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Proof of Lemma 2. Notice first that we can express the
estimated state z;; as the average of the estimated states
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Y;zlf is the component of Y;;, corresponding to the node
i. From the fact that the consensus algorithm preserves
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averages we have thgt 240, = D jeN NAo —&-.Yt"lf. Then
from the state dynamics and filter update equations (1) and
(5), and the definitions of ®*, W} and I'; we obtain equation
(14) as follows
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From the definitions of &, I'; and W, we obtain directly
equation (15)
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Since we can observe that col (®%) is equal to diag (®%) 1®
I,, the previous equation is equivalent to
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Using the former equation, the mixed-product property of
the Kronecker product' and the definition of e;'§ we obtain
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Given four matrices My, Mo, M3 and My of proper size, the mixed-
product property consists of the fact that (M1 ® M2)(Ms @ My) =
(M1M3) ® (M2M4)4
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equation (16) as follows
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Finally, from the definition of ¢;'%, ; and equation (16) we
have
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Since 17 ® I,, diag (®") is equal to row (®*) and from the

mixed-product property of the Kronecker product we have
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Noting that -+ (11T) ® Ie; is equal to e)'§ we have
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Using the mixed-product property and the fact that
row (&) $1®@ I, = 5 > ® = A = LC the former
equation is equivalent to
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Again, using the mixed-product property we have that
1L, (A-LC)=Iy®(A—-LC)1® I,.
And therefore it follows that
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And finally, from the former equation, the definition of ;'

and the mixed-product property we obtain equation (17).
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Proof of Lemma 3. 1) Since it is given by assumption
that for ¢ < p < 0 we are under the conditions



of Lemma 1, and that assumption A2 holds, then
noting that ||eavg|| < Jleooll and that [legol <

) lleo,oll applying equations (19) and (20)
recurswely we obtain
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where f3 is defined in (21) and is strictly positive and
smaller than 1 by assumption. Repeating this step p
times we have
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Since 0 < B < 1, by using the property of the
geometric series, we get that the expression above is
equal to
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2) Similarly to the previous point, applying equations

(19) and (20) recursively, and following the same steps
as previously we have for ||e, ol|, for any p such that
t+1>p>0.
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We have from (18) that
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from Lemma 1.
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Then we note that since Zply = YpJf + Zpl, =
Yp.1;+2, 0, from the fact that the consensus algorithm
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Therefore for the vector z,41,0 we have
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Zpt10 = 1 (117) ® I,, diag (®%) Yy,

+ IN ® (LC) (117) ® Lepo
+ +(11M e I col (Liv}) .
For the vector Zz,41,0 we have
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5) Since zp;, = Y,1, + 2, which, subtracting both
sides by 1 ® ), is equivalent to e, ;, = Y, +€,'5
we have for the norm of e,
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