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We establish sharp upper and lower bounds for the number of rational points of

bounded anticanonical height on a smooth bihomogeneous threefold defined over Q and

of bidegree (1, 2). These bounds are in agreement with Manin’s conjecture.

1 Introduction

Let n≥ 2 and d≥ 1 be two integers such that n≥ d. Let Vn
d ⊂ Pn × Pn be the smooth hyper-

surface defined over a number field K by the equation

x0yd
0 + · · · + xnyd

n = 0,

where we use the notation (x, y) = ((x0 : · · · : xn), (y0 : · · · : yn)) to denote the coordinates in

the biprojective space Pn × Pn.

The family of smooth bihomogeneous varieties Vn
d is an excellent testing ground

for the validity of Manin’s conjecture on the asymptotic behavior of the number of ratio-

nal points of bounded anticanonical height on Fano varieties (see [4]). For instance,

Batyrev and Tschinkel have provided a famous counterexample to this conjecture in

the case n= 3, d= 3, and under the assumption that K contains a nontrivial cube root of

unity.
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From now on, we focus on the case K = Q. We define the usual exponential height

function H : Pn(Q) → R>0 as follows. Given z ∈ Pn(Q), we can choose coordinates (z0 : · · · :

zn) satisfying (z0, . . . , zn) ∈ Zn+1 and gcd(z0, . . . , zn) = 1, and then we can set

H(z) = max{|zi|, i = 0, . . . , n}.

With this in mind, we can define a height function H : Pn(Q) × Pn(Q) → R>0 by setting

H(x, y) = H(x)nH(y)n+1−d,

for (x, y) ∈ Pn(Q) × Pn(Q). For any Zariski open subset Un
d of Vn

d , we can introduce the

number of rational points of bounded anticanonical height on Un
d, that is

NUn
d,H(B) = #{(x, y) ∈ Un

d(Q), H(x, y) ≤ B}.

In this setting, Manin’s conjecture predicts that there should exist an open subset Un
d of

Vn
d such that

NUn
d,H(B) = cB log B(1 + o(1)), (1.1)

where c > 0 is a constant depending on Vn
d and H, and which is expected to obey Peyre’s

prediction [7]. As already mentioned, this conjecture is known not to hold in such

generality.

Let us mention that more generally, the term log B in conjecture (1.1) is expected

to appear to the power ρ − 1 where ρ denotes the rank of the Picard group of the variety

considered. A proof of the fact that the Picard group of Vn
d is Z2 can be found in [10,

Theorem 2.4].

The circle method is a traditional technique to count solutions to diophan-

tine equations, and it has recently been applied by Schindler [9, 10] to count rational

points on bihomogeneous varieties. In particular, [10, Theorem 1.2] states that smooth

hypersurfaces in biprojective space Pn1 × Pn2 defined by general bihomogeneous forms

of bidegree (d1, d2) satisfy Manin’s conjecture provided that d1, d2 ≥ 2 and min{n1, n2} >

3 · 2d1+d2d1d2.

Similarly, the circle method is only expected to yield a proof of Manin’s conjec-

ture for Vn
d if n is exponentially large in terms of d.

It is natural to start by investigating the cases where d is small. If d= 1, then Vn
1

satisfies Manin’s conjecture for any n≥ 2. This follows from the result of Franke et al.

[4] on flag varieties, which makes use of the work of Langlands about the meromorphic

continuation of Eisenstein series. Other proofs have then been obtained by many authors

using a great variety of techniques (see [2, 8, 11, 12]).
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The next case of interest is d= 2. Here, there is nothing written down in the

literature and, in particular, the cases n= 2 and n= 3 are known to be extremely hard

problems. The aim of this article is to investigate what can be achieved in the case n= 2.

Unfortunately, we are unable to establish Manin’s conjecture for V2
2 . However,

we are able to prove upper and lower bounds of the exact order of magnitude for

NU2
2 ,H(B), where U2

2 is the open subset defined by removing from V2
2 the subset given

by x0x1x2y0y1y2 = 0.

Our main result is the following theorem.

