
Eurographics Symposium on Parallel Graphics and Visualization (2012)
H. Childs and T. Kuhlen (Editors)

Parallel Rendering on Hybrid Multi-GPU Clusters

S. Eilemann†1, A. Bilgili1, M. Abdellah1, J. Hernando2, M. Makhinya3, R. Pajarola3, F. Schürmann1

1Blue Brain Project, EPFL; 2CeSViMa, UPM; 3Visualization and MultiMedia Lab, University of Zürich

Abstract
Achieving efficient scalable parallel rendering for interactive visualization applications on medium-sized graphics
clusters remains a challenging problem. Framerates of up to 60hz require a carefully designed and fine-tuned
parallel rendering implementation that fits all required operations into the 16ms time budget available for each
rendered frame. Furthermore, modern commodity hardware embraces more and more a NUMA architecture, where
multiple processor sockets each have their locally attached memory and where auxiliary devices such as GPUs and
network interfaces are directly attached to one of the processors. Such so called fat NUMA processing and graphics
nodes are increasingly used to build cost-effective hybrid shared/distributed memory visualization clusters. In
this paper we present a thorough analysis of the asynchronous parallelization of the rendering stages and we
derive and implement important optimizations to achieve highly interactive framerates on such hybrid multi-GPU
clusters. We use both a benchmark program and a real-world scientific application used to visualize, navigate and
interact with simulations of cortical neuron circuit models.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Distributed Graphics; I.3.m [Computer Graphics]: Miscellaneous—Parallel Rendering

1. Introduction

The decomposition of parallel rendering systems across mul-
tiple resources can be generalized and classified, accord-
ing to Molnar et al. [MCEF94], based on the sorting stage
of the image synthesis pipeline: Sort-first (2D) decompo-
sition divides a single frame in the image domain and as-
signs the resulting image tiles to different processes; Sort-
last database (DB) decomposition performs a data domain
decomposition across the participating rendering processes.
A sort-middle approach cannot typically be implemented ef-
ficiently with current hardware architectures, as one needs
to intercept the transformed and projected geometry in scan-
space after primitive assembly. In addition to this classifica-
tion, frame-based approaches distribute entire frames, i.e. by
time-multiplexing (DPlex) or stereo decomposition (Eye), to
different rendering resources. Variations of sort-first render-
ing are pixel or subpixel decomposition as well as tile-based
decomposition frequently used for interactive raytracing.

† stefan.eilemann@epfl.ch, ahmet.bilgili@epfl.ch, marwan.ab-
dellah@epfl.ch, jhernando@fi.upm.es, makhinya@ifi.uzh.ch,
pajarola@acm.org, felix.schuermann@epfl.ch

Hybrid GPU clusters are often build from so called fat
render nodes using a NUMA architecture with multiple
CPUs and GPUs per machine. This configuration poses
unique challenges to achieve optimal distributed parallel ren-
dering performance since the topology of both the individual
single node as well as the full cluster has to be taken into
account to optimally exploit locality in parallel rendering.
In particular, the configuration of using multiple rendering
source nodes feeding one or a few display destination nodes
for scalable rendering offers room for improvement in the
rendering stages management and synchronization.

In this paper we study in detail different performance lim-
iting factors for parallel rendering on hybrid GPU clusters,
such as thread placements, asynchronous compositing, net-
work transport and configuration variation in both a straight-
forward benchmark tool as well as a real-world scientific vi-
sualization application.

The contributions presented in this paper not only consist
of an experimental analysis on a medium-sized visualization
cluster but also introduce and evaluate important optimiza-
tions to improve the scalability of interactive applications
for large parallel data visualization. Medium-sized visual-
ization clusters are currently among the most practically rel-
evant configurations as these are cost efficient, widely avail-

c© The Eurographics Association 2012.

Eilemann & Bilgili & Abdellah & Hernando & Makhinya & Pajarola & Schürmann / Hybrid Parallel Rendering

able and reasonably easy to manage. Most notable, we ob-
served that asynchronous readbacks and regions of interest
can contribute substantially towards high-performance inter-
active visualization.

2. Related Work
A number of general purpose parallel rendering concepts
and optimizations have been introduced before, such as par-
allel rendering architectures, parallel compositing, load bal-
ancing, data distribution, or scalability. However, only a few
generic APIs and parallel rendering systems exist which in-
clude VR Juggler [BJH∗01] (and its derivatives), Chromium
[HHN∗02], OpenSG [VBRR02], OpenGL Multipipe SDK
[BRE05], Equalizer [EMP09] and CGLX [DK11] of which
Equalizer is used as the basis for the work presented in this
paper.

For sort-last rendering, a number of parallel com-
positing algorithm improvements have been proposed in
[MPHK94, LRN96, SML∗03, EP07, PGR∗09, MEP10]. In
this work, however, we focus on improving the rendering
performance by optimizations and data reduction techniques
applicable to the sort-first and the parallel direct-send sort-
last compositing methods. For sort-first parallel rendering,
the total image data exchange load is fairly simple and ap-
proaches O(1) for larger N. Sort-last direct-send composit-
ing exchanges exactly two full images concurrently in total
between the N rendering nodes. Message contention in mas-
sive parallel rendering [YWM08] is not considered as it is
not a major bottleneck in medium-sized clusters.

To reduce transmission cost of pixel data, image com-
pression [AP98, YYC01, TIH03, SKN04] and screen-space
bounding rectangles [MPHK94, LRN96, YYC01] have been
proposed. Benchmarks done by [SMV11] show that exploit-
ing the topology of Hybrid GPU clusters with NUMA archi-
tecture increases the performance of CUDA applications.

