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Slow light has a variety of applications, in particular for
enhanced nonlinear effects like four-wave mixing and high-
harmonic generation. Here, we propose a photonic crystal
coupled-cavity waveguide with an ultracompact arrangement
of the constituent cavities in the propagation direction, and
use an optimization algorithm to tune several structural
parameters to engineer slow light with a constant group index
n, over a wide bandwidth. We propose several specific silicon
designs, including one with n, ~ 37 over a 20 nm wavelength
range and another one with z, ~ 116 over an 8.8 nm band,
which yields a group index—bandwidth product of 0.66—a
record value among all slow-light devices. The design is
experimentally beneficial because of its small footprint and
straightforward fabrication and could find applications in
optical storage or switching, and in generating quantum states
of light. © 2015 Optical Society of America

OCIS codes: (230.4555) Coupled resonators; (230.5298) Photonic
crystals; (130.5296) Photonic crystal waveguides.
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One of the major research goals in the field of photonics is
enhancing light—matter interactions and the resulting optical non-
linearities. To this end, one approach is to confine light inside
an optical cavity for as long as possible—a domain in which
silicon photonic crystal (PhC) devices have demonstrated truly
outstanding properties [1-4], with quality factors exceeding one
million in cavities with modal volumes of the order of the cube
of the resonance wavelength in the optical medium. A different
approach—better suited for some applications [5]—involves
slowing down the light propagation in a one-dimensional structure
engineered for a low group velocity where, again, silicon PhCs
have led to impressive results [6], particularly in line-defect wave-
guide systems [7—10] and in coupled-cavity waveguides (CCWs,
also called coupled-resonator optical waveguides) [11-17].
There is no unique figure of merit for a slow-light system, but
there are several important (and not always independent) param-
eters. The group index 7, = ¢/v,, with v, being the group veloc-
ity, is the slow-down factor as compared to the light propagation
in vacuum, and nonlinear effects typically scale with this quantity.
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While it is hard to significantly change the refractive index 7 of a
material using simple manipulations, the group index can be dra-
matically modified through engineering of the material dispersion
since v, = dw/dk. In fact, theoretically, 7, can be made arbitrar-
ily large, e.g., in the vicinity of the band edge of a PhC waveguide,
but its value is inevitably restricted by effects of localization and
light losses due to disorder. Localization (back-scattering) for high
n, in particular has been shown to severely restrict the length
scale on which one could meaningfully talk about light transport
[18-20]. In practice, the best achieved 7y values are of a few
hundred at a given frequency [12,13], with n, ~ 100 in wide-
band devices [8]. For a realistic system, it is thus natural to restrict
the target 7, values to a similar magnitude, and focus instead on
improving other figures of merit. These include low group velocity
dispersion (GVD) (i.e., second-order dispersion d*w/dk?), which
is necessary for pulsed operation; high delay—bandwidth product
(DBP), which, for a fixed group index, means a wide operational
bandwidth; and low-loss/high-transmission propagation.

In view of these parameters, PhC CCW systems used thus far
have some major pros and cons. The advantages are that a very
high 7, with a reasonably low GVD can be achieved, and that
losses can be made extremely low using Q ~ 10° cavities. The
disadvantages are that the operational bandwidth is typically small
and that having sufficient cavities to obtain a continuous spec-
trum requires very long (>100 pm) structures, which are very
challenging to fabricate. In this Letter, we overcome both of those
difficulties in an ultracompact PhC CCW design, which we op-
timize for a high, constant 7, within a large bandwidth, for several
different, experimentally relevant values of the group index.