Theorem 1. We have the bounds

B log B � NU2
2 ,H(B) � B log B. �

It is worth emphasizing that these bounds are in agreement with the prediction

of Manin (1.1).

Let us give a sketch of the proof. In what follows, we denote by ϕi : P2 × P2 → P2,

i ∈ {1, 2}, the two projections.

First, we remark that proving the lower bound is not hard. Indeed, it suffices

to note that the contribution to NU2
2 ,H(B) of the fibers of ϕ2 corresponding to rational

points y ∈ P2(Q) whose height is bounded by a small power of B is of the expected order

of magnitude. This is achieved in Section 3.

The proof of the upper bound is more intricate. It mainly relies on Lemma 4

which gives an upper bound for the number of solutions to a slightly more general

equation than x0y2
0 + x1y2

1 + x2y2
2 = 0. To prove this lemma, we make use of both geometry

of numbers and analytic number theory results.

More specifically, we get a first upper bound by estimating the number of x ∈
P2(Q) for fixed y ∈ P2(Q) and by summing trivially over the fibers of ϕ2. Similarly, we

obtain a second upper bound by estimating the number of y ∈ P2(Q) for fixed x ∈ P2(Q).

However, it is worth noting that the summation over the fibers of ϕ1 has to be carried out

nontrivially because we need to take advantage of the fact that most diagonal conics do

not have a rational point. To complete the proof, it only remains to minimize these two

upper bounds, basically depending on the respective sizes of x and y.

Finally, it is worth mentioning that Lemma 4 will be useful in other settings. In

particular, it plays a crucial role in the work of the author [6], where it is proved that the

number of rational points of bounded height on certain elliptic fibrations grows linearly,

as predicted by Manin’s conjecture.
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2 Geometry of Numbers

We now recall two lemmas that provide upper bounds for the number of solutions to

certain homogeneous diagonal equations in three variables and constrained in boxes.

The first of these two lemmas is concerned with the case of a linear equation and is due

to Heath-Brown [5, Lemma 3].

Lemma 1. Let w = (w0, w1, w2) ∈ Z3 be a primitive vector and let Ui ≥ 1 for i ∈ {0, 1, 2}. Let

also Nw = Nw(U0,U1,U2) be the number of primitive vectors (u0, u1, u2) ∈ Z3 satisfying

|ui| ≤ Ui for i ∈ {0, 1, 2} and the equation

u0w0 + u1w1 + u2w2 = 0.

We have the bound

Nw ≤ 12π
U0U1U2

max{|wi|Ui} + 4,

where the maximum is taken over i ∈ {0, 1, 2}. In particular, if w ∈ Z3
	=0, then

Nw � (U0U1U2)
2/3

|w0w1w2|1/3
+ 1. �

The second lemma deals with the case of a quadratic equation and immediately

follows from the result of Browning and Heath-Brown [3, Corollary 2].

Lemma 2. Let u = (u0, u1, u2) ∈ Z3
	=0 be a vector satisfying the conditions gcd(ui, uj) = 1

for i, j ∈ {0, 1, 2}, i 	= j, and let Vi ≥ 1 for i ∈ {0, 1, 2}. Let also Nu = Nu(V0, V1, V2) be the

number of primitive vectors (v0, v1, v2) ∈ Z3 satisfying |vi| ≤ Vi for i ∈ {0, 1, 2} and the

equation

u0v
2
0 + u1v

2
1 + u2v

2
2 = 0.

We have the bound

Nu �
(

V0V1V2

|u0u1u2| + 1
)1/3

τ(|u0u1u2|). �

We also need to consider how often a diagonal quadratic equation has a nontriv-

ial integral solution. For this, we recall the following lemma, which is a particular case

of the nice result of Browning [1, Proposition 1]. Let us note that this result is deep and

builds upon several powerful analytic number theory tools.

