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Abstract—This paper presents a new analytical method to sim-
ply estimate the integrated thermal noise in switched-capacitor
filters (SCF). It is shown how the Bode theorem, which is
theoretically valid only for continuous-time passive filters, can
be extended to also estimate the noise in active SCF built with
operational transconductance amplifiers (OTAs).

I. INTRODUCTION

THE flicker noise due to the amplifiers used in switched-
capacitor filters (SCF) can be significantly reduced thanks

to the autozero technique [1]. The remaining noise is therefore
ultimately dominated by the aliased noise due to sampling of
the broadband thermal noise coming from the amplifiers and
switches [1], [2]. Although today it is possible to simulate the
noise of SCF [3], it remains difficult to have a 1st-order ana-
lytical expression to estimate the noise sufficiently accurately,
in order to optimize the circuit [4]. This paper presents a new
analytical method to simply estimate the integrated thermal
noise in SCF. It is shown how the Bode theorem [5], which is
theoretically valid only for continuous-time passive filters, can
be extended to also estimate the thermal noise in active SCF
built with operational transconductance amplifiers (OTAs).

II. NOISE MECHANISMS IN SC FILTERS

Fig. 1 shows a typical integrator, part of a larger SCF and
implemented by an OTA having a transconductance Gmi and
an integrating capacitor Ci. The integrator virtual ground is
connected to a switched-capacitor (SC) C1i and a directly
coupled capacitor C2i. The noise in the SCF is generated
from the noise sources in the OTAs and switches which is
then sampled on the SCs and then transferred to the filter
output [6]. The continuous-time noise seen at the filter output
node during each phase (also called the direct noise) adds to
this sampled and transferred noise [6]. The noise sampled on
all the SCs connected to the virtual ground of the OTAi is
modelled in Fig. 1 by a noise charge Qni injected into the
virtual ground at the end of each phase Φ. The variance of
this noise charge Q2

ni is then the sum of the variances of the
noise charge due to the different noise sources active in each
phase Φ (switches and OTAs) and sampled at the end of each
phase Φ on each SC connected to the virtual ground of OATi
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Fig. 1. General case of an SCF circuit that encompass at least one integrator.
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C2
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nCki
|Φ. (1)

The variances of the injected noise charges Q2
ni|Φ are calcu-

lated in each phase from the variances of the voltages V 2
nCki

across each switched-capacitor Cki connected to the virtual
ground i. The z-transfer function Hni(z) from the injected
noise charge Qni to the output is then evaluated. The variance
of the output noise voltage is then given by [7]

V 2
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∑
i

Q2
ni

C2
i

·
+∞∑
k=0

h2
nik + V 2

nout,direct, (2)

where hnik is the kth term of the impulse response corre-
sponding to the transfer function from the virtual ground i
to the output. In addition to the sampled noise, the variance
of the continuous-time noise at the filter output V 2

nout,direct

has to be added. The gain from the noise charge injector to
the output can also be calculated directly from the transfer
function Hni(z) as [7]

+∞∑
k=0

h2
nik =

1

j2π

∮
unit circle

Hni(z) ·Hni(z
−1) · z−1dz. (3)

Note that the later integral can be evaluated using the residues
theorem according to [7]

+∞∑
k=0

h2
nik =

∑
k

Res
{
Hni(z) ·Hni(z

−1) · z−1
}
. (4)
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Fig. 2. a) Equivalent linear schematic of the integrator of Fig. 1 during
charge transfer phase Φ2. b) Simplified equivalent linear schematic.

III. SIMPLIFIED ESTIMATION OF THE THERMAL NOISE
CHARGE VARIANCE

Calculating the thermal noise voltage variances V 2
nCki

across
each switched-capacitor Cki connected to each virtual ground
i can be complicated in most SCF circuits. In this Section,
a new simple method is presented which extends the Bode
theorem to the case of active SCF with OTAs.