A few remarks are in order. Following Ref. [21], from here on
we use the group index—bandwidth product (GBP, also referred
to as the normalized DBP) instead of the DBP as a figure of merit
of the CCW performance, and we compute the loss due to out-of-
plane radiation in units of [dB/ns] instead of the more standard
choice [dB/cm]. This gives the advantage of using quantities
which are independent of the device length, and also facilitates
the comparison to other systems. In addition, the requirement
for low GVD is translated to the related (but not equivalent) re-
quirement [8,21] for an approximately constant 7,: we define a
relative variation Ag and require |7, - (,)|/(n,) < Ag. Finally,
we remark that for an approximately constant 7, & (n,) within a

bandwidth Aw, the GBP is ngAw/w ~ Ak/w, where Ak is the

range of momenta associated to the bandwidth Aw centered at @.
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Thus, in a periodic structure of period L in the propagation
direction, the maximum achievable GBP is given by 7/(L®) and
o is fixed by the target operational wavelength.

Motivated by this consideration, we propose a PhC coupled-
cavity array with an extremely short spatial periodicity [Fig. 1(a)].
The structure is based on a triangular lattice of pitch # of air holes
of radius R = 0.25z in a silicon (n = 3.46) slab of thickness
d = 0.55a, where the CCW building blocks are L3 cavities, each
formed by three missing holes along the x direction [22]. With
this particular zigzag arrangement, the unit cell size in the propa-
gation direction y is 2+/34 but in fact, due to the symmetry with
respect to the x = 0 axis, the effective periodicity is half this pitch,
L, = V/3a. Intuitively, this is to say that no gap can open at the
boundary of the first Brillouin zone [at #/(2L,)], and a larger £
space of twice the width can be considered. This is illustrated
within a tight-binding approximation in Fig. 1(b) (the math-
ematical details can be found in Supplement 1). The first- and
second-neighbor couplings #, and #, are identical for the cavities
on the left and right of the x = 0 plane, and the dispersion curves
computed with periodicity Z, (one cavity in the unit cell) or 2,
(two cavities in the unit cell) are plotted for comparison.

For dispersion optimization, we would like to be able to tune
the cavity couplings. To a first approximation, we can imagine that
modifying the radius of the red and green holes in Fig. 1(a) can be
used to control #; and #,, respectively. We see from Fig. 1(b) that
when #, becomes comparable to 71, a degeneracy appears within a
finite frequency domain which prevents low-GVD propagation. To
verify that this can be avoided in our design, in Fig. 2 we show the
results of a simulation of a system with two cavities only,
arranged in each of the two possible ways as shown in the top insets
of each panel. The simulation was performed by solving the full
Maxwell equations of the system by employing a guided-mode
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Fig. 1. (a) CCW composed of coupled L3 PhC cavities; the propaga-
tion direction is the vertical, y axis. The unit cell of the infinite structure is
marked by dashed lines. For dispersion optimization, the radius of all
holes marked in red is varied by an amount A, and that of all holes
marked in green by Ar,. (b) Tight-binding dispersion of a chain of
cavities with first- and second-neighbor coupling, #, and #,. The dashed
lines show the folded bands in the case of two cavities included in the unit
cell, which is an equivalent representation.
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Fig. 2. (a) Cavity—cavity coupling in a system of two cavities arranged
as shown in the top inset, depending on the radius change Ar of the holes
marked in red. Values obtained with the GME (blue line) and the FDTD
(red crosses) methods are shown. Bottom right inset, frequency of the
symmetric (yellow) and antisymmetric (purple) modes versus Ar.
(b) Same as (a) but for a different arrangement, shown in the top left inset.

expansion method (GME) [23], and also verified with a commer-
cial-grade simulator based on the finite-difference time-domain
(FDTD) method [24]. The fundamental modes of the cavities
are coupled, producing antisymmetric and symmetric modes,
and the splittiing Aw = @y - w5 is twice the coupling constant
t (see Supplement 1). Thus, ¢, and #, can be computed as a func-
tion of the radius of the modified holes, and are plotted in Fig. 2.
An interesting observation was recently made [25] that in PhCs, the
frequency splitting can be either positive or negative, and moreover
could be tuned from one sign to the other—crossing zero—by a
simple modulation, which we also observe in Fig. 2(b). This is in
fact crucial for the compactness of our design, since it allows us to
arrange the cavities as shown in Fig. 1(a)—with second neighbors
separated by a small physical distance—and still have an arbitrarily
small 7, which, as can be seen in Fig. 2(b), crosses 0 for a given
radius change. To conclude this discussion, we note that the
tight-binding approximation provides important insights but is
rather crude and so, for all simulations below, we use GME to find
the true PhC eigenmodes.

