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ABSTRACT 

In spaces where daylight is a primary source of illumination, 

our visual perception of architecture is largely influenced by 

the ephemeral composition of sunlight and shadow.  To 

evaluate these perceptual effects, the authors will apply 

quantitative contrast measures to HDR renderings for a series 

of existing contemporary architectural spaces under variable 

sunlight conditions.  These measures will then be compared 

to subjective ratings of visual interest, collected through an 

online survey designed to test the influence of spatial and 

temporal parameters.  The objectives of this study assess the 

impact of sunlight dynamics on subjective ratings of daylit 

architectural renderings and compare the relationship 

between these subjective ratings and existing quantitative 

metrics.  The results show that one modified contrast metric 

can be used to predict factors of visual interest in daylit 

renderings.  When applied through an annual simulation-

based approach, this novel metric reveals human perceptual 

responses to dynamic daylight conditions.   
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1 INTRODUCTION 

The compositional effects of shadow, contrast, and light 

directionality are essential to the visual performance of 

architecture, and yet their effects are most often defined as 

qualitative, and research that seeks to measure the impacts 

on human perception has been limited.  To complicate this 

issue, variable sunlight and climate-driven sky conditions 

produce diverse compositions of light and shadow.  While 

electric light can be fine-tuned to achieve a specific visual 

appearance, the ephemerality of natural lighting conditions 

can produce un-anticipated and even surprising visual affects 

over time.   

Over the last several decades, daylighting research has 

gravitated toward the development of task-based 

illumination metrics to assess general illumination 

thresholds [1].  Visual comfort metrics, specifically those 

pertaining to glare, have also gained momentum as daylight 

integration as an energy efficient alternative to electric light 

has led to an increase in glazing and shading systems that can 

trigger occupant discomfort in workplaces [2]. Performance 

indicators for the visual appearance of daylight in 

architecture, such as those presented in this paper, have only 

gained momentum in recent years due to concerns that 

existing illumination-based metrics are not evaluating light 

perceived from an occupant’s field-of-view [3].   

In some ways, the idea of evaluating perceptual lighting 

quality through quantitative measures is somewhat 

superfluous. Why would we need to quantify the 

performance of something that we can readily evaluate using 

qualitative judgment?  Although people can observe and 

assess the visual effects of daylight in a single moment of 

time, they cannot intuitively comprehend or predict the range 

of effect that might be experienced over time.  As daylight is 

a highly dynamic source, the complexity of predicting 

performance necessitates a method that can evaluate a space 

over time and across diverse sun positions to communicate 

the variable impacts of light and shadow.  Simulation is a 

powerful tool for evaluating performance dynamics as we 

can assess a range of temporally-induced effects.  Existing 

tools assess illumination and glare risk, yet there are no 

dynamic simulation-based methods for evaluating the 

positive perceptual aspects of daylight composition or its 

impact on architectural design. 

As discussed in Section 2.1, while there are studies linking 

global contrast measures to perceived impressions of visual 

interest, more sophisticated local contrast measures exist in 

vision science and psychology but have not been used to 

evaluate the perceptual performance of daylit architecture.  If 

we use image processing to quantify contrast-based visual 

effects within a single rendering and successfully link these 

values to impressions of spatial composition and visual 

interest, then we can apply that measure to a series of hourly 

and daily instances and predict these effects over time. This 

would help designers to understand where (within a defined 

view) and when (across hourly and daily moments) the 

effects of contrast, light, and shadow are likely to produce 

specific perceptual responses.   

In this paper, the authors will apply existing contrast metrics 

from vision science and psychology to high dynamic range 

(HDR) renderings for a series of nine contemporary 
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architectural spaces under 3 different sunny sky conditions 

that vary in daylight composition.  These measures will then 

be compared to subjective ratings for contrast, uniformity, 

variation, direction, complexity, excitement, and stimulation 

that have been gathered through an online survey. 

The group of local contrast measures selected for this online 

survey were identified after an initial proof-of-concept 

experiment conducted with a small subject sample size 

revealed a stronger correlation between local contrast 

measures and ratings of contrast, excitement, and stimulation 

[20] compared to the global measures also tested. This paper 

builds upon those findings with a larger subject pool and 

expanded group of local contrast measures to extract a new 

model for predicting factors of visual interest. 

