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Abstract
The objective of this thesis is to develop efficient numerical schemes to successfully tackle problems

arising from the study of groundwater flows in a porous saturated medium; we deal therefore with

partial differential equations(PDE) having random coefficients and we are interested in computing

statistics related to specific quantities of interest (QoI), e.g. a linear functional of the solution of the

PDE or the solution itself. We mainly consider the approximation of the pressure in the medium

through a stochastic Darcy problem with random lognormally distributed permeability relying on

Matérn-type covariance functions to take into account a wide range of possible smoothness of

the permeability field. Once the problem has been reformulated in terms of a countable number

of random variables, we analyze sparse grid polynomial approximations of the QoI. We propose

different strategies to exploit the anisotropicity of the QoI with respect to the different random

entries; to this end we consider “a priori” and “a posteriori” strategies to drive the exploration of

the multi-index set that defines the sparse grid, associating a profit to each multi-index either by

using explicit theoretical estimates or by actually solving the PDE and computing on the fly the

corresponding sparse grid interpolant. We show on several numerical examples the effectiveness

of this strategy in treating the case of smooth permeability fields. In order to cover also the case of

rough input permeabilities we consider, instead, Multi Level Monte Carlo techniques based on the

use of a suitable control variate. Such a control variate is obtained from the solution of an auxiliary

Darcy problem with a regularized input permeability which leads to pressure distributions that are

smoother and less oscillatory than the original ones, but still highly correlated with them. We use

then a sparse grid approximation to compute effectively the mean of the control variate and provide

explicit bounds for the corresponding estimator as well as a complexity result.

We also consider groundwater transport problems and focus, in particular, on arrival times properly

defined starting from particle trajectories driven by the stochastic Darcy velocity and subject to

molecular diffusion taking place at porous level. In this case, by using suitable PDEs whose solution

can be linked to specific expectations (with respect to all Brownian motions) thanks to the famous

Feynman-Kac formula, we compute statistics of such arrival times, e.g. their expected value or the

probability of exiting the physical domain in a given time horizon. We discuss several scenarios

and readapt the methodologies previously developed involving adaptive sparse grid stochastic

collocation and Monte Carlo type schemes to this case.

Key words: Stochastic Darcy Problem, Lognormal random fields, Multi Level Monte Carlo, Control

variate, Stochastic Collocation, Adaptive Sparse Grid , Matérn covariance, Groundwater problems,

Well catchments, Capture zones
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Introduction

In this thesis we study and analyze from both, a theoretical and a numerical point of view, the so

called groundwater flow problem. The problem consists in characterizing a single phase flow taking

place in a saturated porous medium with random properties. The first step to make this problem

suitable for a proper analysis is to choose an appropriate underlying mathematical model able to

well represent the phenomenon; with such mathematical model at our disposal then, the process

that should ideally lead us towards an accurate numerical approximation of a desired quantity of

interest, requires to properly estimate all the parameters / quantities involved in the model and,

finally, to perform a discretization of the problem and apply numerical methods to compute its

approximate solution. Of course such process involves several steps and, a priori, in each of those

steps there is a potential source of errors.

The problem of studying a single phase flow taking place in a saturated porous medium has a great

importance in hydrology: in such context it is pretty common to face a lack of knowledge of the

properties of the porous medium, typically an aquifer. This makes an accurate prediction of specific

quantities of interest unfeasible and suggests to consider the problem in a more general framework,

namely the Uncertainty Quantification (UQ) framework.

In the following sections we go through the motivations that inspired this work, we introduce the

problem in such UQ framework and we detail the structure of the dissertation.

Motivations

Our goal is to develop different tools to deal with the uncertainty in the properties of the subsurface.

As previously anticipated, we have to face a lack of knowledge possibly due to different reasons,

such as:

• lack of available measurements to accurately reconstruct some specific properties of the

medium: permeability, porosity etc. can not be measured point-wise because of budget

constraints, so, typically, we know their values only in a limited number of locations;

• errors coming from measurements: even if we were able to measure point-wise such proper-

ties we would have to deal with errors due to instruments’ precision.

In the thesis we will always assume to have reliable mathematical models, i.e. not affected them

selves by any uncertainty and potentially able to exactly describe the reality. At the same time

we will assume to be able to characterize the uncertainty related to such specific properties in a

probabilistic framework; this means that all the uncertain inputs we will deal with in this thesis will
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be described in terms of suitable random variables or random fields. Throughout this work we will

assume to know the law of such random input quantities.

Starting from these assumptions, we want to estimate how the uncertainty related to the input

parameters propagates through the model and how it directly affects the desired quantity of interest

(QoI), or system response (pressure or velocity).

Forward UQ Problem

The general framework previously introduced has been widely adopted during the last few years.

Since in such situation we assume to know the uncertainty related to the inputs of our system and

we want to quantify the impact of such uncertainty on the outputs, we refer to this problem as

a “forward uncertainty quantification problem”, in contrast to the so called “inverse uncertainty

quantification problem”, in which we aim at recovering the properties of the medium by matching

the values of the outputs of our system with the ones obtained with experimental measurements.

In this thesis we deal only with the former class of problems; the mathematical model used to

represent the system will be always a suitable PDE, whose coefficients, boundary conditions or

external forcing terms will be modeled as random quantities. In particular, we will always assume to

be able to parametrize the input uncertainty with respect to a countable sequence of i .i .d . random

variables yn , with n ∈N.

The goal of solving such forward UQ problem is then to compute the law or some statistics of a QoI

Q related to the output of the system that will depend on y = {yn}n∈N. Depending on the smoothness

of the map y →Q(y) different strategies can be used in order to numerically solve the problem. In

any case, to make the problem suitable for a numerical approximation, we need to consider only a

finite number of random variables. The typical situation we will address is that of an input spatially

distributed random field that can suitably be expanded in series involving random coefficients

{y1, y2, ...}. Since the series is convergent (in a proper norm) this naturally introduces an ordering

and ranking of the random variables {yn}n∈N whose influence on the QoI will become less and less

important as n increases. This motivates truncating the series and retaining only a finite number N

of the (most important) random variables. In some cases we will need to keep a large number N

of random variables in order to accurately estimate the output of the system while in others it will

suffice to consider only a moderate number N . This fact, in turn, significantly affects the choice of

possible numerical methods that could be used to solve the problem.

Monte Carlo sampling [68] is the easiest approach to solve such forward UQ problems; it just requires

generating M independent samples {yi }M
i=1, solving the corresponding M PDEs and averaging over

all the samples to obtain an estimation of the desired QoI Q. The method is very popular since it

has a straightforward implementation and it is quite robust with respect to the size N of the vector

y. On the other hand it has the drawback of presenting poor performances in terms of convergence

rate, since the associated error decays as σ/
	

M , being σ the standard deviation of Q(y).

Many methods have been proposed to improve the convergence properties of MC; they can be

essentially grouped in two categories: sampling and deterministic schemes. The first group includes

mostly MC -type schemes, i.e. methods that generate different outputs every time they are launched

due to their “random” (or “pseudo-random” nature), while in the second group we find mainly

methods that use suitable grids built on specific classes of points to discretize the sample space

2
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RN and that reconstruct the solution by using projection or interpolation techniques and compute

quantities of interest thanks to suitable quadrature formulas.

Outline

The outline of the thesis is the following:

• Chapter 1: it represents the Thesis overview: after a very brief introduction of the Darcy

problem the next subsections briefly report the main results obtained in the thesis that will

be then fully detailed in the following chapters.

• Chapter 2: in this brief Chapter we introduce more in detail the stochastic Darcy Problem and

the related theoretical results mainly concerning well posedness of the problem, regularity of

the solution, finite element approximation and introducing the truncated Darcy problem, i.e.

y = {yn}N
n=1. In the last section of the chapter we present the sampling techniques that will be

constantly used along the work.

• Chapter 3: here we deal with advanced sparse grid techniques supporting quadrature and

interpolation on unbounded sets; in particular, we detail different strategies that allow to

explore the anisotropy of the mapping y →Q(y), y ∈RN , and propose several indicators able

to drive the exploration of the probabilistic space; then, in a second moment, we extend such

routine to adaptively select the dimension N by relying on a certain ordering of the random

variables. Numerical tests will be provided in order to show the effectiveness of the proposed

methods.

• Chapter 4: here we use the methodology developed in the previous chapter and build an

auxiliary smoothed Darcy problem that is used as a control variate to accelerate the com-

putation of the original QoI. The Darcy problem is contextualized in a classical MC and in

a more advanced Multi Level Monte Carlo (MLMC) framework; in both cases we use the

control variate in order to reduce the variance of the corresponding estimator and the overall

computational cost needed to achieve a desired tolerance. Numerical experiments and a

comparison with MC and MLMC methods are reported.

• Chapter 5: in this chapter we develop some numerical tools to deal with groundwater trans-

port problems. We consider suitable arrival times related to particle trajectories driven by

the Darcy velocity and subject to molecular diffusion. We extend then the methodology

previously developed to this class of problems and deal with problems such as the delineation

of the so called capture zones, i.e. the zones starting from which a particle reaches a prescribed

location of the aquifer, for instance an extracting pumping well, with a desired probability in

a finite or infinite time horizon.

Most of the material presented in Chapter 3 is based on the paper: F. Nobile, L. Tamellini, F. Tesei and

R. Tempone, An adaptive sparse grid algorithm for elliptic PDEs with lognormal diffusion coefficient,

and it is the last of a series of papers of my coauthors and other collaborators focusing on sparse

grid approximations; based on these past works, in this paper my contribution has been mainly

to develop the adaptive strategy for fixed N and its dimension adaptive counterpart to achieve an

enhanced version of the code capable to deal also with high dimensional problems. The paper has
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been accepted for publication as a proceeding of the workshop Sparse Grid ans Application 2014,

held in Stuttgart; it is available as MATHISCE report 4/2015.

Chapter 4 is based on the paper: F. Nobile and F. Tesei, A Multi Level Monte Carlo method with control

variate for elliptic PDEs with log-normal coefficients. This work represents my main contribution in

this Thesis: here we consider a particular MC-type estimator based on the introduction of a suitable

control variate and provide a rigorous analysis of the associated statistical error as well as numerical

results to show the effectiveness of this approach. The paper has been published on the Journal

Stochastic Partial Differential Equations: Analysis and Computations.

The material in Chapter 5 is still unpublished and it will be hopefully finalized in one or two

publications in the next months. This is a joint work with F. Nobile ans S. Krumscheid in which

we deal with transport problems and propose basically two new approaches, one related to the

use of the Feynman-Kac formula and one that uses a suitable streamline formulation, to efficiently

compute specific quantities of interest which are particularly relevant in the hydrology field.
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1 Thesis Overview

In this chapter, after having briefly introduced the stochastic Darcy problem,we put in evidence

the main ideas and results of the Thesis. Each section refers to a specific subsequent Chapter.

In Section 1.1 we introduce the Darcy problem and the main concepts and definitions that are

needed to understand the next sections. Sections 1.2 and 1.3 present different methodologies able

to efficiently solve the Darcy problem; in the former among deterministic methods we consider

an adaptive sparse grid scheme to deal with the input uncertainty while in the latter we move to

sampling schemes and consider a Multi Level Monte Carlo approach that is based on the use of a

suitable control variate. In Section 1.4 we consider the problem of computing statistics related to the

arrival time of particles to specific boundaries of the domain; we address here different scenarios,

arising from hydrology applications, and focus on modeling and methodological issues.

1.1 Problem setting

In this section we provide all the necessary information to understand what is stated in the next

sections of this Chapter. Therefore we will anticipate some of the results that then will be fully and

rigorously addressed in the next Chapter 2.

Let us consider the mathematical problem given by the following elliptic stochastic Partial Differen-

tial Equation (PDE)⎧⎪⎪⎪⎨⎪⎪⎪⎩
−div(a(x,ω)∇∇∇p(x,ω)) = f (x) x ∈ D,

p(x,ω) = g (x) x ∈ ΓD ,

∇p(x,ω) ·n = 0 x ∈ ΓN ,

(1.1)

where D ∈RN is a bounded open domain, ΓD and ΓN represent the Dirichlet and Neumann bound-

aries and g the corresponding Dirichlet datum. We are interested in studying equation (1.1) since

it is widely used to describe the Darcy flow taking place in saturated porous media in which p

represents the pressure and a plays the role of the permeability of the medium. In typical situations

the input diffusion coefficient a (permeability) is not entirely known; hence, to take into account

in the model this lack of knowledge, the permeability is modeled as a random field indexed with

respect to the spatial variable x and a random event ω: this turns (1.1) into a random PDE (PDE with

random input data) . In particular ∀xi ∈ D the quantity a(xi ,ω) represents a positive real-valued

random variable defined on a probability space (Ω,F ,P). By denoting with H 1(D) the space of
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Chapter 1. Thesis Overview

square integrable functions with square integrable partial derivatives on D, and with H 1
ΓD

(D) the

space of H 1(D)-functions that vanish on the Dirichlet boundary ΓD , the variational formulation

associated with problem (1.1) is: find p ∈ H 1(D) such that p = g on ΓD and

bω(p(·,ω), v(·)) = L(v(·)), ∀v ∈ H 1
ΓD

(D),

where the bilinear form bω (parametrized by ω) and the linear functional L are defined as:

bω(u, v) =
∫

D
a(x,ω)∇u(x,ω)∇v(x)dx, L(v) =

∫
D

f (x)v(x)dx.

Assuming to have sufficient regularity on the forcing term f and on the domain D , for any realization

of the random field, i.e. by fixing a particular event ωi , and provided that the diffusion coefficient a

is regular enough, it is possible to directly apply Lax-Milgram theorem to straightforwardly deduce

existence and uniqueness of the solution p in the space H 1(D). However, since in hydrology

applications the permeability is often modeled as a lognormally distributed random field, we are

not able to obtain a uniform coercivity of the bilinear form bω with respect to ω, and hence, in order

to extend classical results on elliptic problems to this uncertain scenario, we need to ensure some

Lq
P

(Ω)-integrability of the continuity and coercivity constants related to the bilinear form bω, where

Lq
P

(Ω) denotes the space of functions which are q-integrable with respect to the probability measure

P, i.e.

Lq
P

(Ω) =
{

f : Ω→R s.t.
∫
Ω
| f (ω)|qP(dω) <∞

}
.

We can therefore say that equation (1.1) holds in an almost sure sense (a.s.) and that it admits a

unique solution in the Bochner space Lq
P

(Ω, H 1(D)).

For any positive α we write α= k + s with k ∈N and s ∈ (0,1], and we denote with Cα(D) the space

of Hölder continuous functions having continuous derivatives of order smaller or equal k and k-th

order derivatives Hölder continuous with parameter s, i.e. the space of functions such that the

following (spatial) norm is bounded:

‖v‖Cα(D) = ‖v‖C k (D) +|v |Cα(D) =
k∑

j=1
max
|i |1= j

‖Di v‖C 0(D) + max
|i |1=k

sup
x,y∈D

∣∣Di v(x)−Di v(y)
∣∣

|x − y |s .

Then, by further assuming a to belong to the Banach-space valued Bochner space Lq
P

(Ω,Cα(D̄)), it

is possible to obtain regularity results that bound Sobolev norms of the solution by Hölder norms of

the diffusion coefficient a, i.e. an estimate of the type (see subsequent Lemma 2.2.1):

‖p(·,ω)‖H 1+β(D) ≤
1

α−β
C1(ω,α)‖ f ‖Hα−1(D), ∀0 <β<α a.s. in Ω,

where C (ω,α) depends on the Cα(D̄) norm of a.

In this thesis we will always consider a Matérn type covariance function [32, 72] for the log perme-

ability γ(x,ω) = log(a(x,ω)); in particular we will consider either a stationary isotropic covariance

function defined as

covγ(x,x′) = c̃ovγ(|x−x′|) = σ2

Γ(ν)2ν−1

(	
2ν

|x−x′|
Lc

)ν
Kν

(	
2ν

|x−x′|
Lc

)
, ν≥ 0.5,

6



1.1. Problem setting

or a tensor Matérn covariance function:

covγ(x,x′) =σ2
d∏

i=1

(	
2ν

|xi−x ′
i |

Lc

)ν
Kν

(	
2ν

|xi−x ′
i |

Lc

)
Γ(ν)2ν−1 , ν≥ 0.5.

The isotropic Matérn is the model more commonly used in applications while the tensor covariance

model, although easier to implement from a numerical point of view, is often considered not suited

to model physical processes because of the dependence of such a model on the choice of the

axes; nevertheless a tensor covariance function can be used when a particular axis dependence

is a priori known, as for instance in the modeling of stratified media. As will be fully detailed in

Chapter 2, the regularity of these covariance functions (and then of the corresponding realizations

of the log-permeability γ) covers a wide range of values; in particular the parameter ν governs

the smoothness of both, the covariance function covγ and the realizations γ(x,ωi ). We have the

two extreme cases when ν= 0.5 and when ν=∞; in the former we obtain a Lipschitz covariance

function which generates realizations that are Hölder continuous with parameter α< 0.5 while in

the latter we have an analytic covariance function leading to infinitely differentiable realizations of

γ.

To numerically approximate the elliptic problem (1.1) in space we use linear finite elements. The

choice of low order finite elements is motivated by the fact that we want to address also the case

of low regularity permeability fields, a ∈ Cα(D̄) with α < ν < 1. By using the previous regularity

estimates, and by denoting with ph the finite element solution of problem (1.1), a result (see

subsequent Lemma 2.3.1 ) stating the rate of convergence of the finite element solution ph to the

true solution p can be derived:

‖p(·,ω)−ph(·,ω)‖H 1(D) ≤
1

α−β
C2(ω,α)‖ f ‖Hα−1(D)h

β, ∀0 ≤β<α a.s. in Ω.

In this thesis, we will be often interested in computing specific quantities of interest Q, in our case

linear functionals, related to the solution of the PDE, p. It is then possible to generalize the previous

convergence estimate also to linear functionals:

|Q(p −ph)(ω)| ≤ C3(ω,α)

(α−β)2 ‖ f ‖Hα−1(D)‖Q‖Hα−1(D)h
2β, ∀0 ≤β<α a.s. in Ω.

