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A family of effective equations that capture the long time dispersive effects of wave propagation in
heterogeneous media in an arbitrary large periodic spatial domain Ω ⊂ Rd over long time is proposed

and analyzed. For a wave equation with highly oscillatory periodic spatial tensors of characteristic

length ε, we prove that the solution of any member of our family of effective equations are ε-close in
the L∞(0, T ε,L2(Ω)) norm to the true oscillatory wave over a time interval of length T ε = O(ε−2). We

show that the previously derived effective equation in [Dohnal, Lamacz, Schweizer, Multiscale Model.

Simul., 2014] belongs to our family of effective equation. Moreover, while Bloch waves techniques were
previously used, we show that asymptotic expansion techniques give an alternative way to derive such

effective equations. An algorithm to compute the tensors involved in the dispersive equation and

allowing for efficient numerical homogenization methods over long time is proposed.
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1. Introduction

The wave equation in heterogeneous media is used to model various engineering problems such

as seismic inversion, medical imaging or the manufacture of composite materials. Given initial

conditions, a source f and a periodic tensor aε, we look for the wave displacement uε such that

∂2
t u

ε(t, x)−∇x ·
(
aε(x)(∇xuε(t, x)

)
= f(t, x) in (0, T ]× Rd, (1.1)

where aε(x) = a
(
x
ε

)
= a(y) is Y -periodic in y (a unit cell e.g., Y = (−1/2, 1/2)d). We assume

for simplicity that d ≤ 3 a. As the heterogeneities of the medium described by aε arise at

the microscopic scale O(ε), which is much smaller than the scale of interest O(1), standard

numerical methods (finite difference method (FDM) or finite element method (FEM)) lead to

a prohibitive computational cost as they require the resolution of the microscopic scale for the

mesh size. Mathematically, the homogenization theory has been developed to deal with such

problem (see Ref. 7, 18, 10, 21 for general theory, Ref. 9 for the wave equation). It provides

the existence of a so called homogenized equation

∂2
t u

0(t, x)−
d∑

ij=1

a0
ij∂

2
iju

0(t, x) = f(t, x) in (0, T ]× Rd, (1.2)

whose solution u0 no longer oscillates at the microscopic scale and describes at short times

O(1) the macroscopic behaviour O(1) of the wave uε. In this work, we assume the tensor aε to

aResults for d ≥ 3 can be obtained following the lines of the proof of our main results provided higher regularity
assumptions for a(y).
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be periodic. In such case, the so-called homogenized tensor a0 ∈ Rd×d in (1.2) can be computed

explicitly via the solutions of d cell problems. These cell problems are elliptic partial differential

equations associated with a, with periodic boundary conditions.

However, it is known that at long times of order O(ε−2), dispersion effects appear in the

macroscopic behaviour of the wave uε, that are not captured by the homogenized solution u0.

In the literature, several papers have addressed this problem, with the purpose to define a

higher order effective equation, i.e., an equation whose solution capture the dispersive effects

of uε over long times O(ε−2). In all the results, this equation consists of (1.2) with some

additional higher order constant differential operators. The challenge lies first in exhibiting

the form of these operators, then defining the coefficients driving them and finally give an

efficient algorithm to compute these coefficients. In Ref. 22, Santosa and Symes formally build

an approximation of uε (for f = 0) over times O(ε−2) that solves with a higher order remainder

an equation of the form

∂2
t u(t, x)−

d∑
ij=1

a0
ij∂

2
iju(t, x) + ε2

d∑
ijkl=1

cijkl∂
4
ijklu(t, x) = 0 in (0, T ]× Rd. (1.3)

Unfortunately, c being negative semidefinite, equation (1.3) is ill-posed. Nevertheless, numerical

experiments show that a regularized approximation captures the desired dispersive effects of

uε. Recently, several authors proposed a well-posed version of (1.3). The first rigorous result

has been given by Lamacz in Ref. 19, in the one-dimensional case. An error estimate is proved

over times O(ε−2) between uε (for f = 0) and the solution of a Boussinesq type equation given

by

∂2
t u(t, x)− a0∂2

xu(t, x)− ε2b∂2
x∂

2
t u(t, x) = 0 in (0, T ]× R, (1.4)

where the coefficient b is computed via a cascade of 3 elliptic cell problems (including the cell

problem necessary for a0). In Ref. 4, the one-dimensional result from Ref. 19 was generalized

and using the same technique it was proved that there exists a family of (well-posed) effective

equations of the form (1.5) (for d = 1) where the effective coefficients b, c are computed with

the help of a single cell problem (the same as to compute a0).

The first rigorous error estimate over long times O(ε−2) in the multi-dimensional case was

proved by Dohnal, Lamacz and Schweizer in Ref. 14, 15. The (well-posed) effective equation is

of the form (for f = 0)

∂2
t u(t, x)−

d∑
ij=1

a0
ij∂

2
iju(t, x)− ε2

d∑
ij=1

bij∂
2
ij∂

2
t u(t, x) + ε2

d∑
ijkl=1

cijkl∂
4
ijklu(t, x) = 0, (1.5)

in (0, T ]×Rd where the tensors b, c are computed via an algebraic decomposition of a 4th order

tensor, which is computed via a cascade of d+
(
d+1

2

)
+
(
d+2

3

)
cell problems.

In this paper, we generalize the result from Ref. 4 to the multi-dimensional case, using the

adaptation technique arising from asymptotic development introduced in Ref. 19. Our first

main result is the definition of a family of well-posed effective equations of the same form as

(1.5) and an error estimate that establish that any member of our family of effective equations

is ε-close in the L∞(0, T ε; L2(Ω)) norm to the true oscillatory wave over a time interval of length

T ε = O(ε−2). The computation of the effective quantities involves only d+
(
d+1

2

)
cell problems.

The error estimate holds in an arbitrarily large periodic domain Ω ⊂ Rd, which makes our result

comparable to the one from Ref. 14, 15 (valid in the whole space Rd). We also deal with more

general settings than in Ref. 14, 15 as we allow for a source term in the equation and an initial

speed. Finally, while the norm ‖u‖L2(Rd)+L∞(Rd) = inf{‖u1‖L2(Rd) + ‖u2‖L∞(Rd) : u = u1 + u2}
on two Banach space was used in Ref. 14, 15, we obtain our error estimates in the stronger

L∞(0, T ε, L2(Ω)) norm.

Error estimates between the oscillatory and the effective solutions can be obtained in dif-

ferent frameworks. In this paper (as in Ref. 4 and Ref. 19), the proof of the error estimate is
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done via the definition of an adaptation operator arising from asymptotic expansion, while in

Ref. 14, 15 the expression of uε in Bloch wave expansion is used (as it was formally introduced

in Ref. 22). The interesting conclusion is that both techniques lead to the definition of valid

effective equations. Our second result is to show that the effective equation from Ref. 14, 15

belongs to the family of effective equation that we define in this paper. We explicitly derive a

correspondence between the solutions of the cell problems obtained with Bloch wave technique

and the ones we obtain with asymptotic expansion. We note that this comparison has also

been discussed independently in Ref. 5, with a focus on elliptic equations and an application

to the wave equation.

Finally, we also derive an efficient computational algorithm to compute numerically the

effective wave. We briefly discuss some related numerical strategies. In Ref. 16, Engquist, Holst

and Runborg introduce a finite difference method (FDM) based on a regularized scheme for the

ill-posed effective equation (1.3). The method is built in the framework of the heterogeneous

multiscale method (HMM). In Ref. 6, this method is shown to capture the effective flux of

the ill-posed equation given in Ref. 22 for the one-dimensional case. The finite heterogeneous

method (FE-HMM) introduced in Ref. 1 has been modified in Ref. 2, 3 to approximate the

effective model from Ref. 19. This method, the FE-HMM-L, has been fully analyzed in Ref. 4.

The paper is organized as follows. First, we introduce in Section 2 an error estimate to

motivate the use of the asymptotic expansion that we then perform to obtain constraints on

the effective coefficients. In Section 3, we state and prove our main result, the error estimate

that leads to the definition of the family of effective equations. We then give in Section 4

a constructive method to obtain some elements of the family and describe an algorithm to

compute the necessary effective quantities. In Section 5, we relate our family of effective models

to the effective model obtained in Ref. 14, 15 via Bloch wave expansion. Finally, in Section 6

we illustrate our theoretical findings through numerical experiments.

Definitions and notations

Let us denote the space of tensors of order n by Tenn(Rd). A tensor b ∈ Tenn(Rd) is also

denoted {bi1···in}. In the whole text, we drop the notation of the sum symbol for the dot

product between two tensors and use the convention that the repeated indices are summed,

e.g., for b ∈ Ten3(Rd), c ∈ Ten2(Rd), bijkcij =
∑d
ij=1 bijkcij . Also, for a tensor of functions

v : Rd → Tenn(Rd) the sum symbol is omitted in terms of the form ∂xmvi1···m···in(x) =∑d
m=1 ∂xmvi1···m···in(x). Let us mention that the notation of the differentiation variable is

sometimes omitted when there is no confusion. The subspace of Tenn(Rd) of symmetric tensors

is denoted as Symn(Rd), i.e., b ∈ Symn(Rd) satisfies bi1···in = biσ(1)···iσ(n)
for any σ ∈ Sn

(permutations of order n). Finally, we introduce the symmetrization operator Sn : Tenn(Rd)→
Symn(Rd), defined as (

Sn(b)
)
i1···in

=
1

n!

∑
σ∈Sn

biσ(1)···iσ(n)
. (1.6)

In the text,
(
Sn(b)

)
i1···in

is denoted as Sni1···in{bi1···in}. Clearly, for b ∈ Tenn(Rd) we have

bi1···in∂
n
i1···in = Sni1···in{bi1···in}∂

n
i1···in .

Let O ⊂ Rd be an open hypercube and define the standard space of square integrable

functions L2(O) and the Sobolev space Hk(O). Equipped with their usual inner products,

L2(O) and Hm(O) are Hilbert spaces. The mean of an integrable function v : O → R is defined

as 〈v〉O = |O|−1
∫
O v(x) dx. We define the quotient space L2(O) = L2(O)/R and denote by a

bracket [v] the equivalence class in L2(O) of v ∈ L2(O). Equipped with the inner product(
[v],[w]

)
L2(O)

=
(
v − 〈v〉O, w − 〈w〉O

)
L2(O)

=
(
v, w

)
L2(O)

− |O|〈v〉O〈w〉O

where v, w ∈ L2(O), L2(O) is a Hilbert space. Let C∞per(O) be the space of O-periodic functions

of C∞(O) and define the space H1
per(O) as the closure of C∞per(O) for the H1 norm. We define
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the quotient space Wper(O) = H1
per(O)/R and denote by a bold face letter v the elements of

Wper(O). Equipped with the inner product(
v,w

)
Wper(O)

=
(
[v],[w]

)
L2(O)

+
(
∂kv, ∂kw

)
L2(O)

, ∀v ∈ v, w ∈ w,

and the induced norm ‖v‖Wper(O) =
√

(v,v)Wper(O), Wper(O) is a Hilbert space. Note that

the k-th partial derivative of v ∈ Wper(O) is simply ∂kv = ∂kv ∈ L2(O) for all v ∈ v and

that thanks to the Poincaré–Wirtinger inequality, v 7→ ‖∇v‖L2(O) is also a norm on Wper(O),

equivalent to ‖·‖Wper(O). The dual spaceW∗per(O) is characterized as follows : for F ∈ W∗per(O),

there exists [f0] ∈ L2(O), f1
1 , . . . , f

1
d ∈ L2(O) such that〈

F,v
〉
W∗per(O),Wper(O)

=
(
[f0],v

)
L2(O)

+
(
f1
k , ∂kv

)
L2(O)

. (1.7)

Furthermore, ‖F‖W∗per(O) = inf{‖[f0]‖L2(O) + ‖f1‖L2(O)}, where the infimum is taken over

all [f0] ∈ L2(O), f1 ∈ L2(O) satisfying (1.7). From characterization (1.7), we verify that a

functional of [H1
per(O)]

∗
given by w 7→ (f0, w)L2(O) + (f1

k , ∂kw)L2(O) for some f0, f1
1 , . . . , f

1
d ∈

L2(O), belongs to W∗per(O) if and only if(
f0, 1

)
L2(O)

= 0, (1.8)

or equivalently f0 has zero mean. Define L2
0(O) (resp. Wper(O)) as the set constituted with

the zero mean representative of L2(O) (resp. of Wper(O)). Equipped with the standard L2

inner product (resp. H1), L2
0(O) is a Hilbert space (resp. Wper(O)). Note that the following

embeddings are dense Wper(O) ⊂ L2
0(O) ⊂W∗per(O).

