Proofs of Lemmas of the Paper Design of a Distributed Quantized Luenberger Filter for Bounded Noise

Francisco F. C. Rego ${ }^{12}$, Ye Pu^{1}, Andrea Alessandretti ${ }^{12}$, A. Pedro Aguiar ${ }^{3}$, Colin N. Jones ${ }^{1}$

Proof of Lemma 2. Notice first that we can express the estimated state $z_{t, l_{f}}^{i}$ as the average of the estimated states plus an error $Y_{t, l_{f}}^{i}$, i.e. $z_{t, l_{f}}^{i}=\sum_{j \in \mathcal{N}} \frac{1}{N} z_{t, l_{f}}^{j}+Y_{t, l_{f}}^{i}$, where $Y_{t, l_{f}}^{i}$ is the component of $Y_{t, l_{f}}$ corresponding to the node i. From the fact that the consensus algorithm preserves averages we have that $z_{t, l_{f}}^{i}=\sum_{j \in \mathcal{N}} \frac{1}{N} z_{t, 0}^{j}+Y_{t, l_{f}}^{i}$. Then from the state dynamics and filter update equations (1) and (5), and the definitions of Φ^{i}, W_{t}^{i} and Γ_{t}^{i} we obtain equation (14) as follows

$$
\begin{aligned}
e_{t+1,0}^{i} & =A\left(x_{t}-z_{t, l_{f}}^{i}\right)-L^{i}\left(C^{i} x_{t}+v_{t}^{i}-C^{i} z_{t, l_{f}}^{i}\right)+w_{t} \\
& =A\left(x_{t}-\sum_{j \in \mathcal{N}} \frac{1}{N} z_{t, 0}^{j}-Y_{t, l_{f}}^{i}\right) \\
& -L^{i}\left(C^{i} x_{t}+v_{t}^{i}-C^{i} \sum_{j \in \mathcal{N}} \frac{1}{N} z_{t, 0}^{j}-C^{i} Y_{t, l_{f}}^{i}\right) \\
& +w_{t} \\
& =\Phi^{i}\left(x_{t}-\sum_{j \in \mathcal{N}} \frac{1}{N} z_{t, 0}^{j}\right)-\Gamma_{t}^{i}+W_{t}^{i} \\
& =\sum_{j \in \mathcal{N}} \frac{1}{N} \Phi^{i} e_{t, 0}^{j}-\Gamma_{t}^{i}+W_{t}^{i}
\end{aligned}
$$

From the definitions of Φ, Γ_{t} and W_{t} we obtain directly equation (15)

$$
\begin{aligned}
e_{t+1,0} & =\Phi e_{t, 0}-\Gamma_{t}+W_{t} \\
& =\frac{1}{N} \operatorname{col}\left(\Phi^{i}\right) \mathbf{1}^{T} \otimes I_{n} e_{t, 0}-\Gamma_{t}+W_{t}
\end{aligned}
$$

Since we can observe that $\operatorname{col}\left(\Phi^{i}\right)$ is equal to $\operatorname{diag}\left(\Phi^{i}\right) \mathbf{1} \otimes$ I_{n} the previous equation is equivalent to

$$
e_{t+1,0}=\frac{1}{N} \operatorname{diag}\left(\Phi^{i}\right) \mathbf{1} \otimes I_{n} \mathbf{1}^{T} \otimes I_{n} e_{t, 0}-\Gamma_{t}+W_{t}
$$

Using the former equation, the mixed-product property of the Kronecker product ${ }^{1}$ and the definition of $e_{t, 0}^{\text {avg }}$ we obtain

[^0]equation (16) as follows
\[

$$
\begin{aligned}
e_{t+1,0} & =\operatorname{diag}\left(\Phi^{i}\right) \frac{1}{N}\left(\mathbf{1 1}^{T}\right) \otimes I_{n} e_{t, 0}-\Gamma_{t}+W_{t} \\
& =\operatorname{diag}\left(\Phi^{i}\right) e_{t, 0}^{\text {avg }}-\Gamma_{t}+W_{t}
\end{aligned}
$$
\]