Such a bound basically tells us that, by considering linear functionals instead of the solution itself,

we double the convergence rate thanks to the Galerkin orthogonality. Observe that all the constants

appearing in the previous bounds are Lq
P

-integrable.

The second step concerns the approximation in the stochastic variable ω. To do this, we first

parametrize the input randomness with respect to a countable number of (possibly independent)

random variables yn , n ∈N. In Section 2.4 of the next Chapter we will give further details on this; for

the moment it suffices to say that, from a practical point of view, we will truncate this countable

expansion by keeping only the first N most important random variables and we collect them in

the vector y. Then, we replace the exact quantity of interest Q =Q(ω) with its finite dimensional

counterpart Q =Q(y).
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Chapter 1. Thesis Overview

1.2 Adaptive sparse grids

Given an input random vector y ∈ Γ⊂RN in our system, we are interested in evaluating the corre-

sponding QoI Q(y) starting from the solution of the truncated Darcy Problem. The goal in many

situations is then to accurately estimate the expected value E[Q] or some higher moments. By

denoting with � the joint probability distribution of the Gaussian standard random vector y we can

write the expectation as

E[Q] =
∫
Γ

Q(y)�(y)dy.

The idea of sparse grid stochastic collocation methods is to derive a polynomial approximation of

the map y →Q(y), by solving the truncated Darcy problem in a suitable set of collocation points and

by reconstructing the overall solution as a sum over the collocation points of the product between

the corresponding solution of the Darcy problem and polynomial functions in the variable y.

The general construction of sparse grid approximations will be detailed in chapter 3. Here we just

sketch the method and highlight the main contributions obtained in this thesis.

By following the classical sparse grid approach [3] we define the sparse grid interpolant of Q(y) as

S m
I [Q](y) =∑

i∈I
Δm(i)[Q](y) (1.2)

where I is a suitable multi-index set, and Δm(i) is the hierarchical surplus operator defined as

Δm(i) =
N⊗

n=1
Δm(in ) =

N⊗
n=1

(
U

m(in )
n −U

m(in−1)
n

)
,

with U
m(in )
n a one-dimensional interpolant operator in the variable yn over m(in) points. With

the sparse grid interpolant at our disposal, it is then possible to approximate the mean of our QoI

through a sparse grid quadrature formula

∫
RN

Q(y)�(y)dy ≈
∫
RN

S m
I [Q]�(y)dy =

W m
I∑

j=1
Q(y j )β j =QW m

I
[Q],

where W m
I is the cardinality of the sparse grid, yi are suitably chosen collocation points and β j the

corresponding weights.

Once the choice of the collocation points has been made, the only quantity left to be defined in (1.2)

in order to compute the sparse grid interpolant and quadrature of Q, is the multi-index set I upon

which to perform the summation.

At this stage, we aim at adaptively choosing the best multi-index set I, based on a suitable definition

of profits of the multi-indexes i ∈NN+ . In particular, for any multi-index i, we define its profit P (i) as

the ratio

P (i) = ΔE(i)

ΔW (i)

where ΔE (i) represents the error that we would commit by omitting the multi-index from the sparse

grid interpolant, and it is related to the size of the hierarchical surplus Δm(i)[Q](y), while ΔW (i)

represents the additional work, in terms of linear solves of the PDE, that would require to add i

to the multi-index set I. We will present two possible strategies to build the multi-index set I with
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1.2. Adaptive sparse grids

“a priori” and “a posteriori” procedures. In the first case the construction of I is based on a priori

estimates or good ansatz for the estimation of ΔE(i); having such computable estimates of ΔE(i) at

our disposal the set I is built by picking the multi-indices i having profit larger than a prescribed

(small) threshold ε, namely: I =
{

i ∈NN s.t. ΔE(i)
ΔW (i) > ε

}
. In the second case we adaptively explore the

multi-index space by looking at the neighbors of the current set I and actually solving the PDE in a

certain number of additional collocation points to estimate ΔE(i). We mainly focus on the second

approach, by performing the sparse grid approximation for different choices of collocation points

and different estimates of ΔE(i).

In order to keep as small as possible the number of random variables activated during the sparse

grid construction we expand the random field in a Karhunen Loève basis. Moreover, since the K L

expansion somehow introduces a “weak ordering” of the random variables y1, y2, ..., yn , ..., i.e. there

exist Nb ≥ 1 (buffer) s.t. yn+Nb is guaranteed to be less important than yn , we implemented the

algorithm in an N -adaptive fashion, by gradually adding random variables whenever one of the

“buffered” variables is activated . Note that this means that we no longer need to truncate “a priori”

the KL expansion.

(a) Realization of the permeability field a.
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(b) Errors obtained with different profit indicators.

Figure 1.1 – Case ν= 2.5. Adaptive sparse grid errors computed with respect to a reference set I� as
|QW m

I
[Q]−QW m

I�
[Q]| for different sets I adaptively constructed. Work measured as number of linear

solves. QoI considered: flux on the outlet. D = (0,1)2, ΓD = {x1 = 0}∪{x1 = 1}, ΓN = {x2 = 0}∪{x2 = 1},
g (x) = 1−x1.

This strategy gives satisfying results when applied to a smooth input random field. In Figure 1.1 we

consider a random field γ with tensor covariance function (2.6) and parameters σ= 1, Lc = 0.5 and

show the convergence of the adaptive scheme when using nested Kronrod Patterson Gauss nodes

and non nested (suffix “NN” in Figure 1.1) Hermite nodes. The labels with the factor “NP” indicate

that the adaptive algorithm is based on estimated profits P (i), whereas those without “NP” refer

to algorithms based on estimated errors ΔE(i) only. Finally the numbers next to each point on the

error curve give information about the shape of the multi-index sets I(w) generated by the adaptive

algorithm: the first number (outside the brackets) indicates the number of active directions, while

the second number (inside the brackets) denotes the maximum number of directions that have

been activated at the same time.

In Chapter 3 we detail the dimension adaptive algorithm developed and present several other

test cases, comparing “a priori” and “a posteriori” sparse grid approximations on unbounded

sets, including different choices of covariance function (tensor / radial Matérn), collocation points
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Chapter 1. Thesis Overview

(nested / non nested) and profits indicators. Moreover we perform some tests to understand how the

variance σ2 of the random field γ influences the performance of the method. Finally we study also

the case in which we have a number K of permeability measurements, in K locations x1, ...,xK over

the domain D , and we include them into the model by considering a conditioned log-permeability

field γcond (x,ω) = γ(x,ω)|γ(x1,ω) = γ1, ...,γ(xK ,ω) = γK . In this case we are interested in quantifying

the effects of the measurements on the performance of the adaptive sparse grid approximations.

1.3 Monte Carlo and Multi Level Monte Carlo methods with Control Vari-

ate

The convergence properties of the methodology so far introduced are satisfactory when considering

sufficiently smooth input random fields, while they deteriorate when dealing with rough input

permeabilities. Since in the latter case a moderately small number of random variables is not

sufficient anymore to guarantee that the truncation error is negligible, we need necessarily to deal

with high dimensional problems in the stochastic variable y. Also advanced sparse grid techniques

such as the one mentioned in Section 1.2, suffer when dealing with problems characterized by low

regularity and intrinsic high dimensionality; it seems natural then to switch to Monte Carlo type

methods to solve problem (1.1). The MC estimator of Q is given by Q̂MC
h,M = 1

M

∑M
i=1 Qh(yi ), being yi ,

i=1,..,M, identically distributed draws from �(y), and its mean square error is

e(Q̂MC
h,M )2 := E[(Q̂MC

h,M −E[Q])2] = V ar (Qh)

M
+ (E[Qh −Q])2 ,

where the first term represents the statistical error coming from the sampling and the second term

the bias due to the finite element discretization. Observe that here we are assuming to include a

number N of random variables yn , n = 1, ..., N , large enough to consider negligible the truncation

error. Unfortunately this strategy, although robust with respect to N , presents a slow convergence

rate with respect to the sample size M .

In Chapter 4 we propose and analyze a method that combines the advantages of a sparse grid

approximation for smooth fields with the robustness of MC samplers to treat effectively the case

of rough random fields (hence high dimensional problems). More specifically, since we know that

sparse grid schemes are well suited to solve the problem when the input permeability field is smooth,

we build an auxiliary Darcy problem having a smoothed permeability aε = eγ
ε

obtained through

convolution of the original field γ with a Gaussian kernel φε, namely:

γε(x,ω) = γ(x,ω)∗φε(x) = γ(x,ω)∗ e−
‖x‖2

2ε2

(2πε2)
d
2

.

Then, since for small values of ε we expect the solutions of the original and of the auxiliary Darcy

problem to be highly correlated, we use the smoothed QoI Qε , obtained starting from the solution

pε of the auxiliary Darcy problem, as control variate in a MC sampling strategy. More precisely we

write the mean of our QoI as

E[Q(y)] = E[Q(y)−Qε(y)]+E[Qε(y)]

and we estimate the first expectation via MC sampling and the second one with a sparse grid scheme

which is reasonable since Qε(y) is smooth with respect to the stochastic parameters. The resulting
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1.3. Monte Carlo and Multi Level Monte Carlo methods with Control Variate

MC estimator with control variate (MCCV) reads

Q̂MCCV
h,M ,W = 1

M

M∑
i=1

(Qh(yi )−Qε
h(yi ))+QW [Qε

h], (1.3)

where W represents the number of PDE solves needed to build the sparse grid approximation

and again yi are i.i.d. draws from a standard multivariate Gaussian distribution, and Qh(yi ) the

corresponding realization of the QoI approximated by finite elements. The corresponding mean

square error can be bounded by

e(Q̂MCCV
h,M ,W )2 := E[(Q̂MCCV

h,M ,W −E[Q])2] ≤ V ar (Qh −Qε
h)

M
+2

(
QW [Qε

h]−E[Qε
h]
)2 +2(E[Qh −Q])2 .

With respect to the standard MC case, we have an additional error term given by the sparse grid

error: the idea is then to choose ε sufficiently large to have good convergence properties of the

sparse grid approximation, and at the same time sufficiently small to get a variance reduction

sufficiently large to compensate for the introduction of the new error term.

In Theorem 4.1 we show how the term V ar (Qh −Qε
h) scales with respect to ε and the regularity of

the original random permeability field a: in particular, given a permeability obtained from a Matérn

covariance of parameter ν, we prove the following (conservative) bound

V ar (Qh −Qε
h) ≤ E[(Qh −Qε

h)2]� ε2min(2,α), ∀α< ν.

At the same time, for sufficiently large values of ε and for input permeability with limited regularity,

we numerically observe an algebraic decay of the sparse grid error, with convergence rate depending

on ε and degenerating for ε→ 0, namely |QW [Qε
h]−E[Qε

h]|�W −η(ε) for some η(ε) > 0.

By properly choosing the parameter ε, the sample size M and the number of sparse grid knots W ,

this strategy is shown to significantly reduce the computational cost needed to achieve a prescribed

tolerance, in terms of mean square error, compared to the standard MC method. In particular, since

the sparse grid converges with a better rate than the MC sampler, asymptotically the ratio W /M

tends to zero, when considering smaller and smaller tolerances, and the computational gain is

O (ε2min(2,α)) ∀α< ν.

The same idea has been extended to a Multi Level framework; in this case, by introducing a sequence

of increasingly fine triangulations Th�
, � = 0, ...,L, having mesh sizes h0 > h1 > ... > hL > 0, and

exploiting the linearity of the expectation operator, we write the expectation of Q on the finest level

as:

E[QL] = E[Q0]+
L∑

�=1
E[Q�−Q�−1]︸ ︷︷ ︸

(i )

= E[Q0 −Qε
0]+

L∑
�=1

E[Q�−Q�−1 − (Qε
�−Qε

�−1)]+E[Qε
L]︸ ︷︷ ︸

(i i )

.

By independently estimating the terms coming from different levels in (i ) with MC estimators we

obtain the so called Multi Level Monte Carlo estimator (MLMC)

Q̂MLMC
{h�},{M�} =

L∑
�=0

1

M�

M�∑
i=1

(
Qh�

(y�,i )−Qh�−1 (y�,i )
)

, with Qh−1 (y�,i ) = 0,

while by independently estimating the terms coming from different levels in (i i ) with MC estimators

11
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and the last expectation in (i i ) with sparse grid quadrature we obtain the MLMC estimator with

control variate (MLMCCV)

Q̂MLMCCV
{h�},{M�},W =

L∑
�=0

1

M�

M�∑
i=1

(
Qh�

(y�,i )−Qh�−1 (y�,i )− (Qε
h�

(y�,i )−Qε
h�−1

(y�,i ))
)
+QW [Qε

hL
], (1.4)

again with Qh−1 (y�,i ) =Qε
h−1

(y�,i ) = 0.

The mean square error related to the MLMC estimator is

e(Q̂MLMC
{h�},{M�})

2 := E[(Q̂MLMC
{h�},{M�} −E[Q])2] =

L∑
�=0

V ar (Qh�
−Qh�−1 )

M�
+ (E[Qh −Q])2 .

The idea of the method is to take advantage of the computations done on the coarsest levels which

are, computationally cheap, and take only few samples on the finest levels, where the associated

variance V ar (Qh�
−Qh�−1 ) is expected to be small. By doing so it is possible to achieve the same

overall tolerances, in terms of mean square error, of a standard MC scheme, with a much smaller

computational cost. Our control variate approach produces an estimator whose mean square error

can be bounded as

e(Q̂MLMCCV
{h�},{M�},W )2 := E[(Q̂MLMCCV

{h�},{M�},W −E[Q])2] ≤
L∑

�=0

V ar
(
Qh�

−Qh�−1 − (Qε
h�

−Qε
h�−1

)
)

M�

+2
(
QW [Qε

hL
−E[QhL ]

)2 +2
(
E[QhL −Q]

)2 .

Again, in order to compare the performances of the MLMCCV approach with the MLMC one,

we need to compare the statistical errors: it has been proven that the variance of the difference

between QoI computed in two successive levels, when using linear finite elements for the spatial

discretization, scales as V ar (Qh�
−Qh�−1 )� h2α

�
for anyα< min(ν,1). On the other hand, in Theorem

4.3, we show that the variance of the double difference appearing in the MLMCCV estimator mean

square error scales as

V ar (Qh�
−Qh�−1 )� hα inf

β<min(ν,1)
0<η+β≤ν

hβεν−β−η

(ν−β)2	η
h2α
� for any α< min(ν,1).

Numerical tests show that this strategy improves the performance of the MLMC method when

applied to problem with both, rough and smooth permeability, see Figure 1.2. The computational

cost appearing in Figure 1.2, has been obtained after having optimized over the sample sizes M� for

�= 0, ...,L and the number of sparse grid knots W to achieve optimal complexity.

In Chapter 4 we go through a rigorous analysis of the statistical error related to the estimators

(1.3) and (1.4) using the control variate approach and we present again several numerical results

obtained with different scenarios.

1.4 Contaminant Transport in Groundwater Flows

After having deeply investigated the flow problem governed by the Darcy law in different frameworks,

in Chapter 5 we aim at extending the methodology introduced so far to study contaminant transport

phenomena associated with groundwater flows. Starting from the Darcy problem, we want to model

12
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Figure 1.2 – Error vs Computational cost for ν= 0.5 (left) and ν= 2.5 (right). Error = sparse grid error
+ statistical error. Computational cost evaluated as estimated CPU time.

how contaminant particles are transported by the Darcy velocity in two different scenarios:

• in the case of an undisturbed flow induced by a pressure difference between two opposite

boundaries;

• in the case of a flow induced by the presence of a pumping well in a prescribed location of our

physical domain D .

In both cases, we model the motion of a single particle starting from the point x ∈ D at time t with

the following stochastic differential equation (SDE)

d Xx,t (s,ω) =−a(Xx,t (s,ω),ω)∇p(Xx,t (s,ω),ω)d s +	
2σ′dW (s,ω′), Xx,t (t ,ω) = x,

where W (t ,ω′) is a Brownian Motion and σ′ is a constant coefficient modeling the molecular

diffusion into the medium. Notice that each single trajectory depends on two sources of randomness

ω= (ω,ω′), namely the randomness of the Darcy velocity and the Brownian motion here assumed

to be independent. The goal of such analysis is to estimate arrival times to specific locations of the

domain and the probability of these arrival times being smaller than a certain (finite or infinite)

time horizon T .

Since the Darcy velocity is given only in our physical bounded domain D , we have to enforce suitable

reflecting and absorbing conditions on the boundary ∂D to properly model the arrival time we are

interested in. As we will detail in Chapter 5, we model our arrival time as the first passage time

τσ
′

x,t (ω) = inf{s > t : X σ′
x,t (s,ω) ∉ D̄}, (1.5)

which represents the first time at which a particle starting from x at time t exits the domain D . With

this definition at our disposal, one of the goals will be the delineation of the so called capture zones,

i.e. the zone starting from which a particle will reach a selected boundary of the domain with a

certain probability in a prescribed time horizon T , that is:

ΣT,α = {x : Pω(τσ
′

x,0(ω) ≤ T ) ≥α}, 0 <α< 1.

13
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After discussing existence and uniqueness issues related to the solution of the previous stochastic

differential equation, in Chapter 5 we aim at representing our quantity of interest by using the

Feynman-Kac representation formula to link the arrival time, defined through the SDE, to the

solution of a suitable time dependent PDE. More specifically, by denoting with u(x,ω) the Darcy

velocity field, we look at the backward PDE⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂θσ
′

T (x, t ,ω)

∂t
+u(x,ω) ·∇θσ′

T (x, t ,ω)+ (σ′)2Δθσ
′

T (x, t ,ω) = 0 for x ∈ D, t ∈ [0,T ),

θσ
′

T (x, t ,ω) = g (x, t ) for x ∈ ΓD , t ∈ [0,T ),

∂nθ
σ′
T (x, t ,ω) = 0 for x ∈ ΓN , t ∈ [0,T ),

θσ
′

T (x,T,ω) = h(x) for x ∈ D.

a.s. in Ω. (1.6)

Under suitable conditions the solution θσ
′

T (x, t ,ω) can be represented with a probabilistic formula,

namely

θσ
′

T (x, t ,ω) = Eω
′
[g (X σ′

x,t (τσ
′

x,t (ω)),τσ
′

x,t (ω))1{τσ
′

x,t (ω)≤T } +h(X σ′
x,t (T ))1{τσ

′
x,t (ω)>T }|ω],

which, upon properly selecting the boundary and the final data g and h, can represent our desired

quantity of interest.

