > 0 and |μ(ai)| = 1 for i ∈ {1, 2, 3}. We

see that b1b2b3 | z so we can write z= b1b2b3z′. We finally obtain

z′2 = xa1a2a3.

Since a1, a2, and a3 are squarefree and pairwise coprime, we can write x = w2a1a2a3 and

z′ = wa1a2a3, which completes the proof. �

Lemma 1 immediately implies the following result, which provides us with the

desired parameterization of the nontrivial integral points on En,e.

Lemma 2. There is a bijection between the set of nontrivial integral points on En,e and

the set of (d1, d2, d3, w, a1, a2, a3, b1, b2, b3) ∈ Z4

=0 × Z6

>0 satisfying, for {i, j, k} = {1, 2, 3}, the

equations

(ei − ej)n= dkw
2a1a2a3(diajb

2
j − djaib

2
i ),

and the conditions |μ(ai)| = 1 and gcd(diajbj, djaibi) = 1 for i, j ∈ {1, 2, 3}, i 
= j, and

d1d2d3 > 0. This bijection is given, for P ∈ E∗
n,e(Z) with coordinates (x, y) ∈ Z2, by

x = ein+ djdkw
2a2

i ajakb2
i ,

y= d1d2d3w
3a2

1a2
2a2

3b1b2b3,

for {i, j, k} = {1, 2, 3}. �

2.2 Geometry of numbers

The following lemma follows from the recent work of the author [5, Lemma 4]. It draws

upon both geometry of numbers and analytic number theory tools, and will be the key

result in the proof of Proposition 1.

Lemma 3. Let f = ( f1, f2, f3) ∈ Z3

=0 be a vector satisfying the conditions gcd( fi, fj) = 1 for

i, j ∈ {1, 2, 3}, i 
= j, and let Ui, Vi ≥ 1 for i ∈ {1, 2, 3}. Let also Nf = Nf(U1,U2,U3, V1, V2, V3)

be the number of vectors (u1, u2, u3) ∈ Z3

=0 and (v1, v2, v3) ∈ Z3


=0 satisfying |ui| ≤ Ui, |vi| ≤ Vi
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for i ∈ {1, 2, 3}, and the equation

f1u1v
2
1 + f2u2v

2
2 + f3u3v

2
3 = 0,

and such that gcd(uivi, ujv j) = 1 for i, j ∈ {1, 2, 3}, i 
= j. Let ε > 0 be fixed. We have the

bound

Nf �f (U1U2U3)
2/3(V1V2V3)

1/3Mε(U1,U2,U3),

where

Mε(U1,U2,U3) = 1 + max
{i, j,k}={1,2,3}

(UiU j)
−1/2+ε log 2Uk. �

3 Integral Points on Quadratic Twists

3.1 Proof of Proposition 1

Let us start by proving the upper bound in Proposition 1. Lemma 2 asserts that (y, x) ∈
Z
=0 × Z satisfies the equation

y2 = (x − e1n)(x − e2n)(x − e3n), (3.1)

if and only if x and y can be written, for {i, j, k} = {1, 2, 3}, as

x = ein+ djdkw
2a2

i ajakb2
i ,

y= d1d2d3w
3a2

1a2
2a2

3b1b2b3,

where (d1, d2, d3, w, a1, a2, a3, b1, b2, b3) ∈ Z4

=0 × Z6

>0 satisfies, for {i, j, k} = {1, 2, 3}, the

equations

(ei − ej)n= dkw
2a1a2a3(diajb

2
j − djaib

2
i ), (3.2)

and the conditions |μ(ai)| = 1 and gcd(diajbj, djaibi) = 1 for i, j ∈ {1, 2, 3}, i 
= j, and

d1d2d3 > 0. Equations (3.2) can have a solution n∈ Z>0 only if

(e2 − e3)d2d3a1b2
1 + (e3 − e1)d1d3a2b2

2 + (e1 − e2)d1d2a3b2
3 = 0. (3.3)

Moreover, since e1, e2, and e3 are distinct, there is at most one such solution n∈
Z>0. Let us call h= gcd(e2 − e3, e3 − e1, e1 − e2). The conditions gcd(di, djaibi) = 1 and
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Equation (3.3) imply that di | (ej − ek)/h for {i, j, k} = {1, 2, 3} so we can write e2 − e3 =
hd1 f1, e3 − e1 = hd2 f2, and e1 − e2 = hd3 f3, and we have gcd( f1, f2, f3) = 1. From the two

relations d1 f1 + d2 f2 + d3 f3 = 0 and

f1a1b2
1 + f2a2b2

2 + f3a3b2
3 = 0, (3.4)

and the conditions gcd(di, aibi) = 1 for i ∈ {1, 2, 3}, we deduce that gcd( fi, fj) = 1 for i, j ∈
{1, 2, 3}, i 
= j.