Finally, from the definition of $e_{t+1,0}^{\text {avg }}$ and equation (16) we have

$$
\begin{aligned}
e_{t+1,0}^{\operatorname{avg}} & =\frac{1}{N}\left(\mathbf{1 1}^{T}\right) \otimes I_{n} e_{t+1,0} \\
& =\frac{1}{N}\left(\mathbf{1 1}^{T}\right) \otimes I_{n}\left(\operatorname{diag}\left(\Phi^{i}\right) e_{t, 0}^{\operatorname{avg}}\right. \\
& \left.-\Gamma_{t}+W_{t}\right)
\end{aligned}
$$

Since $1^{T} \otimes I_{n} \operatorname{diag}\left(\Phi^{i}\right)$ is equal to row $\left(\Phi^{i}\right)$ and from the mixed-product property of the Kronecker product we have

$$
\begin{aligned}
e_{t+1,0}^{\mathrm{avg}} & =\frac{1}{N} \mathbf{1} \otimes I_{n} \text { row }\left(\Phi^{i}\right) e_{t, 0}^{\mathrm{avg}} \\
& +\frac{1}{N}\left(\mathbf{1 1}^{T}\right) \otimes I_{n}\left(W_{t}-\Gamma_{t}\right)
\end{aligned}
$$

Noting that $\frac{1}{N}\left(\mathbf{1 1}^{T}\right) \otimes I_{n} e_{t, 0}^{\text {avg }}$ is equal to $e_{t, 0}^{\text {avg }}$ we have

$$
\begin{aligned}
e_{t+1,0}^{\mathrm{avg}} & =\frac{1}{N} \mathbf{1} \otimes I_{n} \text { row }\left(\Phi^{i}\right) \frac{1}{N}\left(\mathbf{1 1}^{T}\right) \otimes I_{n} e_{t, 0}^{\mathrm{avg}} \\
& +\frac{1}{N}\left(\mathbf{1 1}^{T}\right) \otimes I_{n}\left(W_{t}-\Gamma_{t}\right)
\end{aligned}
$$

Using the mixed-product property and the fact that row $\left(\Phi^{i}\right) \frac{1}{N} \mathbf{1} \otimes I_{n}=\frac{1}{N} \sum_{j \in \mathcal{N}} \Phi^{j}=A-L C$ the former equation is equivalent to

$$
\begin{aligned}
e_{t+1,0}^{\operatorname{avg}} & =\frac{1}{N} \mathbf{1} \otimes I_{n}(A-L C) \mathbf{1}^{T} \otimes I_{n} e_{t, 0}^{\operatorname{avg}} \\
& +\frac{1}{N}\left(\mathbf{1 1}^{T}\right) \otimes I_{n}\left(W_{t}-\Gamma_{t}\right)
\end{aligned}
$$

Again, using the mixed-product property we have that

$$
\mathbf{1} \otimes I_{n}(A-L C)=I_{N} \otimes(A-L C) \mathbf{1} \otimes I_{n}
$$

And therefore it follows that

$$
\begin{aligned}
e_{t+1,0}^{\mathrm{avg}} & =I_{N} \otimes(A-L C) \frac{1}{N} \mathbf{1} \otimes I_{n} \mathbf{1}^{T} \otimes I_{n} e_{t, 0}^{\mathrm{avg}} \\
& +\frac{1}{N}\left(\mathbf{1 1}^{T}\right) \otimes I_{n}\left(W_{t}-\Gamma_{t}\right)
\end{aligned}
$$

And finally, from the former equation, the definition of $e_{t, 0}^{\text {avg }}$ and the mixed-product property we obtain equation (17).