The total expectation of the QoI w.r.t. ω= (ω,ω′) is then computed using the conditional expectation

formula as Eω,ω′
[Q] = Eω[Eω

′
[Q|ω]]. The Feynmac-Kac formula will allow us to compute the internal

conditional expectation by solving a parabolic PDE with dominant transport (since we will always

consider small values of diffusion σ′); then we compute the second expectation by applying one of

the methods proposed in chapters 3 and 4, i.e. the sparse grid approximation as well as the MLMC

and MLMCCV approaches. The probabilistic capture zones can then be delineated by considering

g and h in such a way to obtain Q(x,ω) = 1{τσ
′

x,0(ω)≤T } and by looking at the level sets of the function

Eω[Q(x, ·)].

Case of an undisturbed flow

In this first test case we consider a Darcy velocity coming from the solution of problem (1.1) defined

on the unit square (0,1)2 with a zero external forcing term f , Dirichlet conditions on the left and

right boundary, respectively equal to p0 > 0 and 0, and homogeneous Neumann conditions on the

top and bottom boundaries. As usual the permeability is modeled as a lognormally distributed

random field having a Matérn covariance structure. Such problem produces a velocity field inducing

a flow of particles from left to right. We impose here reflecting conditions on all boundaries but

Γout , where we absorb the particles and register the corresponding arrival time.

As we will see in this case, since the arrival times are bounded random variables, it is possible to

consider a more convenient (from a computational point of view) elliptic PDE having as solution the

expected arrival time (with respect to all Brownian motions) τ̄σ
′

x (ω); by solving then the following

PDE ⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(x,ω) ·∇τ̄σ′

x (ω)+ (σ′)2Δτ̄σ
′

x (ω) =−1 in D × [0,T ),

τ̄σ
′

x (ω) = 0 on {x1 = 1}× [0,T ),

∂nτ̄
σ′
x (ω) = 0 elsewhere

14
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we can identify the solution θσ
′

T (x, t ,ω) with the quantity τ̄σ
′

x (ω) = Eω
′
[τσ

′
x,0(ω)|ω].

We apply then a MLMCCV strategy in order to compute the expectation with respect to the random-

ness coming from the Darcy velocity. We define then the quantity of interest as

τ̄σ
′,CV

x (y) = τ̄σ
′

x (y)− τ̄σ
′,ε

x (y)+Eω[τ̄σ
′,ε

x (·)]; (1.7)

where τ̄σ
′,ε

x (y) represents the expected arrival time for particles transported by a smoothed Darcy

velocity, obtained starting from the regularized problem with smoothed permeability aε as input.

Such arrival times are again the solution of the PDE with u replaced with uε =−aε∇pε. By following

the strategy adopted in Chapter 4, we define the MLMCCV estimator as

τ̂MLMCCV
{h�},{M�},W (x) =

L∑
�=0

1

M�

M�∑
i=1

(
τ̄σ

′,CV
�

(x,yi ,�)− τ̄σ
′,CV

�−1 (x,yi ,�)
)
+QW [τ̄σ

′,ε
L (x, ·)], τ̄σ

′,CV
−1 (x,yi ,�) = 0. (1.8)

We give a bound on the mean square error of the estimator and verify the effectiveness of such

strategy by comparing the results to the ones obtained with a standard MLMC scheme. In Figure 1.3

we report the results obtained by applying a sparse grid scheme to compute the expectation of the

arrival time when starting with a smooth permeability function. Similar results can be obtained
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Figure 1.3 – Case ν= 2.5: on the left the sparse gird approximation of Eω[τ̄σ
′

x (y)]; on the right the
sparse grid error committed on such quantity in the L2 spatial norm versus the work evaluated as
number of solves needed to build such approximation. σ′ = 0.01, LC = 0.5, p0 = 1.

when starting with a rough permeability and considering the smoothed arrival time τ̄σ
′,ε

x (y).

On the other hand, in Figure 1.4 we report the variance reduction obtained with the control variate

multi level strategy in the case of a rough field and compare the results with a standard MLMC

approach.

Then we look at the delineation of capture zones; in this case we propose two strategies: the

first consists in applying a MLMC scheme on the solution of the parabolic problem previously

introduced, equipped with boundary condition g = 1 on the outlet and homogeneous Neumann

condition elsewhere. This approach has generated the results presented in Figure 1.5. The second

approach, by contrast, is based on the idea of reusing and properly adapting the results obtained

when considering as quantity of interest the expected arrival time τ̄σ
′

x (y). In this case we use again the
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Figure 1.4 – Variance of Q� and Y�(x,ω) =Q�(x,ω)−Q�−1(x,ω) on each level, for ν= 0.5 and different
values of ε. σ′ = 0.01, LC = 0.5, p0 = 1.
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Figure 1.5 – Case ν = 2.5: MLMC approximation of mean (left) and variance (right) of Q(x,ω) =
Eω

′
[1{τσ

′
x,0(ω)≤T }]. σ

′ = 0, LC = 0.5, p0 = 3, T = 0.3, L = 5.

sparse grid approximation of the arrival time τ̄σ
′

x (y), i.e S m
I [τ̄σ

′
x ](y), and sample from the indicator

function 1{τ̄σ
′

x (y)≤T } through sparse grid interpolation, namely 1{τ̄σ
′

x (yi )≤T } ≈ 1{S m
I [τ̄σ

′
x ](yi )≤T }; hence,

we can built a convenient MC estimator of the probability function involved in the definition of the

capture zones by averaging over all these indicator functions; in this strategy the cost of the MC

sampling is low since no PDE solve is involved and the MC statistical error can be made negligible

by taking a very large sample size.

Case of a flow induced by the presence of a pumping well

In this second test case we are interested in the computation of arrival times and capture zones

when, superposed to an underlying flow modeled as in the previous case, we have also a well in the

domain which extracts drinkable water with a fixed extraction rate. We model the presence of the

well with a forcing term f given by a Dirac function located in the center of the well x0 and look at
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the following Darcy problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
−div(a(x,ω)∇∇∇p(x,ω)) =−qδx0 (x), x ∈ D,

p(x,ω) = p0(1−x1) x ∈ x1 = {0,1},

a(x,ω)∂np(x,ω) = 0 x ∈ x2 = {0,1},

which is well posed for any pressure a ∈ Cα(D̄) (see Chapter 5). To properly define our arrival time

we consider then a small region surrounding the well, for instance the ball B(x0,r ), r � 1, and define

the arrival time as

τσ
′

x,t (ω) = inf(s ≥ t : X σ
x,t (s) ∈ B(x0,r )),

where now we are imposing reflecting condition on all the external boundaries and absorbing

conditions only on ∂B(x,r ). Observe that by doing this, we are implicitly assuming that a particle

reaches the location of the well as soon as it enters the ball B(x,r ). Analogously to what we did in

the previous case, we put homogeneous Neumann boundary conditions where we have reflection,

Dirichlet conditions where we have absorption and select the final condition of the associated

parabolic PDE to model the desired quantities, i.e. the expected arrival times or probabilities. In

Chapter 5 we will see how, in this case, it is not possible to apply the MLMCCV scheme to compute

the expectation with respect to ω. This is intuitively due to the fact that now the solution of the

parabolic PDE (1.6) presents very sharp moving fronts; this fact causes a lack of smoothness of the

QoI with respect to the random variables y and a poor performance of any sparse grid approximation.

To compute the expectation of our QoI, we propose then a more classical MLMC scheme however

with a level dependent diffusion coefficient σ′ which improves the stability of the finite element

approximation on coarse meshes as well as the variance reduction in the MLMC estimator. In Figure

1.6 we show the MLMC estimate of the probability Pω(τσ
′

x,0(ω) ≤ T ) for a finite temporal horizon T ,

and the corresponding MLMC estimate of the variance of the random quantity Eω
′
[τσ

′
x,0(·,ω) ≤ T |ω].

(a) MLMC mean, ν= 2.5. (b) MLMC variance, ν= 2.5.

Figure 1.6 – Case ν = 2.5: MLMC approximation of mean (left) and variance (right) of Q(x,ω) =
Eω

′
[1{τσ

′
x,0(ω)≤T }]. σ

′ = 0.01, LC = 0.5, p0 = 1, q = 0.5, r = 0.01, T = 0.5.
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2 The Darcy Problem

In this chapter we introduce more specifically the Darcy problem and recall the main results

available in the literature that will be used in our analysis and in the development of the numerical

methods discussed in the following Chapters. In particular, after having introduced some notation

in Section 2.1, in Section 2.2 we introduce the continuous problem and the main related theoretical

results; then in Section 2.3 we introduce the finite element approximation of the continuous problem

again by recalling the related convergence result; in Section 2.4 we discuss the problem of truncating

the infinite dimensional probability space for computational purposes while in Section 2.5 we detail

specific choices of parametrization and truncation of the input randomness.

2.1 Notation

Given a bounded Lipschitz domain D ∈Rd , we introduce the following notation. For any k ∈N we

denote with C k (D) the space of continuously k times differentiable functions with the usual norms.

For any positive real α we set α= k + s with k ∈N and s ∈ (0,1]. We recall as we denote with Cα(D)

the Hölder space for which the following norm is bounded

‖v‖Cα(D) = ‖v‖C k (D) +|v |Cα(D) =
k∑

j=1
max
|i |1= j

‖Di v‖C 0(D) + max
|i |1=k

sup
x,y∈D

∣∣Di v(x)−Di v(y)
∣∣

|x − y |s ,

where i is a multi-index of Nd with |i |1 =∑d
k=1 ik , Di v = ∂|i |1

∂x
i1
1 ···∂x

id
d

and | · | denotes the Euclidean

norm in Rd . Notice that with this definition, the space C1 denotes the space of Lipschitz continuous

functions and not the usual space C 1 of continuously differentiable functions. We will also use the

usual Sobolev spaces H k (D), k ∈N, characterized by corresponding norm and seminorm

|v |2H k (D) =
∫

D

∑
|i |1=k

∣∣∣Di v(x)
∣∣∣2 d x, ‖v‖2

H k (D) =
∫

D

∑
|i |1≤k

∣∣∣Di v(x)
∣∣∣2 d x,

as well as the fractional Sobolev spaces Hα(D), α ∈ R, using the Sobolev-Slobodetskii seminorm

|v |H a (D):

‖v‖2
Hα(D) = ‖v‖2

H k (D) +|v |2Hα(D) = ‖v‖2
H k (D) +

∑
|i |1=k

∫
D×D

∣∣Di v(x)−Di v(y)
∣∣2

|x − y |d+2s
d xd y.
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In the following, whenever possible, instead of the usual H 1(D) norm, we will use the equivalent

H 1
0 (D) norm, defined as

‖v‖H 1
0 (D) =

∫
D
|∇v |2d x.

Given a Banach space B and a complete probability space (Ω,F ,P), it is also useful to introduce the

Bochner space Lq
P

(Ω,B) as the space of strongly measurable functions v : Ω→ B equipped with the

norm ‖v‖Lq
P

(Ω,B) = E[‖v‖q
B ]

1
q .

Finally, to simplify the notation, sometimes we will use the symbol � to indicate a bound in which

the hidden constant is just a positive real number that does not depend on any relevant parameter

(such as mesh size h, regularity parameter ν of a random field, etc.).

2.2 Problem setting

In this thesis from a mathematical point of view we are interested in developing efficient numerical

methods to solve uncertainty quantification problems, and in particular partial differential equa-

tions with random input data. We will then test such methodology to solve the so called stochastic

Darcy problem, which consists of an elliptic partial differential equation with random entries, that

may be for instance the diffusion coefficient, the forcing term, the boundary data or also the domain

itself. Such problem arises in hydrology and models the groundwater flow in a highly heterogeneous

saturated porous medium. We will assume in what follows that the input stochasticity directly

affects only the diffusion coefficient, while all the other quantities characterizing the elliptic PDE

are considered to be perfectly known. The mathematical mixed formulation of the problem, de-

scribed by the Darcy law relating the volumetric flux (in the following we will refer to this quantity

as velocity) to the hydrualic head (in the following pressure), together with a mass balance, is given

by the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u =−a∇p in D,

div(u) = f in D,

p = g j on ΓD
j , j = 1, ...,mD ,

u ·n = 0 on ΓN
j , j = 1, ...,mN ,

(2.1)

where ΓD =∪mD
j=1Γ

D
j denotes the Dirichlet boundary, ΓN =∪mN

j=1Γ
N
j denotes the Neumann boundary

and ΓD ∪ΓN = ∂D, Γ̊D ∩ Γ̊N =�. Here p is the pressure, u the velocity field and a = κ
μ represents

the intrinsic permeability, i.e. the ratio between the hydraulic conductivity of the medium κ and

the dynamic viscosity μ of the fluid; f is an external source or sink term and D ∈ Rd a bounded

open domain. In the following, we assume the dynamic viscosity μ to be constant and refer to a

as a permeability. A key issue in the study of groundwater flows in heterogeneous media concerns

the characterization of the subsurface proprieties. In many cases we have only a very limited

knowledge of the input data of the problem and particularly the permeability field. In order to

deal with this uncertainty and lack of knowledge the permeability is often modeled as a spatially

correlated random field depending on a random event ω of a suitable probability space (Ω,F ,P)

[21]. Hence also the solution (p,u) of (1.1) will depend on ω and the problem (1.1) is interpreted in
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a probabilistic sense as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x,ω) =−a(x,ω)∇p(x,ω) in D,

div(u(x,ω)) = f (x) in D,

p(x,ω) = g j (x) on ΓD
j , j = 1, ...,mD ,

u(x,ω) ·n = 0 on ΓN
j , j = 1, ...,mN ,

a.s. in Ω (2.2)

where a.s. means “almost surely” with respect to the probability measure P. A widely used model for

the permeability field a describes it as a lognormal random field [21, 32, 78], namely a(x,ω) = eγ(x,ω)

with γ(x,ω) a Gaussian random field having mean E[γ(x, ·)] and covariance function covγ(x1, x2) =
E[γ(x1, ·)γ(x2, ·)]−E[γ(x1, ·)]E[γ(x2, ·)]. The choice of the covariance function is a delicate issue. It

directly relates to the spatial smoothness of the random field realizations and strongly influences

the choice of the numerical method to use. Equations (2.2) have been extensively studied during the

last few years from both the theoretical and numerical point of view. They can be reformulated as

an elliptic partial differential equation with random diffusion coefficient, given by the permeability.

Denoting Vg = {v ∈ H 1(D) : v = g on ΓD }, the variational formulation associated with the Darcy

problem is: find p ∈Vg such that

bω(p, v) = L(v) ∀v ∈V0, (2.3)

where the bilinear form bω (parametrized by ω) and the linear functional L are defined as:

bω(u, v) =
∫

D
a(x,ω)∇u(x,ω)∇v(x)d x, L(v) =

∫
D

f (x)v(x)d x.

Well posedness results for the problem (2.3) can be found in [16, 43, 38] where it is shown that the

solution p is unique in the space Lq
P

(Ω,Vg ), ∀q ∈ R+. Moreover, the following regularity result is

shown in [16, 19]:

Lemma 2.2.1. Let D be a C 2 bounded domain, f ∈ Hα−1(D) for some 0 < α ≤ 1 and g = 0 on

ΓD = ∂D. Let a(x,ω) be the input random field of problem (2.3) a.s. continuous and denote amax (ω) =
maxx∈D a(x,ω) and ami n(ω) = minx∈D a(x,ω). If

• ami n(ω) ∈ Lq
P

(Ω), ∀q ∈R+,

• a(x,ω) ∈ Lq
P

(Ω,Cα(D)) ∀q ∈R+;

then for the problem (2.3) the following regularity result holds:

‖p(·,ω)‖H 1+β(D) �
1

α−β
C2.2.1(ω,α)‖ f ‖Hα−1(D), ∀0 <β<α a.s. in Ω.

If the hypotheses hold also for α> 1, then

‖p(·,ω)‖H 2(D) �C2.2.1(ω,α)‖ f ‖L2(D), a.s. in Ω,
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where

C2.2.1(ω,α) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

amax (ω)‖a(·,ω)‖Cα(D)

a3
mi n(ω)

if α≤ 1,

amax (ω)‖a(·,ω)‖C 1(D)

a3
mi n(ω)

if α> 1.
(2.4)

Moreover the constant C2.2.1(ω,α) is q-integrable for any q ∈R+, i.e. C2.2.1(ω,α) ∈ Lq
P

(Ω) ∀q ∈R+.

Proof. The proof of this result follows the one given in [19] by replacing [19, Lemma A.2] with

the following Lemma, in order to make explicit the dependence of the bound with respect to the

regularity α of the random field a.

Lemma 2.2.2. Let b ∈ Cα(D) and let v be a function in Hβ(D) for some 0 <β<α≤ 1. It holds

‖bv‖Hβ(D) �
1	
η
‖b‖Cβ+η‖v‖Hβ(D) ∀0 < η≤α−β.

Proof. By definition the Hβ norm of the function bv is

‖bv‖2
Hβ(D) = ‖bv‖2

L2(D) +|bv |2Hβ(D) = ‖bv‖2
L2(D) +

∫
D×D

∣∣b(x)v(x)−b(y)v(y)
∣∣2

|x − y |d+2β
d xd y.

The first term can be easily bounded as ‖bv‖2
L2(D)

≤ ‖b‖2
C 0(D)

‖v‖2
L2(D)

. For the second term we obtain

∫
D×D

∣∣b(x)v(x)−b(y)v(y)
∣∣2

|x − y |d+2β
d xd y ≤ 2‖b‖2

C 0(D)
|v |2Hβ(D) +2

∫
D×D

∣∣b(x)−b(y)
∣∣2

|x − y |2(β+η)

v(y)2

|x − y |d−2η
d xd y

≤ 2‖b‖2
C 0(D)

|v |2Hβ(D) +2‖b‖2
Cβ+η(D)

∫
D×D

v(y)2

|x − y |d−2η
d xd y.