2 BACKGROUND 

Those studies that have assessed the perceptual impacts of 

contrast on daylit space have relied primarily on subjective 

surveys to explore the relationship between simple 

photometric measurements and perceived impressions of 

interior space [4-7].  Existing research has identified two 

factors that impact subject impressions of daylit space: 

average luminance and luminance variation [8].  While 

average luminance has been associated with impressions of 

brightness, luminance variation has been linked to visual 

interest [9].  Studies into subject preference have found that 

mean luminance and luminance variation (distribution and 

strength of variation) within an office environment 

contribute to occupant impressions of preference [6-7, 10-

13].  

2.1 Existing Contrast Measures 

Studies that rely on simple photometric measures such as 

average luminance and luminance variation do not address 

the spatial diversity of luminance values within an 

occupants’ field-of-view. The definition of luminance 

variation or contrast in these studies is most commonly 

defined by a global measure, such as Michelson or Root 

Mean Square (RMS) contrast.  Where Michelson computes 

a ratio from two single points of extreme brightness [14], 

RMS measures the root mean square of pixel intensities [15] 

(Appendix A.1).  These global contrast measures provide a 

single value, that existing studies in daylight perception have 

utilized due to the ease of comparing this value to subjective 

rankings [5].  Global measures cannot, however predict 

perceived contrast between two images that vary in the 

distribution of luminance values [16].  

To overcome this limitation, more sophisticated contrast 

measures have been developed in the fields of image analysis 

and vision research.  The current state of the art in these fields 

would define two types of measures that are commonly used 

to quantify contrast:  those that rely on global measures (such 

as Michelson and RMS) and those that rely on local measures 

[16]. Local contrast measures overcome the limitations 

associated with global measures by quantifying the effect of 

composition on contrasting areas of brightness and darkness.  

The authors have focused on neighborhood metrics for their 

ability to quantify the local contrast values between pixels 

within a neighborhood or sub-region within an image and 

assign a singular measure that represents the strength of local 

variation across all pixels.  This led them to define Spatial 

Contrast (SC) measures as the sum of local pixel variations 

across a single image resolution [17]:   

SC =  
1

𝑊𝐻
∑  𝑊

𝑖=1 ∑ Δ𝑝̅̅̅̅
𝑖,𝑗

𝐻
𝑗=1                                                         (1)                     

where ∆𝑝̅̅̅̅
𝑖,𝑗  is the average difference between the four pixels 

orthogonally surrounding the central pixel 𝑝𝑖,𝑗 or 

Δ𝑝̅̅̅̅
𝑖,𝑗 =

1

4
(|𝑝𝑖,𝑗 − 𝑝𝑖+1,𝑗| + |𝑝𝑖,𝑗 − 𝑝𝑖−1,𝑗| +  ⋯ 

|𝑝𝑖,𝑗 − 𝑝𝑖,𝑗+1| + |𝑝𝑖,𝑗 − 𝑝𝑖,𝑗−1|).                                            (2) 

RAMMG, a contrast algorithm developed by Rizzi et al, [17] 

applies a multi-level approach to compute mean local pixel 

variations across a subsampled pyramid structure, taking into 

account perceived differences in brightness across multiple 

image resolutions: 

RAMMG = 
1

𝑁
 ∑ 𝑐�̅�

𝑁
𝑖=1 ,                                                        (3)                            

where N is the number of levels (image resolutions) and 𝑐�̅� is 

the mean contrast in the level l.  The image resolution is 

halved in each subsequent level, where 𝑊𝑙 = 𝑊𝑙−1 2⁄  and 

𝐻𝑙 = 𝐻𝑙−1 2⁄  are the width and height of the image at level 

𝑙 and 𝑐𝑖,𝑗  is the contrast of each pixel, calculated as: 

 𝑐𝑖,𝑗 = ∑ 𝛼|𝑝𝑖,𝑗 − 𝑝𝑘|𝑘𝜖𝐾8
,                                                           (4) 

where pixels 𝑝𝑘 are the 8 neighbouring pixels of 𝑝𝑖,𝑗 and the 

weight α applied to each of the 8 surrounding pixels k is: 

𝛼 = 
1
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Multi-level metrics like RAMMG were developed to assess 

both small and large pixel.  Where large image resolutions 

(>100,000 pixels) provide the detail to compute small, 

localized contrast valued between pixel neighbors, small 

image resolutions (<25,000) provide the opportunity to 

measure the difference between larger areas of brightness 

(i.e. larger neighborhoods).   