3. Scalable Rendering on Hybrid Architectures
3.1. Parallel Rendering Framework
We chose Equalizer for our parallel rendering framework,
due its scalability and configuration flexibility. The archi-
tecture and design decisions of Equalizer are described in
[EMP09] and the results described in this paper build upon
that foundation.

However, the basic principles of parallel rendering are
similar for most approaches, and the analysis, experiments
and improvements presented in this paper are generally ap-
plicable and thus also useful for other parallel rendering sys-
tems.

In a cluster-parallel distributed rendering environment the
general execution flow is as follows (omitting event handling
and other application tasks): clear, draw, readback, transmit
and composite. Clear and draw optimizations are largely ig-
nored in this work. Consequently, in the following we fo-

cus on the readback, transmission, compositing and load-
balancing stages.

3.2. Hybrid GPU Clusters
Hybrid GPU clusters use a set of fat rendering nodes con-
nected with each other using one or more interconnects. In
contrast with traditional single-socket, single-GPU cluster
nodes, each node in a hybrid cluster has an internal topology,
using a non-uniform memory access (NUMA) architecture
and PCI Express bus layout with multiple memory regions,
GPUs and network adapters. Figure 1 shows a typical lay-
out, depicting the relative bandwidth through the thickness
of the connections between components.

RAM

GPU 1Processor 1
Core 1
Core 2
Core 3

Core 4
GPU 2

GPU 3
Network 1

Processor 2
Core 1
Core 2
Core 3

Core 4
Network 1 ...

RAM

RAM

RAM

RAM

Node

Core 5
Core 6

Core 5
Core 6 Network 2 Network 2

Figure 1: Example hybrid GPU cluster topology.

Future hardware architectures are announced which will
make this topology more complex. The interconnect topol-
ogy for most visualization clusters uses typically a fully non-
blocking, switched backplane.

3.3. Asynchronous Compositing
Compositing in a distributed parallel rendering system is de-
composed into readback of the produced pixel data (1), op-
tional compression of this pixel data (2), transmission to the
destination node consisting of send (3) and receive (4), op-
tional decompression (5) and composition consisting of up-
load (6) and assembly (7) in the destination framebuffer.

In a naive implementation, operations 1 to 3 are exe-
cuted serially on one processor, and 4 to 7 on another. In
our parallel rendering system, operations 2 to 5 are executed
asynchronously to the rendering and operations 1, 6 and 7.
Furthermore, we use a latency of one frame which means
that two rendering frames are always in execution, allowing
the pipelining of these operations, as shown in Figures 2(a)
and 2(c). Furthermore we have implemented asynchronous
readback using OpenGL pixel buffer objects, further increas-
ing the parallelism by pipelining the rendering and pixel
transfers, as shown in Figure 2(b). We did not implement
asynchronous uploads as shown in Figure 2(d), since it has
a minimal impact when using a many-to-one configuration
but complicates the actual implementation significantly.

In the asynchronous case, the rendering thread performs
only application-specific rendering operations, since the
overhead of starting an asynchronous readback becomes
negligible.

c© The Eurographics Association 2012.

Eilemann & Bilgili & Abdellah & Hernando & Makhinya & Pajarola & Schürmann / Hybrid Parallel Rendering

Transmit
Thread

Render
Thread

draw

draw

readback

send
readback

send

compress

compress

to destination
node

n 1

(a)

Transmit
Thread

Render
Thread

draw
start RB

draw
start RB

Download
Thread

finish RB

send
finish RB

send

compress

compress

to destination
node

n 11 1

(b)

Render
Thread

Command
Thread

Receive
Thread

draw

composite

draw

composite

receive

receive
decompr.

decompr.

fro
m

 s
ou

rc
e

no
de

1 1 1 n

(c)

Render
Thread

Upload
Thread

Command
Thread

Receive
Thread

draw
assemble

draw
assemble

upload

receive

receive

upload
decompr.

decompr.

fro
m

 s
ou

rc
e

no
de

1 1 1 n 1 1

(d)

Figure 2: Synchronous (a) and asynchronous (b) readback as well as synchronous(c) and asynchronous (d) upload for two
overlapping frames.

Equalizer uses a plugin system to implement GPU-CPU
transfer modules which are runtime loadable. We extended
this plugin API to allow the creation of asynchronous trans-
fer plugins, and implemented such a plugin using OpenGL
pixel buffer objects (PBO). At runtime, one rendering thread
and one download thread is used for each GPU, as well as
one transmit thread per process. The download threads are
created lazy, when needed.

3.4. Automatic Thread and Memory Placement
In a parallel rendering system, a number of threads are used
to drive a single process in the cluster. In our software we
use one main thread (main), one rendering thread for each
GPU (draw) and one to finish the download operation dur-
ing asynchronous downloads (read), one thread for receiv-
ing network data (recv), one auxilary command processing
thread (cmd) and one thread for image transmission to other
nodes (xmit).

Thread placement is critical to achieve optimal perfor-
mance. Due to internals of the driver implementations and
the hardware topology, running data transfers from a ’re-
mote’ processor in the system has severe performance penal-
ties. We have implemented automatic thread placement by
extending and using the hwloc [MPI12] library in Equalizer
using the following rules:

• Restrict all node threads (main, receive, command, image
transmission) to the cores of the processor local to the net-
work card.

• Restrict each GPU rendering and download thread to the
cores of the processor close to the respective GPU.

Figure 3 shows the thread placement for the topology ex-
ample used in Figure 1. The threads are placed to all cores
of the respective processor, and the ratio of cores to threads
varies with the used hardware and software configuration.
Furthermore, many of the threads do not occupy a full core
at runtime, especially the node threads which are mostly idle.

The memory placement follows the thread placement
when using the default ’first-touch’ allocation scheme, since
all GPU-specific memory allocations are done by the render
threads.