For a Banach space X and p ∈ [0,∞), Lp(0, T ;X) is the space of functions v : [0, T ] → X

such that ‖v‖Lp(0,T ;X) =
( ∫ T

0
‖v(t)‖pX dt

)1/p
< ∞. The definition is similar for p = ∞, with

the L∞ norm in time. To simplify the notation we will often use the shorthand notation

‖ · ‖Lp , ‖ · ‖Lp(X), (·, ·)O instead of ‖ · ‖Lp(O), ‖ · ‖Lp(0,T ;X) and (·, ·)L2(O) respectively.

The wave equation in a heterogeneous medium

Let us now introduce precisely the settings for equation (1.1) in an arbitrarily large periodic

domain. Let Ω, Y ∈ Rd be open hypercubes such that Ω is a union of cells of volume ε|Y |, as

in Figure 1. We assume that a is a Y -periodic d× d tensor and hence a
(
x
ε

)
is Ω-periodic (a is

extended by periodicity).

Ω

εY

Fig. 1. The hypercube Ω is assumed to be a union of unit cells of volume ε|Y | (in the picture d = 2).

For T ε = ε−2T , we consider the wave equation : find uε : [0, T ε]× Ω→ R such that

∂2
t u

ε(t, x)−∇x ·
(
a
(
x
ε

)
∇xuε(t, x)

)
= f(t, x) in (0, T ε]× Ω,

x 7→ uε(t, x) Ω-periodic in [0, T ε],

uε(0, x) = g0(x), ∂tu
ε(0, x) = g1(x) in Ω,

(1.9)

where g0, g1 are given initial conditions and f is a source. The following notation is used for the

differential operator Aε = −∇x ·
(
a
(
x
ε

)
∇x(·)

)
. We assume that a ∈ [L∞(Y )]d×d is symmetric,

uniformly elliptic and bounded, i.e. there exists λ,Λ > 0 such that

λ|ξ|2 ≤ a(y)ξ · ξ ≤ Λ|ξ|2 for a.e. y ∈ Y ∀ξ ∈ Rd. (1.10)
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For the well-posedness of problem (1.9), we refer to Lions and Magenes in Ref. 20. A detailed

proof may be found in Ref. 17. If g0 ∈ Wper(Ω), g1 ∈ L2
0(Ω), f ∈ L2(0, T ε; L2(Ω)) then there

exists a unique weak solution uε ∈ L2(0, T ε; Wper(Ω)) with ∂tu
ε ∈ L2(0, T ε; L2

0(Ω)) and ∂2
t u

ε ∈
L2(0, T ε; W∗per(Ω)). We note that uε is proved to be even more regular, uε ∈ C0([0, T ε]; Wper(Ω))

and ∂tu
ε ∈ C0([0, T ε]; L2

0(Ω)).

2. Effective coefficients via asymptotic expansion

Asymptotic expansion is a formal technique systematically used in homogenization theory

to derive effective equations (see Ref. 7, 18, 10). In this section, we explain how asymptotic

expansion is used to define an adaptation operator and prove a rigorous estimate of ‖uε −
ũ‖L2(0,T ε;L2(Ω)), ũ being an effective solution. First, we prove an energy estimate that is central

in the proof of the error estimate. Second, we proceed to the asymptotic expansion and obtain

constraints for the definition of the tensors of the effective equations.

2.1. An error estimate to motivate asymptotic expansion

Consider Bεũ, an adaptation of the effective solution ũ (as defined in (3.7)). The following

abstract lemma gives a general error estimate that clarifies the requirements needed Bε for the

adaptation to be a good approximation of uε on a long time interval.

Lemma 2.1. Let T ε = ε−α, α ≥ 0. Assume that ũ : [0, T ε] × Ω → R is a function such

that ũ(0) = g0, ∂tũ(0) = g1. Furthermore, assume that Bε is an operator such that Bεũ
belongs to L∞(0, T ε;Wper(Ω)), with ∂tBεũ ∈ L∞(0, T ε;L2(Ω)), ∂2

tB
εũ ∈ L2(0, T ε;W∗per(Ω))

and ∂tBεũ(0) = Bεg1. Finally, assume that it holds

(∂2
t +Aε)(Bεũ− [uε])(t) = rε(t) in W∗per(Ω) for a.e. t ∈ [0, T ε], (2.1)

where rε ∈ L∞(0, T ε;W∗per(Ω)). Then, the following error estimate holds

‖Bεũ− [uε]‖L∞(0,T ε;L2(Ω)) ≤ C
(
‖Bεg1 − [g1]‖W∗per(Ω) + ‖Bεg0 − [g0]‖L2(Ω)

+ ε−α‖rε‖L∞(0,T ε;W∗per(Ω))

)
, (2.2)

where C depends only on λ,Λ and T .

Proof. To simplify the notations we note 〈·, ·〉 instead of 〈·, ·〉W∗per,Wper
and A = Aε. Thanks

to Lax–Milgram theorem, define the inverse of A, noted A−1. Using the properties of a, we can

show thatA−1 is self-adjoint, elliptic (〈F,A−1F 〉 ≥ Λ−1‖F‖2W∗per
) and bounded (‖A−1‖ ≤ λ−1).

Let η = Bεũ − [uε]. Using (2.1) with the test function w = A−1∂tη(t), we obtain for a.e.

t ∈ [0, T ε]

1
2

d
dt

(〈
∂tη(t),A−1∂tη(t)

〉
+ ‖η(t)‖2L2

)
=
〈
rε(t),A−1∂tη(t)

〉
. (2.3)

Setting Eη(t) =
〈
∂tη(t),A−1∂tη(t)

〉
+ ‖η(t)‖2L2 , we integrate (2.3) over [0, ξ] to get

Eη(ξ) = Eη(0) + 2

∫
0

ξ〈
rε(t),A−1∂tη(t)

〉
dt ∀ξ ∈ [0, T ε].

Using Hölder and Young inequalities and the bounededness of A−1, we obtain

Eη(ξ) ≤ Eη(0) + 2Λ/λ2‖rε‖2L1(W∗per)
+ 1/(2Λ)‖∂tη‖2L∞(W∗per)

. (2.4)

Using the ellipticity ofA−1 we have 1/Λ‖∂tη(ξ)‖2W∗per
≤ Eη(ξ), hence, taking the L∞ norm with

respect to ξ, we obtain 1/(2Λ)‖∂tη‖2L∞(W∗per)
≤ Eη(0)+2Λ/λ2‖rε‖2L1(W∗per)

. As ‖η(ξ)‖2L∞(L2) ≤
Eη(ξ), estimate (2.4) and the boundedness of A−1 gives

‖η‖2L∞(L2) ≤ 2/λ‖∂tη(0)‖2W∗per
+ 2‖η(0)‖2L2 + 4Λ/λ2‖rε‖2L1(W∗per)

. (2.5)
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Thanks to Hölder inequality we have ‖rε‖L1(W∗per)
≤ Tε−α‖rε‖L∞(W∗per)

. Finally, we have

∂tη(0) = Bεg1 − [g1], η(0) = Bεg0 − [g0]. The proof of the lemma is complete.

Let us explain how Lemma 2.1 and the asymptotic expansion (2.9) lead to an error estimate

for effective equations. On a time interval [0, T ε], T ε = ε−αT , let Bε be an adaptation of the

effective solution ũ of the form Bεũ = [ũ] + Cεũ, where ‖Cεũ‖L∞(L2) ≤ Cε. Then, since

ũ(0) = g0, ∂tũ(0) = g1, the error estimate (2.2) becomes

‖Bεũ− [uε]‖L∞(0,T ε;L2(Ω)) ≤ Cε+ ε−α‖rε‖L∞(0,T ε;W∗per(Ω)).

As we also have ‖[ũ] − Bεũ‖L∞(0,T ε;L2(Ω)) ≤ Cε, we obtain via the triangle inequality (and

using 〈ũ〉Ω = 〈uε〉Ω),

‖uε − ũ‖L∞(0,T ε;L2(Ω)) =‖[uε − ũ]‖L∞(0,T ε;L2(Ω)) ≤ Cε+ ε−α‖rε‖L∞(0,T ε;W∗per(Ω)). (2.6)

Estimate (2.6) implies the following : if a function ũ is such that we can define an Ω-periodic

adaptation Bεũ satisfying (∂2
t +Aε)(Bεũ−[uε]) = O(εγ), where γ > α, then ũ approximates

uε up to times ε−αT with accuracy O(εγ−α). The construction of Bεũ is done via asymptotic

expansion as explained in Section 2.2.

Note that the presence of the L∞ norm in time for the term rε in estimate (2.2) (and (2.6))

is “responsible” for the ε−α factor. As we will see, in practice, asymptotic development leads to

a remainder in (2.1) of the form rε = Rεũ, where ‖Rεũ‖L∞(W∗per)
≤ Cεγ

∑
k=0,2 ‖∂kt ũ‖L∞(Hsk ).

As the energy estimate for hyperbolic problems gives a bound for ‖∂kt ũ‖L∞(Hs), the L∞ norm

is the “right” quantification in time for the remainder rε.

2.2. Asymptotic expansion and constraints on the effective coefficients

We now perform the asymptotic expansion. All the computations are done formally, i.e., we

assume as much regularity as required. The rigorous result with its detailed proof is presented

in the next section.

We are looking for an effective solution on a time interval [0, T ε], T ε = ε−2T . As discussed in

the previous section, we thus need to construct an adaptation Bεũ(t) such that (∂2
t +Aε)(Bεũ−

[uε])(t) = O(ε3) for a.e. t. We first construct Bεũ(t) ∈ H1
per(Ω), such that (∂2

t + Aε)(Bεũ −
uε)(t) = O(ε3) and we will then set Bεũ = [Bεũ] in W∗per(Ω). The construction of Bεũ leads

to cell problems that are elliptic PDEs with periodic boundary conditions, whose solutions

are called correctors. We will see that the well-posedness of these cell problems constraint the

definition of the effective tensors.