Proof of Lemma 3. 1) Since it is given by assumption that for $t \leq p \leq 0$ we are under the conditions
of Lemma 1, and that assumption A2 holds, then noting that $\left\|e_{0,0}^{\text {avg }}\right\| \leq\left\|e_{0,0}\right\|$ and that $\left\|e_{0,0}\right\| \leq$ $\max (1, \stackrel{\bar{\Phi}}{\tilde{\beta}})\left\|e_{0,0}\right\|$ applying equations (19) and (20) recursively we obtain

$$
\begin{aligned}
& \left\|e_{p+1,0}^{\operatorname{avg}}\right\| \leq \tilde{\beta}\left\|e_{p, 0}^{\text {avg }}\right\|+\bar{\Phi} \alpha^{l_{f}}\left\|e_{p, 0}\right\| \\
& \quad+\bar{\Phi} \alpha^{l_{f}} k_{6} \frac{a \beta^{p}+b}{2^{n_{b}}}+\epsilon \\
& \quad \leq \bar{\beta}\left(\tilde{\beta}\left\|e_{p-1,0}^{\mathrm{avg}}\right\|+\bar{\Phi} \alpha^{l_{f}}\left\|e_{p-1,0}\right\|\right. \\
& \left.\quad+\bar{\Phi} \alpha^{l_{f}} k_{6} \frac{a \beta^{p-1}+b}{2^{n_{b}}}+\epsilon\right) \\
& \quad+\bar{\Phi} \alpha^{l_{f}} k_{6} \frac{a \beta^{p}+b}{2^{n_{b}}}+\epsilon \\
& \quad=\bar{\beta}\left(\tilde{\beta}\left\|e_{p-1,0}^{\mathrm{avg}}\right\|+\bar{\Phi} \alpha^{l_{f}}\left\|e_{p-1,0}\right\|\right) \\
& \quad+\sum_{\tau=0}^{1} \bar{\beta}^{\tau}\left(\bar{\Phi} \alpha^{l_{f}} k_{6} \frac{a \beta^{p-\tau}+b}{2^{n_{b}}}+\epsilon\right),
\end{aligned}
$$

where $\bar{\beta}$ is defined in (21) and is strictly positive and smaller than 1 by assumption. Repeating this step p times we have

$$
\begin{aligned}
\left\|e_{p+1,0}^{\operatorname{avg}}\right\| & \leq \bar{\beta}^{p+1}\left\|e_{0,0}\right\| \\
& +\sum_{\tau=0}^{p} \bar{\beta}^{\tau}\left(\bar{\Phi} \alpha^{l_{f}} k_{6} \frac{a \beta^{p-\tau}+b}{2^{n_{b}}}+\epsilon\right) \\
& \leq \bar{\beta}^{p+1}\left[\left\|e_{0,0}\right\|+\alpha^{l_{f}} \bar{\Phi} k_{6} \frac{a}{2^{n_{b}}} \sum_{\tau=0}^{p} \bar{\beta}^{\tau-p-1} \beta^{p-\tau}\right] \\
& +\epsilon \sum_{\tau=0}^{p} \bar{\beta}^{\tau}+\bar{\Phi} \alpha^{l_{f}} k_{6} \frac{b}{2^{n_{b}}} \sum_{\tau=0}^{p} \bar{\beta}^{\tau} \\
& \leq \beta^{p+1}\left[\left\|e_{0,0}\right\|+\alpha^{l_{f}} \bar{\Phi} k_{6} \frac{a}{2^{n_{b}}} \sum_{\tau=0}^{p} \frac{\bar{\beta}^{\tau}}{\beta^{\tau+1}}\right] \\
& +\epsilon \sum_{\tau=0}^{p} \bar{\beta}^{\tau}+\bar{\Phi} \alpha^{l_{f}} k_{6} \frac{b}{2^{n_{b}}} \sum_{\tau=0}^{p} \bar{\beta}^{\tau} .
\end{aligned}
$$