RAM

GPU 1Processor 1
Core 1
Core 2
Core 3

Core 4
GPU 2

GPU 3
Network 1

Processor 2
Core 1
Core 2
Core 3

Core 4

RAM Core 5
Core 6

Core 5
Core 6 Network 2

recv
main

cmd
read
draw

draw
draw

read
read

xmit

Figure 3: Mapping threads within a fat cluster node.

3.5. Region of Interest

The region of interest (ROI) is the screen-space 2D bounding
box enclosing the geometry rendered by a single resource.
We have extended the core parallel rendering framework to
transparently use an application-provided ROI to optimize
load balancing and image compositing.

Equalizer uses an automatic load-balancing algorithm
similar to [ACCC04] and [SZF∗99] for 2D decompositions.
The algorithm is based on a load grid constructed from the
tiles and timing statistics of the last finished frame. The per-
tile load is computed from the draw and readback time,
or compress and transmit, whichever is higher. The load-
balancer integrates over this load grid to predict the optimal
tile layout for the next frame. In Equalizer, the screen is de-
composed into a kd-tree where in [ACCC04] a dual-level
tree is used, first decomposed into horizontal tiles and then
each horizontal tile into vertical sub-tiles.

We use the ROI of each rendering source node to automat-
ically refine the load grid, see also Figure 4. In cases where
the rendered data projects only to a limited screen area, this
ROI refinement provides the load-balancer with a more ac-
curate load indicator leading to a better load prediction.

The load-balancer has to operate on the assumption that
the load is uniform within one load grid tile. This leads nat-
urally to estimation errors, since in reality the load is not
uniformly distributed, e.g., it tends to increase towards the
center of the screen in Figure 4. Refining the load grid tile

c© The Eurographics Association 2012.

Eilemann & Bilgili & Abdellah & Hernando & Makhinya & Pajarola & Schürmann / Hybrid Parallel Rendering

size using ROI decreases this inherent error and makes the
load prediction more accurate.

Figure 4: Load distribution areas with (top) and without
(bottom) using the ROI of the right-hand 2D parallel ren-
dering.

Furthermore, the ROI can also be used to minimize pixel
transport for compositing [MEP10]. This is particularly im-
portant for spatially compact DB decompositions, since the
per-resource ROI becomes more compact with the number
of used resources.

3.6. Multi-threaded and Multi-process Rendering
Equalizer [EMP09] supports a flexible configuration system,
allowing an application to be used with one single process
per GPU (referred to as multi-process), with one process
per node and one rendering thread for each GPU (referred
to as multi-threaded). This flexibility and the comparison of
the two configurations allows us to observe the impact of
memory bandwidth bottlenecks in a multi-threaded applica-
tion versus increased memory usage in a multi-process ap-
plication, as explained in Section 5.5. Furthermore, a multi-
process configuration is representative of typical MPI-based
parallel rendering systems, which are relatively common.

4. Visualization of Cortical Circuit Simulations
4.1. Neuroscience Background
RTNeuron [HSMd08] is a scientific application used in the
Blue Brain Project [Mar06] to visualize, navigate and in-
teract with cortical neuron circuit models and correspond-
ing simulation results, see also Figure 5. These detailed cir-
cuit models accurately model the structure and function of
a portion of a young rat’s cortex and the activity is be-
ing mapped back to the structure [LHS∗12]. The cells are
simulated using cable models [Ral62], which divide neuron
branches in electrical compartments. The cell membrane of
these compartments is modeled using a set of Hodgkin and
Huxley equations [HHS∗11]. Detailed and statistically vary-
ing shapes of the neurons are used to layout a cortical cir-
cuit and establish synapses, the connections between neu-

rons. Eventually, the simulation is run in a supercomputer
and different variables, such as membrane voltage and cur-
rents, spike times etc. are reported.

Figure 5: RTNeuron example rendering of the 1,000 inner-
most cells of a cortical circuit.

The outcome of these simulations is analyzed in several
ways, including direct visualization of the simulator out-
put. Interactive rendering of cortical circuits presents se-
varal technical challenges, the geometric complexity being
the most relevant for this study. A typical morphological
shape representing a neuron consists, on average consisting
of more than 4,200 branch segments, translates to a mesh of
140,000 polygons. A typical circuit consist of 10,000 neu-
rons chosen from hundreds of unique morphologies which
leads hundreds of million geometric elements to be rendered
in each frame.

4.2. RTNeuron Implementation
There are two geometric features of a cortical circuit that
make its visualization difficult. Neurons have a large spatial
extent but exhibit a very low space occupancy and they are
spatially interleaved in a complex manner, making it prac-
tically impossible to visually track a single cell. This also
causes aliasing problems and makes visibility and occlusion
culling hard.

To address the raw geometric complexity, level-of-detail
(LOD) techniques can be used [LRC∗03]. These techniques
are applied on a single workstation scenario, however for the
purpose of this paper we have focused on the higher quality
and scalability constraints of fully detailed meshes.

For scalability, we exploit parallel rendering using 2D
(sort-first) and DB (sort-last) task decomposition, as well as
combinations of both. Time-multiplexing can increase the
throughput but does not improve the interaction latency, and
pixel decomposition does not improve scalability for this
type of rendering. Subpixel decomposition for anti-aliasing
does increase visual quality but not rendering performance.

For 2D decomposition, the application is required to im-
plement efficient view frustum culling to allow scalability
with smaller 2D viewports. For this, our application uses the
culling techniques presented in [Her11]. The view frustum
culling algorithm used is based on a skeleton of capsules

c© The Eurographics Association 2012.