Encouraged by these results, we proceed with an optimization
of the GBP, using a genetic algorithm to find the optimal PhC
parameters in the same manner that has already been successfully
applied to the problem of PhC cavity Q optimization [3,4,26].
The GME method is particularly well-suited for dispersion com-
putations as it is an expansion on the basis of propagating modes,
and as it assumes periodic boundary conditions. We note that
the GME has also proven highly accurate for the computation of
out-of-plane losses when compared to first-principle simulations
[26,27]. This is important, since the basic L3 cavity has a modest
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quality factor of a few thousand [22,23], but this can be increased
by several orders of magnitude using some simple modifications
of the neighboring holes [26]. Thus, to include the possibility for
minimizing losses in the optimization, we allow for a change of
radius Ar; and an outward shift Ax of the holes on each side of
each cavity [marked in white in Fig. 3(a)]. Our free parameters are
thus (Ary, Ary, Ars, Ax), but we still have freedom in defining
the objective function.

We demonstrate several optimizations below to highlight the
flexibility of our method. For all computations, we take the stan-
dard choice [21] for the maximum allowed relative variation of
the group index, Ay = 10%, i.e., we consider the operational
bandwidth Aw to be the one within which |n, - (n,)|/{n,) <
Ap, for some value of (7,) (not necessarily the arithmetic average).
Thus, after computing 7,(®) for a given design, we define the
GBP as G = (n,)Aw/w, where (n,) is defined such that
Aw is largest. To also account for the radiative losses L,, the
objective function for the design shown in Fig. 3 was set to
f(Ary, Ary, Ary, Ax) = G for max(L,) <50 dB/ns, and to
G x (50 dB/ns/ max(L,)) otherwise. The cutoff in the maxi-
mum allowed losses was chosen based on the experimentally
demonstrated loss in PhC waveguide systems [21].

With this objective function, the optimization results in
a design with parameters (Ary, Ary, Ars, Ax) = (-0.0385,
-0.0279,-0.0759,0.1642)a [Fig. 3(a)l. The wavelength
dispersion plotted in Fig. 3(b) is obtained by setting 2 = 400 nm;
as can be seen, the CCW guided band has very low GVD within a
very wide wavelength range of 19.5 nm. The average group index
is (n,) = 37, which results in a GBP of 0.47. This value is more
than twice higher than that of previous CCW systems [12,13] and
is close to the highest theoretical value of any existing proposal.
In fact, the only system to our knowledge which has a higher
theoretical GBP is a topology-optimized PhC waveguide [28]
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Fig. 3. (a) Electric field |E,| profile of the mode marked by a black
cross in (b). The green and red holes are modified as in Fig. 1(a), while
the white holes are shifted outward by an amount Ax and have a radius
changed by Ar;. (b) Wavelength dispersion of the optimized design; the
black dashed line marks the Brillouin zone for periodicity 2Z,. Modes
from the dashed-line band propagate in the direction opposite to the
one of the solid-line band. The operational bandwidth Aw is marked
by a light red region [extending into panels (c) and (d)]. (c) Group
index dispersion; in light yellow, the region (n,)(1 £ Ap) is marked.
(d) Dispersion of the radiative losses.
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with a GBP of 0.5 at n, = 50, which has the significant
disadvantage of requiring noncircular holes with fine features that
are challenging to fabricate. In another proposal using a coupled-
waveguide system [29], the group index and so the GBP vary
spatially along the device. A position-averaged GBP value attain-
ing a maximum of approximately 0.5 was estimated for such a
system, but the spatial dependence of 7, remains a significant
disadvantage as compared to our design.