First, we introduce the effective solution ũ. Referring to Ref. 15, 14, 4, we make the ansatz

that the effective equation is of the form

∂2
t ũ− a0

ij∂
2
ij ũ+ ε2

(
a2
ijkl∂

4
ijklũ− b0ij∂2

ij∂
2
t ũ
)

= f in (0, T ε]× Ω,

x 7→ ũ(t, x) Ω-periodic in [0, T ε],

ũ(0, x) = g0(x), ∂tũ(0, x) = g1(x) in Ω,

(2.7)

where b0 ∈ Ten2(Rd), a2 ∈ Ten4(Rd) are coefficients to determine and a0 ∈ Sym2(Rd) is the

homogeneous tensor defined by Ref. 7, 18, 10

a0
ij =

〈
eTi a(∇χj + ej)

〉
Y
, (2.8)

where χj belongs to the class of solutions of (2.12). Next, we make a second ansatz : the

adaptation of ũ is of the form

Bεũ(t, x) = ũ
(
t, x
)

+ εu1
(
t, x, xε

)
+ ε2u2

(
t, x, xε

)
+ ε3u3

(
t, x, xε

)
+ ε4u4

(
t, x, xε

)
, (2.9)

where the ui(t, x, y) are Ω-periodic in x and Y -periodic in y. We introduce the differential

operators

A0 = −∇y ·
(
a(y)∇y ·

)
, A1 = −∇y ·

(
a(y)∇x ·

)
−∇x ·

(
a(y)∇y ·

)
,

A2 = −∇x ·
(
a(y)∇x ·

)
,
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so that for ψ(x, y) smooth enough, using the chain rule, we have Aεψ
(
x, xε

)
=
(
ε−2A0 +

ε−1A1 +A2
)
ψ
(
x, xε

)
. We fix a t ∈ [0, T ε] and using equations (1.9), (2.7) and ansatz (2.9), we

compute

(∂2
t +Aε)(Bεũ−uε)(t, x) = ∂2

t Bεũ(t, x) +AεBεũ(t, x)− f(t, x)

= ε−1
(

A0u1 +A1ũ
)

+ ε0
(

A0u2 +A1u1 +A2ũ + a0
ij∂

2
ij ũ

)
+ ε1

(
∂2
t u

1 +A0u3 +A1u2
)

+ ε2
(
∂2
t u

2 +A0u4 +A1u3 +A2u2− a2
ijkl∂

4
ijklũ+ b0ij∂

2
ij∂

2
t ũ
)

+O(ε3), (2.10)

where the ui are evaluated at (t, x, y = x
ε ). We now define successively u1 to u4 so that the

terms of order O(ε−2) to O(ε2) in (2.10) cancel. At order O(ε−1), we obtain the equation

A0u1 +A1ũ = 0 which reads

−∇y ·
(
a(y)(∇yu1(t, x, y) +∇xũ(t, x))

)
= 0.

We can show that any solution of this elliptic equation is of the form χi(y)∂iũ(t, x) + c1(t, x),

where c1 is a function independent of y and for all 1 ≤ i ≤ d, χi is Y -periodic and solves the

cell problem

−∇y ·
(
a(∇yχi + ei)

)
= 0 in Y.

For simplicity, we choose u1(t, x, y) = χi(y)∂iũ(t, x). Consider now the O(1) order term in

(2.10), which reads now

−∇y ·
(
a(y)∇yu2(t, x, y)

)
=
(
∇y · (a(y)eiχj(y)) + eTi a(y)(∇yχj(y) + ej)− a0

ij

)
∂2
ij ũ(t, x).

The solution is given by u2(t, x, y) = θ̃ij(y)∂2
ij ũ(t, x) + c2(t, x), where for 1 ≤ i, j ≤ d θ̃ij is

Y -periodic and solves the cell problem

−∇y ·
(
a∇y θ̃ij

)
= ∇y ·

(
aeiχj

)
+ eTi a∇yχj + aij − a0

ij in Y.

Once again, we let c2 = 0 for simplicity. We note here that for sufficiently smooth ũ, u2 can

also be written as θij(y)∂2
ij ũ(t, x), where θij = 1

2 (θ̃ij + θ̃ji) = S2
ij{θ̃ij} is the symmetrization

(1.6) of θ̃ij and solves the cell problem

−∇y ·
(
a∇yθij

)
= S2

ij

{
∇y ·

(
aeiχj

)
+ eTi a∇yχj + aij − a0

ij

}
in Y.

The advantage of the second form of u2 is that there are only
(
d+1

2

)
cell problems describing

{θij} compared to the d2 for {θ̃ij}. Before canceling the O(ε) and O(ε2) order terms, we rewrite

(2.10) taking into account the definition of u1 and u2. Using (2.7), we have

∂2
t u

1 = χi∂i∂
2
t ũ = χi∂if + a0

ijχk∂
3
ijkũ+O(ε2),

∂2
t u

2 = θij∂
2
ij∂

2
t ũ = θij∂

2
ijf + a0

ijθkl∂
4
ijklũ+O(ε),

b0∂2
x∂

2
t ũ = b0ij∂

2
ijf + a0

ijb
0
kl∂

4
ijklũ+O(ε),

hence (2.10) reads

(∂2
t +Aε)(Bεũ− uε)(t, x) = ε1

(
A0u3 +A1u2 + a0

ijχk∂
3
ijkũ

)
+ ε2

(
A0u4 +A1u3 +A2u2 +

(
a0
ij(b

0
kl + θkl)− a2

ijkl

)
∂4
ijklũ

)
+ ε1χi∂if + ε2(b0ij + θij)∂

2
ijf+O(ε3). (2.11)

Let us first assume that f = 0. To cancel the O(ε) and O(ε2) order terms in (2.11), we can

set u3(t, x, y) = κijk(y)∂3
ijkũ, and u4(t, x, y) = ρijkl(y)∂4

ijklũ, where κijk and ρijkl are the

solutions of cell problems obtained in a similar manner as for χi and θij . As previously, in

order to minimize the number of cell problems, we use the symmetrization operators S3 and
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S4. In summary, we obtain the following cell problems : for 1 ≤ i, j, k, l ≤ d, find Y -periodic

functions χi, θij , κijk, ρijkl such that

ε−1 :
(
a∇yχi,∇yw

)
Y

= −
(
aei,∇yw

)
Y
, (2.12a)

ε0 :
(
a∇yθij ,∇yw

)
Y

= S2
ij

{
−
(
aeiχj ,∇yw

)
Y

+
(
a(∇yχj + ej)− a0ej , eiw

)
Y

}
, (2.12b)

ε1 :
(
a∇yκijk,∇yw

)
Y

= S3
ijk

{
−
(
aeiθjk,∇yw

)
Y

+
(
a(∇yθjk + ejχk)− a0ejχk, eiw

)
Y

}
, (2.12c)

ε2 :
(
a∇yρijkl,∇yw

)
Y

= S4
ijkl

{
−
(
aeiκjkl,∇yw

)
Y

+
(
a(∇yκjkl + ejθkl), eiw

)
Y

+
(
a2
ijkl − a0

ijθkl − a0
ijb

0
kl, w

)
Y

}
, (2.12d)

for Y -periodic test functions w ∈ H1
per(Y ). We now explain how the well-posedness of these

cell problems leads to the definition of the effective tensors a0, a2 and b0. To show that (2.12a)

to (2.12d) are well-posed in the quotient space Wper(Y ), we apply Lax–Milgram theorem (we

thus obtain a solution unique up to a constant). As the bilinear form (v, w) 7→ (a∇v,∇w)Y
is elliptic and bounded, we have to verify that the right hand sides belong to W∗per(Y ). In

other words, the right hand sides have to satisfy the solvability condition (1.8) and that gives

constraints on the effective tensors. Let us now explicit these constraints. First, note that the

right hand side of (2.12a) trivially satisfies this condition. Next, if we let w = 1 in the right

hand side of (2.12b), we obtain

S2
ij

{(
a(∇χj + ej)− a0ej , ei

)
Y

}
= |Y |S2

ij

{〈
eTi a(∇χj + ej)

〉
Y

}
− |Y |S2

ij

{
a0
ij

}
= 0, (2.13)

where we used the definition of the homogenized tensor (2.8). Hence, the cell problem (2.12b)

is well-posed. Next, letting w = 1 in the right hand side of (2.12c) we obtain

S3
ijk

{
−
(
a∇θjk, ei

)
Y
−
(
ejχk, ei

)
Y

+ a0
ij

(
χk, 1

)
Y

}
, (2.14)

and we need this quantity to vanish for any 1 ≤ i, j, k ≤ d. Using the symmetry of a, equations

(2.12a) with the test function w = θjk and (2.12b) with w = χi, we have

−
(
a∇θjk, ei

)
Y

=
(
a∇θjk,∇χi

)
Y

= S2
jk

{
−
(
aejχk,∇χi

)
Y

+
(
a(∇χk + ek), ejχi

)
Y
−
(
a0
jk, χi

)
Y

}
,

and we can thus rewrite (2.14) as

S3
ijk

{
−
(
aejχk,∇χi + ei

)
Y

+
(
a(∇χk + ek), ejχi

)
Y
− a0

jk

(
1, χi

)
Y

+ a0
ij

(
χk, 1

)
Y

}
= 0.

It follows that the cell problem (2.12c) is well-posed. Finally, we apply the solvability condition

(1.8) to the right hand side of equation (2.12d) in order to obtain a constraint on a2 and b0.

Letting w = 1, we have

|Y |S4
ijkl

{
a2
ijkl − a0

ijb
0
kl

}
= S4

ijkl

{
−
(
a∇κjkl, ei

)
Y
−
(
aejθkl, ei

)
Y

+
(
a0
ij , θkl

)
Y
}. (2.15)

We use the symmetry of a, equation (2.12a) with test function w = κjkl and equation (2.12c)

with w = χi to get

−
(
a∇κjkl, ei

)
Y

=
(
a∇κjkl,∇χi

)
Y

=S3
jkl

{
−
(
aejθkl,∇χi

)
Y

+
(
a(∇θkl + ekχl), ejχi

)
Y
− a0

jk

(
χl, χi

)}
,

which combined with (2.15) gives (using the symmetry of a)

|Y |S4
ijkl

{
a2
ijkl − a0

ijb
0
kl

}
= S4

ijkl

{(
aejχi,∇θkl

)
Y
−
(
a(∇χi + ei), ejθkl

)
Y

+
(
a0
ij , θkl

)
Y

− a0
jk

(
χl, χi

)
Y

+
(
aekχl, ejχi

)
Y

}
.

Using equation (2.12b) with test function w = θkl, we obtain then the following constraint on

a2 and b0

|Y |S4
ijkl

{
a2
ijkl − a0

ijb
0
kl

}
= S4

ijkl

{(
ajkχl, χi

)
Y
−
(
a∇θji,∇θkl

)
Y
− a0

jk

(
χl, χi

)
Y

}
. (2.16)
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We just showed that the cell problem (2.12d) is well-posed in Wper(Y ) if and only if the

coefficients a2, b0 satisfy (2.16). In particular, if this constraint is satisfied, we can define the

adaptation Bεũ as in (2.9) and show that (∂2
t + Aε)(Bεũ − uε) = O(ε3) (under sufficient

regularity of ũ and the correctors). Hence, applying Lemma 2.1 with Bεũ = [Bεũ] leads to

the estimate ‖uε− ũ‖L∞(0,T ε;L2(Ω)) ≤ Cε (as done in (2.6)). This result is rigorously proved in

the next section.