If we extend v by 0 in Rd \ D , and denote ṽ this extension and ρ = maxx∈D |x|, the integral appearing

in the right hand side of the above inequality can be bounded as∫
D×D

v(y)2

|x − y |d−2η
d xd y ≤

∫
Rd×Rd

ṽ(y)2

|x − y |d−2η
�{|x−y |≤2ρ}d xd y ≤

∥∥∥∥ṽ2(x)∗ �{|x|≤2ρ}

|x|d−2η

∥∥∥∥
L1(Rd )

≤ ∥∥ṽ2
∥∥

L1(Rd )

∥∥∥∥�{|x|≤2ρ}

|x|d−2η

∥∥∥∥
L1(Rd )

� ρ2η

η
‖v‖2

L2(D) .

By putting everything together we obtain

‖bv‖Hβ(D) �
1	
η
‖b‖Cβ+η(D)‖v‖Hβ(D),

which is the desired result.

Remark 2.2.1. This result may seem slightly different than the one presented in [19] but actually it

is not; in fact in our work we use the Cα norm instead of the usual C α one: this makes possible to

recover a bound for the H 2 norm only when α is strictly larger than one. Secondly here we explicitly
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write the dependence of the constant with respect to the degenerating part which is O ( 1
α−β ) when

β→α.

Remark 2.2.2. Although here we refer to the case of a C 2 bounded domain, it should be possible to

weaken this assumption to the case of a convex Lipschitz domain by following the results given in

[47, Chapter 3]. Observe that the expressions of the constant C2.2.1(ω,α) and of the degenerating term

O ( 1
α−β ) appearing in the regularity estimate depends on the assumptions made on the domain, so they

would change if we consider a convex Lipschitz domain instead of a C 2 bounded one. For instance, in

[74], an explicit form of the constant C2.2.1(ω,α) has been provided in the case of polygonal domains.

In what follows we focus on the case in which the log-permeability Gaussian random field γ is

stationary and has a “Matérn-type” covariance function; in particular we will consider two cases:

• an isotropic covariance function belonging to the classical Matérn family [32]:

covγ(x,x′) = c̃ovγ(|x−x′|) = σ2

Γ(ν)2ν−1

(	
2ν

|x−x′|
Lc

)ν
Kν

(	
2ν

|x−x′|
Lc

)
, ν≥ 0.5, (2.5)

• a tensor Matérn covariance function:

covγ(x,x′) = c̃ovγ(|x−x′|) =σ2
d∏

i=1

(	
2ν

|xi−x ′
i |

Lc

)ν
Kν

(	
2ν

|xi−x ′
i |

Lc

)
Γ(ν)2ν−1 , ν≥ 0.5, (2.6)

where σ2 is the pointwise variance , Lc is a correlation length, Γ is the gamma function, Kν is the

modified Bessel function of the second kind and ν is a parameter that governs the regularity of the

covariance function and, consequently, of the realizations of the random field. In particular the

following holds:

• the covariance function is Hölder continuous, namely covγ ∈ C2ν(D̄ × D̄) (see the following

Lemma 2.2.3),

• the realizations of the random field are a.s. Hölder continuous, γ(·,ω) ∈ Cα(D̄), ∀ 0 <α< ν

(see the following Lemma 2.2.4),

• the random variables ami n(ω), amax (ω) and ‖a(·,ω)‖Cα(D̄) with 0 <α< ν are all Lq
P

(Ω)-integrable

∀q ∈R+ (see e.g. [16, 19]).

Lemma 2.2.3. Let covγ be a covariance function belonging to the Matérn family defined in (2.5)

on an open bounded convex domain D. Then, if ν is not an integer, covγ ∈ C2ν(D̄ × D̄), otherwise

covγ ∈ Cα(D̄ × D̄) for any α< 2ν if ν ∈N+ .

Proof. By definition we have

covγ(x1, x2) = c̃ovγ(|x1 −x2|) = σ2

Γ(ν)2ν−1

(	
2ν

|x1 −x2|
Lc

)ν
Kν

(	
2ν

|x1 −x2|
Lc

)
;

Kν : R+ →R+ is given by Kν(ρ) = π
2sinπν (I−ν(ρ)−Iν(ρ)) where Iα(ρ) =∑∞

m=0
1

m!Γ(m+α+1)

(ρ
2

)2m+α
. This

formula is valid when ν is not an integer, i.e. ν = n + s with n ∈N and s ∈ (0,1). Since ∀ε > 0 the

function Kν ∈C ∞[ε,+∞), and consequently c̃ovγ as well, in order to prove the result we focus on
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the asymptotic behavior of the function c̃ovγ(|x − y |) in a neighborhood of |x − y | = 0. By denoting

λν =
	

2ν
2Lc

and by recalling that, for any x ∈R\Z it holds Γ(−x) = −π
sinπxΓ(x+1) , it is possible to obtain

c̃ovγ(|x1 −x2|) = σ2π

Γ(ν)sinπν

( ∞∑
m=0

λ2m
ν |x1 −x2|2m

m!Γ(m −ν+1)
−

∞∑
m=0

λ2(m+ν)
ν |x1 −x2|2(m+ν)

m!Γ(m +ν+1)

)

=σ2
( n∑

m=0

(−1)mΓ(ν−m)λ2m
ν

m!Γ(ν)
|x1 −x2|2m − λ2ν

ν |x1 −x2|2ν
Γ(ν)Γ(ν+1)sin(πν)

)

+ σ2

Γ(ν)sinπν

( ∞∑
m=1

λ2(m+n)
ν |x1 −x2|2(m+n)

(m +n)!Γ(m +n −ν+1)
− λ2(m+ν)

ν |x1 −x2|2(m+ν)

m!Γ(m +ν+1)

)
.

Hence, the asymptotic behavior is

c̃ovγ(|x1 −x2|) ∼σ2
{ n∑

m=0

(−1)mΓ(ν−m)λ2m
ν

m!Γ(ν)
|x1 −x2|2m − λ2ν

ν |x1 −x2|2ν
Γ(ν)Γ(ν+1)sin(πν)

}
. (2.7)

Since the function f (z) = |z|2ν : Rd →R belongs to the space C2ν(A) for any bounded set A ∈Rd we

can conclude that covγ ∈ C2ν(D̄ × D̄).

When ν= n ∈N+ the previous definition gives removable indeterminate values of the form 0
0 ; in this

case the Bessel function Kν can be defined through the limit Kn(ρ) = limν→n Kν(ρ). The covariance

function becomes:

c̃ovγ(|x1 −x2|) = lim
ν→n

σ2π

Γ(ν)sinπν

( ∞∑
m=0

λ2m
ν |x1 −x2|2m

m!Γ(m −ν+1)
−

∞∑
m=0

λ2(m+ν)
ν |x1 −x2|2(m+ν)

m!Γ(m +ν+1)

)

=σ2
n−1∑
m=0

(−1)m(n −m −1)!λ2m
n

m!Γ(n
|x1 −x2|2m

+ lim
ν→n

σ2

Γ(ν)sinπν

( ∞∑
m=0

λ2(m+n)
ν |x1 −x2|2(m+n)

(m +n)!Γ(m +n −ν+1)
− λ2(m+ν)

ν |x1 −x2|2(m+ν)

m!Γ(m +ν+1)

)

=σ2
n−1∑
m=0

(−1)m(n −m −1)!λ2m
n

m!Γ(n
|x1 −x2|2m

+ lim
ν→n

σ2

Γ(ν)sinπν

( ∞∑
m=0

λ2(m+n)
ν |x1 −x2|2(m+n)

(m +n)!Γ(m +n −ν+1)m!Γ(m +ν+1)

(
m!
(
Γ(m +ν+1)−Γ(m +n +1)

)+
(m +n)!

(
Γ(m +1)−Γ(m +n −ν+1)

)+m!(m +n)!
(
1−λ2(ν−n)

ν |x1 −x2|2(ν−n))))

=σ2
n−1∑
m=0

(−1)m(n −m −1)!λ2m
n

m!(n −1)!
|x1 −x2|2m

+ (−1)nσ2

(n −1)!

∞∑
m=0

λ2(m+n)
n

(
m!Γ′(m +n +1)+ (m +n)!Γ′(m +1)

((m +n)!)2(m!)2 − 2log
(
λn |x − y |)

(m +n)!m!

)
|x1 −x2|2(m+n)

Again we focus on the asymptotic behavior of the function c̃ovγ(|x1 − x2|) in a neighborhood of

|x1 −x2| = 0. We obtain

c̃ovγ(|x1−x2|) ∼σ2

{
n−1∑
m=0

(−1)m(n −m −1)!λ2m
n

m!(n −1)!
|x1 −x2|2m − (−1)n2λ2n

n

n!(n −1)!
|x1 −x2|2n log(λn |x1 −x2|)

}
(2.8)

Since the function f (z) = |z|2n log(|z|) : Rd → R belongs to the space Cα(A) for any α< 2ν and for
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any bounded set A ∈Rd we can conclude that covγ ∈ Cα(D̄ × D̄) for any α< 2ν.

Remark 2.2.3. Let c̃ovγ(|x − y |) be a covariance function belonging to the Matérn family defined in

(2.5) and let γ(x,ω) be a centered Gaussian random field defined on D̄. Denote ν= n +α with n ∈N

and α ∈ (0,1]. Then, for any multi-index i ∈Nd such that |i |1 ≤ n, it holds:

E[Diγ(x, ·)Diγ(y, ·)] = ∂2|i |1

∂xi1
1 · · ·∂xid

d ∂yi1
1 · · ·∂yid

d

c̃ovγ(|x − y |).

Lemma 2.2.4. Let γ(x,ω) be a centered Gaussian random field with covariance function covγ as in

Lemma 2.2.3. Then γ admits a version with trajectories a.s. in Cα(D) for any 0 <α< ν (see also [45]).

Proof. Let us start with the case in which ν is not an integer. Lemma 2.2.3 tells us that c̃ovγ ∈ C2ν(A)

for any bounded set A ∈Rd . Therefore, thanks to (2.8), by writing ν= n + s with n ∈N and s ∈ (0,1),

for any multi-index i ∈Nd such that |i |1 = n, we obtain

E[(Diγ(x, ·)−Diγ(y, ·))2] = E[(Diγ(x, ·))2]+E[(Diγ(y, ·))2]−2E[Diγ(x, ·)Diγ(y, ·)] =

= 2

(
∂2|i |1 c̃ovγ

∂xi1
1 · · ·∂xid

d ∂yi1
1 · · ·∂yid

d

(0)− ∂2|i |1 c̃ovγ

∂xi1
1 · · ·∂xid

d ∂yi1
1 · · ·∂yid

d

(|x − y |)
)

≤C (ν)|x − y |2s ,

where the last inequality comes from the fact that the coefficients appearing in the covariance

function decay sufficiently fast. Since for any positive integer p it holds E[(Diγ(x, ·)−Diγ(y, ·))2p ] ≤
cpE[(Diγ(x, ·)−Diγ(y, ·))2]p with cp = 1	

2π

∫
R x2p e−

x2

2 d x we have

E[(Diγ(x, ·)−Diγ(y, ·))2p ] ≤ cpC (ν)p |x − y |2ps .

Thanks to the Kolmogorov continuity theorem (see e.g. [29]) we can deduce that there exists a

version of Diγ which belongs to Ca(D̄) for any a < 2ps−d
2p ; by taking the limit for p →+∞ we can

conclude that there exist a version of Diγ which belongs to Ca(D̄) for any a strictly smaller than s.

Consequently, since this reasoning can be repeated for every k < n, k ∈N, by picking 1 instead of s,

we deduce that there exist a version of γ which belongs to Cα(D̄) for any α strictly smaller than ν.

The proof in the case ν ∈N is similar. By writing ν= n +1 in this case, thanks to (2.8), for any ε> 0

and for any multi-index i ∈Nd such that |i |1 = n we obtain

E[(Diγ(x, ·)−Diγ(y, ·))2] ≤ C̃ (ν)
∂2|i |1 |x − y |2n log(|x − y |)
∂xi1

1 · · ·∂xid

d ∂yi1
1 · · ·∂yid

d

≤Cε(ν)|x − y |2−ε.

Again, thanks to the Kolmogorov continuity theorem we can deduce that there exists a version of

Diγ which belongs to Ca(D̄) for any a < p(2−ε)−d
2p ; thanks to the arbitrariness of ε by taking the limit

for p →+∞ we can conclude that there exist a version of Diγ which belongs to Ca(D̄) for any a

strictly smaller than 1. Consequently we deduce that there exist a version of γ which belongs to

Cα(D̄) for any α strictly smaller than ν.

Hence for ν = 0.5 the covariance function is only Lipschitz continuous and the field is Hölder

continuous γ(·,ω) ∈ Cα(D̄) with α< 0.5. On the other hand, for ν→∞ the covariance function as

well as the field are continuous with all their derivates, namely covγ(·) ∈ C∞(D̄ × D̄) and γ(·,ω) ∈
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C∞(D̄) a.s. in Ω. It is important to notice that every log-normal random field a that can be obtained

starting from a Gaussian log-permeability γ having a covariance function belonging to the Matérn

family satisfies the hypothesis of Lemma 2.2.1.

The goal of the analysis is to compute statistics of some quantities of interest given by a linear

functional Q(p) ∈R related to the solution of (2.2).

2.3 Finite Element Approximation

In order to numerically solve problem (2.3) we consider a piecewise linear finite element approxi-

mation ph of p on a regular triangulation Th of the domain. The approximate solution ph ∈Vh,g

solves the problem

bω(ph , v) = L(v) ∀v ∈Vh,0, (2.9)

where Vh,g = {vh ∈C 0(D) : vh |K ∈P1 ∀K ∈Th and vh = Ih g on ΓD }, and Ih g is a suitable interpola-

tion of the Dirichlet boundary datum.

Concerning the finite element approximation error of the original problem (2.2) the following result,

taken from [19], holds:

Lemma 2.3.1. Let D be a C 2 convex bounded domain and let a(x,ω) be a log-normal stationary

random field with realizations a.s. in Cα(D), ΓD = ∂D, g = 0 and f ∈ H r−1(D) with r = min(α,1). If

α≤ 1, by using linear finite elements for the spatial discretization, and assuming all integrals are

computed exactly in (2.9), it holds:

‖p(·,ω)−ph(·,ω)‖H 1
0 (D) �

1

α−β
C2.3.1(ω,α)‖ f ‖Hα−1(D)h

β, ∀0 ≤β<α a.s. in Ω.

where

C2.3.1(ω,α) =
√

amax (ω)

ami n(ω)
C2.2.1(ω,α).

If α> 1 it holds

‖p(·,ω)−ph(·,ω)‖H 1
0 (D) �C2.3.1(ω,α)‖ f ‖L2(D)h a.s. in Ω.

Moreover the random variable C2.3.1(ω,α) is q-integrable for any q ∈ R+, i.e. C2.3.1(ω,α) ∈ Lq
P

(Ω)

∀q ∈R+.

Remark 2.3.1. Since C2.3.1(ω,α) ∈ Lq
P

(Ω) ∀q ∈R+, we deduce immediately from Lemma 2.3.1 in the

case α≤ 1 the bound

‖p −ph‖Lq
P(Ω;H 1

0 (D)) �
c2.3.1(α, q)

α−β
‖ f ‖Hα−1(D)h

β, ∀0 ≤β<α,

where c2.3.1(α, q) = ‖C2.3.1(·,α)‖Lq
P

(Ω), and in the case α> 1 the bound

‖p −ph‖Lq
P(Ω;H 1

0 (D)) � c2.3.1(α, q)‖ f ‖L2(D)h.

Starting from this result, it is straightforward to obtain a bound on a specific QoI represented by a

linear functional. The following result holds:

Lemma 2.3.2. Let a, f , D and r be as in Lemma 2.3.1 and let Q(·) be a functional on H 1−r (D), i.e.

Q ∈ H r−1(D), representing our QoI. Then, by using linear finite elements for the spatial discretization,
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for α≤ 1 a.s. in Ω it holds:

|Q(p −ph)(ω)|� C2.3.2(ω,α)

(α−β)2 ‖ f ‖Hα−1(D)‖Q‖Hα−1(D)h
2β, ∀0 ≤β<α a.s. in Ω.

where C2.3.2(ω,α,β) = C 2
2.3.1(ω,α). If the assumptions hold also for α > 1 then, it is also valid the

bound

|Q(p −ph)(ω)|�C2.3.2(ω,α)‖ f ‖L2(D)‖Q‖L2(D)h
2, a.s. in Ω.

Remark 2.3.2. Since C2.3.1(ω,α) ∈ Lq
P

(Ω) ∀q ∈ R+, the same goes for C2.3.2. Hence the bounds in

Lemma 2.3.2 can be rewritten as

‖Q(p)−Q(ph)‖Lq
P(Ω) �

c2.3.2(α, q)

(α−β)2 ‖ f ‖Hα−1(D)‖Q‖Hα−1(D)h
2β, ∀0 ≤β<α,

where c2.3.2(α, q) = ‖C2.3.2(·,α)‖Lq
P

(Ω), and in the case α> 1 the bound

‖Q(p)−Q(ph)‖Lq
P(Ω) � c2.3.2(α, q)‖ f ‖L2(D)‖Q‖L2(D)h

2.

2.4 The Truncated Darcy Problem

For the methods proposed in this work we need to expand the input random field in a countable

number of independent identically distributed standard normal random variables yn , namely

γ(x,ω) =μ(x)+
∞∑

n=1

√
λn yn(ω)bn(x), (2.10)

where λn are coefficients whose decay depends on the smoothness of the covariance function and

bn are suitably normalized functions in D , which may be for instance Fourier modes or Karhunen-

Loève modes, namely the eigenfunctions of the covariance operator Tγ : L2(D) → L2(D) given

by

Tγv(x) =
∫

D
v(x′)covγ(x,x′)dx′.