Lemma 3. Let f = ( f0, f1, f2) ∈ Z3
	=0 be a primitive vector and let Ui ≥ 1 for i ∈ {0, 1, 2}. Let

also Tf(U0,U1,U2) be the set of u = (u0, u1, u2) ∈ Z3
	=0 satisfying |ui| ≤ Ui for i ∈ {0, 1, 2}, and
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gcd(ui, uj) = 1 for i, j ∈ {0, 1, 2}, i 	= j, and such that the equation

f0u0v
2
0 + f1u1v

2
1 + f2u2v

2
2 = 0,

has a solution (v0, v1, v2) ∈ Z3
	=0 with gcd(vi, v j) = 1 for i, j ∈ {0, 1, 2}, i 	= j. Let ε > 0 be

fixed. We have the bound

∑
u∈Tf(U0,U1,U2)

2ω(|u0u1u2|) � | f0 f1 f2|εU0U1U2Mε(U0,U1,U2),

where

Mε(U0,U1,U2) = 1 + max
{i, j,k}={0,1,2}

(UiU j)
−1/2+ε log 2Uk. �

These three lemmas together allow us to prove a sharp upper bound for the

number of solutions (u, v) ∈ Z3
	=0 × Z3

	=0 to the equation of Lemma 3 and constrained in

boxes. More precisely, we establish the following lemma, which is the key result in the

proof of the upper bound in Theorem 1.

Lemma 4. Let f = ( f0, f1, f2) ∈ Z3
	=0 be a vector satisfying the conditions gcd( fi, fj) = 1 for

i, j ∈ {0, 1, 2}, i 	= j, and let Ui, Vi ≥ 1 for i ∈ {0, 1, 2}. Let also Nf = Nf(U0,U1,U2, V0, V1, V2)

be the number of vectors (u0, u1, u2) ∈ Z3
	=0 and (v0, v1, v2) ∈ Z3

	=0 satisfying |ui| ≤ Ui, |vi| ≤ Vi

for i ∈ {0, 1, 2}, and the equation

f0u0v
2
0 + f1u1v

2
1 + f2u2v

2
2 = 0,

and such that gcd(uivi, ujv j) = 1 for i, j ∈ {0, 1, 2}, i 	= j. Let ε > 0 be fixed and recall the

definition of Mε(U0,U1,U2) given in Lemma 3. We have the bound

Nf � | f0 f1 f2|ε(U0U1U2)
2/3(V0V1V2)

1/3Mε(U0,U1,U2). �

Proof. First, let us fix (v0, v1, v2) ∈ Z3
	=0 and let us start by bounding the num-

ber of (u0, u1, u2) ∈ Z3
	=0 satisfying the conditions stated in the lemma. Since

gcd( f0v
2
0, f1v

2
1, f2v

2
2) = 1, Lemma 1 gives

Nf �
∑

|vi |≤Vi
i∈{0,1,2}

(
1

| f0 f1 f2|1/3

(U0U1U2)
2/3

|v0v1v2|2/3
+ 1

)
.

In particular, this gives us a first upper bound

Nf � (U0U1U2)
2/3(V0V1V2)

1/3 + V0V1V2. (2.1)
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In a similar fashion, let us fix (u0, u1, u2) ∈ Z3
	=0 and let us start by bounding the

number of (v0, v1, v2) ∈ Z3
	=0 satisfying the conditions stated in the lemma. The equation

f0u0v
2
0 + f1u1v

2
1 + f2u2v

2
2 = 0,

and the coprimality conditions gcd( fi, fj) = gcd(uivi, ujv j) = 1 for i, j ∈ {0, 1, 2}, i 	= j,

imply that gcd( fiui, fjuj) = 1 for i, j ∈ {0, 1, 2}, i 	= j. We can thus apply Lemma 2. Recall-

ing the notation introduced in Lemma 3, we obtain

Nf �
∑

u∈Tf(U0,U1,U2)

(
1

| f0 f1 f2|1/3

(V0V1V2)
1/3

|u0u1u2|1/3
+ 1

)
τ(| f0 f1 f2u0u1u2|).

This implies in particular that

Nf � | f0 f1 f2|ε
∑

u∈Tf(U0,U1,U2)

(
(V0V1V2)

1/3

|u0u1u2|1/3
+ 1

)
τ(|u0u1u2|).