Recall that we assumed f = 0. It is in fact not necessary as we can also “correct” the terms

coming from f as follows. In order to cancel the non-vanishing terms εχi∂if + ε2(b0ij + θij)∂
2
ijf

in (2.11), we add a correction term in the adaptation (2.9). Namely, we replace (2.9) by

Bε(ϕ; ũ)(t, x) = ũ(t, x) + εχi
(
x
ε

)
∂iũ(t, x) + ε2θij

(
x
ε

)
∂2
ij ũ(t, x)

+ ε3κijk
(
x
ε

)
∂3
ijkũ(t, x) + ε4κijkl

(
x
ε

)
∂4
ijklũ(t, x) + ϕ(t, x), (2.17)

where ϕ(t, ·) belongs to the class ϕ(t) ∈ Wper(Ω) that solves

(∂2
t +Aε)ϕ(t, x) = −[εχi

(
x
ε

)
∂if(t, x) + ε2(b0ij + θij

(
x
ε

)
)∂2
ijf(t, x)] a.e. t ∈ [0, T ε],

ϕ(0, x) = ∂tϕ(0, x) = [0].
(2.18)

The standard well-posedness of the wave equation ensures that if f ∈ L2(0, T ε; H2(Ω)) and

χi, θij ∈ C0(Ȳ ), there exists a unique solution ϕ of (2.18), satisfying

ϕ ∈ C([0, T ε];Wper(Ω)), ∂tϕ ∈ C([0, T ε];L2(Ω)), ∂2
tϕ ∈ L2(0, T ε;W∗per(Ω)). (2.19)

Observe then that Bε(ϕ; ũ) defined in (2.17) satisfies(
∂2
t +Aε

)(
[Bε(ϕ; ũ)]− [uε]

)
=[rε(t)−εχi

(
x
ε

)
∂if(t, x)−ε2(b0ij+θij

(
x
ε

)
)∂2
ijf(t, x)],

where rε is the right hand side of (2.11), so that
(
∂2
t +Aε

)(
[Bε(ϕ; ũ)]−[uε]

)
= O(ε3). As we

verify that ∂t[Bε(ϕ; ũ)](0) = [Bε(ϕ; g1)](0), the application of Lemma 2.1 leads to ‖Bεũ −
[uε]‖L∞(0,T ε;L2(Ω)) = O(ε). However, in order to obtain an error estimate on ‖uε − ũ‖L∞(L2)

(as done in (2.6)), we have to verify that the estimate ‖[ũ− Bε(ϕ; ũ)]‖L∞(L2) ≤ Cε holds.

Following the lines of Lemma 2.1, provided χk ∈ C0(Ȳ ), θij ∈ C0(Ȳ ), f ∈ L2(0, T ε; H2(Ω)), we

obtain the estimate

‖ϕ‖L∞(0,T ε;L2(Ω)) ≤ Cε‖f‖L1(0,T ε;H2(Ω)), (2.20)

where C only depends on λ,Λ,maxk ‖χk‖C0(Ȳ ) and maxij ‖θij‖C0(Ȳ ). This estimate ensures

that ‖[ũ− Bε(ϕ; ũ)]‖L∞(L2) ≤ Cε(‖ũ‖L∞(H4) + ‖f‖L1(0,T ε;H2(Ω))).

To conclude this section, let us discuss the correctors and their dependence. First, as (2.12a-

2.12d) are well-posed inWper(Y ), we obtain the unique (class of) solutions χk,θij ,κijk,ρijkl ∈
Wper(Y ) for 1 ≤ i, j, k, l ≤ d. Note that θij depends on the choice χk ∈ χk, κijk depends on the

choices χk ∈ χk, θij ∈ θij , etc. A natural choice for the normalization of the correctors is the

zero-mean function. However, observe that the constraint (2.16) has been derived independently

of the choice of normalization. Hence, any normalization can be used.

3. Main result : a priori error estimate and definition of the family of

effective equations

Let a0 ∈ Sym2(Rd) be the homogeneous tensor defined as (2.8) and let b0 ∈ Ten2(Rd) and

a2 ∈ Ten4(Rd) be constant tensors such that

i) b0 ∈ Sym2(Rd), b0η · η ≥ 0 ∀η ∈ Rd,
ii) a2

ijkl = a2
lkji, a2(ηηT ) : (ηηT ) ≥ 0 ∀η ∈ Rd. (3.1)

Consider the following linear Boussinesq equation : we look for ũ : [0, T ε]× Ω→ R such that

∂2
t ũ− a0

ij∂
2
ij ũ+ ε2

(
a2
ijkl∂

4
ijklũ− b0ij∂2

ij∂
2
t ũ
)

= f in (0, T ε]× Ω

x 7→ ũ(t, x) Ω-periodic in [0, T ε],

ũ(0, x) = g0(x), ∂tũ(0, x) = g1(x) in Ω,

(3.2)
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where the initial conditions g0, g1 and the source f are the same as in the equation for uε (1.9).

As a0 is symmetric and elliptic (see Ref. 7, 18) and under assumptions (3.1), the well-posedness

of equation (3.2) can be proved as follows. Define the spaces

H =
{
v ∈ L2

0(Ω) : ‖v‖2L2 + ε2(b0∇v,∇v) <∞
}
,

V =
{
v ∈Wper(Ω) :

(
a0∇v,∇v

)
L2 + ε2(a2∇2v,∇2v) <∞

}
,

and the bilinear forms

(v, w)H = (v, w)L2(Ω) + ε2(b0∇v,∇w)L2(Ω), ∀v, w ∈ H,
A(v, w) = (a0∇v,∇w)L2(Ω) + ε2(a2∇2v,∇2w)L2(Ω) ∀v, w ∈ V,

where ∇2v denotes the Hessian matrix of v. We call a function ũ ∈ L∞(0, T ε;V), with ∂tũ ∈
L∞(0, T ε;H), a weak solution of (3.2) if for all test functions v ∈ C2([0, T ε];V), with v(T ε) =

∂tv(T ε) = 0, ũ satisfies∫
0

T ε(
ũ(t), ∂2

t v(t)
)
H +A

(
ũ(t), v(t)

)
dt =

∫
0

T ε(
f(t), v(t)

)
L2(Ω)

dt

+
(
g1, v(0)

)
H −

(
g0, ∂tv(0)

)
H. (3.3)

Following the Faedo–Galerkin method, we construct a sequence {um}m≥0 and we show with

an energy estimate that {um}m≥0 is bounded in L∞(0, T ε;V). We thus obtain the existence

of a subsequence that weakly∗ converges in L∞(0, T ε;V). We prove then that the weak∗ limit

ũ is the unique weak solution of (3.2). In order to derive the energy estimate, we need the

assumptions (3.1). In particular, note that (3.1) ii) implies
(
a2∇2v,∇2v

)
L2(Ω)

≥ 0 v ∈ V.

The following theorem is our main result. It gives a sufficient condition on the coefficients

a2, b0 such that (3.2) is an effective equation up to times O(ε−2).

Theorem 3.1. Assume that the Y -periodic tensor satisfies a(y) ∈ C2(Ȳ ). Furthermore, assume

that the solution ũ of (3.2), the initial conditions and the right hand side satisfy the regularity

ũ ∈ L∞(0, T ε; H5(Ω)), ∂tũ ∈ L∞(0, T ε; H4(Ω)), ∂2
t ũ ∈ L∞(0, T ε; H3(Ω)),

g0 ∈ H4(Ω), g1 ∈ H3(Ω), f ∈ L2(0, T ε; H2(Ω)).

Let χk be the (class of) solution of (2.12a), fix any χk ∈ χk, let θij be the corresponding (class

of) solution of (2.12b) and fix θij ∈ θij. Assume then that b0 and a2 satisfy the relation

S4
ijkl

{
a2
ijkl − a0

ijb
0
kl

}
= S4

ijkl

{〈
ajkχlχi

〉
Y
−
〈
a∇θji · ∇θkl

〉
Y
− a0

jk

〈
χlχi

〉
Y

}
. (3.4)

Then, the following error estimate holds

‖uε − ũ‖L∞(0,T ε;L2(Ω)) ≤ Cε
(
‖g1‖H3(Ω) + ‖g0‖H4(Ω) + ‖f‖L1(0,T ε;H2(Ω))

+‖ũ‖L∞(0,T ε;H5(Ω)) + ‖∂2
t ũ‖L∞(0,T ε;H3(Ω))

)
,

(3.5)

where C depends only on T , Y , a, λ and Λ.

Let us emphasize that the constant C in estimate (3.5) does not depend on Ω. Hence, for

an arbitrarily large domain Ω, if the quantities

‖g1‖H3(Ω), ‖g0‖H4(Ω), ‖f‖L1(0,T ε;H2(Ω)), ‖ũ‖L∞(0,T ε;H5(Ω)), ‖∂2
t ũ‖L∞(0,T ε;H3(Ω)),

are bounded independently of ε, estimate (3.5) reads ‖uε − ũ‖L∞(0,T ε;L2(Ω)) = O(ε).

Thanks to Theorem 3.1, we can define the family of effective equations.

Definition 3.1. The family E of effective equations is the set of equations (3.2) where b0, a2

satisfy both (3.1) and (3.4). Note that E is used to denote both the family of effective equations

and the corresponding solutions.

The proof of Theorem 3.1 follows two steps. We first define the adaptation operator Bε

using the correctors defined in Section 2.2. Then, we show that Bεũ satisfies the same wave
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equation as uε up to a remainder of order O(ε3) (Lemma 3.1). Finally, we use the triangle

inequality and apply Lemma 2.1 to obtain the error estimate.

First, note that the cell problems (2.12a) and (2.12b) are well-posed (a0 is defined as (2.8)).

Then, as (3.4) is equivalent to (2.16), the cell problems (2.12c) and (2.12d) are well-posed.

Let χi and θij be as in Theorem 3.1, let κijk be the corresponding solution of (2.12c), fix

κijk ∈ κijk, and similarly fix ρijkl in the corresponding class ρijkl of solution of (2.12d). As

we assume a ∈ C2(Ȳ ) (in Theorem 3.1), elliptic regularity result (see Ref. 8) and Sobolev

embeddings ensure that χi, θij , κijk, ρijkl ∈ C1(Ȳ ) and for any 1 ≤ i, j, k, l ≤ d it holds

‖χi‖C1(Ȳ ), ‖θij‖C1(Ȳ ), ‖κijk‖C1(Ȳ ), ‖ρijkl‖C1(Ȳ ) ≤ C max
ij
‖aij‖C2(Ȳ ), (3.6)

where C depends only on λ,Λ in (1.10) and Y . Finally, let ϕ ∈ C0([0, T ε];Wper(Ω)) be the

unique (class of) solution of (2.18).

We now define the adaptation operator as

Bε(ϕ; ·) : L2(0, T ε; H1
per(Ω) ∩H3(Ω))→ L2(0, T ε;W∗per(Ω)), v 7→ Bε(ϕ; v),〈

Bε(ϕ; v)(t),w
〉
W∗per,Wper

=(
[v(t) + ε(χj − ∂ymθmj)∂jv(t) + ε3(κjkl − ∂ymρmjkl)∂3

jklv(t)],w
)
L2(Ω)

−
(
ε2θmj∂jv(t) + ε4ρmjkl∂

3
jklv(t), ∂mw

)
L2(Ω)

+
〈
ϕ(t),w

〉
W∗per,Wper

, (3.7)

for a.e. t ∈ [0, T ε], where the correctors χi, θij , κijk and ρijkl are evaluated at y = x
ε . Using the

Green formula (as in Remark 3.1), we verify that for v ∈ L2(0, T ε; H1
per(Ω) ∩ H4(Ω)), we have〈

Bε(ϕ; v)(t),w
〉

=
(
[(Bε(ϕ; v)(t)],w

)
L2 where Bε(ϕ; ·) is defined in (2.17). Furthermore, note

that for v ∈ H2(0, T ε; H1
per(Ω)∩H3(Ω)) it holds ∂2

tB
ε(ϕ; v) = Bε(∂2

tϕ; ∂2
t v). Finally, note that

under the assumptions of Theorem 3.1, Bε(ϕ; ·) verifies the hypotheses of Lemma 2.1.