Then, in order to use numerical methods to solve the problem we will consider truncated versions

of the random field:

γN (x,y(ω)) =μ(x)+
N∑

n=1

√
λn yn(ω)bn(x) where y = (y1, .., yN ), (2.11)

with N chosen so that the error due to the truncation (see [18, 45]) of the input random field

is sufficiently small compared to the space discretization error induced by the finite element

approximation. Observe that the truncated random field γN (x,y) can be seen as the original

random field γ evaluated at y = (y1, .., yN ,0,0, ...); in the following we will refer to these first N

random variables as “active variables” . In the case of a random field with limited regularity, since

the decay of the coefficients λn in (2.10) is slow, many terms will have to be included in (2.11) to

have a truncation error sufficiently small. The truncated Darcy problem, in its continuous and

discretized form, is then obtained starting respectively from (2.3) and (2.9) by replacing γ with γN

and the probability space (Ω,F ,P) with (RN ,B(RN ),�(y)), being B(RN ) the σ−algebra of Borel

subsets of RN and �(y) =∏N
n=1�n(yn) the probability density of the standard Gaussian vector y;
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consistently we denote pN and pN ,h the solutions of the two corresponding variational problems

by(pN , v) = L(v) ∀v ∈V0, by(pN ,h , v) = L(v) ∀v ∈Vh,0, (2.12)

where the bilinear form by is defined as by(u, v) =∫D aN (x,y)∇u(x,y)∇v(x)d x

By taking into account only the error coming from the truncation of the input permeability field

aN = eγN and from the spatial discretization through finite elements we can bound the error related

to the corresponding QoI as

‖Q −QN ,h‖ ≤ ‖Q −QN‖+‖QN −QN ,h‖.

The first term represents the truncation error that we are committing by replacing the permeability

a with its finite dimensional version aN (see [17]); the second term represents the error that we are

committing by solving with finite elements the truncated problem. In the following we will assume

that the truncation error will be negligible compared to the finite element one and for this reason,

when there is no ambiguity, the subscript N will be omitted.

2.5 Sampling schemes

The final goal of the analysis is to well approximate the QoI Q(y) with its finite dimensional version

QN ,h(y), where y represent a random Gaussian vector with 0 mean and identity covariance matrix,

and h is the spatial discretization parameter. In this Thesis, depending on the specific case, we will

parametrize the random field γ with a finite number of random variables according to equation

(2.11), in which the function bn are either trigonometric functions forming a Fourier basis or

Karhunen-Loève basis functions. Whenever we will use methods, such as Monte Carlo (MC)

sampling, which are basically not affected by the so called “curse of dimensionality” we will perform

the sampling on a Fourier basis, by using the tools provided by the FFT algorithm which well

behaves in terms of complexity; on the other hand, when we deal with numerical schemes whose

convergence performance deteriorates with respect to N , and hence for numerical purposes we

would like to keep as small as possible the number of variables that “significantly affect” the QoI

Q(y), we perform the sampling on a Karhunen-Loève basis, which is known to be the “best” N-term

expansion, i.e. the one minimizing ‖γ−γN‖L2
P(Ω;L2(D)).

2.5.1 Karhunen-Loève expansion

In order to expand the random field γ on a KL basis we need to solve the continuous eigenvalue

problem∫
D

v(x′)covγ(x,x′)dx′ =λv(x). (2.13)

From a practical point of view, for a given triangulation Th of D (not necessarily the same used to

solve the Darcy problem with finite elements), this leads to the computation of an approximate

KL-expansion which requires the numerical solution of the matrix eigenvalue problem

MΣMb =λMb. (2.14)
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For instance, if we consider piecewise linear F.E. and denote by {xi }Nv

i=1 the vertices of the triangu-

lation and {�i }Nv

i=1 the corresponding Lagrangian P1 basis functions, then M represents the mass

matrix such that Mi , j =
∫

D �i (x)� j (x)d x and Σ is the covariance matrix Σi , j = covγ(xi ,x j ) associated

to the vertices of the triangulation.

The size Nv of the KL eigenvalue problem (2.14) can be very large and, since the matrix Σ is non

sparse, its solution can pose numerical challenges. More efficients strategy have been proposed to

compute KL expansions, for instance in [70] the authors achieved a complexity in terms of number

of operations of O(N h−d log(h)−dβ), for some positive β, being N the number of modes to be kept

in the KL expansion; such approximation guarantees accuracy O(exp(−βN 1/d )).

Moreover it is important to say that, by performing a discretization of the physical domain D, we

are implicitly restricting ourselves to consider a finite number of pairs (λn ,bn(x)). Since the exact

eigenvalues form a decreasing sequence converging to 0, the solution of the matrix eigenproblem

(2.14) will produce good estimates only of the pairs corresponding to the largest eigenvalues. This

means that, if we want to keep a high number of random variables in our truncated field γN in

order to obtain a negligible truncation error on the solution of the PDE p, we are forced to solve

an eigenproblem having size Nv >> N . The construction of the basis becomes much easier when

considering a tensor covariance function as in (2.6): in this case it suffices to solve the eigenvalue

problem in dimension D = 1 and then tensorising to get the first N pairs (λn ,bn(x)) in higher

dimension.

The truncation error related to the solution p of the Darcy problem has been shown to decay alge-

braically with respect to N , at least for finite differentiable field γ (see [18, 45, 17]); the convergence

properties of such a truncation error strongly depend on the decay of the eigenvalues λn : the faster

the decay the better the convergence. In Figure 2.1 we show the decay of the eigenvalues of a

two dimensional covariance function in the Matérn family of either tensor type (2.6) or isotropic

type (2.5) for different choices of correlation length Lc , that typically influences the pre-asymptotic

behavior of the sequence {λn}n∈N, and ν, that, on the contrary, affects the asymptotic behavior.

Moreover, the eigenvalues coming from a tensor covariance function present a better rate than the

ones coming from a radial one which follow the predicted asymptotic behavior λn � n−(1+2ν/d) (see

[46]). It is then clear that, when dealing with rough permeability fields, it is necessary to include

many more terms than when dealing with smooth ones to keep the truncation error at acceptable

levels. This, of course, may represent a problem in case of radial covariance functions since, to

achieve small values of tolerances, we might need many terms (order of 104 −105)in the truncated

field. In such cases we switch to Fourier expansions of the random field and use a standard FFT

approach to to sample from the field at a low computational cost.

2.5.2 Fourier expansion

We detail hereafter the 2D case. If the domain D is not a rectangle, in order to sample from a

Fourier expansion, we consider the smallest rectangle [a,b]× [c,d ] that contains D and we write the

expansion on this set. Without loss of generality, suppose we want to expand the random field γ on

the unitary square D = (0,1)2. The idea is to expand the covariance function on the square (−L,L)2,

with L ≥ 1 properly chosen, namely:

c̃ovγ(|x−x′|) = ∑
n∈N2

c2
n

2∏
i=1

cos
(πni

L
(xi −x ′

i )
)

. (2.15)
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Figure 2.1 – Decay of λn . Left: radial covariance function as in (2.5). Right: tensor covariance
function as in (2.6). Top: ν= 2.5. Bottom: ν= 0.5. d = 2.

By doing this we are periodically replicating the function c̃ovγ(|x−x′|), x,x′ ∈ (−L,L)2, in R2: the

resulting function will therefore present, in general, discontinuities of the first derivatives along the

edges of the reference domain (−L,L)2. We have to be careful in operating such a replication of the

field in R2 since we want to end up with a periodic covariance with Fourier coefficients presenting

the same decay of the original ones (coming from the non periodic covariance function). More

specifically, suppose we start from an exponential covariance function, which is not differentiable in

the origin; in this case, since our original covariance has discontinuous derivatives in the origin, even

if we introduce an additional discontinuity of the derivatives in correspondence of the boundary

by replicating the field on R2, we would not worsen the decay of the Fourier coefficient of the

original field; conversely, if we start from a smooth field, we have to choose L > Lc sufficiently

large to mitigate the effect produced by these singularities in order to avoid any worsening of the

Fourier decay of the replicated covariance with respect to the original one. Since the parameter

that regulates the “actual support” of the covariance function, i.e. the set of points on which the

covariance function takes values larger than a prescribed “small” threshold, is the correlation length

Lc , we compute the reference domain size as L = max(6Lc ,1). This choice has been verified to

generate accurate enough estimates of the Fourier coefficients, by checking that the results obtained

would have not changed by considering a larger factor than 6. Of course the larger the domain size

L is, the larger the number of modes to be kept will be in order to include in the series prescribed

frequencies.
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Starting from this Fourier representation of the covariance, the field γ(x,y) can be written as

γ(x,y) = ∑
n∈N2

cn
∑

�∈{0,1}2

y�
n(ω)

2∏
i=1

cos(κi xi )�i sin(κi xi )1−�i , (2.16)

where y�
n(ω) are i.i.d. standard Gaussian random variables and κ = πn

L . It is immediate to no-

tice as E[γ(·,x)] = 0; at the same time, by recalling that the random variables y�
n(ω) are mutually

independent, we have,

E[γ(·,x)γ(·,x′)] = ∑
n∈N2

c2
n

∑
�∈{0,1}2

2∏
i=1

cos(κi xi )�i sin(κi xi )1−�i cos
(
κi x ′

i

)�i sin
(
κi x ′

i

)1−�i = ∑
n∈N2

c2
n cos

(
κi (xi −x ′

i )
)

,

which is the Fourier series of the even extension over the square (−L,L)2 of the considered covariance

function. We recall that, given an N -term vector with entries vn ∈C, its discrete Fourier transform is

a N -term vector with entries

v̂n =
N−1∑
j=0

v j e−i 2π
N n j .

To be able to use the tools coming from the FFT we first truncate the Fourier series (2.15) by

considering n ∈ {0, ..., N }2 for some N ∈ N and then we rewrite it with respect to the complex

exponential function ei πz
L with z ∈Z2; we obtain

c̃ovγ(|x|) = ∑
z∈{−N ,...,N }2

wzc2
(|z1|,|z2|)e

i π
L z·x, (2.17)

where wz = 1/4 if z1z2 �= 0, wz = 1/2 if z1z2 = 0 and one of the two is different than 0, wz = 1 if z1 =
z2 = 0. Then we discretize the point x in the reference domain (−L,L)2 by putting 2N +1 uniformly

distributed points in any direction, namely x j ,k = (x j , xk ), with x j =−L + 2L
2N j for j = 0, ...,2N and

xk =−L+ 2L
2N k for k = 0, ...,2N . Notice that c̃ovγ(|x0,k |) = c̃ovγ(|x2N ,k |) and c̃ovγ(|x j ,0|) = c̃ovγ(|x j ,2N |).

By approximating the integral involved in the definition of c2
n with trapezoidal rule we obtain

wzc2
(|z1|,|z2|) =

1

(2L)2

∫
(−L,L)2

c̃ovγ(|x|)e−i π
L z·xdx ≈ (−1)z1+z2

(2N )2

2N−1∑
j ,k=0

c̃ovγ(|x j ,k |)e−i 2π
2N (z1 j+z2k) := c̃2

z . (2.18)

The double sum represents the two-dimensional discrete Fourier transform (DFT) and can be

efficiently computed via FFT, especially when N is chosen as a power of 2. Once we have computed

the approximated Fourier coefficients, we can generate realizations of the random field using

formula (2.16). Notice that, even if we have to generate M realizations, we need to compute the

Fourier coefficients in (2.17) only once. We can then afford to compute many more terms in the

DFT and then just keep only the coefficients such that z ∈ {−N , ..., N }2. Now in order to use again

the inverse DFT to generate our realization we rewrite the truncated expansion γN in terms of the

complex exponentials

γ(x) = ∑
n∈N2

cn

4

(
eiκ1x1 eiκ2x2

(
y (1,1)

n − i y (1,0)
n − i y (0,1)

n − y (0,0)
n

)
+eiκ1x1 e−iκ2x2

(
y (1,1)

n + i y (1,0)
n − i y (0,1)

n + y (0,0)
n

)
+e−iκ1x1 eiκ2x2

(
y (1,1)

n − i y (1,0)
n + i y (0,1)

n + y (0,0)
n

)
+e−iκ1x1 e−iκ2x2

(
y (1,1)

n + i y (1,0)
n + i y (0,1)

n − y (0,0)
n

))
= ∑

n∈N2

cn

4

(
eiκ1x1 eiκ2x2 Y (1,1)

n +eiκ1x1 e−iκ2x2 Y (1,0)
n +e−iκ1x1 eiκ2x2 Y (0,1)

n +e−iκ1x1 e−iκ2x2 Y (0,0)
n

)
,

(2.19)
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where Y �
n , � ∈ {0,1}2 are proper complex standard normal random variables mutually independent

defined through the previous steps. Again we truncate (2.19) by considering only the multi-indexes

n ∈ {0, N }2 and rewrite the series as

γ(x)N = ∑
z∈{−N ,...,N }2

wzc(|z1|,|z2|)Ỹzei π
L z·x = ∑

z∈{−N ,...,N }2

	
wzc̃zỸzei π

L z·x, (2.20)

where Ỹz = Y
(1z1 ,1z2 )

(|z1|,|z2|) when z1z2 �= 0, Ỹz = Y
(1z1 ,1)

(|z1|,0) +Y
(1z1 ,0)

(|z1|,0) when z2 = 0 and z1 �= 0, Ỹz = Y
(1,1z2 )

(0,|z2|) +
Y

(0,1z2 )
(0,|z2|) when z1 = 0 and z2 �= 0, and finally Ỹz = 4y1,1

0 when z = 0. By evaluating the realization in the

points x j ,k we obtain

γ(xi , j )N = (−1)i+ j
∑

z∈{−N ,N }2

	
wzc̃zỸzei 2π

2N (z1 j+z2k).

To use the inverse discrete Fourier transform we want to consider a double sum involving (2N )2

terms; we then separate the sum as follows:

γ(xi , j ,y)N =(−1)i+ j

⎛⎜⎝ ∑
z∈{−N+1,..,N }2

	
wzc̃zỸzei 2π

2N (z1 j+z2k) + ∑
z2=−N ,

z1∈{−N+1,..,N }

	
wzc̃zỸzei 2π

2N (z1 j+z2k)

+ ∑
z1=−N ,

z2∈{−N+1,..,N }

	
wzc̃zỸzei 2π

2N (z1 j+z2k) + c̃(−N ,−N )Ỹ(−N ,−N )e
i 2π

2N (−N j−N k)

⎞⎟⎠ . (2.21)

The double sum represent again the two-dimensional inverse DFT, while the two successive sums

represent two one-dimensional inverse DFT; the overall cost to generate a discrete realization of

the random field, evaluated in the tensor points x j ,k , j ,k = 0, ...,2N , thanks to the efficiency of the

inverse FFT algorithm is then O (N 2 log(N )2), while a naive implementation to compute the DFT

would have had a computational cost scaling as O (N 4). Notice that, since this realization is defined

on (−L,L)2, for our purposes we will just keep the vertices that belong to (0,1)2.

Observe also that, by operating in this way, there is an intrinsic link between the number of spatial

vertices and the number of Fourier coefficients (hence of random variables). If we want to consider

a fine mesh, automatically we have to include in the expansion of the field many random variables;

on the other hand, if we want to consider many random variables on a coarse mesh we will have to

sample on a finer mesh (being the two possibly nested in order to avoid any interpolation error)

and then pick up only the values corresponding to the vertices of the coarse mesh.

The strategy described above is very efficient since it uses FFT both to compute the Fourier coeffi-

cients and generate realizations of the random field on a uniform grid. It shares some analogies

with the popular circulant embedding approach [31, 55]. In particular it presents the same compu-

tational cost, since it relies on the features of the FFT algorithm. However, this approximation does

not ensure the positivity of the coefficients c̃2
z ; nevertheless, since we compute the coefficients c̃2

z

only once by approximating the integral in (2.18), we can actually afford to run this calculation by

using a value Ñ >> N and then keep only the coefficients such that z ∈ {−N , ..., N }2; by doing this we

can reasonably assume to commit a negligible error in the computation of the Fourier coefficients.

In what comes next we do not introduce any other source of error since we use the inverse DFT just

to perform the summation appearing in the definition of the Fourier series.
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The strategy to obtain a realization of the random field γ on a structured grid can be summarized as

follows:

1. given a mesh size h� = 2−� and a covariance function c̃ovγ set N = h−1
�

and compute the

approximated Fourier coefficients according to (2.18);

2. generate the random variables y�
n, n ∈ {0, .., N }2, � ∈ {0,1}2 and compute the corresponding

variables Y �
n according to (2.19);

3. generate the realization by using FFT to evaluate the summation in (2.21).
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3 Sparse Grid polynomial approximation
for random PDEs in high dimensional
probability spaces

3.1 Introduction

In this chapter we deal with the polynomial approximation in the random variables of the stochastic

Darcy problem. We start the discussion without any specific assumption on the law of the finite

random vector y ∈ Γ ⊂ RN and on the permeability field a(x,y). Observe that, due to the curse

of dimensionality, the problem can become particularly challenging when the dimension of the

stochastic space N is large; for this reason such elliptic random PDE have been extensively studied

during the last few years from both a theoretical and a numerical point of view. The goal of such

analysis is trying to eliminate, or at least reduce as much as possible, the effects of the curse of

dimensionality. It is clear that, in order to achieve such a goal, the polynomial approximation of the

map y → p(y) has to exploit as much as possible the anisotropy of the solution with respect to the

different random inputs yn , n = 1, ..., N .

To achieve this goal, we consider the problem of building a sparse grid approximation of a mul-

tivariate function Q(y) : Γ→V with global polynomials, where Γ is an N -dimensional hypercube

Γ= Γ1×Γ2×. . .×ΓN (with Γn ⊆R, n = 1, ..., N ), and V is a Hilbert space [15, 8, 71, 60, 4]. We point out

that, although the methodology presented in this chapter will be entirely applied to the stochastic

lognormal Darcy problem, it is possible to use it also for problems depending on uniform random

variables by suitably changing the collocation points; further details will be provided in the following.

We also assume the random variables y1, ..., yN to be independent and identically distributed and

each Γn to be endowed with a probability measure �n(yn)d yn , so that the joint probability density

function of the vector y is the product of the marginals, namely �(y)dy =∏N
n=1�n(yn)d yn on Γ.

This setting is common in many optimization and Uncertainty Quantification problems, where

sparse grids have been increasingly used to perform tasks such as quadrature, interpolation and

surrogate modeling, since they allow for trivial parallelization and maximal reuse of legacy codes,

with little or no expertise required by the end-user. While very effective for moderate dimensions

(say N ≈ 10), the basic sparse grid algorithms show a significant performance degradation when

N increases (the so-called “curse of dimensionality” effect). The search for advanced sparse grid

implementations, ideally immune to this effect, has thus become a very relevant research topic.