Let us write ui = z2
i �i with zi ∈ Z>0 and |μ(|�i|)| = 1 for i ∈ {0, 1, 2}, and let us set l =

(�0, �1, �2), g = ( f0z2
0, f1z2

1, f2z2
2) and Li = Ui/z2

i for i ∈ {0, 1, 2}. We have

Nf � | f0 f1 f2|ε
∑

zi≤U1/2
i

i∈{0,1,2}

(z0z1z2)
ε

∑
l∈Tg(L0,L1,L2)

|μ(|�0�1�2|)|=1

(
(V0V1V2)

1/3

(z0z1z2)2/3|�0�1�2|1/3
+ 1

)
2ω(|�0�1�2|).

Note that we have used the fact that �0�1�2 is squarefree to replace the arithmetic func-

tion τ by 2ω. Let ε > 0 be fixed. We note that g is primitive so we can use Lemma 3. Thus,

applying partial summation and Lemma 3, we get

Nf � | f0 f1 f2|2ε
∑

zi≤U1/2
i

i∈{0,1,2}

(U0U1U2)
2/3(V0V1V2)

1/3 + U0U1U2

(z0z1z2)2−3ε
Mε(L0, L1, L2).

Using the trivial inequality

Mε(L0, L1, L2) ≤ 1 +
∑

{i, j,k}={0,1,2}
(UiU j)

−1/2+ε(zizj)
1−2ε log 2Uk,

we obtain ∑
zi≤U1/2

i
i∈{0,1,2}

Mε(L0, L1, L2)

(z0z1z2)2−3ε
� M2ε(U0,U1,U2).

This finally gives us a second upper bound

Nf � | f0 f1 f2|2ε((U0U1U2)
2/3(V0V1V2)

1/3 + U0U1U2)M2ε(U0,U1,U2). (2.2)
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As a result, putting together the upper bounds (2.1) and (2.2), and rescaling ε, we

find in particular that

Nf � | f0 f1 f2|ε((U0U1U2)
2/3(V0V1V2)

1/3 + min{U0U1U2, V0V1V2})Mε(U0,U1,U2).

The simple observation that

min{U0U1U2, V0V1V2} ≤ (U0U1U2)
2/3(V0V1V2)

1/3,

completes the proof. �

3 The Lower Bound

This section is devoted to the proof of the lower bound in Theorem 1. As stated in

Section 1, the proof merely draws upon the fact that the contribution to NU2
2 ,H(B) of

the y ∈ P2(Q) whose height is bounded by a small power of B is already of the expected

order of magnitude.

By definition of NU2
2 ,H(B), we have

NU2
2 ,H(B) = 2#

⎧⎪⎪⎨
⎪⎪⎩(x, y) ∈ Z3

	=0 × Z3
>0,

x0y2
0 + x1y2

1 + x2y2
2 = 0

gcd(x0, x1, x2) = gcd(y0, y1, y2) = 1

max
i, j∈{0,1,2}

x2
i yj ≤ B

⎫⎪⎪⎬
⎪⎪⎭ .

It is convenient to note that we thus have

NU2
2 ,H(B) ≥ 12

∑
y∈Z

3
>0

gcd(y0,y2)=1
y0<y1<y2≤B1/6

#

⎧⎪⎪⎨
⎪⎪⎩x ∈ Z3

	=0,

x0y2
0 + x1y2

1 + x2y2
2 = 0

gcd(x0, x1, x2) = 1

max
i∈{0,1,2}

x2
i y2 ≤ B

⎫⎪⎪⎬
⎪⎪⎭ .