Remark 3.1. The following formula (applications of the Green formula) will be useful : for

any Y -periodic c ∈ [C1(Ȳ )]d, v ∈ H1
per(Ω) and w = [w] ∈ Wper(Ω),(

[εck
( ·
ε

)
∂kv],w

)
L2(Ω)

=
(
εck
( ·
ε

)
∂kv, w

)
L2(Ω)

− |Ω|
〈
εck
( ·
ε

)
∂kv
〉

Ω

〈
w
〉

Ω

= −
(
∂ymcm

( ·
ε

)
v, w

)
L2(Ω)

−
(
εcm

( ·
ε

)
v, ∂mw

)
L2(Ω)

+ |Ω|
〈
∂ymcm

( ·
ε

)
v
〉

Ω

〈
w
〉

Ω

= −
(
[∂ymcm

( ·
ε

)
v],w

)
L2(Ω)

−
(
εcm

( ·
ε

)
v, ∂mw

)
L2(Ω)

, (3.8)

where we recall the notation ∂ymcm =
∑d
m=1 ∂ymcm.

Lemma 3.1. Under the assumptions of Theorem 3.1, Bε(ϕ; ũ) satisfies

(∂2
t +Aε)Bε(ϕ; ũ)(t) = [f(t)] + Rεũ(t) in W∗per(Ω) for a.e. t ∈ [0, T ε],

where the remainder Rεũ ∈ L∞(0, T ε;W∗per(Ω)) satisfies the estimate

‖Rεũ‖L∞(0,T ε;W∗per(Ω)) ≤ Cε3
(
‖ũ‖L∞(0,T ε;H5(Ω)) + ‖∂2

t ũ‖L∞(0,T ε;H3(Ω))

)
, (3.9)

for a constant C that only depends on λ, Λ, a and Y .

Proof. To simplify the notation, 〈·, ·〉W∗per,Wper
is denoted by 〈·, ·〉. First, using equation (3.2)

and the assumptions on the regularity of ũ, note that the following equalities hold in L2(Ω) for

a.e. t ∈ [0, T ε] and for 1 ≤ p ≤ d,

∂2
t ũ = f + a0

ij∂
2
ij ũ− ε2a2

ijkl∂
4
ijklũ+ ε2b0ij∂

2
ij∂

2
t ũ, (3.10)

∂p∂
2
t ũ = ∂pf + a0

ij∂
3
pij ũ− ε2a2

ijkl∂
5
pijklũ+ ε2b0ij∂

3
pij∂

2
t ũ. (3.11)

Then, we fix t ∈ [0, T ε] and develop the terms ∂2
tB

ε(ϕ; ũ)(t) and AεBε(ϕ; ũ)(t) separately.

Using (3.10) and formula (3.8), we have(
[∂2

t ũ],w
)
L2 =

(
[f + a0

ij∂
2
ij ũ− ε2a2

ijkl∂
4
ijklũ],w

)
L2 −

(
ε2b0mj∂j∂

2
t ũ, ∂mw

)
L2 . (3.12)
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As ∂2
tB

ε(ϕ; ũ)(t) = Bε(∂2
tϕ; ∂2

t ũ)(t) in W∗per(Ω), using (3.7) and (3.12) we obtain〈
∂2
tB

ε(ϕ; ũ),w
〉

=
(
[f + a0

ij∂
2
ij ũ+ ε(χj − ∂ymθmj)∂j∂2

t ũ− ε2a2
ijkl∂

4
ijklũ

+ ε3(κjkl − ∂ymρmjkl)∂3
jkl∂

2
t ũ],w

)
L2

−
(
ε2(θmj + b0mj)∂j∂

2
t ũ+ ε4ρmjkl∂

3
jkl∂

2
t ũ, ∂mw

)
L2

+
〈
∂2
tϕ,w

〉
.

Using now (3.11) to substitute ∂j∂
2
t ũ, we obtain〈

∂2
tB

ε(ϕ; ũ),w
〉

=
(
[f + a0

ij∂
2
ij ũ+ εa0

ij(χk − ∂ymθmk)∂3
ijk∂

2
t ũ− ε2a2

ijkl∂
4
ijklũ],w

)
L2

−
(
ε2a0

ij(θmk + b0mk)∂3
ijkũ, ∂mw

)
L2

+
(
[ε(χk − ∂ymθmk)∂kf],w

)
L2
−
(
ε2(θmj + b0mj)∂jf, ∂mw

)
L2

+
〈
∂2
tϕ,w

〉
+
〈
Rε

1ũ,w
〉
,

where〈
Rε

1ũ,w
〉

=
(
[ε3(κjkl + b0jkχl − ∂ym(ρmjkl + b0jkθml))∂

3
jkl∂

2
t ũ

− ε3a2
ijkl(χp − ∂ymθmp)∂5

ijklpũ],w
)
L2

+
(
ε4(ρmijk − b0ijθmk + b0ijb

0
mk)∂3

ijk∂
2
t ũ+ ε4a2

ijkl(θmp + b0mp)∂
5
ijklpũ, ∂mw

)
L2
.

Finally, applying formula (3.8), we obtain〈
∂2
tB

ε(ϕ; ũ),w
〉

=
(
[f + a0

ij∂
2
ij ũ+ εa0

ijχk∂
3
ijkũ+ ε2

(
a0
ijθkl + a0

ijb
0
kl − a2

ijkl

)
∂4
ijklũ],w

)
L2

+
(
[εχk∂kf + ε2(θij + b0ij)∂

2
ijf],w

)
L2

+
〈
∂2
tϕ,w

〉
+
〈
Rε

1ũ,w
〉
. (3.13)

Next, the second term is computed as〈
AεBε(ϕ; ũ),w

〉
=
(
[ ε−1

(
−∇y · (a(∇yχk + ek))

)
∂kũ

+
(
−∇y · (a(∇yθij + eiχj)

)
− eTi a(∇yχj + ej)

)
∂2
ij ũ

+ ε1
(
−∇y · (a(∇yκijk + eiθjk))− eTi a(∇yθjk + ejχk)

)
∂3
ijkũ

+ ε2
(
−∇y · (a(∇yρijkl + eiκjkl))− eTi a(∇yκjkl + ejθkl)

)
∂4
ijklũ],w

)
L2

+
〈
Aεϕ,w

〉
+
〈
Rε

2ũ,w
〉
, (3.14)

where〈
Rε

2ũ,w
〉

= ε3
(
[−eTi a(∇yρjklp + ejκklp)∂

5
ijklpũ],w

)
L2 +

(
amiρjklp∂

5
ijklpũ, ∂mw

)
L2 .

Now, we combine (3.13) and (3.14) and use cell problems (2.12a-2.12d) and (2.18) and obtain

(∂2
t +Aε)Bε(ϕ; ũ)(t) = [f(t)] + Rεũ(t), where Rεũ = Rε

1ũ+ Rε
2ũ. Thanks to the regularity

of the correctors and using (3.6), we verify estimate (3.9) for the remainder Rεũ and the proof

of the lemma is complete.

Proof of Theorem 3.1. As 〈ũ〉Ω = 〈uε〉Ω it holds ‖uε − ũ‖L∞(L2) = ‖[uε − ũ]‖L∞(L2),

hence using the triangle inequality we split the error as

‖uε − ũ‖L∞(L2) ≤ ‖Bεũ− [uε]‖L∞(L2) + ‖[ũ]−Bεũ‖L∞(L2). (3.15)

Let us bound the two terms of the right hand side. The equation for uε (1.9) implies that

(∂2
t +Aε)[uε(t)] = [f(t)] in W∗per(Ω) for a.e. t ∈ [0, T ε]. Lemma 3.1 implies thus that

(∂2
t +Aε)(Bε(ϕ; ũ)− [uε])(t) = Rεũ(t) in W∗per(Ω) for a.e. t ∈ [0, T ε].
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Applying Lemma 2.1, using estimate (3.9) and the definition of Bε(ϕ; ·) in (3.7), we obtain

‖Bε(ϕ; ũ)− [uε]‖L∞(L2) ≤ Cε
(
‖g1‖H3 + ‖g0‖H4 + ‖ũ‖L∞(H5) + ‖∂2

t ũ‖L∞(H3)

)
, (3.16)

where C depends only on λ, Λ, a, Y and T . For the second term of (3.15), we use the definition

of Bε(ϕ; ·) (3.7) and estimate (2.20) and obtain

‖[ũ]−Bε(ϕ; ũ)‖L∞(L2) ≤ Cε
(
‖ũ‖L∞(H4) + ‖f‖L1(H2)

)
, (3.17)

where C depends only on λ, Λ, a and Y . Combining (3.15), (3.16) and (3.17), we obtain

estimate (3.5) and the proof of Theorem 3.1 is complete.

4. Computing the tensors of an effective equation

In Definition 3.1 a family of effective solutions E is defined in an implicit way. This does not

yet give a way to compute a2 and b0, nor even ensure the existence of an effective equation.

In this section, we prove in a constructive way that there exists coefficients a2, b0 satisfying

both (3.4) and (3.1). In the one-dimensional case, we show that Theorem 3.1 reduces to the

result obtained in Ref. 4, where a family of such functions is defined in an explicit way. In

the multidimensional case, we will give an algorithm to compute the coefficients to obtain an

effective solution (the algorithm can be easily modified to obtain other effective solutions).

One-dimensional case

The computation of the effective coefficients in the one-dimensional case is very particular. As

showed in Ref. 4, the coefficients b0 and a2 in the effective equation (3.2) can be computed

with the solution of one single cell problem. That leads to the explicit parametric definition

of a family of effective equations. For completeness, we show here how this result is obtained

with Theorem 3.1.

Let us rewrite the constraint (3.4) on the coefficients b0, a2 as

|Y |(a2 − a0b0) =
(
a(y)(∂yθ + χ), χ− ∂yθ

)
Y
− a0

(
χ, χ

)
Y
. (4.1)

We now derive two relations that are only valid in the one-dimensional case. Noting that

a(∂yχ+ 1) ∈ H(div, Y ), we use integration by parts, the periodicity of a(∂yχ+ 1) and the cell

problem for χ (2.12a) to obtain for any y1, y2 ∈ Y

a(∂yχ+ 1)
∣∣∣y2
y1

= a(∂yχ+ 1)
(
Hy2 −Hy1

)∣∣∣
∂Y
−
∫
Y

(
Hy2 −Hy1

)
∂y
(
a(∂yχ+ 1)

)
dy = 0,

where Hyi is the Heaviside step function centered in yi. Hence, a(∂yχ+1) is constant on Y and

thanks to the definition of a0 we conclude that a(y)
(
∂yχ(y)+1

)
= a0 ∀y ∈ Y . In a similar way,

using this equality in the cell problem for θ (2.12b), we verify that a(y)
(
∂yθ(y) + χ(y)

)
= C

is constant on Y . Dividing this equality by a(y), taking the mean over Y and using that

〈1/a〉Y = 1/a0, we verify that C = a0〈χ〉Y . This equality used in (4.1) leads to a constraint

independent of θ :

a2 − a0b0 = a0〈χ〉Y 〈χ− ∂yθ〉Y − a0
〈
χ2
〉
Y

= a0〈χ〉2Y − a0
〈
χ2
〉
Y
, (4.2)

Now observe that any non-negative b0, a2 satisfying (4.2) can be written as

b0 =
〈
(χ− 〈χ〉Y )2

〉
Y

+ 〈χ〉2Y , a2 = a0〈χ〉2Y , (4.3)

where we note that
〈
(χ− 〈χ〉Y )2

〉
is independent of 〈χ〉Y . We can then explicitly define para-

metrically the family of effective solutions as

E = {ũ〈χ〉 solution of (3.2) where b0, a2 are defined as in (4.3)}.