In particular we want to exploit the anisotropy of Q by assessing its variability with respect to

each parameter yn and enriching the sparse grid approximation accordingly. Two main classes of

schemes can be individuated to this end: those exploiting the anisotropy of Q by using “a posteriori”

strategies, i.e. at run-time, based on suitable indicators, and those using “a priori” strategies, based
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on theoretical estimates or good ansatz and possibly aided by some preliminary computations (that

is why sometimes peolpe refer to the latter as “a-priori/a-posteriori” strategies).

A priori schemes might be somehow more tempting since, by having at our disposal computable

formulas, we can build an anisotropic index-set without the need of exploring the multi-index space

to assess its anisotropy structure. This basically means that they save the cost of the exploration; on

the other hand a posteriori approaches require some extra exploration cost but are more flexible

and robust since they do not rely on the sharpness of theoretical estimates or ansatz as in the “a

priori” case. Examples of a-priori/a-posteriori algorithms can be found e.g. in [63, 11, 60], while

the classical a-posteriori algorithm originally proposed in [40] has been further considered e.g. in

[22, 69, 79].

A-posteriori sparse grid algorithms have always been used in the literature in combination with

nested univariate quadrature rules, since this choice eases the computation of the anisotropy

indicators, cf. [40]. In Uncertainty Quantification it is quite natural to choose univariate quadrature

points according to the probability measures ρn(yn)d yn , see e.g. [4]: hence, one is left with the

problem of computing good univariate nested quadrature rules for the probability measures at

hand. While the case of the uniform measure has been thoroughly investigated and several choices

of appropriate nested quadratures are available, like Leja, Gauss–Patterson or Clenshaw–Curtis

points (see e.g. [61, 60] and references therein), non-uniform measures have been less explored.

In the very relevant case of normal probability distribution a common choice is represented by

Genz-Keister quadrature rules [39]; however, the cardinality of such quadrature rules increases

very quickly when moving from one quadrature level to the following one, hence leading to heavy

computational burden when tensorized in a high-dimensional setting. The very recent work [59]

develops instead generalized Leja quadrature rules for arbitrary measures on unbounded intervals:

the main advantage of such quadrature rules over the Genz-Keister points is that two consecutive

quadrature rules differ by one point only, rendering the Leja points more suitable for sparse grid

construction.

In this work we will approach the problem from a different perspective and propose a slight general-

ization of the classical a-posteriori adaptive algorithm that allows to use non-nested quadrature

rules: this immediately permits to build adaptive sparse grids using Gaussian-type quadrature

nodes, which are readily available for practically every common probability measure. We will also

consider different profit indicators and compare the performances of the corresponding adaptive

schemes.

We will then test our version of the adaptive algorithm on the stochastic Darcy problem [12, 35, 17,

43, 25] by using a truncated Karhunen–Loève expansion of the input log-permeability γ. We will

consider the cases in which the covariance structure of the random field is described by a tensor

and an isotropic Matérn covariance model [32], according to (2.6) and (2.5).

More specifically, we will mainly consider the case of a fairly smooth (twice differentiable) random

permeability a. Starting from the value ν= 2.5 we analyze the convergence in the case of tensor

and radial covariance, and with increasing values of the variance of the log-permeability σ2, in

order to show how the variability of the input random field affects the convergence properties of the

algorithm.

In such cases we will compare the performance of the adaptive sparse grid procedure with the

“a-priori” quasi-optimal sparse grid proposed in [12] for the same problem, that has been readapted
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to cover also the case of non-nested nodes.

In the case ν = 2.5, the lognormal random field can be very accurately described by including a

moderate number of random variables in the Karhunen–Loève expansion. In this case a sparse grid

approach to solve the Darcy problem is quite effective, at least for reasonably moderate variances of

the input permeability. Note, however, that we will not fix a-priori the number of random variables

to be considered, but rather propose a version of the adaptive algorithm that progressively adds

dimensions to the search space, thus formally working with N =∞ random variables. In this sense,

when we say that it is possible to accurately describe the random field by including a moderate

number of random variables in the Karhunen–Loève expansion, we mean that the number of

variables activated by the algorithm does not increase quickly when achieving smaller and smaller

tolerances. However even such dimension adaptive sparse grids (as well as the quasi-optimal ones)

may suffer from a deterioration in performance when the lognormal random field gets rougher. In

particular, in the case ν= 0.5, we show numerical tests indicating that even such advanced adaptive

schemes might not present a substantial gain over a standard Monte Carlo method. In this case

indeed the number of variables activated by the algorithm increases very quickly when considering

decreasing tolerances.

The chapter is organized as follows. We start by introducing the general construction of sparse grids

in Section 3.3. Then, in Section 3.4, we discuss in detail the construction of the quasi-optimal and

adaptive sparse grids: in particular, we will set up a common framework for the two methods in

the context of the solution of discrete optimization problems, and specify the details of the two

algorithms in Subsections 3.4.1 and 3.4.2, respectively. In Section 3.5 we will introduce the proposed

dimension adaptive algorithm in order to solve the Darcy problem. Then in Section 3.6 we present

the numerical results, while Section 3.7 contains the conclusions of this chapter.

In what follows, N will denote the set of integer numbers including 0, and N+ that of integer numbers

excluding 0. Given two vectors v,w ∈NN , |v|0, |v|1, |v|2 denote respectively the number of non-zero

entries of v, the sum of their absolute values and the Euclidean norm of v, and we write v ≤ w if

and only if v j ≤ w j for every 1 ≤ j ≤ N . Moreover, 0 will denote the vector (0,0, . . . ,0) ∈NN , 1 the

vector (1,1, . . . ,1) ∈ NN , and e j the j -th canonical vector in RN , i.e. a vector whose components

are all zero but the j -th, whose value is one. To close our introduction, we recall the definition of

some function spaces that will be useful in the following. In particular, we will need the space of

continuous functions with weighted maximum norm

C 0
π(Γ;V ) =

{
f : Γ→V s.t. f is continuous and max

Γ
‖ f (y)‖V π(y) <∞

}
,

where π=∏N
n=1πn(yn),πn : Γn →R, is a positive and smooth function. The reasons for introducing

two different weight functions � and π will become clearer later on. Observe in particular that, since

V and L2
�(Γ) are Hilbert spaces, L2

�(Γ;V ) is isomorphic to the tensor product space V ⊗L2
�(Γ), and is

itself an Hilbert space.

3.2 Preliminaries: a brief overview on the problem

The problem of considering polynomial approximations of random elliptic PDEs has been widely

investigated by several authors. Without any loss of generality, by denoting with Pq (Γn) the set of

univariate polynomials in yn of degree at most q , the starting point is a series representation of Q(y)
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using multivariate polynomials:

Q(y) = ∑
q∈NN

QqPq(y), Pq(y) ∈
N⊗

n=1
Pq1 (Γn), (3.1)

where Pq(y) are general global polynomial functions that will depend on the specific kind of ap-

proximation. For instance they could be an orthonormal basis in L2(Γ) upon which to perform a

projection, Lagrange polynomials built over suitable collocation points to perform a sparse grid

interpolation or monomials representing a Taylor expansion. All approximations of Q, namely

QΛW (y), are based on a suitable choice of a truncation set ΛW , having cardinality W , upon which

evaluating the summation (3.1).

Theoretical results on the convergence of polynomial approximation are available in the literature

for some specific cases. The most studied situation is that of a diffusion coefficient depending

affinely on the random parameters a(x,y) = a�(x)+∑N
n=1 ynψn(x), with yn uniformly distributed

and under the assumption of uniform ellipticity and boundedness. In [27] the authors perform a

rigorous analysis in case of both a monomial expansion and a projection on Legendre polynomials.

They showed that, in both cases, the approximations based on these polynomial spaces lead to

algebraic convergence rates with respect to W independently of N , and then valid also when taking

N →∞, namely

‖Q(·)−QΛW (·)‖L∞(Γ) ≤CW −s .

Here s is a parameter related to the decay of the modes ψn(x) modeling the diffusion coefficient;

by assuming
{‖ψn(·)‖L∞(D)

}
n≥1 ∈ �p (N) for some p < 1, the result in [27] states that the achievable

convergence rate is s = 1
p −1. Such a result is interesting since it directly links the p-summability of

the sequence
{‖ψn(·)‖L∞(D)

}
n≥1 with the convergence rate. This result has been extended in [24] to

cover also the case in which the diffusion coefficient a(x,y) depends nonlinearly on the random

variables yn , n = 1, ..., N . Unfortunately, all these results strongly rely on the assumption of uniform

ellipticity of the random field a.

A straightforward extension of such results to the case of normal (unbounded) random variables is

not obvious; in [35] the authors proved a convergence result for a standard Smolyak approximation

[71] of the solution of the log-normal Darcy problem with truncated KL expansion; however, since

the Smolyak construction does not exploit the anisotropy of the solution with respect to differ-

ent random variables, it is not possible to extend this result also for N →∞ since the predicted

convergence rates would degenerate. This fact has therefore motivated many authors to consider

different strategies to take into account the anisotropy of the solution in the construction of the

sparse polynomial space [63, 23, 42].

We may conjecture that such a theoretical result could applies also to the Darcy problem with log-

normal permeability: we can then link the regularity of the input random field with the summability

of the sequence
{‖ψn(·)‖L∞(D)

}
n≥1 in which now ψn , n ∈ N represent the KL modes; since such

a sequence scales as n− d+2ν
2d (in the case of isotropic Matérn covariance function of the input

permeability) we would obtain p-summability of the input permeability only for 2d
d+2ν < p < 1, which,

for ν sufficiently large, would imply a convergence rate equal to ν−1
2 in the two dimensional case

with respect to the cardinality of the approximating space ΛW , i.e. ‖Q(·)−QΛW (·)‖L∞(Γ) ≤CW − ν−1
2 ; a

good test for our adaptive scheme will be then to achieve a convergence rate as close as possible to

the one predicted for an easier class of problems.
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3.3 Sparse grid approximations in finite dimensions

As anticipated in the introduction, we aim at constructing a sparse grid approximation with global

polynomials of a Hilbert space-valued function Q, defined on Γ⊆RN with associated probability

measure �(y)dy =∏N
n=1�n(yn)d yn . More specifically, we will consider functions Q that are continu-

ous with respect to y and with finite variance, i.e. belonging to L2
�(Γ;V )∩C 0

π(Γ;V ) for some suitable

weight function π: such weights can be often taken equal to �, but not always as in fact we will

consider in Section 3.6, see e.g. [4, 49]. Observe that approximating Q with global polynomials is a

sound approach if Q is not just continuous, but actually a smooth function of y, see [4, 60]. Sparse

grids based on piecewise polynomial approximations, which are suitable for non-smooth or even

discontinuous functions, have been developed e.g. in [52, 36].

The sparse grid polynomial approximation is built starting from a sequence of univariate Lagrangian

interpolation operators {U m(in )
n }in∈N along each direction yn , n = 1, ..., N , namely

U
m(in )
n : C 0

πn
(Γn) →Pm(in )−1(Γn),

where m(in) denotes the number of collocation points used by the in-th interpolant. The function

m : N→N is called “level-to-nodes function” and is a strictly increasing function, with m(0) = 0

and m(1) = 1; consistently, we set U 0
n[Q] = 0. Next, since the underlying hypercube Γ is the tensor

product of each Γn , the sparse grid interpolant will be built as a linear combination of tensor

products of univariate interpolants; therefore for any i ∈ NN+ we define the tensor interpolant

operator

T m
i [Q](y) =

N⊗
n=1

U
m(in )
n [Q](y), (3.2)

and the hierarchical surplus operator

Δm(i) =
N⊗

n=1

(
U

m(in )
n −U

m(in−1)
n

)
, (3.3)

where we have denoted with m(i) the vector [m(i1),m(i2), . . . ,m(iN )]. A sparse grid approximation is

built as a sum of hierarchical surplus operators; more specifically, we consider for w ∈N a sequence

of index sets I(w) ⊂NN+ such that I(w) ⊂ I(w +1), I(0) = {1} and ∪w∈NI(w) =NN+ , and we define the

sparse grid approximation of f (y) at level w ∈N as

S m
I(w) : L2

�(Γ;V )∩C 0
π(Γ;V ) → L2

�(Γ;V ), S m
I(w)[Q](y) = ∑

i∈I(w)
Δm(i)[Q](y) . (3.4)

To ensure good approximation properties for the sparse approximation, the sum (3.4) should be

telescopic, cf. [40]: to this end we require that

∀ i ∈ I, i−e j ∈ I for 1 ≤ j ≤ N such that i j > 1.

A set I satisfying the above property is said to be a lower set or a downward closed set, see e.g. [30].

Again we stress the fact that the choice of the set I(w) strongly affects the effectiveness of such sparse

grid schemes; to properly face this issue, Section 3.4 will be entirely devoted to the discussion of two

possible strategies, namely the “a-posteriori” adaptive and the “a-priori” quasi-optimal procedures

that have been mentioned in the introduction.
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It is important to notice how, by properly rearranging the terms in the sum (3.4), the sparse grid

interpolant can be rewritten as linear combination of tensor interpolant operators (3.2), see e.g.

[76]. In particular, for downward closed multi-index sets I(w), we obtain

S m
I(w)[Q](y) = ∑

i∈I(w)
ciT

m
i [Q](y), ci =

∑
j∈{0,1}N

(i+j)∈I(w)

(−1)|j|. (3.5)

Observe that many of the coefficients ci in (3.5) may be zero: in particular ci is zero whenever

i+ j ∈ I(w) ∀j ∈ {0,1}N . The set of all collocation points needed by (3.5) is actually called a sparse

grid, and we denote its cardinality by W m
I(w).

To make easier the dissertation in the following we introduce the operator pts(S ) that returns the

set of points associated to a tensor / sparse grid operator, and the operator card(S ) that returns the

cardinality of pts(S ):

card(T m
i ) =

N∏
n=1

m(in), card(S m
I(w)) =W m

I(w) . (3.6)

Finally, consider a sequence of univariate quadrature operators built over the same set of points of

{U m(in )
n }in∈N; then, since it is straightforward to derive a tensor grid quadrature scheme for T m

i [Q],

we can use (3.5) to derive a sparse grid quadrature scheme for S m
I(w)[Q]; by recombining the terms

in (3.5) we get then

∫
Γ

f (y)�(y)dy ≈
∫
Γ
S m

I(w)[Q]�(y)dy = ∑
i∈I(w)

ci

∫
Γ
T m

i [Q](y)dy =
W m

I(w)∑
j=1

Q(y j )β j =Qm
I(w)[Q], (3.7)

for y j ∈ pts(S m
I(w)) and suitable quadrature weights β j ∈R.

Coming to the choice of the univariate collocation points used to build U
m(in )
n , as mentioned in

the introduction they should be chosen according to the probability measure �n(yn)d yn on Γn .

Although the use of nested points seems to be particularly indicated for the hierarchical construction

(3.4), as the Δm(i) operator would entail evaluations only on the new points added going from the

tensor grid T m
i−1 to T m

i , at this point any choice of univariate collocation points is allowed (see

Table 3.1), and in particular Gauss interpolation / quadrature points, associated to the underlying

probability density functions �n(yn), have been widely used, cf. e.g. [5, 63, 34, 33]. Note however

that non-nested interpolatory rules have not been used in the adaptive context, for reasons that

will be clearer in a moment; one of our aims is then to extend the adaptive algorithm to non-nested

quadrature rules.

3.4 Possible criteria to select the multi-index set I

As previously anticipated in this section we will detail two possible strategies, namely the a priori

and the a posteriori ones, to properly choose the sequence of sets I(w). The QoI Q we want to

approximate is defined starting from the solution p of the Darcy problem which is a Hilbert space-

valued function. Since Q is a (spatial) linear functional Q(p), in order to simplify the notation, we

assume V =R, i.e. Q is a real-valued N -variate function over Γ. However, all the considerations and

algorithms extend directly to p as well.
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Table 3.1 – Common choices of univariate collocation points for sparse grids.

Collocation points

measure nested m(i)
Gauss–Legendre uniform no i
Clenshaw–Curtis uniform yes 2i−1 +1
Gauss–Patterson uniform yes 2i −1
Leja uniform yes m(i ) = i or m(i ) = 2i −1
Gauss–Hermite gaussian no i
Genz–Keister gaussian yes tabulated: m(i ) = 1,3,9,19,35
generalized Leja gaussian yes i

Our goal is to measure the sparse grid approximation error by using proper non-negative sublinear

functionals 1 E [·], e.g. a semi-norm on Lp
� (Γ) (three examples of such sublinear functionals will be

provided in the following). To do this, we assume that formally the following equality holds:

Q =S m
NN+

[Q] = ∑
i∈NN+

Δm(i)[Q];

then, we can measure the error between the exact QoI Q and its sparse grid approximation S m
I(w)[Q]

as

E
[
Q −S m

I(w)[Q]
]= E

[ ∑
i∉I(w)

Δm(i)[Q]

]
≤ ∑

i∉I(w)
E
[
Δm(i)[Q]

]
. (3.8)

Since in general we are not able to exactly compute the contributions E
[
Δm(i)[Q]

]
, we further

define the error contribution operator ΔE (i) as a computable (and hopefully tight) approximation of

E
[
Δm(i)[Q]

]
, namely ΔE(i) ≈ E

[
Δm(i)[Q]

]
. At the same time, we also define the work contribution

operator ΔW (i) as the number of additional evaluations of Q needed to include the hierarchical

surplus operator Δm(i)[Q] to the sparse grid approximation. Observe that keeping track of these

new evaluations is easy when using nested collocations points while it is actually a quite delicate

issue when using non-nested points as we will see in the following.

Now, upon having assigned an error and a work contribution to each hierarchical surplus operator,

the problem of finding optimal sets I(w) can be rewritten as a “binary knapsack problem” [15, 56],

namely:

max
∑

i∈NN+

ΔE(i)xi s.t.
∑

i∈NN+

ΔW (i)xi ≤Wmax (w) and xi ∈ {0,1},

where Wmax(w) is the maximum computational work allowed for the approximation level w . Note

that we are not explicitly enforcing the resulting sets I(w) to be downward closed (which will have

to be verified a-posteriori).