Since the conditions maxi∈{0,1} x2
i y2 ≤ B/4 and y0, y1 < y2 together with the equation

x0y2
0 + x1y2

1 + x2y2
2 = 0 imply that maxi∈{0,1,2} x2

i y2 ≤ B, we have

NU2
2 ,H(B) ≥ 12

∑
y∈Z

3
>0

gcd(y0,y2)=1
y0<y1<y2≤B1/6

#

⎧⎪⎪⎨
⎪⎪⎩x ∈ Z3

	=0,

x0y2
0 + x1y2

1 + x2y2
2 = 0

gcd(x0, x1, x2) = 1

max
i∈{0,1}

x2
i y2 ≤ B/4

⎫⎪⎪⎬
⎪⎪⎭ .
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We can now remove the coprimality condition gcd(x0, x1, x2) = 1 using a Möbius inver-

sion. We get

NU2
2 ,H(B) ≥ 12

∑
y∈Z

3
>0

gcd(y0,y2)=1
y0<y1<y2≤B1/6

∑
k≤B1/2

μ(k)Sk(y; B), (3.1)

where

Sk(y; B) = #

⎧⎨
⎩x′ ∈ Z3

	=0,
x′

0y2
0 + x′

1y2
1 + x′

2y2
2 = 0

max
i∈{0,1}

x′2
i y2 ≤ B/4k2

⎫⎬
⎭ ,

and where we have used the obvious notation x′ = (x′
0, x′

1, x′
2). We now observe that

Sk(y; B) = #

⎧⎨
⎩(x′

0, x′
1) ∈ Z2

	=0,
x′

0y2
0 + x′

1y2
1 = 0 (mod y2

2)

max
i∈{0,1}

x′2
i y2 ≤ B/4k2

⎫⎬
⎭+ O

(
B1/2

ky1/2
2

)
.

Since gcd(y0, y2) = 1, y0 is invertible modulo y2
2 . Using the notation y−1

0 to denote the

inverse of y0 modulo y2
2 , we have

Sk(y; B) =
∑

x′
1∈Z 	=0

x′2
1 y2≤B/4k2

#

{
x′

0 ∈ Z	=0,
x′

0 = −y−2
0 x′

1y2
1 (mod y2

2)

x′2
0 y2 ≤ B/4k2

}
+ O

(
B1/2

ky1/2
2

)

=
∑

x′
1∈Z 	=0

x′2
1 y2≤B/4k2

(
B1/2

ky5/2
2

+ O(1)

)
+ O

(
B1/2

ky1/2
2

)

= B

k2y3
2

+ O

(
B1/2

ky1/2
2

)
.

Recalling the lower bound (3.1), we see that we have obtained

NU2
2 ,H(B) ≥ 12

∑
y∈Z

3
>0

gcd(y0,y2)=1
y0<y1<y2≤B1/6

∑
k≤B1/2

μ(k)

(
B

k2y3
2

+ O

(
B1/2

ky1/2
2

))
.

This eventually gives

NU2
2 ,H(B) � B log B,

which completes the proof of the lower bound in Theorem 1.
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4 The Upper Bound

This section is concerned with establishing the upper bound in Theorem 1. As already

explained in Section 1, the proof draws upon Lemma 4.

4.1 Parametrization of the variables

The following lemma provides us with a convenient parametrization of the rational

points on U2
2 .

Lemma 5. Let T (B) be the number of ( f0, f1, f2, g0, g1, g2, h0, h1, h2) ∈ Z9
>0 and

(u0, u1, u2, v0, v1, v2) ∈ Z6
	=0 satisfying the equation

f0u0v
2
0 + f1u1v

2
1 + f2u2v

2
2 = 0,

and the conditions gcd( fi, fjgjhiuiv j) = gcd(gi, gjhiuiviv j) = gcd(hi, hjvi) = 1 and

gcd(ui, uj) = gcd(vi, v j) = 1 for i, j ∈ {0, 1, 2}, i 	= j, and the height conditions

(
max

{i, j,k}={0,1,2}
fj fkg2

j g
2
kh2

i |ui|
)2 (

max
{i, j,k}={0,1,2}

figihjhk|vi|
)

≤ B.

We have the equality

NU2
2 ,H(B) = 1

4T (B). �

Proof. We have

NU2
2 ,H(B) = 1

4
#

⎧⎪⎪⎨
⎪⎪⎩(x, y) ∈ Z3

	=0 × Z3
	=0,

x0y2
0 + x1y2

1 + x2y2
2 = 0

gcd(x0, x1, x2) = gcd(y0, y1, y2) = 1

max
i, j∈{0,1,2}

x2
i |yj| ≤ B

⎫⎪⎪⎬
⎪⎪⎭ .