Eilemann & Bilgili & Abdellah & Hernando & Makhinya & Pajarola & Schürmann / Hybrid Parallel Rendering

(spherically-capped cylinders) extracted from the neuronal
skeletons. The frustum-capsule intersection test that deter-
mines the visibility is performed on the GPU. Then, for
each neuron the visibility of the capsules is used to compute
which intervals of its polygon list need to be rendered. This
culling operation is relatively expensive for large circuits,
and its result is cached if the projection-modelview matrix
is unchanged from the previous frame. This is typically the
case during simulation data playback, as the user observes
the time series from a fixed viewpoint. The simulation data,
typically voltage information, is applied using a color map
on the geometry.

To address both memory constraints and rendering scala-
bility for large data, DB decomposition is the most promis-
ing approach. We have implemented and compared two dif-
ferent decomposition schemes, a round-robin division of
neurons between rendering resources and a spatially ordered
data division using a kd-tree.

The round-robin decomposition is easy to implement and
leads to a fairly even geometry workload for large neuron
circuits. However, it fails to guarantee a total depth-order
between the source frames to be assembled. This requires the
usage of the depth buffer for compositing, and precludes the
use of transparency due to the entanglement of the neurons.

The spatial partition DB decomposition approach is based
on a balanced kd-tree constructed from the end points of the
segments that describe the shape of the neurons (the mor-
phological skeletons). For a given static data set and fixed
number of rendering source nodes, a balanced kd-tree is con-
structed over the segment endpoints such that the number
of leaves matches the number of rendering nodes. The split
position in each node is chosen such that the points are dis-
tributed proportionally to the rendering nodes assigned to the
resulting regions.

The kd-tree leaf nodes define the spatial data region that
each rendering node has to load and process. Each leaf oc-
cupies a rectangular region in space, and clip planes restrict
fragments to be generated for the exact spatial region. There-
fore, this DB decomposition can be composited using only
the RGBA frame buffer, and solves any issues with alpha-
blending since a coherent compositing order can be estab-
lished for any viewpoint.

Both DB decompositions modes are difficult to load bal-
ance at run-time. In particular, dynamic spatial repartition-
ing and on-demand loading have been omitted because of
their implementation challenges. Furthermore, the readback,
transmission and compositing costs are higher for DB than
for 2D decomposition.

A possible way to improve load balancing in a static DB
decomposition is to combine it with a nested 2D decomposi-
tion. This way, a group of nodes which is assigned the same
static data partition can use a dynamic 2D decomposition to
balance the rendering work locally.

5. Experimental Analysis
Any parallel rendering system is fundamentally limited by
two factors: the rendering itself, which includes transforma-
tion, shading and illumination; as well as compositing mul-
tiple partial rendering results into a final display, i.e. image.
While an exceeding task load of the former is the major
cause for parallelization in the first place, the latter is often
a limiting bottleneck due to constrained image data through-
put or synchronization overhead.

In our experiments we investigate the image transmis-
sion and compositing throughput of sort-first (2D) and sort-
last (DB) parallel rendering. For DB we study direct-send
(DS) compositing, which has shown to be highly scalable for
medium-sized clusters [EP07]. For benchmarking we used
two applications, eqPly and RTNeuron. The first is a text-
book parallel triangle mesh rendering application allowing
to observe and establish a baseline for the various experi-
ments, while the second is a real-world application used by
scientists to visualize large-scale HPC simulation results.

All tests were carried out on a 11 node cluster with
the following technical node specifications: dual six-core
3.47GHz processors (Intel Xeon X5690), 24GB of RAM,
three NVidia GeForce GTX580 GPUs and a Full-HD pas-
sive stereo display connected to two GPUs on the head node;
1Gbit/s, 10Gbit/s ethernet and 40Gbit/s QDR InfiniBand.
The GPUs are attached each using a dedicated 16x PCIe 2.0
link, the InfiniBand on a dedicated 8x PCIe 2.0 link and the
10 Gbit/s Ethernet using a 4x PCIe 2.0 link.

Using netperf, we evaluated a realistic achievable data
transmission rate of n= 1100MB/s for the 10 GBit intercon-
nect. Using pipeperf, we evaluated the real-world GPU-CPU
transfer rates of p = 1000MB/s for synchronous and asyn-
chronous transfers. Note that in the case of asynchronous
transfers almost all of the time is spent in the finish oper-
ation, which is pipelined with the rendering thread. Thus,
unless the rendering time is smaller than the combined read-
back and transmission time, the readback has no cost for
the overall performance. Thus for a frame buffer size sFB
of 1920× 1080 (6MB) we expect up to 160 fps during ren-
dering.

All 2D tests where conducted using a load balancer. All
DB tests used an even static distribution of the data across
the resources. For the eqPly tests, we rendered four times
the David 1 mm model consisting of 56 million triangles
with a camera path using 400 frames, as shown in Figure 6.
For the RTNeuron tests we used a full neocortical column
using 10,000 neurons (around 1.4 billion triangles).

5.1. Thread Placement
We tested the influence of thread placement by explicitly
placing the threads either on the correct or incorrect proces-
sor. We found that this leads to a performance improvement
of more than 6% in real-world rendering loads, as shown
in Figure 7. Thread placement mostly affects the GPU-CPU

c© The Eurographics Association 2012.