Observe that for 〈χ〉Y = 0, the coefficient a2 vanishes and hence there is no fourth order

operator a2∂4
x in the effective equation. This particular equation was the one given in Ref. 19.

It is also the effective model on which the FE-HMM-L from Ref. 4 is based.
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Multidimensional case

In order to obtain an effective equation, following Definition 3.1, we look for a pair of tensors

b0 ∈ Ten2(Rd), a2 ∈ Ten4(Rd) such that

b0 ∈ Sym2(Rd), b0η · η ≥ 0 ∀η ∈ Rd, (4.4a)

a2
ijkl = a2

lkji, a2(ηηT ) : (ηηT ) ≥ 0 ∀η ∈ Rd, (4.4b)

S4
ijkl

{
a2
ijkl − a0

ijb
0
kl

}
= S4

ijkl

{〈
ajkχlχi

〉
Y
−
〈
a∇θji · ∇θkl

〉
Y
− a0

jk

〈
χlχi

〉
Y

}
, (4.4c)

where χi ∈ χi, θij ∈ θij and χi,θij are the unique (class of) solutions of the cell problems

(2.12a) and (2.12b), respectively. In the multidimensional case, constructing a pair a2, b0 sat-

isfying (4.4) is not as straightforward as in the one-dimensional case. As discussed in the

introduction, the issue when looking for an effective equation is to obtain a well-posed equa-

tion. In particular, the sign of the tensor a2 is crucial. We recall that a tensor c ∈ Ten4(Rd) is

positive semidefinite if

c(ηηT ) : (ηηT ) = cijklηiηjηkηl ≥ 0 ∀η ∈ Rd. (4.5)

Let us investigate the signs of the tensors involved in the right hand side of (4.4c). First, the

tensor
〈
ajkχlχi

〉
Y
−
〈
a∇θji · ∇θkl

〉
Y
− a0

jk

〈
χlχi

〉
Y

is known to be negative semidefinite (this

is shown in Ref. 12 in the framework of the Bloch wave theory see also Ref. 11, 14 and Section

5). Second, note that
〈
χiχj

〉
Y

is a symmetric positive semidefinite matrix. However, as the

tensor qijkl =
〈
ajkχlχi

〉
Y
−
〈
a∇θji · ∇θkl

〉
Y

has no sign (see e.g. Ref. 5), the pair b0 =
〈
χiχj

〉
Y

,

a2
ijkl = qijkl does not satisfy the requirements (4.4). In fact, to construct a valid pair of effective

tensors a2, b0, we need to use the “freedom” provided by the minus sign in the constraint (4.4c).

Indeed, we verify that if R ∈ Sym2(Rd) is positive definite, then the tensor a0
ijRkl is positive

definite

a0
ijRklηiηjηkηl = (ηTa0η)(ηTRη) ∀η ∈ Rd,

where a0 is positive definite. Hence, if we consider a sequence of parametrized positive definite

matrices {Rr}r>0 ⊂ Sym2(Rd), such that the smallest eigenvalue of Rr increases as r increases,

then, for sufficiently large values of r, the tensors

a2
ijkl =

〈
ajkχiχl

〉
Y
−
〈
a∇θji · ∇θkl

〉
Y

+ a0
jkR

r
il, b0ij = 〈χiχj〉Y +Rrij , (4.6)

satisfy all the requirements (4.4). This construction proves that the family of effective equations

E , defined in Definition 3.1, is not empty (see Figure 2, Section 6).

We now need a process to construct a matrix Rr with sufficiently large eigenvalues for a2

in (4.6) to be positive semidefinite. For that purpose, we introduce the following concept of

positivity for a fourth order tensor c ∈ Ten4(Rd) :

cξ : ξ = cijklξijξkl ≥ 0 ∀ξ ∈ Sym2(Rd). (4.7)

As η ∈ Rd satisfies ηηT ∈ Sym2(Rd), assertion (4.7) implies (4.5). The advantage of (4.7) is that

it can be seen as a simple eigenvalue problem. Indeed, consider the linear map Sym2(Rd) →
Sym2(Rd), ξ 7→ cξ defined by (cξ)ij = cijklξkl and note M(c) the associated N(d) × N(d)

matrix, where N(d) =
(
d+1

2

)
. Then, we can construct a bijective map ν : Sym2(Rd) → RN(d)

such that

cξ : ξ = M(c)ν(ξ) · ν(ξ) ∀ξ ∈ Sym2(Rd). (4.8)

Hence, the tensor c satisfies (4.7) if and only if the matrix M(c) is positive semidefinite and

similarly, cξ : ξ > 0 ∀ξ ∈ Sym2(Rd)\{0} if and only if M(c) is positive definite. In Appendix

A, we give the details on one possible constructions for M(c) and ν.

Now, we still need to ensure that increasing r in (4.6) increases the eigenvalues of M(a2).

This is proved by the following lemma.

Lemma 4.1. Let A,R ∈ Sym2(Rd) be positive definite matrices. Then, the tensor cijkl =

AjkRil satisfies cξ : ξ > 0 ∀ξ ∈ Sym2(Rd)\{0}.
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Proof. As R is symmetric positive definite, the Cholesky factorization ensures the existence

of an invertible matrix H ∈ Ten2(Rd) such that R = HTH. As A is positive definite, for

ξ ∈ Sym2(Rd) we have

cξ : ξ = AjkRilξijξkl = Ajk

(
Hmiξij

)(
Hmlξlk

)
= (ξHm)TAξHm ≥ 0,

where we denoted Hm = (Hm1, . . . ,Hmd)
T . Now, assume that the equality holds. Then, as A

is positive definite it must hold ξHm = 0 for all m = 1, . . . , d or equivalently ξHT = 0. As H

is regular so is HT and we conclude that ξ = 0. The proof of the lemma is complete.

We now have a constructive method to obtain effective equations. Indeed, in the following

lemma, we consider (4.6) with Rr = rI (note that we could use Rr = ra0 as well).

Lemma 4.2. Let ã2
ijkl =

〈
ajkχiχl

〉
Y
−
〈
a∇θji · ∇θkl

〉
Y

and denote A2 = M(ã2), A0 =

M({a0
jkδil}) and their respective minimal eigenvalues λmin(A2) and λmin(A0). Then, the tensor

a2
ijkl = ã2

ijkl + ra0
jkδil, ∀r ≥ r∗ = max

{
0,−λmin(A2)

λmin(A0)

}
,

satisfies a2ξ : ξ ≥ 0 ∀ξ ∈ Sym2(Rd).

Proof. First, as A2 and A0 are symmetric matrices it is clear that λmin(A2) and λmin(A0)

are real and thanks to Lemma 4.1 and (4.8) it holds λmin(A0) > 0. Furthermore, λmin(A2) ≤
(A2v ·v)/(v ·v) for any v ∈ RN(d) and similarly for A0. Now, if A2 is positive semidefinite, then

r∗ = 0 and the tensor a2 is positive semidefinite for any r ≥ 0. Next, assume that λmin(A2) < 0.

We verify then that for any v ∈ RN(d),

r∗ = −λmin(A2)

λmin(A0)
≥ −A

2v · v
A0v · v

.

Hence, for ξ ∈ Sym2(Rd) we note v = ν(ξ) (see (4.8)), set r = r∗+ ∆r with ∆r ≥ 0 and obtain

a2ξ : ξ = A2v · v + r∗A0v · v + ∆rA0v · v ≥ 0.

The proof of the lemma is complete.

Algorithm to compute the coefficients of an effective equation

As discussed in the previous section, Theorem 3.1 and Lemma 4.2 give a way to construct an

effective equation. We give here the full algorithm to compute the effective tensors a0, b0 and

a2. This algorithm is appropriate for dimensions d ≥ 2 as a much simpler one can be obtained

for d = 1.

In order to state the algorithm in an optimal way, let us make an observation. We first

introduce two sets of indices. Let I(d) ⊂ {1, . . . , s}4 be the set of indices of distinct entries of

a tensor in Sym4(Rd). In particular, |I(d)| =
(
d+3

4

)
so that |I(2)| = 5 and |I(3)| = 15. Next,

a tensor c ∈ Ten4(Rd) is said to satisfies the major and minor symmetries if cijkl = clkji and

cijkl = cjikl = cijlk for all 1 ≤ i, j, k, l ≤ d, respectively. We denote J(d) ⊂ {1, . . . , s}4 the

set of indices of distinct entries of a tensor satisfying the major and minor symmetries. In

particular, |J(d)| =
(
N(d)+1

2

)
where N(d) =

(
d+1

2

)
so that |J(2)| = 6 and |J(3)| = 21. Now,

note that to compute the operator a2
ijkl∂

4
ijkl we only need the entries {a2

ijkl : (i, j, k, l) ∈ I(d)}.
Furthermore, to construct the matrix A2 from Lemma 4.2 associated to the tensor ã2, we only

need the entries {ā2
ijkl = 1

4 (ã2
ijkl + ã2

jikl + ã2
ijlk + ã2

jilk) : (i, j, k, l) ∈ J(d)}. The conclusion is

that to compute the coefficients of a2
ijkl∂

4
ijkl, computing the |J(d)| distinct entries of ā2

ijkl is

sufficient.

We are now ready to give the algorithm to compute the effective quantities a0, b0, a2 of an

effective equation in the family E .
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Algorithm 1.

(1) for 1 ≤ k ≤ d find χk ∈Wper(Y ) such that ∀w ∈Wper(Y )(
a∇χk,∇w

)
Y

= −
(
aek,∇w

)
Y

,

(2) for 1 ≤ i ≤ j ≤ d compute

a0
ij = a0

ji =
〈
aij + eTi a∇χj

〉
Y

,

(3) for 1 ≤ i ≤ j ≤ d find θij = θji ∈Wper(Y ) such that ∀w ∈Wper(Y )(
a∇θij ,∇w

)
Y

=− 1
2

(
a
(
χiej+χjei

)
,∇w

)
Y

+ 1
2

(
eTi a∇χj+eTj a∇χi, w

)
Y

+
(
aij − a0

ij , w
)
Y

,

(4) for (i, j, k, l) ∈ J(d) compute

ā2
ijkl = 1

4

〈
a(χiej + χjei) · (χlek + χkel)

〉
Y
−
〈
a∇θij · ∇θkl

〉
Y

,

(5) build the matrices A2 = M(ā2), A0 = M({a0
jkδil}) (see Lemma Appendix A.1) and set

r∗ = max
{

0,−λmin(A2)
λmin(A0)

}
,

(6) for 1 ≤ i ≤ j ≤ d compute

b0ij = b0ji =
〈
χiχj

〉
Y

+ r∗δij ,

(7) for (i, j, k, l) ∈ J(d) compute

a2
ijkl = ā2

ijkl + r∗ 1
4

(
a0
jkδil + a0

ikδjl + a0
jlδik + a0

ilδjk
)
.