For {i, j, k} = {0, 1, 2}, let us set hi = gcd(yj, yk) and let us write yi = hjhky′
i. The equation

x0h2
1h2

2y′2
0 + x1h2

0h2
2y′2

1 + x2h2
0h2

1y′2
2 = 0

implies that for i ∈ {0, 1, 2}, we have h2
i | xi so that we can write xi = h2

i x′
i. We thus obtain

the equation

x′
0y′2

0 + x′
1y′2

1 + x′
2y′2

2 = 0.

For {i, j, k} = {0, 1, 2}, let us set Xi = gcd(x′
j, x′

k) and let us write x′
i = X j Xkui. We obtain

X1 X2u0y′2
0 + X0 X2u1y′2

1 + X0 X1u2y′2
2 = 0,
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so that, for i ∈ {0, 1, 2}, we have Xi | y′2
i . As a consequence, for i ∈ {0, 1, 2}, there is a unique

way to write Xi = fig2
i and y′

i = figivi for fi, gi ∈ Z>0 with gcd(gi, vi) = 1. Therefore, we

obtain the equation

f0u0v
2
0 + f1u1v

2
1 + f2u2v

2
2 = 0,

and it is not hard to check that the variables satisfy the coprimality conditions listed in

the statement of the lemma, which completes the proof. �

4.2 Proof of the upper bound

First, we note that the coprimality conditions gcd( fi, v j) = gcd(ui, uj) = gcd(vi, v j) = 1 for

i, j ∈ {0, 1, 2}, i 	= j, and the equation

f0u0v
2
0 + f1u1v

2
1 + f2u2v

2
2 = 0,

imply that we actually have gcd(uivi, ujv j) = 1 for i, j ∈ {0, 1, 2}, i 	= j.

For i ∈ {0, 1, 2}, let Fi, Gi, Hi,Ui, Vi ≥ 1/2 run over powers of 2 and let M be the

number of ( f0, f1, f2, g0, g1, g2, h0, h1, h2) ∈ Z9
>0 and (u0, u1, u2, v0, v1, v2) ∈ Z6

	=0 satisfying

the equation

f0u0v
2
0 + f1u1v

2
1 + f2u2v

2
2 = 0,

the conditions Fi < fi ≤ 2Fi, Gi < gi ≤ 2Gi, Hi < hi ≤ 2Hi, Ui < |ui| ≤ 2Ui and Vi < |vi| ≤ 2Vi,

and gcd( fi, fj) = gcd(uivi, ujv j) = 1 for i, j ∈ {0, 1, 2}, i 	= j. By Lemma 5, we have

NU2
2 ,H(B) �

∑
Fi ,Gi ,Hi ,Ui ,Vi

i∈{0,1,2}

M,

where the sum is taken over the Fi, Gi, Hi,Ui, Vi, i ∈ {0, 1, 2}, satisfying

(
max

{i, j,k}={0,1,2}
F j FkG2

jG
2
k H2

i Ui

)2 (
max

{i, j,k}={0,1,2}
FiGi Hj HkVi

)
≤ B. (4.1)

By choosing ε = 1/6 in Lemma 4, we get

M� (F0 F1 F2)
7/6G0G1G2 H0 H1 H2(U0U1U2)

2/3(V0V1V2)
1/3M1/6(U0,U1,U2).

Recalling the definition of M1/6(U0,U1,U2) given in Lemma 3, we define

M1 = (F0 F1 F2)
7/6G0G1G2 H0 H1 H2(U0U1U2)

2/3(V0V1V2)
1/3,
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and

M2 = (log B)(F0 F1 F2)
7/6G0G1G2 H0 H1 H2(U0U1U2)

2/3(V0V1V2)
1/3

×
(

min
i, j∈{0,1,2},i 	= j

UiU j

)−1/3

,

and also

N�(B) =
∑

Fi ,Gi ,Hi ,Ui ,Vi
i∈{0,1,2}

M�,

for � ∈ {1, 2}, and where the sum is taken over the Fi, Gi, Hi,Ui, Vi, i ∈ {0, 1, 2}, satisfying

the conditions (4.1). We thus have

NU2
2 ,H(B) �N1(B) + N2(B). (4.2)