The Difference of Gaussian (DOG) measure, developed by 

Tadmor & Tolhurst [18], measures local differences between 

two bi-dimensional Gaussian components with a center 

radius and a surround radius.  In 2009, Simone et al. 

combined the multilevel approach developed for RAMMG 

and the DOG measure to create a multi-level measure called 

Retinal-like Subsampling Contrast (RSC) [19].  These 

metrics are described in more detail in Appendix A.2.  

2.2 Existing Experimental Studies 

Existing research into qualitative lighting performance has 

seen studies which apply subjective rating methods to HDR 



photographs [7, 21-22] or rendered images, usually of a 

simulated office environment [6].  These experiments have 

asked participants to rate images for pleasantness, contrast, 

brightness, spaciousness, and/or distribution which [4] are 

then compared to photometric measurements taken from the 

digital images. 

When using renderings to collect qualitative impressions of 

daylight related to brightness and contrast, it is essential that 

tone-mapping algorithms are used to provide the broadest 

possible luminance range.   In controlled laboratory 

experiments, tone-mapped HDR images have been displayed 

to subjects using 2D or 3D projection, HDR displays, and 

conventional low dynamic range (LDR) displays.  While 

there are now backlit HDR screens which can display 

luminance values up to 4,000 cd/m2 [23], a study by 

Cauwerts in 2013 found that conventional LDR displays of 

200 cd/m2 (with images tone mapped to 256 distinct 

luminance levels) could be used as a surrogate for real world 

spaces to conduct subjective assessments involving contrast 

and brightness [22]. In 2012, Villa and Labayrade developed 

a protocol for lighting quality research using digital images 

distributed through online survey methods.  Their study 

found that 40 subjects were sufficient to measure significant 

effects despite systematic error due to uncontrolled 

conditions (variations in display, background, ambient 

illumination) [24].   

In this paper, the authors use an online survey with tone-

mapped images, accepting the limitations of conventional 

displays in order to reach a broader range of test subjects 

using the method introduced in Section 3.  

3 METHODS 

The experimental objectives presented in this paper are two-

fold:  1) To measure the impact of sky conditions and 

architectural composition on subjective ratings of contrast-

related characteristics in rendered images, and 2) to compare 

the relationship between these subjective ratings and existing 

quantitative contrast measurements.   The first objective is to 

test whether subjects agree on ratings of contrast-based 

visual effects in architectural spaces and whether these 

ratings are sensitive to sunlight dynamics (sky types).  The 

second objective is to compare existing contrast 

measurements and subjective ratings in search of a 

quantitative model for predicting perceptual responses to 

daylight. 

3.1 Architectural Spaces 

For this experiment, the authors modeled nine contemporary 

architectural spaces that display a range of contrast-based 

visual effects.  On the high contrast side of the spectrum, the 

authors selected the Arab World Institute by Jean Nouvel 

(arab), the Zolleverein School by SANAA (zoll), and the 

Serpentine Pavilion by Toyo Ito (serp).  The middle of the 

spectrum contains the Neughebauer House by Richard Meier 

(neug), the Toldeo Glass Museum by SANAA (toledo), and 

the First Unitarian Church by Louis Kahn (first).  Finally, the 

low contrast holds the Poli House by Pezo Von 

Ellrichshausen (poli), the Thermal Baths at Vals by Peter 

Zumthor (vals), and the Menil Gallery by Renzo Piano 

(menil) (Figure 1).  

Each of the selected spaces was modelled in Rhinoceros 

version 5 sr6 and exported to Radiance using the Diva 3.0 

toolbar to produce HDR daylight renderings.  The authors 

did not model temporary artifacts (furniture, people) in order 

to limit visual obstructions and minimize biases toward space 

use.  The PCOND mapping algorithm [25] was used to 

compress HDR images down to conventional computer 

screens (0.5 to 200 cd/m2) as all images in this experiment 

are displayed on personal tablet, laptop, and desktop screens.  

The authors acknowledge the limitations associated with a 

compressed range of values and will use screen technologies 

with an expanded luminance range in a forthcoming 

laboratory-based experiment.   