From now on, we use the notation f = ( f1, f2, f3). We let Nf(B) be the number of

(w, a1, a2, a3, b1, b2, b3) ∈ Z
=0 × Z6
>0 satisfying Equation (3.4), the inequality

|w|3a2
1a2

2a2
3b1b2b3 ≤ B3,

and the conditions gcd(aibi, ajbj) = 1 for i, j ∈ {1, 2, 3}, i 
= j. The investigation above

shows that
∑
n≥1

#{P ∈ E∗
n,e(Z),H(P ) ≤ B} � max

f
Nf(B),

where the maximum is taken over f satisfying fi | (ej − ek)/h for {i, j, k} = {1, 2, 3} and

gcd( fi, fj) = 1 for i, j ∈ {1, 2, 3}, i 
= j.

We have thus proved that it is sufficient for our purpose to bound the

quantity Nf(B). To achieve this, for i ∈ {1, 2, 3}, we let W, Ai, Bi ≥ 1
2 run over the set

of powers of 2 and we define Mf =Mf(W, A1, A2, A3, B1, B2, B3) as the number of

(w, a1, a2, a3, b1, b2, b3) ∈ Z
=0 × Z6
>0 satisfying Equation (3.4), the conditions W < |w| ≤ 2W,

Ai < ai ≤ 2Ai, and Bi < bi ≤ 2Bi, and gcd(aibi, ajbj) = 1 for i, j ∈ {1, 2, 3}, i 
= j. We have

Nf(B) �
∑

W,Ai ,Bi
i∈{1,2,3}

Mf,

where the sum is over W, Ai, Bi ≥ 1
2 , i ∈ {1, 2, 3}, satisfying the inequality

W3 A2
1 A2

2 A2
3 B1 B2 B3 ≤ B3. (3.5)

Lemma 3 gives the upper bound

Mf � W(A1 A2 A3)
2/3(B1 B2 B3)

1/3Mε(A1, A2, A3),
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where Mε(A1, A2, A3) is defined in Lemma 3. Choosing for instance ε = 1/4 and summing

over W using the condition (3.5), we finally obtain

Nf(B) �
∑

W,Ai ,Bi
i∈{1,2,3}

W(A1 A2 A3)
2/3(B1 B2 B3)

1/3M1/4(A1, A2, A3)

� B
∑
Ai ,Bi

i∈{1,2,3}

M1/4(A1, A2, A3)

� B(log B)6,

which completes the first part of the proof of the upper bound in Proposition 1.

Now let us assume that e1e2e3 
= 0 and let us prove that we can take δe = 4 in

Proposition 1. If n> 2B2, then, since

x = ein+ djdkw
2a2

i ajakb2
i ,

for {i, j, k} = {1, 2, 3}, |x| ≤ B2, and e1e2e3 
= 0, we have |djdk|w2a2
i ajakb2

i > B2 for {i, j, k} =
{1, 2, 3}, but this is in contradiction with |y| ≤ B3. This implies that {P ∈ E∗

n,e(Z),H(P ) ≤
B} is empty provided that n> 2B2 so we can assume that n≤ 2B2. Therefore, for {i, j, k} =
{1, 2, 3}, we get the conditions

w2a2
i ajakb2

i � B2. (3.6)

We now proceed similarly as in the first case. We let N ′
f (B) be the number of

(w, a1, a2, a3, b1, b2, b3) ∈ Z
=0 × Z6
>0 satisfying Equation (3.4), the inequalities (3.6), and the

conditions gcd(aibi, ajbj) = 1 for i, j ∈ {1, 2, 3}, i 
= j. Once again, it is sufficient for our

purpose to bound N ′
f (B), and we have

N ′
f (B) �

∑
W,Ai ,Bi
i∈{1,2,3}

W(A1 A2 A3)
2/3(B1 B2 B3)

1/3M1/4(A1, A2, A3),

where the sum is over W, Ai, Bi ≥ 1
2 , i ∈ {1, 2, 3}, running over the set of powers of 2 and

satisfying, for {i, j, k} = {1, 2, 3}, the inequalities

W2 A2
i Aj AkB2

i � B2. (3.7)
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Summing over Bi, i ∈ {1, 2, 3}, using the conditions (3.7), we get

N ′
f (B) � B

∑
W,Ai

i∈{1,2,3}

M1/4(A1, A2, A3)

� B(log B)4,

as claimed.