Eilemann & Bilgili & Abdellah & Hernando & Makhinya & Pajarola & Schürmann / Hybrid Parallel Rendering

Figure 6: Screenshots along the eqPly camera path.

download performance, and therefore has a small influence
on the overall performance, with a growing importance at
high framerates as the draw time decreases.

linear ROI off ROI on correct incorrect linear ROI off ROI on DB AFF DB bad AFF speedup speedup speedup improvement
3
9
15
21
27
33

10.1655 10.1655 10.4781 10.4899 10.4652 6.6491 6.6491 6.64151 4.99638 4.96776 0% 3% -1.14 0.58
30.4965 24.9284 26.2072 26.5807 26.0064 19.9473 14.783 14.9979 6.07068 6.0736 2% 5% 14.54 -0.05
50.8275 37.3315 38.4213 38.6116 37.8874 33.2455 19.8859 20.1192 6.501 6.52079 2% 3% 11.73 -0.30
71.1585 45.4641 47.3652 47.2156 45.3518 46.5437 12.6358 11.2892 7.43733 7.5014 4% 4% -106.57 -0.85
91.4895 48.9431 54.1541 54.4186 52.4529 59.8419 9.3947 9.66107 4% 11% 28.35

111.8205 47.5766 58.5061 59.2201 55.5736 73.1401 8.06721 7.19165 7% 23% -108.53

0

12

24

36

48

60

3 9 15 21 27 33
0%

1%

3%

4%

6%

7%
2D, Thread Affinity, 4xDavid

Fr
am

es
 p

er
 S

ec
on

d

Number of GPUs

Sp
ee

du
p

du
e

to
 o

pt
im

iza
tio

n

incorrect
correct
speedup

0

10

20

30

40

50

60

3 9 15 21 27 33
0%

4%

8%

13%

17%

21%

25%
2D, Region of Interest , 4xDavid

Fr
am

es
 p

er
 S

ec
on

d

Number of GPUs

Sp
ee

du
p

du
e

to
 o

pt
im

iza
tio

n

ROI off
ROI on
speedup

15%

12%

9%

6%

3%

0

4

8

12

16

20

3 9 15 21 27 33

DB, Region of Interest , 4xDavid

Fr
am

es
 p

er
 S

ec
on

d

Number of GPUs

ROI on
ROI off
speedup
linear

5%

4%

3%

2%

1%

Sp

Figure 7: Influence of thread affinity on the rendering per-
formance

5.2. RTNeuron scalability
We tested the basic scalability of RTNeuron using a static
and a load-balanced 2D compound as well as one direct send
DB compound with the round-robin and spatial DB decom-
position, as shown in Figure 8.

In the static 2D and both DB modes RTNeuron can cache
the results of the cull operation, as it is the case in the typical
use case of this application. Nevertheless the load-balanced
2D decompositions provides a better performance than the
static decomposition. Due to the culling overhead, this mode
does not scale as well as it does in the more simple eqPly
benchmark.

For the DB rendering modes, the spatial decomposition
delivers better performance due to the reduced compositing
cost of not using the depth buffer and increasingly sparser re-
gion of interest. The spatial mode delivers about one frame
per second better performance than the round-robin DB de-
composition throughout all configurations, resulting in a
speedup of 12-60% at the observed framerate.

0

1

2

3

4

5

6

7

3 9 15 21 27 33
0%

20%

40%

60%

80%

100%

120%

140%
2D, Full Cortical Column

Fr
am

es
 p

er
 S

ec
on

d

Number of GPUs

sp
ee

du
p

du
e

to
 o

pt
im

iza
tio

n

static 2D
dynamic 2D
speedup

(a)

0

1

2

3

4

5

6

7

3 9 15 21 27 33
0%

10%

20%

30%

40%

50%

60%

70%
DB, Full Cortical Column

Fr
am

es
 p

er
 S

ec
on

d

Number of GPUs

sp
ee

du
p

du
e

to
 o

pt
im

iza
tio

n

spatial
round-robin
speedup

(b)

Figure 8: RTNeuron scalability for 2D (a) and DB (b) de-
composition

5.3. Region of Interest
Applying ROI for 2D compounds has a small, constant influ-
ence when a small number of resource is used, as shown in
Figure 9(a). With our camera path and model, the improve-
ment is about 5% due to the optimized compositing. As the
number of resources increases, the ROI becomes more im-
portant since load imbalances have a higher impact on the
overall performance. With ROI enabled we observed per-
formance improvements when using all 33 GPUs, reaching
60hz. Without ROI, the framerate peaked at less than 50hz
when using 27 GPUs.

For depth-based DB compositing the ROI optimization
during readback is especially important, as shown in Fig-
ure 9(b). The readback and upload paths for the depth buffer
are not optimized and incur a substantial cost when com-
positing the depth buffer at full HD resolution. Further-
more, the messaging overhead on TCP causes significant
contention when using 21 GPUs or more.

For the round-robin DB mode in RTNeuron, adding a re-
gion of interest has predictably very little influence, since
each resource has only a marginally reduced region with this
decomposition, as shown in Figure 10(a). On the other hand,
the spatial DB mode can benefit of more than 25% due to the

c© The Eurographics Association 2012.

Eilemann & Bilgili & Abdellah & Hernando & Makhinya & Pajarola & Schürmann / Hybrid Parallel Rendering

linear ROI off ROI on correct incorrect linear ROI off ROI on DB AFF DB bad AFF speedup speedup speedup improvement
3
9
15
21
27
33

10.1655 10.1655 10.4781 10.2424 10.1572 6.6491 6.6491 6.64151 4.99638 4.96776 1% 3% -1.14 0.58
30.4965 24.9284 26.2072 25.6116 25.0967 19.9473 14.783 14.9979 6.07068 6.0736 2% 5% 14.54 -0.05
50.8275 37.3315 38.4213 38.1282 36.7865 33.2455 19.8859 20.1192 6.501 6.52079 4% 3% 11.73 -0.30
71.1585 45.4641 47.3652 45.3566 44.2131 46.5437 12.6358 11.2892 7.43733 7.5014 3% 4% -106.57 -0.85
91.4895 48.9431 54.1541 48.9431 47.7336 59.8419 9.3947 9.66107 3% 11% 28.35