While the binary knapsack problem is known to be computationally intractable (NP-hard), its linear

programming relaxation, in which fractional values of xi are allowed, can be solved analytically by

the so-called Dantzig algorithm [56]:

1A sublinear functional over a vector space X is a function Θ : X →R such that

• Θ(αx) =αΘ(x), ∀α> 0 and x ∈ X ;

• Θ(x + y) ≤Θ(x)+Θ(y), ∀x, y ∈ X .
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1. Assign a “profit” to each multi-index i,

P (i) = ΔE(i)

ΔW (i)
; (3.9)

2. sort multi-indices by decreasing profit;

3. set xi = 1, i.e. add i to I(w), until the constraint on the maximum work is fulfilled. In particular,

whenever the multi-index i = 1+en enters the set I(w) we say that the random variable yn is

activated.

Note that only the last multi-index included in the selection is possibly taken not entirely (i.e. with

xi < 1), whereas all the previous ones are taken entirely (i.e. with xi = 1). This is due to the fact that,

denoting with i∗ the last multi-index, we may have W m
I(w)\i∗ < Wmax(w) < W m

I(w). However, if this

is the case, we assume that we could slightly adjust the computational budget, so that all xi have

integer values; observe that such integer solution is also the solution of the original binary knapsack

problem with modified work constraint, i.e. Wmax(w) =W m
I(w).

Both the a priori quasi-optimal and the a posteriori adaptive sparse grids strategies fit in this general

framework. What changes between the two schemes are just the choice of the error indicator E [·]
and the way ΔW (i) and ΔE(i) are computed.

3.4.1 An “a priori” strategy: quasi-optimal sparse grids

Here we introduce the a priori quasi-optimal sparse grid strategy [60, 12]; in this case the error

between Q and its sparse grid interpolant S m
I(w)[Q] is measured in the L2

�-norm, so that the bound

(3.8) becomes∥∥Q −S m
I(w)[Q]

∥∥
L2
�
≤ ∑

i∉I(w)

∥∥Δm(i)[Q]
∥∥

L2
�

. (3.10)

In order to define the profits P (i) we need to provide an explicit bound of the L2
�-norm of the

Δm(i)-operator applied to Q and identify the error contribution operator ΔE(i) with such a bound.

Following the approach in [60, 12, 11], we introduce the spectral expansion of Q over a N -variate

ρ̃-orthonormal polynomial basis ϕq(y), 2, with ρ̃ not necessarily equal to �; for example, in the

case where yn are uniform random variables, ρn(yn) = 1/|Γn |, one is allowed to expand Q on

tensorized Chebyshev polynomials, which are orthonormal with respect to ρ̃ = ∏N
n=1 ρ̃n , with

ρ̃n(yn) = 1/
√

1− y2
n . Next, let Qq be the q-th coefficient of the �̃-expansion of Q and let the M

m(in )
n

be the “C 0
π → L2

� Lebesgue constant” of the univariate interpolant operators U
m(in )
n , n = 1, ..., N , for

a suitable weight π, i.e.

M
m(in )
n = sup

‖ f ‖C 0
π(Γn )=1

∥∥∥U m(in )
n [ f ]

∥∥∥
L2
�(Γn )

.

In order to obtain a rigorous bound of each term in (3.10) by following the procedure developed

in [60], we assume that the coefficients Qq are at least exponentially decreasing in each yn , i.e.

|Qq| ≤C1
∏

n exp(−gn qn), and that
∥∥ϕqn

∥∥
C 0
π(Γn ) ≤C2, ∀n = 1, .., N . With such assumptions, by using

the properties of the hierarchical surplus operator, it can be shown that for a suitable constant C

2Here the n-th component of q denotes the polynomial degree with respect to yn .
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there holds

∥∥Δm(i)[Q]
∥∥

L2
�
=
∥∥∥∥∥Δm(i)

[ ∑
q∈NN

Qqϕq

]∥∥∥∥∥
L2
�

=
∥∥∥∥∥ ∑

q≥m(i−1)
QqΔ

m(i) [ϕq
]∥∥∥∥∥

L2
�

≤ |Qm(i−1)|
N∏

n=1
M

m(in )
n

∑
qn≥m(in−1)

∥∥ϕqn

∥∥
C 0
π(Γn ) ≤ΔE(i) =C (N ) |Qm(i−1)|

N∏
n=1

M
m(in )
n .

(3.11)

To obtain computable formulas for ΔE(i) we numerically estimate the Lebesgue constants Mm(in )
n

and we use a computable ansatz for the term |Qm(i−1)|; such an ansatz depends on the exponential

coefficients g1, . . . , gN that can be estimated by convenient pre-computations. In practice, by denot-

ing with Qn
q the q-th coefficient of the one dimensional ρ̃n-expansion of Qm(in )(0, ...,0, yn ,0, ...0), we

estimate the gn coefficients by further assuming |Qm(i)| <∏N
n=1 |Qn

m(in )| so that we require only O (N )

evaluations of Q, since we fix a priori the number of evaluations to compute any unidimensional

coefficient |Qm(in )(y1, ..., yn−1, ·, yn+1, ..., yN )|. In the next sections an explicit ansatz for the lognor-

mal Darcy problem will be used, and other details on the numerical procedure needed to estimate

g1, . . . , gN will be provided.

Remark 3.4.1. Concerning the Darcy problem, the solution p (and then Q) depends analytically on

the parameters y [4, 35], therefore it seems a reasonable idea to use a sparse grid scheme to approx-

imate it. In [49] it has been shown that p ∈ C 0
π(Γ,V ) with π(y) =∏N

n=1 exp(−|yn |
√

λn
∥∥ψn

∥∥
L∞(D)).

Nonetheless, we will choose � = ρ̃ = π in equation (3.11). In particular, this means that we can

use Hermite polynomials ϕq in the quasi-optimal approach, for which indeed
∥∥ϕq

∥∥
C 0
π
≤ C , and,

according to [12], we will use the following ansatz for the Hermite coefficient of Q:

|Qq| ≈C
N∏

n=1

e−gn qn√
qn !

. (3.12)

The computation of the work contributions ΔW (i) is more straightforward. In particular different

formulas can be applied depending on whether the nodes we are considering are nested or not (see

[60] for details). In the former case, we can simply write

ΔW (i) =
N∏

n=1

(
m(in)−m(in −1)

)
, (3.13)

and there holds

W m
I(w) =

∑
i∈I(w)

ΔW (i),

i.e. the cardinality of the sparse grid is equal to the sum of the work contributions. On the other

hand, when considering non-nested nodes, the number of new evaluations of Q, i.e. the number of

new points added to the sparse grid, can not be precisely estimated a priori; in light of this fact we

define the work contributions ΔW (i) through the pessimistic estimate

ΔW (i) =
N∏

n=1
m(in) = card(T m

i [Q]), (3.14)

43



Chapter 3. Sparse Grid polynomial approximation for random PDEs in high dimensional
probability spaces

i.e. the cardinality of the entire tensor grid associated to i, which gives us the following bound

W m
I(w) ≤

∑
i∈I(w)

ΔW (i).

The choice of bounding the number of new points added to the sparse grid by including the surplus

operator Δm(i) in the sparse grid construction with the number of all the points forming the tensor

grid associated to i can be also motivated by observing how, for non-nested nodes, the number of

new points will depend in general on the set I to which i is added; consider for instance two sets I,I′

downward closed and a multi-index i such that also I∪ {i} and I′ ∪ {i} are downward closed; then it

might happen that

card(S m
I∪{i}) �= card(S m

I′∪{i}), (3.15)

with some nodes belonging at the same time to T m
i and to the sparse grid built over I but not

necessarily to the one built over I′, i.e.

pts(S m
I ) �⊂ pts(S m

I∪{i}). (3.16)

With the numerical values of ΔE (i) and ΔW (i) at our disposal we have all the ingredients to start the

actual sparse grid construction. Here we report a sketch of the algorithm used in the case of the

Darcy problem:

1. ∀n = 0, ..., N we consider Hermite polynomial approximations with increasing level w1, w2, ..., wK

and look at the errors |Qn
wk

−Qn
wK

| for k = 1, ...,K −1; starting from those errors we compute

the rates gn , n = 1, ..., N , by fitting the model (3.12).

2. We create a “multi-index universe”, i.e. a very large set of multi-indices i ∈NN and assign to

each of them the corresponding profit P (i) by using the following computable formula:

P (i) =
∏N

n=1
e−gn m(in−1)	

m(in−1)
M

m(in )
n

ΔW (i)
.

If we deal with KPN nodes, we select the work contribution ΔW (i) according to (3.14) and

we numerically estimate the Lebesgue constants M
m(in )
n ∀n = 1, ..., N , while if we deal with

non-nested Hermite nodes we select ΔW (i) according to (3.13) and set Mm(in )
n = 1 ∀n = 1, ..., N

(see [60]).

3. We order all the profits in a decreasing order and denote is the multi-index i corresponding to

the s-th highest profit; we keep the first S multi-indexes i1, ..., iS such that a certain stopping

condition is fulfilled: either on the number of sparse gird nodes associated to the multi-index

set formed by I = {is}S
s=1, i.e. WI ≤ Wmax , or on the profits, i.e. by choosing S such that

P (iS) ≥ Pmi n and P (iS+1) < Pmi n .

4. We check the admissibility of the set I = {is}S
s=1; it this holds we move to the next step, otherwise

we complete the multi-index set by adding the minimum number of indexes to make it

downward closed.

5. Once the multi-index set I is given the sparse grid approximation can be computed according

to (3.5).
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3.4.2 An “a posteriori” strategy: adaptive sparse grids

In this section we present the adaptive sparse grid construction algorithm [40, 22, 69], and its

extension to non-nested points and unbounded intervals. In this case the exploration of the multi-

index space NN becomes quite costly since the estimation of the Δm(i) contributions will require the

actual solution of the PDE in the new candidate points belonging to T m
i . Starting from a current

multi-index space I, in order to deal with this adaptive exploration of NN , we introduce the concepts

of margin and reduced margin of I, and the concept of neighbors of I.

Definition 3.4.1. The margin of I, denoted by MI, is the multi-index set that contains all i ∈NN that

can be reached within “one-step forward” from I, i.e.

MI = {i ∈NN
+ \ I : ∃ j ∈ I : |i− j|1 = 1}.

Definition 3.4.2. The reduced margin of I, denoted by RI, is the subset of the margin of I containing

only those indices i such that “one-step backward” in any direction takes into I, i.e.

RI = {i ∈NN
+ \ I : i−e j ∈ I, ∀ j = 1, . . . , N : i j > 1} ⊂ MI.

Observe that the reduced margin of I contains all indices i such that I∪ {i} is downward closed,

provided that I itself is downward closed; we will see soon how this property is appealing for

computational purposes.

Definition 3.4.3. For any index i on the boundary of I, i.e. such that i+en ∉ I for some n = 1, ..., N ,

we call neighbors of i with respect to I, and we denote them as neigh(i,I), the indices j not included in

I that can be reached with “one step forward” from i, so that MI =⋃i∈I neigh(i,I).

Note that in this case, instead of computing profits and sets I(w) all at once as in the quasi-optimal

algorithm, the adaptive algorithm computes the profits and the sets I(w) at run-time, proceeding

iteratively in a greedy way. In order to compute the Δm(i) contribution ∀i ∈ I using (3.3), we need I to

be downward closed; moreover, since at each iteration of our adaptive scheme, we want to compute

profits associated to multi-indices i which are candidates to enter the sparse grid approximation, in

our greedy strategy we will only look for candidate indices i in the reduced margin RI, and we select

those with highest associated profit. In general, given a multi-index set I and its reduced margin RI,

the adaptive algorithm operates as follows:

1. the profits of i ∈ RI are computed;

2. the index i with the highest profit is moved from RI to I;

3. the reduced margin is updated and the algorithm moves to the next iteration, until some

stopping criterion is met (usually, a check on the number of evaluations of Q or on the values

of the profits or error contributions of the multi-indices in RI).

Remark 3.4.2. The profits of the indices i ∈ RI are computed by actually adding the hierarchical

surpluses to the sparse grid operator, hence the definition of “a-posteriori”; therefore, the outcome of

the algorithm at each iteration is the sparse grid approximation built on I∪RI and not just on I.

The a posteriori adaptive strategy is rather flexible in the choice of possible error indicators E [·]; in

this thesis we focus on two of them, namely the absolute value of the expectation of Q −S m
I(w)[Q],
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which is a semi-norm on L1
�(Γ), and the weighted C 0

π(Γ) norm, so that (3.8) becomes∣∣∣∣E [Q]−E
[
S m

I [Q]
]∣∣∣∣≤∑

i∉I

∣∣∣E[Δm(i)[Q]
]∣∣∣,

∥∥Q −S m
I [Q]

∥∥
C 0
π(Γ) ≤

∑
i∉I

∥∥Δm(i)[Q]
∥∥

C 0
π(Γ) .

Now we discuss our approach to actually compute the error indicator ΔE(i) for the quantity

E
[
Δm(i)[Q]

]
. Given a current set I downward closed we explore all the multi-indices i ∈ RI: it

is then preferable to introduce the set J = I∪ {i}. Again we stress the fact that also J is downward

closed, making easy the estimation of our error indicator according to (3.5) . Moreover it can be

observed that Δm(i)[Q] =S m
J [Q]−S m

I [Q].

By operating in this way, for the L1
�(Γ) seminorm we immediately obtain

E
[
Δm(i)[Q]

]= E
[

S m
J [Q]−S m

I [Q]
]
=Qm

J [Q]−Qm
I [Q],

which leads to the straightforward definition

ΔE(i) = ∣∣E[Δm(i)[Q]
]∣∣= ∣∣Qm

J [Q]−Qm
I [Q]

∣∣ . (3.17)

In the case of the C 0
π(Γ) norm, things are slightly more involved; in particular our definition of the

error indicator ΔE(i) depends on the nature of the nodes we are considering. It is well known that,

for nested points, the sparse grid operator is interpolatory (see e.g [8, Prop. 6]); this means that

Δm(i)[Q](y) = S m
J [Q](y)−S m

I [Q](y) = 0 for any y ∈ pts(S m
I ) while S m

J [Q](y) = Q(y) �= S m
I [Q](y)

for any y ∈N ew = pts(S m
J ) \ pts(S m

I ), cf. eq. (3.6). Therefore the estimation of the C 0
π(Γ) norm of

Δm(i)[Q] can be performed by looking only at the values on y ∈N ew, namely,∥∥Δm(i)[Q]
∥∥

C 0
π(Γ) ≈ max

y∈N ew

∣∣∣Δm(i)[Q](y)π(y)
∣∣∣

which leads to the following definition of the error indicator ΔE(i)

ΔE(i) = max
y∈N ew

∣∣∣Δm(i)[Q](y)π(y)
∣∣∣= max

y∈N ew

∣∣∣(Q(y)−S m
I [Q](y)

)
π(y)

∣∣∣. (3.18)

On the other hand, sparse grids built with non-nested points are not interpolatory, and the set

of points added to a sparse grid by Δm(i) depends on i and I: it can occur that points considered

in the sparse grid are removed from the approximations when others are added, cf. eq. (3.15), as

it depends on the current index set I to which i is added. Thus, we define N ew = pts(T m
i ) and

approximate the C 0
π(Γ) norm as

ΔE(i) = max
y∈N ew

∣∣∣Δm(i)[Q](y)π(y)
∣∣∣= max

y∈N ew

∣∣∣(S m
J [Q](y)−S m

I [Q](y)
)
π(y)

∣∣∣. (3.19)

The right hand side in (3.17)-(3.19), with suitably chosen I and J, are the actual formulas we have

used to compute ΔE(i) (see Algorithm 1 and 2 for further details) . However, we remark that these

values do not depend on the set I chosen for evaluation, since the quantities ΔE(i) are defined

starting from the hierarchical surplus operator Δm(i). This means that we can consider the indices

of the reduced margin RI in any order, and that the values of ΔE (i) do not need to be recomputed at
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each iteration.

As for the work contribution ΔW (i), we consider the same indicators defined in the quasi-optimal

case, i.e. (3.13) for nested points and (3.14) for non-nested points, which is equivalent to setting

the work contributions equal to the cardinality of the sets N ew introduced above. A third option

is to consider ΔW (i) = 1, i.e. driving the adaptivity only by the error contributions. This is the

choice considered e.g. in [22, 69], while [40, 53] combine ΔE(i) and ΔW (i) in a different way. To

summarize, we will drive the adaptive algorithm with any of the four profit definitions listed next,

whose formulas differ depending on whether nested or non-nested points are used:To summarize,

we will adapt the ideas coming from these works to numerically solve the log-normal Darcy problem

and we will extend the methodology to cover also the case of non-nested nodes; we will drive the

adaptive algorithm by proper selection P (i) = ΔE(i)
ΔW (i) with any of the four profit definitions listed next,

whose formulas differ depending on whether nested or non-nested points are used:

• “deltaint”: set ΔE(i) as in (3.17) and ΔW (i) = 1;

• “deltaint / new points” combine ΔE (i) as in (3.17) with ΔW (i) in (3.13) for nested points and

in (3.14) for non-nested points;

• “weighted Linf” set ΔE(i) as in (3.18) and ΔW (i) = 1 for nested points, and ΔE(i) as in (3.19)

and ΔW (i) = 1 for non-nested points;

• “weighted Linf / new points” combine ΔE(i) in (3.18) with ΔW (i) in (3.13) for nested points

and ΔE(i) in (3.19) with ΔW (i) in (3.14) for non-nested points.

The pseudo-code of the algorithm is listed in Algorithm 1.Since nodes that are present in a given

sparse grid are not necessarily present in the following ones when using non-nested points, cf. eq.

(3.16), the full work count in this case is not simply pts(S ) (as it would be for nested points), but

should rather include all the points “visited” to reach that grid in the adaptive algorithm, which

motivates lines L1-L2 in Algorithm1.Observe however that all Gaussian quadrature rules associated

to a symmetric weight (or probability density) are in a sense “partially nested”, meaning that rules

with odd number of points place a quadrature node in the midpoint of the interval, implying that a

non-negligible number of points can still be in common between two grids.
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Algorithm 1: Adaptive sparse grids algorithm.

