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Introduction and Motivation

Introduction

ALS algorithm leads to a solution (C, E) for the factorization of L-
dim. spectroscopic data A of S species at K times, so that A = C E.

Motivation

• Working in a d-dim. space with d ≤ S (C  extents X) 
• Constraints in X are numerous and stronger than in C
• More constraints in the time direction (on X) means fewer 

constraints in the wavelength direction (on E).

Scope of this work 

Absorbance data measured under batch and fed-batch conditions
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ALS algorithm 
with a posteriori constraints
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Soft-modeling
(PCA, local rank…)



ALS algorithm 
with constrained optimization
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ALS algorithm
with implicit calibration

• Solve the problem of finding C and E as a combined 
constrained optimization problem where only C is adjusted 
and E is estimated by implicit calibration (E = C+A)

• Typical constraints
o g(C): nonnegativity, monotonicity, unimodality, closure
o h(E): nonnegativity

• Constraints and normalization of E are required, 
as well as rank C = rank E = S !
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Concept of Extents
Homogeneous reaction systems with inlets

• Material balance in terms of numbers of moles N (K × S)

• S numbers of moles N  → d = R + p ≤ S extents X

• Reconstruction equation
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Constraints on Extents
based on prior knowledge

• x(0) = 0d (initial conditions of X)

• X ³ 0K×d and N(X) ³ 0K×S (nonnegative)

• Xin monotonically increasing, 
xin,j(t) concave (convex) if qin,j monotonically decreasing (increasing)

• Xr monotonically increasing (for irreversible reactions)
xr,i(t) concave (convex) if ri(t) monotonically decreasing (increasing)

• Initial and Terminal equality constraints on N(X) are enforced
n0 = nk(0) and n(x(tend)) = nk(xk(tend)),   sub k indicates a known value

• Path equality constraints on X can be enforced
xi(t) = xi,k(t)  (e.g. an extent is known a priori to be zero)
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Constraints on Extents
based on measurements

1. Estimate numerically the 1st and 2nd time derivatives of X, i.e.    and 

2. Design convex/concave constraints based on the sign of     

3. If step 2 failed, design monotonicity constraints based on the sign of
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this approach could also be applied to concentration profiles to detect 
regions where monotonicity and/or unimodality constraints apply.

Remark:

time time time



Initialization with Concentration 
submatrices and local rank information

Assumption: The initial and final concentrations 
of Sa ³ d species are known for any experiment

The (S − Sa) remaining conc. are reconstructed via the extents
E is estimated via N = ½(S + S mod 2) experiments
N0 and X0 are computed from the estimate of E, 

10

c: calibration, a: available species, f: final conditions
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ALS algorithm 
with Extents and implicit calibration
• A = CE  Av := VA = NE , with V the volume

• Solve the constrained optimization where X is adjusted
and E is estimated by implicit calibration (E = N(X)+Av).

• Typical constraints
o f(X): nonnegativity, monotonicity, convexity/concavity, path constraints

o g(N(X)): nonnegativity, initial and final equality constraints

• No constraints on E are required!
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Simulated case study
Difference absorbance spectra
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→ →A B C
2 combined experiments: 

• Experiment 1 (only A initially present)
• Experiment 2 (only B initially present)

Pretreatment:
1st derivative in the
wavelength direction

Noise: 
1% uniformly distributed



Simulated case study
Constraints applied
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• Regular ALS does not work as E cannot be constrained positively

• ALS based on X with implicit calibration resolves both the 
rotational and intensity ambiguities with the following constraints:

o Initialization X0 from conc. submatrices and local rank information

o Constraints on Experiment 1

o Initial and terminal n’s imposed
o x1 and x2 monotonically increasing
o x1 concave, x2 convex then concave

Remarks: No constraint or normalization on E is required!
Constraints X0 ≥ 0, N(X) ≥ 0 are not even necessary!

o Constraints on Experiment 2

o Initial and terminal n’s imposed
o x1(t) = 0,   ∀t (path constraint)
o x2 concave



Simulated case study
ALS based on X with implicit calibration
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Conclusion
ALS with extents and implicit calibration

• Optimization in a reduced space
o S⋅K decision variables in C versus d⋅K in X, with d ≤ S

• Better handling of the constraints
o Simpler constraints formulation

o Large number of constraints based on prior knowledge

o Stronger constraints (concavity/convexity vs unimodality)

• No constraints on E
o Use of data pre-treatment along wavelength direction

(e.g. 1st derivative correction…)
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Perspectives
ALS with extents and implicit calibration

• Analysis of rank-deficient data
o Subtraction of the initial and inlet contributions

A  H = Xr (NE)  ALS on Xr and (NE) with rank R < S

• Use of hard constraints in terms of extents
o Each extent of reaction represents the effect of a single 

reaction independently of all the others. The use of hard 
constraints in terms of extents should allow a constant 
diagnosis of each postulated kinetic step.
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Final word
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