111.8205 47.5766 58.5061 47.5766 44.5481 73.1401 8.06721 7.19165 7% 23% -108.53

0

10

20

30

40

50

3 9 15 21 27 33
0%

1%

3%

4%

6%

7%
2D, Thread Affinity, 4xDavid

Fr
am

es
 p

er
 S

ec
on

d

Number of GPUs

Sp
ee

du
p

du
e

to
 o

pt
im

iza
tio

n

incorrect
correct
speedup

0

10

20

30

40

50

60

3 9 15 21 27 33
0%

4%

8%

13%

17%

21%

25%
2D, Region of Interest , 4xDavid

Fr
am

es
 p

er
 S

ec
on

d

Number of GPUs

Sp
ee

du
p

du
e

to
 o

pt
im

iza
tio

n

ROI off
ROI on
speedup

15%

12%

9%

6%

3%

0

4

8

12

16

20

3 9 15 21 27 33

DB, Region of Interest , 4xDavid

Fr
am

es
 p

er
 S

ec
on

d

Number of GPUs

ROI on
ROI off
speedup
linear

5%

4%

3%

2%

1%

Sp

(a)

0

4

8

12

16

20

3 9 15 21 27 33
0%

100%

200%

300%

400%

500%
DB Direct Send, Region of Interest, 4xDavid

Fr
am

es
 p

er
 S

ec
on

d

Number of GPUs

sp
ee

du
p

du
e

to
 o

pt
im

iza
tio

n

ROI off
ROI on
speedup

(b)

Figure 9: Influence of ROI on eqPly 2D (a) and DB (B) ren-
dering performance

increasingly spare image regions as resources are added, as
shown in Figure 10(b).

5.4. Asynchronous Readback
Asynchronous readbacks are, together with ROI, one of the
most influential optimizations. When being mostly render-
ing bound, pipelining the readback with the rendering yields
a performance again of about 10%. At higher framerates,
when the rendering time of a single resource decreases,
asynchronous readback has even a higher impact, of over
25% in our setup, as shown in Figure 11.

5.5. Multi-threaded versus Multi-process
Using three processes instead of three rendering threads on a
single machine yields a slight performance improvement of
up to 6% for eqPly, as shown in Figure 12. This is due to de-
creased memory contention and driver overhead with multi-
threaded rendering, but comes at the cost of using three times
as much memory for 2D compounds.

5.6. Finish after Draw
During benchmarking we discovered that a glFinish after the
draw operation dramatically increases the rendering perfor-

0

1

2

3

4

5

6

3 9 15 21 27 33
-2.0%

-1.3%

-0.7%

0%

0.7%

1.3%

2.0%

2.7%

3.3%

4.0%
Round-Robin DB, Region of Interest, Full Cortical Column

Fr
am

es
 p

er
 S

ec
on

d

Number of GPUs

sp
ee

du
p

du
e

to
 o

pt
im

iza
tio

n

ROI off
ROI on
speedup

(a)

0

1

2

3

4

5

6

7

3 9 15 21 27 33
-5%

0%

5%

10%

15%

20%

25%

30%
Spatial DB, Region of Interest, Full Cortical Column

Fr
am

es
 p

er
 S

ec
on

d

Number of GPUs

sp
ee

du
p

du
e

to
 o

pt
im

iza
tio

n

ROI off
ROI on
speedup

(b)

Figure 10: Influence of ROI on RTNeuron round-robin (a)
and spatial (b) DB rendering performance

linear synchronous asynchronous correct incorrect DB DB ROI DB AFF DB bad AFF DB async improvement speedup improvement improvement
3
9
15
21
27
33

10.1655 10.1655 10.9995 10.2424 10.1572 6.6491 6.64151 4.60805 4.96776 5.35856 4.19 8% -0.11 -7.24
30.4965 24.9284 27.815 25.6116 25.0967 14.783 14.9979 5.64881 6.0736 9.78578 10.26 12% 1.45 -6.99
50.8275 37.3315 40.6761 38.1282 36.7865 19.8859 20.1192 6.16123 6.52079 7.56609 18.24 9% 1.17 -5.51
71.1585 45.4641 49.2602 45.3566 44.2131 12.6358 11.2892 7.05779 7.5014 7.99894 12.93 8% -10.66 -5.91
91.4895 48.9431 54.5398 48.9431 47.7336 9.3947 9.66107 7.65548 7.7944 12.67 11% 2.84

111.8205 47.5766 60.6196 47.5766 44.5481 8.06721 7.19165 6.08177 6.50634 33.99 27% -10.85

0

10

20

30

40

50

3 9 15 21 27 33

2D, Thread Affinity, 4xDavid

Fr
am

es
 p

er
 S

ec
on

d

Number of GPUs

incorrect
correct
improvement
linear

10%

8%

6%

4%

2%

0

10

20

30

40

50

60

70

3 9 15 21 27 33
0%

4%

9%

13%

17%

21%

26%

30%
2D, Asynchronous Readback	 , 4xDavid

Fr
am

es
 p

er
 S

ec
on

d

Number of GPUs

Sp
ee

du
p

du
e

to
 o

pt
im

iza
tio

n

synchronous
asynchronous
speedup

0

4

8

12

16

20

3 9 15 21 27 33

DB, Region of Interest , 4xDavid

Fr
am

e
pe

r S
ec

on
d

Category Title
DB DB ROI improvement

15%

12%

9%

6%

3%

Figure 11: Difference between synchronous and asyn-
chronous readback

mance in DB decompositions, contrary to common sense.
Consequently, we extended our implementation to insert a
glFinish after the application’s draw callback. The finish
might allow the driver to be more explicit about the synchro-
nization, since it enforces the completion of all outstanding
rendering commands. We could not investigate this issue fur-
ther due to the closed nature the OpenGL drivers used. Fig-
ure 13 shows a speedup of up to 200%.

c© The Eurographics Association 2012.