5. Comparison with the coefficients obtained via Bloch wave expansion

We have seen in Section 2.2 how to compute the effective coefficients using asymptotic expan-

sion. Yet we mentioned in the introduction that the existing effective model uses the expansion

of uε in Bloch waves. This approach has been used in a formal way by Santosa and Symes

Ref. 22 and led to the rigorous well-posed effective model obtained by Dohnal, Lamacz and

Schweizer in Ref. 14, 15. Note that it has also been widely used in the elliptic case (see Ref. 13

and the references therein). In this section, we compare the effective tensors obtained in this

paper with the ones obtained in Ref. 14, 15. We show that the two approaches lead to similar

cell problems and to the same tensors. Furthermore, we prove that the effective equation from

Ref. 14, 15 belongs to the family of effective equations E defined in Definition 3.1. Note that,

this comparison has recently been done in Ref. 5, with a focus on the elliptic case.

Let us first summarize the result from Ref. 14, 15. The starting point is the expression of

uε in Bloch waves. We consider hence the solution uε of equation (1.1) (with a zero right hand

side) with the initial conditions uε(0, x) = g(x), ∂tu
ε(0, x) = 0. The Y -periodic symmetric

tensor a is assumed in [C1(Ȳ )]d×d and g ∈ L2(Rd) ∩ L1(Rd) is such that its Fourier transform

G has a compact support K ⊂⊂ Rn. We fix the period Y = (−π, π)d and define the reciprocal

periodicity cell Z = (−1/2, 1/2)d. Then, for a fixed k ∈ Z we construct {µm(k), ψm(y, k)}∞m=0

the eigenvalues and eigenfunctions of the problem

−(∇y + ik) ·
(
a(y)(∇y + ik)ψm(y, k)

)
= µm(k)ψm(y, k),

where µm(k) are real and µm+1(k) ≥ µm(k) ≥ 0. We define then the rescaled Bloch waves

wεm(x, k) = ψm
(
x
ε , εk

)
eik·x and the rescaled eigenvalues µεm(k) = µm(εk). In particular,

{µεm(k), wεm(x, k)} satisfy

−∇x ·
(
a
(
x
ε

)
∇xwεm(x, k)

)
= µεm(k)wεm(x, k),

and the Bloch waves {wεm(x, k)}m≥0 form a basis of L2(Rd). Then, uε can be expressed as

uε(t, x) =

∞∑
m=0

∫
Z/ε

ĝεm(k)wm(x, k)<
(
eit
√
µεm(k)

)
dk, ĝεm(k) =

∫
Rd
g(x)wεm(x, k) dx, (5.1)

where z denotes the complex conjugate of z. First, it is proved in Ref. 14 that only the term

with m = 1 is relevant for the homogenization process. Then, the approximation

Uε(t, x) = (2π)−d/2
∫
K

G(k)eik·x<
(
eit
√
µε0(k)

)
dk,
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where G is the Fourier transform of g and K is its support, is proved to satisfy the error

estimate

‖uε − Uε‖L∞(0,∞;L2(Rd)+L∞(Rd)) ≤ Cε, (5.2)

where the norm ‖u‖L2(Rd)+L∞(Rd) = inf{‖u1‖L2(Rd) + ‖u2‖L∞(Rd) : u = u1 +u2} is weaker than

both norms ‖ ·‖L2(Rd) and ‖ ·‖L∞(Rd). The next step is the approximation of <
(
eit
√
µε0(k)

)
using

Taylor expansion. Noting µε0(k) = Aijkikj + ε2Cijmnkikjkmkn +O(ε4), where Aij = ∂2
ijµ0(0)

and Cijmn = ∂4
ijmnµ0(0), we obtain the approximation

vε(t, x)=(2π)−d/2
1

2

∑
±

∫
K

G(k)eik·xexp
(
± it

√
Aijkikj

)
exp
(
± iε2t

2

Cijmnkikjkmkn√
Aijkikj

)
.

The function vε satisfies then the error estimate

‖Uε − vε‖L∞(0,ε−2T ;L2(Rd)+L∞(Rd)) ≤ Cε. (5.3)

As shown in Ref. 15, it holds in fact Aij = ∂2
ijµ0(0) = a0

ij , where a0 is the homogenized tensor

defined in (2.8). Hence, vε satisfies

∂2
t v
ε = a0

ij∂
2
ijv

ε − ε2Cijmn∂
4
ijmnv

ε − ε4(Cijmnkikjkmkn)2/(4a0
ijkikj)v

ε.

However, C being negative, the equation ∂2
t · = a0

ij∂
2
ij · −ε2Cijmn∂

4
ijmn· is ill-posed and cannot

be used. An algebraic procedure is then applied in Ref. 14, 15 to build the tensors E ∈
Ten2(Rd), F ∈ Ten4(Rd), satisfying the symmetry and positivity (3.1), such that the following

decomposition holds :

−Cijmn∂4
ijmn = Eij∂

2
ija

0
mn∂

2
mn − Fijmn∂4

ijmn. (5.4)

We observe that decomposition (5.4) is a preparation to a “Boussinesq trick”, i.e., to use the

effective equation to replace the operator a0
mn∂

2
mn with ∂2

t (with a higher order error term).

Then, it is proved that the solution wε of the (well-posed) equation

∂2
tw

ε = a0
ij∂

2
ijw

ε + ε2
(
Eij∂

2
ij∂

2
tw

ε − Fijmn∂4
ijmnw

ε
)

in (0, T ε]× Rd,
wε(0, x) = g(x), ∂tw

ε(0, x) = 0,

satisfies ‖∇(vε − wε)‖L∞(0,T ε;L2(Rd)) ≤ Cε2, which combined with the estimates (5.2), (5.3)

allows to prove that ‖uε − wε‖L∞(0,T ε;L2(Rd)+L∞(Rd)) ≤ Cε.
Let us now give the explicit formulas from Ref. 14 to compute Cijkl = ∂4

ijklµ0(0). We

consider the following cell problems : for 1 ≤ i ≤ j ≤ k ≤ d, find ψ
ej
0 , ψ

ei+ej
0 , ψ

ei+ej+ek
0 the

Y -periodic zero mean solutions of

−∇ ·
(
a∇ψej0

)
= i∇ ·

(
aej
)
, (5.5a)

−∇ ·
(
a∇ψei+ej0

)
= 2S2

ij

{
i∇ ·

(
aeiψ

ej
0

)
+ ieTi a∇ψ

ej
0 − aij + a0

ij

}
, (5.5b)

−∇ ·
(
a∇ψei+ej+ek0

)
= 3S3

ijk

{
i∇ ·

(
aeiψ

ej+ek
0

)
+ ieTi a∇ψ

ej+ek
0 − 2aij(y)ψek0 + 2a0

ijψ
ek
0

}
,

(5.5c)

Then, C is given for 1 ≤ i, j, k, l ≤ d by

Cijkl = 1
2S

4
ijkl

{〈
aijψ

ek+el
0

〉
Y

}
− 1

6 iS4
ijkl

{〈
eTi a∇ψ

ej+ek+el
0

〉
Y

}
. (5.6)

The cell problems (5.5a), (5.5b) and (5.5c) are very similar to the ones we obtain in (2.12a),

(2.12b) and (2.12c) with asymptotic expansion. Let us determine their exact relation. First, note

that ψ
ej
0 and ψ

ei+ej+ek
0 are pure complex valued and ψ

ei+ej
0 are real valued (that ensures that

Cijkl is real). Second, consider χk, θij , κijk the zero mean solutions of respectively problems

(2.12a), (2.12b) and (2.12c). Using the unicity of a solution of an elliptic boundary value

problem, we see that

ψ
ej
0 = iχj , ψ

ei+ej
0 = −2θij , ψ

ei+ej+ek
0 = −6iκijk. (5.7)
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We now show that the computed effective quantities are in fact exactly the same. Using (5.7),

we rewrite Cijkl in (5.6) as

Cijkl = S4
ijkl

{
−
〈
aijθkl

〉
Y
−
〈
eTi a∇κjkl

〉
Y

}
= |Y |S4

ijkl

{
−
(
a∇κjkl, ei

)
Y
−
(
ejθkl, ei

)
Y

}
.

As 〈θkl〉Y = 0, this expression is equal to the right hand side of (2.15). Hence, from (2.15) we

have

Cijkl = S4
ijkl

{〈
ajkχlχi

〉
Y
−
〈
a∇θji · ∇θkl

〉
Y
− a0

jk

(
χl, χi

)
Y

}
. (5.8)

Now, as E,F defined in Ref. 15 satisfies (5.4), thanks to (5.8) we can infer that they satisfy the

constraint (3.4) from Theorem 3.1. As E,F satisfy by construction (3.1), the effective equation

defined in Ref. 15 belongs to the family E defined in Definition 3.1.

Let us make a final remark. If we perform the asymptotic expansion as in Section 2.2 with

the ansatz that the effective equation is of the form ∂2
t ũ− a0

ij∂
2
ij ũ+ ε2cijkl∂

4
ijklũ = 0 (instead

of (2.7)), we obtain on c the constraint S4
ijkl{cijkl} = S4

ijkl{Cijkl}. Hence, we end up with the

operator cijkl∂
4
ijkl = Cijkl∂

4
ijkl and thus the same ill-posed equation as obtained in the first

place in Ref. 22. As it happens here, there is no possible remedy to the non positivity of c. The

conclusion is that when performing asymptotic expansion, the form of the effective equation

that we postulate is a crucial ansatz.

6. Numerical experiments

Let Y = (−1/2, 1/2) and consider the Y -periodic diagonal tensor given by

a11(y) = a22(y) = ã(y2) = 1− 0.5 cos(2πy2), a12(y) = a21(y) = 0.

The oscillatory tensor a
(
x
ε

)
describes a layered material and it is well known (see Ref. 7, 18,

10) that the homogenized tensor is given by

a0
11 =

∫ 1/2

−1/2
ã(y2) dy2 = 1, a0

22 =
( ∫ 1/2

−1/2
(ã(y2))−1 dy2

)−1
=
√

3/2, (6.1)

and a0
12 = a0

21 = 0. Furthermore, we have an analytic expression for the first correctors

χ1, χ2. Nevertheless, in order to test the numerical procedure (Algorithm 1), the cell func-

tions χ1, χ2, θ11, θ12, θ22 are computed with a P1 finite element method on a uniform mesh of

Y with 1024 points in both directions. We verify that we obtain a very accurate approximation

of a0. Then, we compute accurately the 6 distinct entries of the tensor ā2 and find

ā2
1111 = −0.00339360, ā2

2222 = 0, ā2
1212 = 0.00086375,

ā2
1122 = 0.00339360, ā2

1112 = 0, ā2
2212 = 0.