3.2 Experimental Design 

The experimental design selected for this online study is a 

repetitive 3 x 3 Semi-Latin-Square which allows for the 

comparison of three factors – space, subject group, and sky - 

while limiting experimental fatigue by showing each subject 

9 images, rather than the 27 which are required by a full 

factorial design.  The Semi-Latin-Square allows for 

repetition (in the case of multiple subjects within a given 

group) and nesting (with three architectural examples per sub 

category of high, medium, and low contrast – nine spaces in 

total). Each subject within a group is shown a single 

rendering for of each of the 9 spaces, under one of the 3 sun 

positions (Figure 1).  This methodology was tested in a 

proof-of-concept experiment using a small subject sample 

size and limited range of contrast measures to verify the 

approach [20].  This paper expands that subject pool and 

range of metrics through an online survey. 

To select the dates and times for each rendering within the 

study, the authors divided half the year (from the winter to 

summer solstice) into 28 moments which represent 

symmetrical daily and monthly instances. Each of the nine 

architectural spaces was then rendered for each of the 28 

moments and analyzed in MATLAB R2012b using the 

RAMMG contrast metric (eq. 3) [17], which was selected to 

represent the broader group of neighborhood metrics 

introduced in Section 2.1.  From the assessment of RAMMG 

contrast across these 28 renderings, three images were then 

selected:  the highest, lowest, and mean contrast composition 

for each space.  Based on the mean RAMMG contrast for 

each architectural space, the 9 spaces were then ordered and 

divided into three architectural sub-groups:  high, medium, 

and low. 

Table 1 shows the contrast measures applied to the 27 

renderings selected for this study: both global (Michelson 

and RMS) and local contrast metrics (SC, RAMMG, DOG 

and RSC).  As DOG measurements are dependent on the 

center and surround radii of Gaussian components, the 

authors applied a selection of radii (rc  = 1-4 to rs  = 2-8) based 

on past experiments [18,26]. Local measurements such as 



RAMMG and RSC are dependent on multiple levels within 

the image, therefore the authors looked at each resolution 

level independently. In this study, the original images were 

1488 x 1024 pixels and as each subsequent level is halved, 

we looked at 9 independent image levels for RAMMG 

(RAMM1, RAMM2,…,RAMM9),  and 5-6 levels for RSC, 

depending on the rc  and rs.    

Table 1 List of contrast measures considered in study. 

Global Measures  

 Michelson  Michelson, 1927 A.1 

 RMS Pavel et. Al, 1987 A.1 

Local Measures  

 SC Rockcastle & Andersen, 2014 Eq.1 

 RAMMG Rizzi et al, 2004 Eq.3 

 DOG Tadmor & Tolhurst, 2000 A.2 

 RSC Simone et al., 2009 A.2 

 

3.3 Experimental Procedure 
The online survey designed for this experiment was created 

using Survey Gizmo (http://www.surveygizmo.com/) with a 

branch logic which allowed for random group assignment 

upon subject initiation of the survey link.  The survey was 

distributed using multiple diffusion methods:  email, 

Facebook, LinkedIn, and Twitter over a duration of 10 days. 

Each subject group was asked to respond to some basic 

demographic questions regarding geographic location and 

profession and then shown the nine architectural spaces at 

random, under one of the three possible sky conditions.  For 

example, group 1 (Figure 1) was shown three high contrast 

spaces under sky 1, three medium contrast spaces under sky  

3, and the three low contrast spaces under sky 2.  While 

smartphones were forbidden, we allowed tablet, laptop, and 

desktop computers.  Subjects were asked to turn the 

brightness on their device to maximum, to ensure the 

maximum possible pixel range was observed. 

For each image, subjects were asked to rate the daylight 

composition using the following seven point semantic 

differential scales:  low contrast – high contrast, uniform – 

non-uniform, unvaried – varied, diffuse – direct, simple – 

complex, calming - exciting, sedating – stimulating (Figure 

1).  Flynn introduced the use of semantic differential scales 

to gather subjective assessments of daylight quality in terms 

of visual clarity, spaciousness, evaluation, relaxation, social 

prominence, complexity, modifying influence, and spatial 

modifiers [4].  For the proposed study, the authors have 

focused on scales associated with complexity and spatial 

modifiers as well as visual interest.   