Eilemann & Bilgili & Abdellah & Hernando & Makhinya & Pajarola & Schürmann / Hybrid Parallel Rendering

linear Multithreaded Multiprocess speedup
3
9
15
21
27
33
39

10.464 10.464 10.7337 3%
31.392 26.4688 27.4492 4%
52.32 38.7724 40.427 4%

73.248 47.5555 49.3087 4%
94.176 54.6644 55.2898 1%

115.104 57.188 60.8846 6%
136.032

0

10

20

30

40

50

60

3 9 15 21 27 33
0%

1%

2%

4%

5%

6%

7%
2D, Multi-Process , 4xDavid

Fr
am

es
 p

er
 S

ec
on

d

Number of GPUs

Sp
ee

du
p

du
e

to
 o

pt
im

iza
tio

n

Multithreaded
Multiprocess
speedup

Figure 12: Difference between multi-threaded and multi-
process rendering

0

4

8

12

16

20

3 9 15 21 27 33
0%

6%

12%

18%

24%

30%
DB Direct Send, 4xDavid

Fr
am

es
 p

er
 S

ec
on

d

Number of GPUs

sp
ee

du
p

du
e

to
 o

pt
im

iza
tio

n
multithreaded
multiprocess
speedup

Figure 13: Influence of glFinish on DB decomposition per-
formance

6. Conclusions and Future Work
This paper presents, analyses and evaluates a number of
different optimizations for interactive parallel rendering on
medium-sized, hybrid visualization clusters. We have shown
that to reach interactive frame rates with large data sets not
only the application rendering code has to be carefully stud-
ied but also that the parallel rendering framework requires
careful optimization.

Apart from implementing and evaluating known opti-
mizations such as asynchronous readbacks and automatic
thread placement in a generic parallel rendering framework,
we presented a novel algorithm for the optimization of 2D
load-balancing re-using region of interest information from
the compositing stage for refined load distribution.

The study of the impact of the individual optimizations
provides valuable insight into the influence of the various
features on real-world rendering performance. Our perfor-
mance study on a hybrid visualization cluster demonstrates
the typical scalability and common roadblocks towards high-
performance large data visualization.

We want to benchmark the use of RDMA over InfiniBand,
in particular for DB decompositions which have a significant

network transport overhead when using TCP over 10 Gbit
ethernet.

Regarding RTNeuron, our tests showed that there is room
for improvement in several areas. The view frustum culling
implementation has been identified as one of the major ob-
stacles for scalability in some configurations. We will eval-
uate if culling overhead can be reduced by using a differ-
ent algorithm, such as clustering the cell segments and using
an independent capsule skeleton for each cluster. Also, the
current visualizations target circuit models where the cells
geometries are not unique. The simulation is moving to-
wards completely unique morphologies, which is a complete
paradigm shift with new challenges to be addressed.

We want to further analyse the use of subpixel compounds
to improve the visual quality for RTNeuron, which requires
strong anti-aliasing for good visual results.

Acknowledgments
The authors would like to thank and acknowledge the fol-
lowing institutions and projects for providing 3D test data
sets: the Digital Michelangelo Project and the Stanford 3D
Scanning Repository. This work was supported in part by the
Blue Brain Project, the Swiss National Science Foundation
under Grant 200020-129525 and by the Spanish Ministry of
Science and Innovation under grant (TIN2010-21289-C02-
01/02) and the Cajal Blue Brain Project.

We would also like to thank github for providing an
excellent infrastructure hosting the Equalizer project at
http://github.com/Eyescale/Equalizer/.

References
[ACCC04] ABRAHAM F., CELES W., CERQUEIRA R., CAMPOS

J. L.: A load-balancing strategy for sort-first distributed render-
ing. In IN PROCEEDINGS OF SIBGRAPI 2004 (2004), IEEE
Computer Society, pp. 292–299. 3

[AP98] AHRENS J., PAINTER J.: Efficient sort-last rendering
using compression-based image compositing. In Proceedings
Eurographics Workshop on Parallel Graphics and Visualization
(1998). 2

[BJH∗01] BIERBAUM A., JUST C., HARTLING P., MEINERT K.,
BAKER A., CRUZ-NEIRA C.: VR Juggler: A virtual platform for
virtual reality application development. In Proceedings of IEEE
Virtual Reality (2001), pp. 89–96. 2

[BRE05] BHANIRAMKA P., ROBERT P. C. D., EILEMANN S.:
OpenGL Multipipe SDK: A toolkit for scalable parallel render-
ing. In Proceedings IEEE Visualization (2005), pp. 119–126. 2

[DK11] DOERR K.-U., KUESTER F.: CGLX: A scalable, high-
performance visualization framework for networked display en-
vironments. IEEE Transactions on Visualization and Computer
Graphics 17, 2 (March 2011), 320–332. 2

[EMP09] EILEMANN S., MAKHINYA M., PAJAROLA R.: Equal-
izer: A scalable parallel rendering framework. IEEE Transactions
on Visualization and Computer Graphics (May/June 2009). 2, 4

[EP07] EILEMANN S., PAJAROLA R.: Direct send compositing
for parallel sort-last rendering. In Proceedings Eurographics
Symposium on Parallel Graphics and Visualization (2007). 2,
5

c© The Eurographics Association 2012.