In order to look for a higher group index 7,, we perform
another optimization but aiming at a smaller first-neighbor cou-
pling which, intuitively, results in a smaller frequency width of the
guided bands and thus slower light. Practically, we impose this by
increasing the distance in the x direction [refer to Fig. 1(a)] be-
tween consecutive cavities by one lattice constant &, as illustrated
in the inset of Fig. 4(a). Notice that this results in four holes
marked in red (radii changed by Ar;) between consecutive
cavities instead of three. Running an optimization with the same
objective function as above results in a design with parameters
(Ary, Ary, Ars, Ax) = (<0.0049, 00340, 01016, 0.2204)a,
with (7,) = 116 within an 8.8 nm band, thus with a GBP of
0.66 [Figs. 4(a)—4(c)]. This is the highest theoretical GBP among
all existing slow-light designs.

Finally, we also obtain designs with an intermediate group
index by optimizing each of the two basic designs with a different
objective function, defined as G x (|(n,) - n,,|/n,,), for some
target 7,, (notice that we drop the loss-dependence of the
objective function). Setting 7,, = 80 results in the design
shown in Figs. 4(d)—4(f), with parameters (A7, Ary, Arz, Ax) =
(-0.0208, -0.0350, ~0.0950, 0.2443)a, with (n,) = 88 over a
9.9 nm wavelength range (GBP = 0.56). Setting g, =50 yields
a better design if the three-red-hole scheme of Fig. 3(a) is used;
the optimal design [Fig. 4(h) inset] is found for (Ary, Ary,
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Fig. 4. Designs with (a)—(c) (ng) =116, G = 0.66; (d)-(f) (ng) =
88, G = 0.56; (h)—(j) (ng) =51, G = 0.43. The same plotting and
color scheme is employed as in Figs. 3(b)-3(d).
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Ars, Ax) = (0.0323,-0.0002, -0.0877,0.2131)a, with (n,) =
51 over a 13.1 nm bandwidth (GBP = 0.43).

The parameters and figures of merit of all designs are summa-
rized in Table S1 in Supplement 1. There, we also analyze the
effect of small deviations of the four parameters (Ary, Ar,
Ars, Ax) from their optimal values. For a deviation of
£2 nm—TIarger than the state-of-the-art precision in silicon pho-
tonic crystals—we find no degradation of the important figures
of merit of the designs, illustrating their practical applicability.
Of course, as discussed previously, random disorder in all holes
of the structure introduces unavoidable losses both in the vertical
and in the counterpropagating direction [18-20], but this was the
reason for which we aimed for values of the group index and the
extrinsic losses which have been observed in practice in similar
systems [8,12]. Finally, we checked that small variations of the
material refractive index also preserve the outstanding
properties of the proposed designs, and thus they can also be
implemented in materials of similar permittivity as silicon, e.g.,
gallium arsenide.

In conclusion, we present highly optimized designs for silicon
coupled-cavity waveguides with a record-high group index—
bandwidth product, low variation of the group index, and low
out-of-plane losses. The waveguides are straightforward to fabri-
cate and can be used in a variety of applications, including high-
bit-rate optical storage (very short pulses can be used due to the
large bandwidth) [6,16], enhanced nonlinear effects like four-
wave mixing (e.g., for entangled photon pair generation)
[10,17,30] and third-harmonic generation [9,31], and enhanced
radiative coupling between distant quantum dots for quantum
information processing [32,33].

Funding. Schweizerische Nationalfonds zur Férderung der
Wissenschaftlichen Forschung (Schweizerische Nationalfonds)
(200020_149537).

See Supplement 1 for supporting content.

REFERENCES

1. B. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).

2. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, Nat.
Photonics 1, 49 (2007).

3. Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A.
Badolato, and M. Galli, Appl. Phys. Lett. 104, 241101 (2014).

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.
30.

31.

32
33

Vol. 2, No. 7 / July 2015 / Optica 634

. U. P. Dharanipathy, M. Minkov, M. Tonin, V. Savona, and R. Houdré,
Appl. Phys. Lett. 105, 101101 (2014).

. T. F. Krauss, Nat. Photonics 2, 448 (2008).

. T. Baba, Nat. Photonics 2, 465 (2008).

. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438,
65 (2005).

. J.Li, T. P. White, L. O'Faolain, A. Gomez-Iglesias, and T. F. Krauss, Opt.
Express 16, 6227 (2008).

. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White,

L. O’'Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P.

White, L. O’Faolain, J. Li, and T. F. Krauss, Opt. Express 18, 22915

(2010).

D. O'Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss,

Opt. Express 15, 1228 (2007).

M. Notomi, E. Kuramochi, and T. Tanabe, Nat. Photonics 2, 741 (2008).

J. Jagerskda, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts, P.

Dumon, and R. Baets, Opt. Lett. 34, 359 (2009).

J. Jagerska, H. Zhang, N. Le Thomas, and R. Houdré, Appl. Phys. Lett.

95, 111105 (2009).

N. Matsuda, T. Kato, K. Harada, H. Takesue, E. Kuramochi, H.

Taniyama, and M. Notomi, Opt. Express 19, 19861 (2011).

H. Takesue, N. Matsuda, E. Kuramochi, W. J. Munro, and M. Notomi,

Nat. Commun. 4, 2725 (2013).

H. Takesue, N. Matsuda, E. Kuramochi, and M. Notomi, Sci. Rep. 4,

3913 (2014).

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L.

Ramunno, Phys. Rev. B 72, 2 (2005).

M. Patterson, S. Hughes, S. Combrié, N. V. Q. Tran, A. Rossi, R.

De Gabet, and Y. Jaouén, Phys. Rev. Lett. 102, 1 (2009).

S. Mazoyer, J. P. Hugonin, and P. Lalanne, Phys. Rev. Lett. 103, 063903

(2009).

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F.

Krauss, J. Opt. 12, 104004 (2010).

Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944

(2003).

L. C. Andreani and D. Gerace, Phys. Rev. B 73, 235114 (2006).

Lumerical Solutions, Inc., https://www.lumerical.com/tcad-products/fdtd/.

S. Haddadi, P. Hamel, G. Beaudoin, I. Sagnes, C. Sauvan, P. Lalanne,

J. A. Levenson, and A. M. Yacomotti, Opt. Express 22, 12359

(2014).

M. Minkov and V. Savona, Sci. Rep. 4, 5124 (2014).

M. Minkov, U. P. Dharanipathy, R. Houdré, and V. Savona, Opt. Express

21, 28233 (2013).

F. Wang, J. S. Jensen, J. Mark, and O. Sigmund, J. Opt. Soc. Am. A 29,

2657 (2012).

D. Mori and T. Baba, Opt. Express 13, 9398 (2005).

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M.

Liscidini, M. Galli, and D. Bajoni, Opt. Express 20, 23100 (2012).

M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O'Faolain, G. Guizzetti,

and L. C. Andreani, Opt. Express 18, 26613 (2010).

. S. Hughes, Phys. Rev. Lett. 98, 083603 (2007).

. M. Minkov and V. Savona, Phys. Rev. B 87, 125306 (2013).


http://www.opticsinfobase.org/optica/viewmedia.cfm?URI=optica-2-7-631&seq=1
http://www.opticsinfobase.org/optica/viewmedia.cfm?URI=optica-2-7-631&seq=1
https://www.lumerical.com/tcad-products/fdtd/
https://www.lumerical.com/tcad-products/fdtd/
https://www.lumerical.com/tcad-products/fdtd/