3.4 Data Management  
In total, there were 334 subjects who initiated the survey with 

200 complete responses and 134 partially completed, which 

were discarded.  Interestingly, we did see a significant effect 

on responses from those subjects using tablets.  These 

subjects (4.5%) were discarded as this effect could be due to 

the smaller screen size (which forced subjects to manually 

zoom in to view each image) or the default button format 

which was automatically adjusted in Survey Gizmo on the 

tablet version.  There was no significant effect observed 

between subjects using a laptop or a desktop computer.  Of 

the remaining 175 subjects, 96% selected their English 

language capacity as professional, bilingual, or native, with 

the remaining 4% responding with elementary or limited 

working proficiency.  These subjects were also discarded.   

From the remaining 168 subjects, 64% were composed of 

designers (architecture, landscape, urban, or interior), 36 % 

non-designers, with 55% reporting their expertise in lighting 

design as competent, proficient, or expert, and the remaining 

45% claiming novice or beginner expertise.  There was no 

significant effect observed between subjects with a design 

background or expertise in lighting.  One subject was 

excluded from the analysis because 73% of responses were 

neutral.  We normalized the responses (from 1 to 7) for five 

other subjects, as they did not use either extreme on the rating 

scale.  The remaining 167 subjects were evenly distributed 

among the three groups (G1: 55, G2: 56, G3: 56).  

 

Figure 1 Subjects are first introduced to basic demographic questions, after which they are randomly sorted into one of three 

groups (G1, G2, or G3) and asked to rate the selected images as they are presented in fully randomized order.     

http://www.surveygizmo.com/


3.5 Data Analysis 
To test the significance of experimental factors on the data 

from each rating pair collected in the experiment, a 3-way 

ANOVA was used to test the effects of sky, space, and 

subject group. As the residuals for each rating pair was not 

normally distributed, a post-hoc analysis was conducted 

using Kruskal-Wallis to determine the significance of each 

group within the factor under consideration.   To analyze the 

relationship between subject ratings and existing contrast 

measures, the authors calculated the Spearman’s rank 

correlation coefficient.  Using Spearman’s correlation, the 

authors then selected those combinations of rating-pair and 

contrast measurement with 𝜌𝑠 ≥ 0.70 (𝑝 < 0.0001). A 

cumulative logistic model was then applied to fit the subject 

ratings to selected contrast measures, as the subjective 

ratings are ordinal response scales. 

4 RESULTS 

4.1 Distribution of Subject Responses 

Figure 2 shows stacked bar plots with the distribution of 

subject responses for each level of the seven-point rating 

scale for a selection of 3 spaces (arab, neug, and menil).  

Subject responses are clustered into gradients by color, with 

responses that fall on the left side of the scale (1-3) in cyan 

and responses that fall on the right (5-7) shown in magenta.  

White is used for neutral ratings (4) and the dotted line shows 

where the median responses fall for each rating pair.  The 

most frequent responses (summed by color) are shown as a 

percentage of the total number of responses. There is a 

substantial effect of sky type in some, but not all spaces – 

specifically those that see the most obvious variation in 

daylight composition due to sunlight penetration.  The space 

with strongest subject consensus toward the cyan end of the 

rating scale (low contrast, uniform, unvaried, diffuse, simple, 

calming, subdued) was menil, while the magenta side of the 

rating scale (high contrast, non-uniform, varied, direct, 

complex, exciting, stimulating) was dominated by arab.  

While all rating scales were found to be significantly 

correlated, subject responses for ratings of excitement and 

stimulation were the most highly correlated (𝜌𝑠 = 0.75, 

Spearman’s correlation). 

4.2 Effects of Experiment  
The significance of experimental factors was evaluated using 

a 3-way Anova to test the effects of subject group, space, and 

sky type on each rating scale.  While the ANOVA revealed 

a significant effect of both space and sky factors for all rating 

scales (p<0.01), the residuals were not normally distributed.  

A post-hoc analysis was conducted using Kruskal-Wallis, a 

non-parametric test, to study pair-wise comparisons between 

each group between the factors under consideration within 

each rating.  This test was run for both sky type and space 

group on each of the semantic scales.  This test revealed the 

effect of sky was significant on subject responses to all rating 

scales (p<0.01), except unvaried-varied.     