Eilemann & Bilgili & Abdellah & Hernando & Makhinya & Pajarola & Schürmann / Hybrid Parallel Rendering

[Her11] HERNANDO J. B.: Interactive Visualization of Detailed
Large Neocortical Circuit Simulations. PhD thesis, Facultad de
Informática, Universidad Politécnica de Madrid, 2011. 4

[HHN∗02] HUMPHREYS G., HOUSTON M., NG R., FRANK R.,
AHERN S., KIRCHNER P. D., KLOSOWSKI J. T.: Chromium: A
stream-processing framework for interactive rendering on clus-
ters. ACM Transactions on Graphics 21, 3 (2002), 693–702. 2

[HHS∗11] HAY E., HILL S., SCHÜRMANN F., MARKRAM H.,
SEGEV I.: Models of neocortical layer 5b pyramidal cells captur-
ing aăwide range of dendritic and perisomatic active properties.
PLoS Comput Biol 7, 7 (07 2011), e1002107. 4

[HSMd08] HERNANDO J. B., SCHÜRMANN F., MARKRAM H.,
DE MIGUEL P.: RTNeuron, an application for interactive visual-
ization of detailed cortical column simulations. XVIII Jornadas
de Paralelismo, Spain (2008). 4

[LHS∗12] LASSERRE S., HERNANDO J., SCHÜRMANN
F., DE MIGUEL ANASAGASTI P., ABOU-JAOUDÂŐ G.,
MARKRAM H.: A neuron membrane mesh representation
for visualization of electrophysiological simulations. IEEE
Transactions on Visualization and Computer Graphics 18, 2
(2012), 214–227. 4

[LRC∗03] LUEBKE D., REDDY M., COHEN J. D., VARSHNEY
A., WATSON B., HUEBNER R.: Level of Detail for 3D Graphics.
Morgan Kaufmann Publishers, San Francisco, California, 2003.
4

[LRN96] LEE T.-Y., RAGHAVENDRA C., NICHOLAS J. B.: Im-
age composition schemes for sort-last polygon rendering on 2D
mesh multicomputers. IEEE Transactions on Visualization and
Computer Graphics 2, 3 (July-September 1996), 202–217. 2

[Mar06] MARKRAM H.: The Blue Brain Project. Nature Reviews
Neuroscience 7, 2 (2006), 153–160. http://bluebrain.
epfl.ch. 4

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:
A sorting classification of parallel rendering. IEEE Computer
Graphics and Applications 14, 4 (1994), 23–32. 1

[MEP10] MAKHINYA M., EILEMANN S., PAJAROLA R.: Fast
compositing for cluster-parallel rendering. In Proceedings Eu-
rographics Symposium on Parallel Graphics and Visualization
(2010), pp. 111–120. 2, 4

[MPHK94] MA K.-L., PAINTER J. S., HANSEN C. D., KROGH
M. F.: Parallel volume rendering using binary-swap image com-
position. IEEE Computer Graphics and Applications 14, 4 (July
1994), 59–68. 2

[MPI12] MPI O.: Portable Hardware Locality. http://www.open-
mpi.org/projects/hwloc/, 2012. 3

[PGR∗09] PETERKA T., GOODELL D., ROSS R., SHEN H.-
W., THAKUR R.: A configurable algorithm for parallel image-
compositing applications. In Proceedings ACM/IEEE Confer-
ence on High Performance Networking and Computing (2009),
pp. 1–10. 2

[Ral62] RALL W.: Theory of Physiological Properties of Den-
drites. Annals of the New York Academy of Science 96 (1962),
1071–1092. 4

[SKN04] SANO K., KOBAYASHI Y., NAKAMURA T.: Differen-
tial coding scheme for efficient parallel image composition on a
pc cluster system. Parallel Computing 30, 2 (2004), 285–299. 2

[SML∗03] STOMPEL A., MA K.-L., LUM E. B., AHRENS J.,
PATCHETT J.: SLIC: Scheduled linear image compositing for
parallel volume rendering. In Proceedings IEEE Symposium
on Parallel and Large-Data Visualization and Graphics (2003),
pp. 33–40. 2

[SMV11] SPAFFORD K., MEREDITH J. S., VETTER J. S.: Quan-
tifying numa and contention effects in multi-gpu systems. In Pro-
ceedings of the Fourth Workshop on General Purpose Process-
ing on Graphics Processing Units (New York, NY, USA, 2011),
GPGPU-4, ACM, pp. 11:1–11:7. 2

[SZF∗99] SAMANTA R., ZHENG J., FUNKHOUSER T., LI K.,
SINGH J. P.: Load balancing for multi-projector rendering sys-
tems. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware (New York, NY, USA, 1999),
HWWS ’99, ACM, pp. 107–116. 3

[TIH03] TAKEUCHI A., INO F., HAGIHARA K.: An improved
binary-swap compositing for sort-last parallel rendering on dis-
tributed memory multiprocessors. Parallel Computing 29, 11-12
(2003), 1745–1762. 2

[VBRR02] VOSSG., BEHR J., REINERS D., ROTH M.: A multi-
thread safe foundation for scene graphs and its extension to
clusters. In Proceedings of the Fourth Eurographics Workshop
on Parallel Graphics and Visualization (Aire-la-Ville, Switzer-
land, Switzerland, 2002), EGPGV ’02, Eurographics Associa-
tion, pp. 33–37. 2

[YWM08] YU H., WANG C., MA K.-L.: Massively parallel vol-
ume rendering using 2-3 swap image compositing. In Proceed-
ings IEEE/ACM Supercomputing (2008). 2

[YYC01] YANG D.-L., YU J.-C., CHUNG Y.-C.: Efficient com-
positing methods for the sort-last-sparse parallel volume render-
ing system on distributed memory multicomputers. Journal of
Supercomputing 18, 2 (February 2001), 201–22–. 2

c© The Eurographics Association 2012.

http://bluebrain.epfl.ch
http://bluebrain.epfl.ch