Let us start by taking care of N1(B). For this, let us sum over V0, V1, and V2 using

the conditions (4.1). We obtain

N1(B) � B
∑

Fi ,Gi ,Hi ,Ui
i∈{0,1,2}

(F0 F1 F2)
5/6(G0G1G2)

2/3(H0 H1 H2)
1/3(U0U1U2)

2/3

×
(

max
{i, j,k}={0,1,2}

F j FkG2
jG

2
k H2

i Ui

)−2

.

By symmetry, we can assume that

max{F0 F2G2
0G2

2 H2
1 U1, F0 F1G2

0G2
1 H2

2 U2} ≤ F1 F2G2
1G2

2 H2
0 U0. (4.3)

Let us sum over U1 and U2 using the inequalities (4.3). We obtain

N1(B) � B
∑

Fi ,Gi ,Hi ,U0
i∈{0,1,2}

(F0 F1 F2)
−1/2(G0G1G2)

−2(H0 H1 H2)
−1,

which finally gives

N1(B) � B log B. (4.4)

Let us now deal with N2(B). We can assume by symmetry that

min
i, j∈{0,1,2},i 	= j

UiU j = U1U2.

We thus have

M2 � (log B)(F0 F1 F2)
7/6G0G1G2 H0 H1 H2U2/3

0 (U1U2)
1/3(V0V1V2)

1/3.
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Once again, let us sum over V0, V1, and V2 using the conditions (4.1). We find that

N2(B) � B(log B)
∑

Fi ,Gi ,Hi ,Ui
i∈{0,1,2}

(F0 F1 F2)
5/6(G0G1G2)

2/3(H0 H1 H2)
1/3U2/3

0 (U1U2)
1/3

×
(

max
{i, j,k}={0,1,2}

F j FkG2
jG

2
k H2

i Ui

)−2

.

Now, let us use the inequality

(
max

{i, j,k}={0,1,2}
F j FkG2

jG
2
k H2

i Ui

)2

≥ F0(F1 F2)
3/2G2

0(G1G2)
3 H2

0 H1 H2U0(U1U2)
1/2.

This gives us

N2(B) � B(log B)
∑

Fi ,Gi ,Hi ,Ui
i∈{0,1,2}

(F0(F1 F2)
4G8

0(G1G2)
14 H10

0 (H1 H2)
4U2

0 U1U2)
−1/6,

and therefore, we obtain

N2(B) � B log B. (4.5)

Putting together the three upper bounds (4.2), (4.4), and (4.5) completes the proof

of the upper bound in Theorem 1.
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bres de Bordeaux 23, no. 3 (2011): 579–602.

[3] Browning, T. D. and D. R. Heath-Brown. “Counting rational points on hypersurfaces.” Jour-

nal für die Reine und Angewandte Mathematik 584 (2005): 83–115.

[4] Franke, J., Y. I. Manin, and Y. Tschinkel. “Rational points of bounded height on Fano vari-

eties.” Inventiones Mathematicae 95, no. 2 (1989): 421–35.

[5] Heath-Brown, D. R. “Diophantine approximation with square-free numbers.” Mathematis-

che Zeitschrift 187, no. 3 (1984): 335–44.

[6] Le Boudec, P. “Linear growth for certain elliptic fibrations.” International Mathematics

Research Notices 2015, no. 21 (2015): 10859-71.

[7] Peyre, E. “Hauteurs et mesures de Tamagawa sur les variétés de Fano.” Duke Mathematical

Journal 79, no. 1 (1995): 101–218.

[8] Robbiani, M. “On the number of rational points of bounded height on smooth bilinear hyper-

surfaces in biprojective space.” Journal of the London Mathematical Society (2) 63, no. 1

(2001): 33–51.

[9] Schindler, D. “Bihomogeneous forms in many variables.” J. Théor. Nombres Bordeaux (2013):
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