 

Figure 2 Shows subject ratings for arab, neug, and menil 

under all three sky types.  Ratings are clustered into cyan 

(ratings 1,2,3) and magenta (ratings 5,6,7). 

A pair-wise comparison between sky 1 and sky 3 showed a 

significant effect (p<0.01) on ratings of contrast, uniformity, 

direct, complexity, excitement, and stimulation.  Ratings of 

excitement and stimulation also showed a significant effect 

(p<0.01) between sky 1 and sky 2, which suggest that these 

ratings were more sensitive to the range of sky types 

presented in this experiment. 

To test the effect of space, we grouped the examples into 

high, medium, and low based on the percentage of subject 

responses for all 7 rating pairs magenta cluster 5-7.  In this 

test, there was a significant effect of space between all groups 

in the factor (p<0.001) for all rating pairs.   

 



4.3 Subject Ratings vs. Quantitative Measures 
To relate median subject responses for each rating pair as a 

function of the contrast metrics introduced in Section 2.1, a 

Spearman’s correlation analysis was conducted. Although a 

range of center and surround radii were considered for the 

metrics that rely on Gaussian components (DOG and RSC), 

only the results for rc  = 1 to rs  = 2 are listed here.  No radii 

combinations tested in this study were found to have 

particularly significant correlation to subject responses.    

Table 2 shows that RAMM5 (the 5th resolution level in 

RAMMG - 64 x 93 pixels) achieved the strongest statistical 

dependence to median ratings of diffuse-direct (𝜌𝑠 = 0.77), 

calming-exciting (𝜌𝑠 = 0.78), and subdued-stimulating 

(𝜌𝑠 = 0.77), while RAMMG had the strongest dependence 

with ratings for low contrast – high contrast (𝜌𝑠 = 0.74).  

Using Spearman’s correlation to pre-select contrast metrics 

as possible predictors of visual interest, we selected 

RAMM5, hereafter referred to as ‘Modified Spatial 

Contrast.’   

The authors then applied an ordered logit model to fit the 

Modified Spatial Contrast (RAMM5) to subjective ratings 

for diffuse - direct, calming - exciting, subdued - stimulating 

using ordered logistic regression. The deviance of these fits 

was 8.78, 9.36, and 9.21, respectively. Figure 3 shows the 

application to a proportional odds model to predict subject 

ratings of calming – exciting.  

When we group ratings, such as we did in the cyan and 

magenta gradient plots in Figure 2, we can say that a 

Modified Spatial Contrast of 13 (or more) triggers responses 

of excitement (ratings of 5, 6, or 7) for 63% of subjects, 

whereas a Modified Spatial Contrast of 5 (or less) produces 

responses of calming (ratings of 1, 2, or 3) in 59% of 

subjects.  This probabilistic model provides the first ever 

objective predictor for visual interest in daylit architecture.  

Contrary to those metrics which address task-plane 

illuminance, autonomy from electric energy sources, and 

discomfort glare, Modified Spatial Contrast allows designers 

to compute the probability of achieving specific perceptual 

responses to daylight across the day and year.   

Table 2: Spearman’s correlation coefficients between median subject responses for each rating pair and contrast measure. 

 Michelson RMS SC RAMM5 RAMMG DOG rc=1 rs=2 RSC rc=1 rs=2 

contrast 0.10 0.62 0.52 0.72* 0.74* 0.30 0.17 

uniformity 0.06 0.55 0.44 0.67 0.66 0.32 0.19 

variation 0.08 0.42 0.40 0.58 0.55 0.30 0.19 

direct 0.17 0.59 0.63 0.77* 0.75* 0.50 0.00 

complex 0.14 0.53 0.48 0.65 0.62 0.36 0.14 

exciting 0.06 0.70* 0.70* 0.78* 0.74* 0.38 0.26 

stimulating 0.16 0.61 0.60 0.77* 0.75* 0.31 0.17 
*Rating pair and contrast measurements with 𝜌 ≥ 0.70 (𝑝 < 0.0001) were considered most significant. 

 

 

Figure 3 Ordered logistic regression through RAMM5 and ratings of calming – exciting.   



           

Figure 4 Application of the Modified Spatial Contrast measure to renderings of 56 symmetrical annual moments to predict 

ratings of calming (shown in cyan) or excitement (shown in magenta) in arab, neug, and menil (from left to right). 