Since $0<\beta<1$, by using the property of the geometric series, we get that the expression above is equal to

$$
\begin{aligned}
& \left\|e_{p+1,0}^{\text {avg }}\right\| \leq \\
& \quad \leq \beta^{p+1}\left[\left\|e_{0,0}\right\|+\frac{\bar{\Phi} \alpha^{l} k_{6}\left(1-\left(\frac{\bar{\beta}}{\beta}\right)^{p+1}\right)}{\beta\left(1-\frac{\bar{\beta}}{\beta}\right)} \frac{a}{2^{n_{b}}}\right] \\
& \quad+\frac{\epsilon}{1-\bar{\beta}}+\frac{\bar{\Phi} \alpha^{l} f k_{6}}{1-\bar{\beta}} \frac{b}{2^{n_{b}}} \\
& \quad \leq \beta^{p+1}\left[\left\|e_{0,0}\right\|+\frac{\bar{\Phi} \alpha^{l} f k_{6}}{\beta-\bar{\beta}} \frac{a}{2^{n} b_{b}}\right] \\
& \quad+\frac{\epsilon}{1-\beta}+\frac{\bar{\Phi} \alpha^{l} f k_{6}}{1-\beta} \frac{b}{2^{n_{b}}} .
\end{aligned}
$$

2) Similarly to the previous point, applying equations (19) and (20) recursively, and following the same steps as previously we have for $\left\|e_{p, 0}\right\|$, for any p such that $t+1 \geq p \geq 0$.

$$
\begin{aligned}
\left\|e_{p, 0}\right\| & \leq \max \left(1, \frac{\bar{\Phi}}{\tilde{\beta}}\right)\left(\beta^{p}\left[\left\|e_{0,0}\right\|+\frac{\bar{\Phi} \alpha^{l} f k_{6}}{\beta-\bar{\beta}} \frac{a}{2^{n_{b}}}\right]\right. \\
& \left.+\frac{\epsilon}{1-\beta}+\frac{\bar{\Phi} \alpha^{l} k_{6}}{1-\beta} \frac{b}{2^{n_{b}}}\right) .
\end{aligned}
$$

3) We have from (18) that

$$
\begin{aligned}
\left\|Y_{p, 0}\right\| & \leq\left\|e_{p, 0}\right\| \\
& \leq \max \left(1, \frac{\bar{\Phi}}{\tilde{\beta}}\right)\left(\beta^{p}\left[\left\|e_{0,0}\right\|+c_{8} \frac{a}{2^{n_{b}}}\right]\right. \\
& \left.+\frac{\epsilon}{1-\bar{\beta}}+d_{8} \frac{b}{2^{n_{b}}}\right), \forall t+1 \geq p \geq 0
\end{aligned}
$$

Moreover we have

$$
\begin{aligned}
\left\|Y_{p, l}\right\| & \leq \alpha^{l}\left[\left\|Y_{p, 0}\right\|+k_{6} \frac{a \beta^{p}+b}{2^{n_{b}}}\right] \\
& \leq \alpha^{l}\left[\beta^{p}\left[\max \left(1, \frac{\bar{\Phi}}{\tilde{\beta}}\right)\left\|e_{0,0}\right\|+c_{7} \frac{a}{2^{n_{b}}}\right]\right. \\
& \left.+\frac{\max \left(1, \frac{\bar{\Phi}}{\beta}\right) \epsilon}{1-\tilde{\beta}}+d_{7} \frac{b}{2^{n_{b}}}\right], \\
& \forall t \geq p \geq 0, l_{f} \geq l \geq 0 .
\end{aligned}
$$

from Lemma 1.
4) Then we note that since $z_{p, l_{f}}=Y_{p, l_{f}}+z_{p, l_{f}}^{\mathrm{avg}}=$ $Y_{p, l_{f}}+z_{p, 0}^{\mathrm{avg}}$, from the fact that the consensus algorithm preserves averages, and $x_{p}=\frac{1}{N} \sum_{i \in \mathcal{N}} e_{p, 0}^{i}+z_{p, 0}^{i}$ we have