Let us now prove the lower bound in Proposition 1. We can assume by symmetry

that e3 > max{e1, e2} and thus 2e3 − e1 − e2 > 0. We note that if n can be written as n=
2(2e3 − e1 − e2)w

2 for some w ∈ Z>0, then the equalities

x = 2(−2e1e2 + e1e3 + e2e3)w
2,

y= 4(e1 − e2)(e2 − e3)(e3 − e1)w
3,

define a point P ∈ E∗
n,e(Z). Moreover, this point satisfies H(P ) ≤ B provided that w � B.

Therefore, we have ∑
n≥1

#{P ∈ E∗
n,e(Z),H(P ) ≤ B} 	 B,

which completes the proof of Proposition 1.

4 Rational Points on Elliptic Fibrations

4.1 Proof of Theorem 1

Recall that Ve,Q ⊂ P(3, 2, 1, 1) is defined by the equation

y2 = (x − e1 Q(u, v))(x − e2 Q(u, v))(x − e3 Q(u, v)). (4.1)

Thus, we have

NUe,Q,H (B) �
∑

|u|,|v|≤B
Q(u,v)
=0

#{(y, x) ∈ Z
=0 × Z, |y| ≤ B3, |x| ≤ B2, (4.1)}

�
∑

n∈Z 
=0

#{(y, x) ∈ Z
=0 × Z, |y| ≤ B3, |x| ≤ B2, (3.1)}
∑

|u|,|v|≤B
Q(u,v)=n

1.

Since Q is nondegenerate, we have

#{(u, v) ∈ Z2, |u|, |v| ≤ B, Q(u, v) = n} � Bε.
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As a result, we get

NUe,Q,H (B) � Bε
∑

n∈Z 
=0

#{P ∈ E∗
n,e(Z),H(P ) ≤ B}.

We note that the sum in the right-hand side can be rewritten as

∑
n≥1

#{P ∈ E∗
n,e(Z),H(P ) ≤ B} +

∑
n≥1

#{P ∈ E∗
n,−e(Z),H(P ) ≤ B}.

Therefore, using twice the upper bound in Proposition 1, we obtain

NUe,Q,H (B) � B1+ε,

which ends the proof of Theorem 1.

4.2 Proof of Corollary 1

We proceed exactly as in the proof of Theorem 1. We have

NUe,H (B) �
∑

n∈Z 
=0

#{(y, x) ∈ Z
=0 × Z, |y| ≤ B3, |x| ≤ B2, (3.1)}
∑

|u|,|v|≤B
uv=n

1.

Then, if n≤ B2, we have

#{(u, v) ∈ Z2, |u|, |v| ≤ B, uv = n} ≤ 2τ(n)

� n1/ log log n

� B2/ log log B,

and this upper bound also holds if n> B2. This shows that

NUe,H (B) � B2/ log log B
∑

n∈Z 
=0

#{P ∈ E∗
n,e(Z),H(P ) ≤ B}.

As in the proof of Theorem 1, using twice the upper bound in Proposition 1, we obtain

NUe,H (B) � B1+3/ log log B . (4.2)

Let us now prove a lower bound for NUe,H (B). Let us assume by symmetry

that e3 > max{e1, e2} so that 2e3 − e1 − e2 > 0, and let us denote by v2(m) the 2-adic

valuation of an integer m ≥ 1. Let Re(B) be the number of (y, x, u, v) ∈ Z4

=0 such that
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max{|y|1/3, |x|1/2, |u|, |v|} ≤ B and which can be written as

y= 4(e1 − e2)(e2 − e3)(e3 − e1)w
3
1w3

2,

x = 2(−2e1e2 + e1e3 + e2e3)w
2
1w2

2,

u= 21+v2(2e3−e1−e2)w2
1,

v = (2e3 − e1 − e2)2
−v2(2e3−e1−e2)w2

2,

where (w1, w2) ∈ Z2
>0 satisfies gcd(w1, (2e3 − e1 − e2)w2) = gcd(w2, 2) = 1. Since gcd(u, v) =

1 in the parameterization above, it is immediate to check that

NUe,H (B) ≥Re(B).

Since we clearly have Re(B) 	 B, we have obtained the lower bound

B � NUe,H (B). (4.3)

Let us note that improving this lower bound by a few log B factors would not be hard.

However, as already explained in Section 1, proving the lower bound of the expected

order of magnitude for NUe,H (B) does not seem to be easy.

Recalling the definition (1.5) of βUe(B), we see that the two bounds (4.2) and (4.3)

complete the proof of Corollary 1.
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