Figure 4 shows the application of modified spatial contrast 

(RAMM5) to a selection of three spaces:  arab, neug, and 

menil.  This measure was applied to 56 renderings for each 

space, representing a symmetrical distribution of hourly and 

daily instances and plotted temporally to show an annual 

prediction of excitement. Values in magenta show point-in-

time predictions of excitement while cyan shows 

predications of calming. 

5 CONCLUSION & OUTLOOK 

In conclusion, the experiment presented in this paper resulted 

in the following findings:  1) both space and sky condition 

have a significant effect on subject ratings of contrast, 

direction, complexity, excitement, and stimulation and 2) 

local neighborhood contrast measures such as RAMMG and 

specific levels within than metric (RAMM5, i.e. Modified 

Spatial Contrast) were found to be good predictors of 

contrast-based visual effects, especially ratings of diffuse – 

direct, calming – exciting and subdued – stimulating.  Using 

a cumulative logistic model, this paper introduces a novel 

probabilistic model for predicting subject responses to 

excitement in simulated daylight renderings using an 

objective contrast measure.   

 

While a single point-in-time quantitative analysis may be 

less useful to designers who can evaluate this performance 

qualitatively, modified spatial contrast is useful in its ability 

to predict dynamic effects which may be unanticipated. By 

predicting how visually engaging a space may be (and how 

this changes over time), this research offers a new dimension 

in daylight performance assessment.  Rather than be satisfied 

with the knowledge that a space achieves enough or too much 

daylight, this model evaluates human arousal to daylight 

composition.  

To further validate this approach, the authors will conduct a 

series of upcoming experiments with an expanded set of 

architectural spaces and view parameters.  To limit potential 

error due to screen size, brightness, and tone-mapping, these 

forthcoming experiments will be conducted under controlled 

laboratory conditions using screen technologies with an 

extended view and luminance range.  Future experimental 

parameters will include the assessment of daylight 

composition using immersive viewing techniques achieved 

through a virtual reality headset.  This virtual method is 

currently being tested as a surrogate for extracting qualitative 

lighting assessments in live space and initial findings suggest 

a positive result.  While a single view is convenient for the 

application of digital image measurements, architecture is 

rarely composed of a single space or view position and 

requires more immersive evaluation techniques.   
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APPENDIX A 

A.1 Global Measures 

Michelson =  
𝑃𝑚𝑎𝑥− 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥+ 𝑃𝑚𝑖𝑛
,                                                   

where 𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛 represent the highest and lowest pixel 

intensity. 

RMS = √
1

𝑊𝐻
∑  𝑊

𝑖=1 ∑ (𝑝𝑖,𝑗 − �̅�)2𝐻
𝑗=1                

where 𝑝𝑖,𝑗 are the pixels intensities at position (𝑖, 𝑗) in an 

image of size 𝑊 by 𝐻 and �̅� is the average pixel intensity. 

A.2 Local Measures 

DOG calculates local differences between two bi-

dimensional Gaussian filters with a center component 

𝑅𝑐(𝑥, 𝑦) and a surround component 𝑅𝑠(𝑥, 𝑦): 



𝐷𝑂𝐺(𝑥, 𝑦)  =
𝑅𝑐(𝑥, 𝑦) − 𝑅𝑠(𝑥, 𝑦)

𝑅𝑐(𝑥, 𝑦) + 𝑅𝑠(𝑥, 𝑦)
   

Center and surround components 𝑅𝑐(𝑥, 𝑦) and 𝑅𝑠(𝑥, 𝑦) can 

be found in [18].  The authors have chosen to compute the 

average 𝐷𝑂𝐺(𝑥, 𝑦) across all pixels in a given image with 

width W and height H: 

DOG̅̅ ̅̅ ̅̅ = ∑ ∑ DOG(𝑥𝑖 , 𝑦𝑗)
𝐻
 𝑗=1

𝑊
𝑖=1           

RSC combines the pyramid subsampling method used in 

RAMMG (eq.3) with the DOG measure:                            

RSC =  
1

𝑁
∗  ∑ 𝐷𝑂𝐺̅̅ ̅̅ ̅̅

𝑙
𝑁

𝑙=1 ,                                                    

where N is the number of levels and 𝐷𝑂𝐺̅̅ ̅̅ ̅̅
𝑙 is the mean 

contrast in level 𝑙 [19].    
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