$$
\begin{aligned}
& z_{p+1,0}^{i}=A z_{p, l_{f}}^{i}+L^{i}\left(y_{p}^{i}-C^{i} z_{p, l_{f}}^{i}\right) \\
& \quad=\Phi^{i} z_{p, l_{f}}^{i}+L^{i} y_{p}^{i} \\
& \quad=\Phi^{i} z_{p, l_{f}}^{i}+L^{i}\left(C^{i} x_{p}+v_{p}^{i}\right) \\
& \quad=\Phi^{i} z_{p, l_{f}}^{i}+L^{i} C^{i} x_{p}+L^{i} v_{p}^{i} \\
& \quad=\Phi^{i}\left(Y_{p, l_{f}}^{i}+\frac{1}{N} \sum_{j \in \mathcal{N}} z_{p, 0}^{j}\right) \\
& \quad+L^{i} C^{i}\left(\frac{1}{N} \sum_{j \in \mathcal{N}} e_{p, 0}^{j}+z_{p, 0}^{j}\right)+L^{i} v_{p}^{i} \\
& \quad=\Phi^{i} Y_{p, l_{f}}^{i}+A \frac{1}{N} \sum_{j \in \mathcal{N}} z_{p, 0}^{j} \\
& \quad+L^{i} C^{i} \frac{1}{N} \sum_{j \in \mathcal{N}} e_{p, 0}^{j}+L^{i} v_{p}^{i} .
\end{aligned}
$$

Therefore for the vector $z_{p+1,0}$ we have

$$
\begin{aligned}
& z_{p+1,0}=\operatorname{diag}\left(\Phi^{i}\right) Y_{p, l_{f}} \\
& \quad+I_{N} \otimes A z_{p, 0}^{\mathrm{avg}} \\
& \quad+\operatorname{diag}\left(L^{i} C^{i}\right) \frac{1}{N}\left(\mathbf{1 1}^{T}\right) \otimes I_{n} e_{p, 0} \\
& \quad+\operatorname{col}\left(L^{i} v_{p}^{i}\right)
\end{aligned}
$$

and, noting that $\sum_{i \in \mathcal{N}}\left(L^{i} C^{i}\right)=N L C$, we have

$$
\begin{aligned}
& z_{p+1,0}^{\text {avg }}=\frac{1}{N}\left(\mathbf{1 1}^{T}\right) \otimes I_{n} \operatorname{diag}\left(\Phi^{i}\right) Y_{t, l_{f}} \\
& \quad+I_{N} \otimes A z_{p, 0}^{\text {apg }} \\
& \quad+I_{N} \otimes(L C) \frac{1}{N}\left(\mathbf{1 1}^{T}\right) \otimes I_{n} e_{p, 0} \\
& \quad+\frac{1}{N}\left(\mathbf{1 1}^{T}\right) \otimes I_{n} \operatorname{col}\left(L^{i} v_{p}^{i}\right)
\end{aligned}
$$

For the vector $\bar{z}_{p+1,0}$ we have

$$
\begin{aligned}
& \bar{z}_{p+1,0}=I_{N} \otimes A Q_{p, l_{f}-1}\left(z_{p, l_{f}-1}\right) \\
& \quad=I_{N} \otimes A\left[Q_{p, L-1}\left(z_{p, l_{f}-1}\right)-z_{p, l_{f}-1}\right] \\
& \quad+I_{N} \otimes A z_{p l_{f}-1} \\
& \quad=I_{N} \otimes A\left[Q_{p, l_{f}-1}\left(z_{p, l_{f}-1}\right)-z_{p, l_{f}-1}\right] \\
& \quad+I_{N} \otimes A Y_{p, l_{f}-1} \\
& \quad+I_{N} \otimes A z_{p, 0}^{\mathrm{avg}},
\end{aligned}
$$