Replacing all the MOS switches and OTAs in Fig. 1 by their
linear equivalent circuit including their thermal noise sources
leads to the schematic shown in Fig. 2a, where Gon is the
on-conductance of the various switches which are assumed to
be equal. The voltage Vi at the virtual ground node i is a
linear combination of the output voltage of OTAi Vouti and
the output voltages of the other OTAs coupled to node i

Vi = hfbi(ω) · Vouti + β1(ω) · V1 + β2(ω) · V2. (5)

The transfer functions β1(ω) and β2(ω) are proportional to
α1 = C1i

Ci
and α2 = C2i

Ci
, respectively. Assuming that the filter

cut-off frequency is much lower than the sampling frequency
implies that α1, α2 � 1 and hence β1(ω), β2(ω) � 1.
Consequently, the voltage Vi representing the OTAi input is
essentially a function of the OTA output voltage Vouti

Vi ∼= hfbi(0) · Vouti. (6)

The voltage-controlled current source (VCCS) in Fig. 2a
can then be replaced by a conductance of value hfbi · Gmi
as depicted in Fig. 2b. Since the OTA thermal noise source
has a power spectral density (PSD) proportional to Gmi, the
equivalent circuit can actually be considered as passive. The
noisy resistors of the switches have a noise temperature T
whereas the noisy resistor of the equivalent conductance of the
VCCS can be considered to have a temperature γT

hfbi
, where γ

is the noise excess factor of the OTAi. Therefore, the noise
voltage V 2

nCki
, across capacitor Cki, can be decomposed into

the sum of two terms

V 2
nCki

= V 2
n1Cki

+ V 2
n2Cki

, (7)

where V 2
n1Cki

corresponds to the noise observed when all the
conductances have the same noise temperature as shown in
Fig. 3a, whereas V 2

n2Cki
accounts for the excess noise present

in the conductances γi · hfbi · Gmi representing the OTAs as
shown in Fig. 3b. Note that the schematic of Fig. 3b can
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Fig. 3. Simplified schematic of an OTA based SCF.

be further simplified considering that Gon � hfbi · Gmi so
that the on-conductances can be replaced by short-circuits
without significant loss in accuracy. Therefore, V 2

n1Cki
can be

calculated by applying the Bode theorem on the simplified
schematics of Fig. 3a according to [5]

V 2
n1Cki

= kT ·
(

1

C∞ki
− 1

C0ki

)
, (8)

where C∞ki is the capacitance as seen between the nodes
k and l when all switches and OTAs of the SC circuit are
removed and C0ki is the capacitance as seen between the nodes
k and l when switches that are closed during the clock phase
in consideration are replaced by short-circuits and all OTAs
of the SC circuit have their output shorted to ground. In the
same way, V 2

n2Cki
can be calculated as

V 2
n2Cki

= kT ·
(

γ

hfbi
− 1

)
·
(

1

C ′∞ki
− 1

C0ki

)
, (9)

where C ′∞ki is the capacitance as seen between the nodes k
and l when switches that are closed during the clock phase in
consideration are replaced by short-circuits and all OTAs of the
SC circuit are removed. Note that the thermal noise variances
V 2
n1Cki

and V 2
n2Cki

are simply obtained by inspection of the
different equivalent circuits used to calculate C∞ki, C ′∞ki and
C0ki which are only made of connected capacitors. The total
noise voltage variance (7) is then given by

V 2
nCki

= kT ·
[

1

C∞ki
− 1

C ′∞ki
+

γ

hfbi
·
(

1

C ′∞ki
− 1

C0ki

)]
(10)

where C∞ki, C ′∞ki and C0ki are obtained by inspection of the
three equivalent circuits depicted in Fig. 4.
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Fig. 4. Extention of the Bode theorem to OTA based SC filters.

IV. EXAMPLE: FIRST-ORDER LOW PASS SC FILTER

In order to better understand the noise calculation method
presented above, this Section presents the example of a SC
low pass filter as depicted in Fig. 5. The z-transfer function
of this low-pass SCF is given by

H(z) =
Vin(z)

Vout(z)
=

α1 · z−1

1 + α2 − z−1
, (11)

where α1 = C1

C and α2 = C2

C . Note that α1 and α2 are
much smaller than unity in the usual case where the cut-
off frequency is much smaller than the sampling frequency.
In order to simplify the calculations, it is considered that
α1 = α2 = α. At the end of phase Φ1 and Φ2, the noise
charges sampled on capacitors C1 and C2 are transferred to the
integrating capacitor C. This sampled noise charge is modeled
by the charge injector Qn which injects a noise charge at the
end of phase Φ2 that represent the total noise charge injected
onto the integrating capacitor C during one cycle (phase Φ1

+ phase Φ2). The variance of this noise charge Q2
n has to be

calculated in each phase by evaluating the voltage variance on
each switched-capacitor.