We construct then the 3 × 3 symmetric matrix A2 = M(ā2) and compute its eigenval-

ues as spec(A2) = {−0.0054909, 0.0020973, 0.0034550}. so that the matrix A2 is not pos-

itive semidefinite. Hence, in order to compute the positive tensor a2, we build the ma-

trix A0 = M({a0
jkδil}) (observe that A0 is diagonal because a0 is diagonal) and obtain

spec(A0) = {a0
11, a

0
22, a

0
11 + a0

22}. We then compute r∗ = max
{

0,−λmin(A2)
λmin(A0)

}
= 0.006340411,

the tensors b0, a2 are

b011 =
〈
χ2

1

〉
Y

+ r∗ = 0.00634041,

b022 =
〈
χ2

2

〉
Y

+ r∗ = 0.01004512,

b012 = 0,

a2
1111 = ā2

1111 + r∗a0
11 = 0.00294681,

a2
2222 = ā2

2222 + r∗a0
22 = 0.00549097,

a2
1212 = ā2

1212 + 1
4r
∗(a0

11 + a0
22) = 0.0038215948,

a2
1122 = ā2

1122 = 0.0033935973,

a2
1112 = ā2

1112 + 1
4r
∗(a0

12 + a0
21) = 0,

a2
2212 = ā2

1222 + 1
4 (a0

12 + a0
21) = 0,

and we obtain the corresponding effective differential operators b0ij∂
2
ij , a

2
ijkl∂

4
ijkl.

We recall that other effective equations can be obtained by defining the tensors as in (4.6),

where Rr ∈ Sym2(Rd) is a positive definite matrix with sufficiently large eigenvalues. In order
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to illustrate that, we let r = (r1, r2) ∈ R2, Rr = diag(r1, r2), and denote a2
r, b

0
r as defined in

(4.6), where the subscript specify the dependence in r. For several values of r, we compute the

minimal eigenvalue λmin(r) of M(a2
r). In Figure 2, we plot r = (r1, r2) with a red square ( ) if

λmin(r) < 0 and a green square ( ) if λmin(r) ≥ 0. Hence, each green square corresponds to a

different well-posed effective equation in the family and we call the corresponding r valid. We

observe that there is a distinct frontier between valid and invalid values of r. The black square

is (r∗, r∗), where r∗ is obtained in Lemma 4.2 and Algorithm 1. As expected, (r∗, r∗) lies in

the domain of valid values. The subset of the diagonal in the valid values {(r, r) : r ≥ r∗}
corresponds to the effective equations obtained using Lemma 4.2. In what follows, we denote

by ũr the solution of the effective equation (3.2) with a2 = a2
r, b

0 = b0r, for r ≥ r∗. The effective

solution given by Algorithm 1 is denoted by ū = ũr∗ .

0 0.005 0.01 0.015 0.02

0

0.005

0.01

0.015

0.02

 

 

r1

r2

{r : λmin(r) < 0}

{r : λmin(r) ≥ 0}

(r∗, r∗)

Fig. 2. Sorting of the minimal eigenvalues of M(a2r), where a2r is defined in (4.6) with Rr = diag(r1, r2). Each
green square corresponds to an effective equation in the family E. The black square is (r∗, r∗), where r∗ is

computed in Algorithm 1.

Let us now consider the model problem given by the initial conditions and source term

ε = 1/10, g0(x) = e−
x21+x22

1/5 , g1(x) = 0, f(t, x) = 0. (6.2)

Let us describe how to approximate the homogenized solution u0 (1.2) and the solution

ũ of the effective equation (3.2) for the data of the model problem (6.2) . Both equations

involves constant coefficients differential operators and hence we have an explicit form of the

solution with Fourier transform (see for example Ref. 17). Let us denote F(·) and F−1(·) the

(normalized) Fourier transform and its (normalized) inverse. Then, we verify that the solution

of (3.2) is given for every time t by

ũ(t) = F−1
(
F(g0) cos

(√
s(k)t

))
, s(k) =

a0k · k + ε2a2kkT : kkT

1 + ε2b0k · k
. (6.3)

Similarly, the homogenized solution is obtained by replacing s(k) with a0k · k in (6.3). Thus,

u0(t), ũr(t) can be approximated very accurately. We approximate the Fourier transform and

its inverse on a uniform grid using the FFTW library (C library for computing the discrete

Fourier transforms using fast Fourier transform (FFT) algorithms). Note that Matlab’s native

FFT implementation (which is based on FFTW) can also be used.

First, we consider the small periodic domain Ω = (−2, 2)2. On such a small domain we

are able to approximate uε, the solution of (1.9) (g0 must be replaced with g0 − 〈g0〉Ω to

fit the settings of (1.9)). To do so, we consider a uniform grid of Ω of size h = ε/10 and

use a pseudo spectral method (see for example Ref. 23 for an introduction) using the FFTW

library. The time integration of the obtained second order ordinary differential equation is
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done with the leap frog scheme with a small time step ∆t = h/100. The solutions u0 and

ū are approximated as described previously on the same grid as uε. We compute the relative

errors ‖(uε−u0)(t)‖L2(Ω)/‖uε(t)‖L2(Ω) and ‖(uε− ū)(t)‖L2(Ω)/‖uε(t)‖L2(Ω) on the time interval

[0, 200]. The result is displayed in Figure 3. We observe that the homogenized solution quickly

drift away from the fine scale solution uε. As we know, this is due to the dispersion effects that

develop in uε. On the contrary, we see that for times O(ε−2) the error uε − ū is very small, as

predicted by Theorem 3.1.
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‖(uε − u0)(t)‖L2(Ω)/‖u
ε(t)‖L2(Ω)

‖(uε − ū)(t)‖L2(Ω)/‖u
ε(t)‖L2(Ω)

Fig. 3. Plot of the time evolution of the normalized L2(Ω) errors uε − u0 and uε − ū.

Let us now consider the wave equation with the settings (6.2) in the unbounded case.

As the homogenized tensor (6.1) is diagonal, we know the form of the homogenized solution

u0 : the pulse g0 centered at the origin spreads in all directions with speeds
√
a0

11 along the

x axis and
√
a0

22 along the y axis. To obtain ū(t) at a time t, we thus apply the formula

(6.3) and approximate the Fourier transforms on a periodic truncation R2 given by Ω =

(−L1, L1) × (−L2, L2), where Li =
√
a0
iit + Ri and Ri > 0 is large enough (Ri = 4 in the

experiment). We proceed similarly to approximate u0(t). In Figure 4 is displayed the global

form of ū at t = 300 and in the zooms we can see the dispersion effects. Note that although

a
(
x
ε

)
oscillates only in the y direction, the dispersion is as strong in the x direction as in the

y direction. In the top-left plot of Figure 5, we can see a 3D view of the dispersion of ū on a

small domain. Furthermore, the same view of u0 is displayed in the top-right plot of Figure 5

and we see that there is no dispersion after the main pulse. In the bottom plot of Figure 5, we

can compare cuts at y = 0 of ū, {ũr}r for several values of r ∈ [r∗, 11r∗] and u0. We see that

all the effective solution {ũr}r and ū have almost the same dispersive behavior. As Theorem

3.1 ensures that ū and ũr approximate well uε in the L∞(L2) norm, we conclude that u0 is a

poor approximation of uε at t = 300.
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Appendix A. Matrix associated to a major symmetric tensor of order 4

Let a ∈ Ten4(Rd) be a tensor of order 4 satisfying the major symmetry relation, i.e. aijkl = alkji
1 ≤ i, j, k, l ≤ d. We say that a is positive definite (resp. semidefinite) if aξ : ξ > 0 for any

ξ ∈ Sym2(Rd)\{0} (resp. ≥ 0). In what follows, we define a matrix M(a) such that a is positive

(semi)definite if and only if M(a) is positive (semi)definite.

Without loss of generality, we can assume that a satisfies the minor symmetry relations

aijkl = ajikl = aijlk 1 ≤ i, j, k, l ≤ d. (A.1)
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Fig. 4. Global view of ū at t = 300 and zooms on the subdomains (294, 302)×(−20, 20) and (−20, 20)×(273, 281).
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Fig. 5. Top : 3d views of ū (top-left) and u0 (top-right) at t = 300 for (x, y) ∈ (296, 302) × (−3, 3) Bottom :
cuts through y = 0 at t = 300 of u0 and the effective solutions ū, ũr for several values of r ∈ [r∗, 11r∗].

Indeed, if a ∈ Ten4(Rd) does not satisfy the minor symmetries (A.1), then aijkl can be replaced

by āijkl = 1
4 (aijkl + ajikl + aijlk + ajilk) which satisfies (A.1) and aξ : η = āξ : η for any
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ξ, η ∈ Sym2(Rd). The tensor a defines a linear map Sym2(Rd)→ Sym2(Rd), ξ 7→ aξ as

(aξ)ij = aijklξkl =

d∑
k=1

aijkkξkk + 2

d∑
k=1

d∑
l=k+1

aijklξkl. (A.2)

In order to build a matrix associated to this linear map, we define the sets of indices J =

{(i, j) : 1 ≤ i ≤ j ≤ d} and I = {1, . . . , N(d)}, where N(d) =
(
d+1

2

)
is the number of distinct

entries of a symmetric matrix in Sym2(Rd). Let `−1 : J → I be the one to one map given

by `−1(i, j) = Kd
ij , where Kd is the symmetric d × d matrix given by (fill the diagonal, then

successively the d− 1 upper diagonal rows)

Kd =



1 d+ 1 · · · · · · 2d− 1

2 2d · · · 3d− 3
. . .

. . .
...

. . . N(d)

d

 .

Define then the bijective map ν : Sym2(Rd) → RN(d), ξ → ν(ξ), by
(
ν(ξ)

)
m

= ξ`(m) and note

that its inverse is given for v ∈ RN(d) by
(
ν−1(v)

)
ij

= v`−1(i,j). The linear map associated to

(A.2) is then given as A : RN(d) → RN(d), A = ν ◦ a ◦ ν−1. We verify that for v ∈ RN(d),

(
Av
)
m

=

d∑
k=1

a`(m)`(k)vk + 2

N(d)∑
k=d+1

a`(m)`(k)vk.

Hence, noting {ei}N(d)
i=1 the canonical basis of RN(d), the matrix associated to A is given in

the basis {e1, . . . ed,
1
2ed+1, . . . ,

1
2eN(d)} by Amn = a`(m)`(n). We can then show that for any

ξ, η ∈ Sym2(Rd), we have

aξ : η =

d∑
ik=1

aiikkξiiηkk + 2
( d∑
ik=1
k<l

aiiklξiiηkl +

d∑
jk=1
i<j

aijkkξijηkk

)
+ 4

d∑
i<j
k<l

aijklξijηkl

= ν(ξ)TPTAPν(η),

where

Pmn = δmnzn, zn =

{
1 if 1 ≤ n ≤ d,
2 if d+ 1 ≤ n ≤ N(d).

Hence, we define the matrix associated to a as M̃(a) = PTAP , given by(
M̃(a)

)
mn

= zmzna`(m)`(n). (A.3)

For d = 2, 3 M̃(a) is given respectively as

M̃(a) =

a1111 a1122 2a1112

a2222 2a2212

4a1212

 , M̃(a) =



a1111 a1122 a1133 2a1112 2a1113 2a1123

a2222 a2233 2a2212 2a2213 2a2223

a3333 2a3312 2a3313 2a3323

4a1212 4a1213 4a1223

4a1313 4a1323

4a2323


.

We summarize the results of this section in the following lemma.

Lemma Appendix A.1. Let a ∈ Ten4(Rd) be a tensor satisfying ajilk = alkji and define

āijkl = 1
4

(
aijkl + ajikl + aijlk + ajilk

)
and M(a) = M̃(ā), where M̃ is defined in (A.3). Then,

a is positive (semi)definite if and only if M(a) is positive (semi)definite.
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