and finally

$$
\begin{aligned}
& \left\|\bar{z}_{p+1,0}-z_{p+1,0}^{\operatorname{avg}}\right\| \leq\|A\| \frac{\left(a \beta^{p}+b\right) \alpha^{l_{f}-1} \sqrt{N n}}{2^{n_{b}+1}} \\
& \quad+\|A\|\left\|Y_{p, l_{f}-1}\right\| \\
& \quad+\quad \bar{\Phi}\left\|Y_{p, l_{f}}\right\|+\|L C\|\left\|e_{p, 0}\right\| \\
& \quad+\sqrt{N} \max _{j \in \mathcal{N}}\left\|L^{j}\right\| \epsilon_{v}^{j} \\
& \quad \leq c_{5} \beta^{p}\left\|e_{0,0}\right\|+c_{6} \beta^{t} \frac{a}{2^{n_{b}}}+d_{5}+d_{6} \frac{b}{2^{n_{b}}} .
\end{aligned}
$$

5) Since $z_{p, l_{f}}=Y_{p, l_{f}}+z_{p, 0}^{\text {avg }}$, which, subtracting both sides by $\mathbf{1} \otimes x_{p}$, is equivalent to $e_{p, l_{f}}=Y_{p, l_{f}}+e_{p, 0}^{\text {avg }}$ we have for the norm of $e_{p, l_{f}}$

$$
\begin{aligned}
& \left\|e_{p, l_{f}}\right\| \leq\left\|Y_{p, l_{f}}\right\|+\left\|e_{p, 0}^{\operatorname{avg}}\right\| \\
& \quad \leq \beta^{p}\left[\left(1+\alpha^{l_{f}} \max \left(1, \frac{\bar{\Phi}}{\tilde{\beta}}\right)\right)\left\|e_{0,0}\right\|\right. \\
& \left.\quad+\left(c_{8}+\alpha^{l_{f}} c_{7}\right) \frac{a}{2^{n_{b}}}\right] \\
& \quad+\left(1+\alpha^{l_{f}} \max \left(1, \frac{\bar{\Phi}}{\tilde{\beta}}\right)\right) \frac{\epsilon}{1-\tilde{\beta}} \\
& \quad+\left(d_{8}+\alpha^{l_{f}} d_{7}\right) \frac{b}{2^{n_{b}}}, \forall t+1 \geq p \geq 1
\end{aligned}
$$

ACKNOWLEDGMENT

The first author benefited from grant SFRH/BD/51929/2012 of the Foundation for Science and Technology (FCT), Portugal, and the third author benefited from grant SFRH/BD/51450/2011 of FCT, Portugal.

[^0]: ${ }^{1}$ Francisco F. C. Rego, Ye Pu, Andrea Alessandretti and Colin N. Jones are with LA3, STI, EPFL, Lausanne, Switzerland \{ francisco.fernandescastrorego, y.pu, andrea.alessandretti, colin.jones \} @epfl.ch
 ${ }^{2}$ Francisco F. C. Rego and Andrea Alessandretti are with ISR, IST, ULisboa, Lisbon, Portugal
 ${ }^{3}$ A. Pedro Aguiar is with the University of Porto (FEUP), Portugal, and Laboratory of Robotics and Systems in Engineering and Science (LARSyS), Lisbon, Portugal, pedro. aguiar@fe.up.pt
 ${ }^{1}$ Given four matrices M_{1}, M_{2}, M_{3} and M_{4} of proper size, the mixedproduct property consists of the fact that $\left(M_{1} \otimes M_{2}\right)\left(M_{3} \otimes M_{4}\right)=$ $\left(M_{1} M_{3}\right) \otimes\left(M_{2} M_{4}\right)$.