A. Noise variance estimation in phase Φ1

The method presented in the previous section is applied to
calculate the noise voltage variances across the SCs connected
to the virtual ground C1 and C2. Thus V 2

nC1
|Φ1

and V 2
nC2
|Φ1

are calculated using (10). The calculation of capacitors C∞,
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Fig. 5. SC low pass filter.

C ′∞ and C0 for the voltages across capacitors C1 and C2 at
the end of phase Φ1 is shown in Fig. 6 resulting in

V 2
nC1
|Φ1

= kT ·
(

1

C1
+ 0− 0

)
=
kT

C1
, (12a)

V 2
nC2
|Φ1 = kT ·

(
1

C2
+ 0− 0

)
=
kT

C2
. (12b)

The noise charge variance injected at the virtual ground at the
end of phase Φ1 can then be expressed as

Q2
n|Φ1 = C2

1 · V 2
nC1
|Φ1

+ C2
2 · V 2

nC2
|Φ1

= kT · 2αC. (13)

B. Noise variance estimation in phase Φ2

Following the same steps as in the previous Section, the
capacitors C∞, C ′∞ and C0 for the voltages across capacitors
C1 and C2 at the end of phase Φ2 are first calculated using
the schematics shown in Fig. 7. The feedback gain in phase
Φ2 is calculated using the equivalent circuit shown in Fig. 7a
resulting in

hfb =
V

Vout
=

1 + α

1 + 2α
. (14)

By applying the method and assuming α� 1, we find

V 2
nC1
|Φ2

=
kT

αC
· (1 + α) · (CL + αγC)

(α)2C + CL + α · (C + 2CL)

' kT

αC
· CL + αγC

αC + CL
,

(15a)

V 2
nC2
|Φ2

=
kT

αC
· 1 + α+ γα2

(1 + α)2
' kT

αC
. (15b)

Thus, the variance of the total noise charge injected in the
virtual ground at the end of phase Φ2 is given by

Q2
n|Φ2

= kT · αC ·
(

1 +
αγC + CL

αC + CL(1 + 2α)

)
. (16)

C. Total noise variance estimation

The total noise charge variance injected at the end of every
cycle into the virtual ground is then given by

Q2
n = Q2

n|Φ1
+Q2

n|Φ2
. (17)
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The noise charge Qn is then transferred to the integrating
capacitor C, generating an output voltage Vout calculated
using (2) and given by

Vout(z) = Hn(z) · Qn
C

with Hn(z) =
1

1 + α− z−1
. (18)

Thus,

Res
{
Hni(z) ·Hni(z

−1).z−1
}

=
1

α(2 + α)
' 1

2α
. (19)

The output noise voltage variance is then calculated based on
(3) and (4)

V 2
nout '

3kT

2C
+
kT

2C
· αγC + CL
αC + (1 + 2α) · CL

+ V 2
nout,direct.

(20)

For the 1st-order low pass filter of this example, the direct
noise can be calculated as

V 2
nout,direct = kT · γ

CL + αC
. (21)

In order to validate this result, noise simulations are per-
formed on the circuit of Fig. 5 for α = 0.1, C = 5pF and
Gm

Gon
= 0.1 where Gm is the OTA transconductance and Gon

the on-conductance of switches (Gon = G1 = G2 = G3 in
the schematics of Fig. 6a and 7a). Both ELDO Transient noise
and SpectreRF Pnoise simulations were performed. Fig. 8.
shows the simulated RMS noise voltage at the output of the
SCLPF, for CL = C, together with the calculated noise using
(20). It shows an excellent match between both the simulation
and the analytical calculations, validating the presented noise
estimation methodology.

V. CONCLUSION

A simple method for the analytical estimation of thermal
noise in OTA-based SCF is presented. The proposed method
extends the Bode theorem to the case of OTA-based SCF. It
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Fig. 8. Simulated output noise with SpectreRF Pnoise and Eldo Trensient
noise versus calculated noise in (24).

allows the sampled noise to be estimated by simple inspection
of the SCF circuits. The new method is illustrated with the
example of an OTA-based first-order SC low-pass filter. The
estimated noise show an excellent matching compared to noise
simulations using SpectreRF Pnoise and Eldo Transient-Noise.
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