Adaptive sparse grids(MaxPts, ProfTol, π, <ProfitName>)
I = {1}, G = {1}, RI =∅, i = 1 ;
Sol d =S m

I [Q], Qol d =Qm
I [Q] ;

H = pts(Sol d ), NbPts=card(Sol d ), ProfStop=∞ ;
while NbPts < MaxPts and ProfStop > ProfTol do

N g = neigh(i,I)
for j ∈N g and I∪ {j} downward closed do

G = G∪ {j} ; at the end of the for loop, G = I∪RI

S =S m
G [Q] ; j must be added to S to evaluate its profit.

Q =Qm
G [Q] ;

if using nested points then
N ew = pts(S ) \ pts(Sol d ) ; i.e. the points added by j to S

NbPts = NbPts + card(N ew) ;
v = evaluations of Q on each y ∈N ew ; cf. eq. (3.18)

else
N ew = pts(T m

i );
L1 H =H ∪pts(S ) ; add points of S to H (no repetitions)
L2 NbPts = card(H ) ; for non-nested points, card(H )>card(S )

v = evaluations of S on each y ∈N ew ; cf. eq. (3.19)

vol d = evaluations of Sol d on each y ∈N ew ;
π = evaluations of π on each y ∈N ew ;
P (j) = Compute_profit(N ew,v,vol d ,π,Q,Qol d ,<ProfitName>)
RI = RI ∪ {j};
Sol d =S , Qol d =Q ;

choose the i from RI with highest profit;
I = I∪ {i}, RI = RI \ {i}
update ProfStop with a suitable criterion based on the values of P

return S ,Q

Compute_profit(N ew,v,vol d ,π,Q,Qol d ,<ProfitName>)
switch ProfitName do

case deltaint
profit(i) = |Q−Qol d | ;

case deltaint/new points

profit(i) = |Q−Qol d |
card(N ew)

;

case Weighted Linf
profit(i) = max{|v−vol d |�π} ; � denotes element-wise multiplication

case Weighted Linf/new points

profit(i) = max{|v−vol d |�π}

card(N ew)
;

return profit(i)

3.5 A dimension-adaptive sparse grid algorithm

When dealing with high (infinite) dimensional spaces in probability, say hundreds of random

variables, the computations become quickly very costly, since the generation and the exploration

of the reduced margin RI becomes more and more demanding. In order to better address such
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cases we propose an improved version of the classical sparse grid algorithm listed in Algorithm 1. In

particular, the idea is to start with a moderate number Ñ of random variables and then introduce a

way to gradually add random variables on the fly.

To do this we assume a sort of “weak ordering” of the random variables yn ; more precisely we

assume that there exist Nb ∈N such that the variable yn is guaranteed to affect the QoI Q more than

yn+Nb .

At this stage the sparse grid algorithm can be launched by considering Ñ = Nb random variables

only, i.e. y = (y1, ..., yÑ ); then, whenever one of these random variables is activated, we increase by 1

the counter N of random variables and we add the variable yÑ+1 to the sparse grid approximation,

i.e. the multi-index i = 1+eÑ+1 is included in the reduced margin RI. In this way the integer Nb plays

the role of a “dimensional buffer”, as it is needed to maintain unchanged the number of random

variables ready to be activated to improve the sparse grid approximation.

Since we are not anymore requiring an a priori truncation of the input random field, It is important

to notice that the algorithm is potentially able to work also with N =∞ random variables.

For the moment we have not been able to prove a convergence result for this algorithm, since dealing

with not uniformly coercive PDEs makes the analysis involved; if we look among other adaptive

schemes able to work with infinite random variables, in [26] the authors proved a convergence result

for an algorithm based on Taylor expansions of the solution, but covering only the case of bounded

random variables. To test the effectiveness of our strategy fully detailed in Algorithm 2, we will

compare our results with the error bound given in [26], Eq. (7.46), which in our case would predict

a convergence rate, in the C0
π(Γ) norm, equal to ν−1, with respect to the number of terms in the

Taylor approximation. Of course this represents a severe test since we are dealing with log-normal

fields, but as we will see in the numerical results, the observed convergence rate is not far from this

value ν−1 we are comparing with.

3.6 Numerical Results

The methodology presented so far is very general and can be applied to a wide class of UQ problem

characterized by different stochasticity. In this section we apply the methodology to the Darcy prob-

lem with log-normal permeability and study numerically its convergence properties. In particular

we will focus on the case of an undisturbed flow from left to right modeled through the equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
−div(a(x,y)∇∇∇p(x,y)) = 0 x ∈ (0,1)2,

p(x,y) = 1−x1 x ∈ x1 = {0}∪x1 = {1},

∇∇∇p(x,y) ·n = 0 x ∈ x2 = {0}∪x2 = {1}.

(3.20)

The spatial approximation of the Darcy problem is done by piecewise linear finite elements defined

on a structured mesh with 33×33 vertices, which has been verified to be sufficiently refined for

our purposes. The input log-permeability γ has been parametrized with a KL expansion γ(x,y) =∑∞
n=1

√
λnψn(x)yn .
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Algorithm 2: Dimension Adaptive Algorithm

Note: To avoid ambiguities we write vN to make clear that the vector v has N components;
analogously IN indicates that the multi-index set I is composed of N -dimensional vectors.

Dimension adaptive sparse grids(MaxPts, ProfTol, π, <ProfitName>,Nb)

Ñ = Nb , AÑ = 0Ñ ; A is a Boolean vector indicating which variables are active

IÑ = {1Ñ }, GÑ = {1Ñ }, RÑ
I =∅, iÑ = 1Ñ , Sol d =S m

IÑ
[Q], Qol d =Qm

IÑ
[Q] ;

H = pts(Sol d ), NbPts=card(Sol d ), ProfStop=∞ ;
while NbPts < MaxPts and ProfStop > ProfTol do

N g = neigh(iÑ ,IÑ ) ;

for j ∈N g and IÑ ∪ {j} is downward closed do

GÑ = GÑ ∪ {j} ;
S =S m

GÑ
[Q] ;

Q =Qm
GÑ

[Q] ;

if using nested points then
N ew = pts(S ) \ pts(Sol d ), NbPts = NbPts + card(N ew) ;
v = evaluations of f on each y ∈N ew ; cf. eq. (3.18)

else
N ew = pts(T m

i ), H =H ∪pts(S ), NbPts = card(H ) ;
v = evaluations of S on each y ∈N ew ; cf. eq. (3.19)

vol d = evaluations of Sol d on each y ∈N ew ;
π = evaluations of π on each y ∈N ew ;
P (j) = Compute_profit(N ew,v,vol d ,π,Q,Qol d ,<ProfitName>)
RÑ

I = RÑ
I ∪ {j}

Sol d =S , Qol d =Q ;

choose kÑ from RÑ
I with highest profit; iÑ = kÑ ;

if ∃n = 1, ..., Ñ s.t. An = 0 and kn > 1 then
An = 1, Ñ = Ñ +1 ; activate n-th variable and update Ñ
extend the containers I,RI,G,k,A by adding the new direction.
GÑ = GÑ ∪ {1Ñ +eÑ

Ñ
}; S =S m

GÑ
[Q]; Q =Qm

GÑ
[Q] ;

if using nested points then
N ew = pts(S ) \ pts(Sol d ), NbPts = NbPts + card(N ew) ;
v = evaluations of f on each y ∈N ew ; cf. eq. (3.18)

else
N ew = pts(T m

i ), H =H ∪pts(S ), NbPts = card(H );
v = evaluations of S on each y ∈N ew ; cf. eq. (3.19)

vol d = evaluations of Sol d on each y ∈N ew ;
π = evaluations of π on each y ∈N ew ;

P (1Ñ +eÑ
Ñ

) = Compute_profit(N ew,v,vol d ,π,Q,Qol d ,<ProfitName>)

RÑ
I = RÑ

I ∪ {1Ñ +eÑ
Ñ

},

iÑ = argmax(max(P (1Ñ +eÑ
Ñ

),P (kÑ ))) ; select iÑ with highest profit

IÑ = IÑ ∪ {iÑ }, RÑ
I = RÑ

I \ {iÑ }
update ProfStop with a suitable criterion based on the values of P (j)

return S , Q

In particular we will be interested in approximating the expected value of the functional

Q(y) =
∫1

0
a(1, x2,y)

∂p

∂x1
(1, x2,y)d x2, y ∈RN (3.21)
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which represents the mass flow on the outlet. The aims of this section are:

1. establish whether using non-nested points in an adaptive sparse grid framework might be

convenient or not;

2. verify the performances of adaptive sparse grids built with respect to different profit indica-

tors;

3. compare such performances with the ones of the quasi-optimal sparse grids, also in light of

the fact that such approaches behave similarly when applied to UQ problems depending on

uniform random variables by using nested collocation points (see [11, 60]);

4. test the performances of the method with different scenarios in order to study its robustness:

different covariance structure, variances of the input random field, in presence of permeability

measurements.

In order to achieve such goals, we will solve then the problem (3.20) in three cases:

1. first a sort of reference case: we consider a smooth random field γ with relatively moderate

variability σ, corresponding to the choice ν= 2.5 in (2.6) and (2.5). In this part we carefully

detail the numerical procedure used to obtained the convergence results and provide further

details on the sparse grid algorithm.

2. Then we consider higher variances, moving from σ2 = 1 to σ2 = 4;observe that, in terms of

permeability, such values of σ generate variances roughly speaking equal to 5 and 3×103

respectively, covering then a wide range of permeability values.

3. Finally we apply the sparse grid approximation in the case in which some measurements of

the permeability are available all over the domain in order to understand how significant is

the effect of conditioning the random field to available observations, on the convergence of

the scheme.

3.6.1 Reference case: ν= 2.5, σ= 1, Lc = 0.5

In this case we deal with an input random field with twice differentiable realizations with two

possible covariance structure given by (2.5) and (2.6); in both cases the eigenvalues of the Karhunen–

Loève expansion decay quickly enough to justify the use of the N -adaptive sparse grid algorithm

to approximate the QoI, more precisely they behave like n−(1+2ν) and n−(1+2ν/d) in the tensor and

radial case respectively.

For this test we consider two families of covariance functions defined in (2.5) and (2.6); in both cases

we consider as a reference solution the approximation of the QoI obtained with a quasi-optimal

sparse grid with approximately 21900 and 30300 quadrature points base of Gauss–Hermite abscissas,

for which, 322 (out of the first 350) for the radial case and 84 (out of 152) for the tensor case random

variables of the KL expansion are active; as we will see later on, this is sufficient to take into account

a fraction of the total variability of the permeability field large enough not to affect our convergence

results; this essentially means that no KL truncation error occurs. We monitor the convergence of

the error measured as

er r (w) ≈ |Qm
I(w)[Q]−Qm

I(wr e f )[Q]|, (3.22)
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i.e. the absolute value of the sparse grid quadrature error, where I(w), w = 0,1,2, . . . , are the se-

quences of multi-index sets generated either by the adaptive or the quasi-optimal sparse grid scheme

and I(wr e f ) is the multi-index set corresponding to the above-mentioned reference solution. More

specifically, the sets I(w) for the adaptive strategies are obtained by stopping the algorithm as soon

as at least Wmax (w) points have been added to the sparse grid (including the points needed for the

exploration of the reduced margin), with Wmax (w) = {1,20,50,100,250,500,1000,2000,4000}, for

w = 0, . . . ,8. As for the quasi-optimal sparse grids, the sets I(w) are defined as

I(w) = {i ∈NN
+ : P (i) ≥ e−w} (3.23)

with w = 0,1, . . . ,5, the reference solution being obtained with w = 6. We recall that the profits

P (i) are defined as the ratios between the error and work contributions, P (i) =ΔE(i)/ΔW (i), where

ΔE(i) are estimated combining equations (3.12) and (3.11), and ΔW (i) are defined either as (3.13)

or (3.14).

The computational cost associated to each sparse grid is expressed in terms of number of linear

system solves. For the adaptive sparse grids, this count also includes the cost of the exploration of

the reduced margin. Moreover, when using non-nested points we also take into account the system

solves related to the points that have been included and then excluded from the sparse grid, cf.

equation (3.16). As for the quasi-optimal sparse grids, their construction requires some additional

solves to estimate the parameters g1, . . . , gN in (3.12), cf. [60, 11]. More precisely, the n-th rate is

estimated by fixing all variables but yn to their expected value, computing the value of the QoI

increasing the number of collocation points along yn and then fitting the resulting interpolation

error with respect to a reference solution with a fixed number K +1 of collocation points: in practice,

this amounts to solve K (K +1)/2 linear systems per random variable. In this specific case we fixed

K = 7 to estimate the rates: this choice provided stable fits for all the random variables included in

the simulation.

Dimension adaptive sparse grids

We start our discussion from Figure 3.1, where we show the convergence results obtained with the

dimension-adaptive Algorithm 2 in the case of isotropic covariance function varying the choice of

profit indicators (cf. Algorithm 1) and the choice of interpolation points, i.e. Genz–Keister versus

Gauss–Hermite points, the latter denoted by a suffix NN in the plot, as per “non nested” (cf. Table

3.1); in this test, we have set the buffer size to Nb = 10. More specifically, we used the “deltaint-

based” profit indicators in Figure 3.1-(a) (D/NP in the plots, where D stands for “deltaint” and NP

for “divided by number of points”) and “weighted L∞-based” profit indicators in Figure 3.1-(b)

(WLinf/NP in the plots). The curve labeled as “MC error” represents the expected MC decay that has

been generated as
	
Var(u)/M(w), with Var(u) estimated as Var(u) ≈Qm

I(wr e f )[u
2]− (Qm

I(wr e f )[u])2;

such an estimate has been verified to be accurate enough by comparing with actual realizations of

the MC estimator. We have also put, as a more advanced reference method to compare with, the

convergence obtained by using a Quasi Monte Carlo (QMC) estimator built on Sobol points ([45, 44]).

In both Figures 3.1-(a,b) we observe that there is not much difference between the adaptive scheme

which uses nested points and the one that does not. The convergence obtained in this case is

satisfying, since we obtain an improved convergence rate with respect to the MC case that almost

matches the rate predicted in [26] for bounded random variables with a different adaptive scheme

and also in [24] as anticipated in section 3.2. QMC and the sparse grid approximation perform
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similarly in this case.

The numbers next to each point give information about the shape of the multi-index sets I(w)

generated by the adaptive algorithm, and consequently on the distribution of the sparse grid points

on the Ñ -dimensional parameter space. The first number (out of the brackets) indicates the number

of active directions, while the second number (in the brackets) denotes the maximum number of

directions that have been activated at the same time, i.e. the highest dimensionality among all

the tensor grids composing the sparse grid, cf. equation (3.5). Here and in the following, green

labels refer to grids with nested points, while red labels to grids with non-nested points. Observe

that after ≈ 20 problem solves the algorithm has activated “only” 1 variable due to the fact the at

the beginning of the algorithm Nb variables must be explored, requiring 1+2Nb = 21 solver calls,

in order to decide which variable should be activated as second; moreover the number of “active”

variables is always smaller than N = 322, which is the number of “active” variables for the reference

solution, hence our error estimator (3.22) effectively measures also a truncation error.

In Figure 3.2 we repeat the procedure starting from a tensor covariance function as in (2.6): the faster

decay of the eigenvalues of this covariance function does not generate an improved convergence

rate with respect to the previous case, at least in this range of values, indeed we obtain very similar

results also in terms of random variables activated. However, since in the two cases the decay of the

eigenvalues is different, at least asimptotically, we claim that this is only a pre-asymptotic effect. In

this regime we observe a good improvement even with respect to QMC.

Dimension quasi-optimal sparse grids

In Figure 3.3 we show instead the errors obtained by using quasi-optimal sparse grid approximations

of the QoI built on Genz–Keister and Gauss–Hermite knots (labeled OPT and OPT NN respectively),

for both isotropic and tensor covariances. Observe also that the Lebesgue constant Mm(in )
n , intro-

duced in section 3.4.1 and needed for computations, has been proven in [60] to be identically equal

to one in the case of Gauss-Hermite abscissas, while can be numerically estimated in the case of

Genz–Keister points. Again, the labels next to each point represent the number of active variables

(outside the brackets) and the number of variables activated at the same time (in the brackets). As

in the previous case the errors obtained with tensor and isotropic covariance behave similarly; the

labels suggest that, for the same work, the adaptive sparse grids seem to activate a slightly smaller

number of variables than the quasi-optimal ones, while the tensor grids dimensionality seems to

be comparable. Also for the quasi-optimal sparse grids the number of “active” variables is always

smaller than the reference solutions’ ones. Again the QMC and sparse grid perform similarly in the

case of isotropic input covariance while the latter remains more effective in the case of tensor input

covariance.

Finally, we test numerically the pointwise approximation properties of the sparse grids methodology.

In an unbounded domain context. The main difficulty encountered in performing pointwise

approximation is that the Lagrangian polynomials on which the sparse grid construction is based

are not uniformly bounded (regardless of the choice of collocation points). On the other hand,

the solution of the Darcy problem is unbounded as well, and indeed it can only be shown that

p ∈C 0
π(Γ,V ) with an exponentially decaying weight given by π(y) =∏N

n=1 exp(−|yn |
√

λn
∥∥ψn

∥∥
L∞(D)),

see [3, 49]. Since such convergence also implies the convergence in norm C 0
�(Γ,V ) we will verify

numerically the convergence in such weighted norms for both, the exponential weight π and the

53



Chapter 3. Sparse Grid polynomial approximation for random PDEs in high dimensional
probability spaces

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

1(1) 3(2)
4(3)

7(3)

11(3)

18(3)
27(4)

41(4)

1(1)

3(2)

4(3)

7(4)

11(4)
17(4)

25(4) 36(4)

work

er
ro

r

ν=2.5,radial covariance, σ=1

 

 

MC error
AD−D/NP
ADNN−D/NP
QMC − Sobol pts.

(a) Profit indicator: deltaint / new points (AD-D/NP and
ADNN-D/NP).

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

1(1) 3(2)

6(2)

10(2)

14(3)

17(3)

21(3)

23(3)

1(1)

4(2)

7(2)

10(2)
14(3)

18(3)

22(3)

24(4)

work

er
ro

r

ν=2.5,radial covariance, σ=1

 

 

MC error
AD−WLinf/NP
ADNN−WLinf/NP
QMC − Sobol pts.

(b) Profit indicator: Weighted Linf / new points (AD-
WLinf/NP and ADNN-WLinf/NP).

Figure 3.1 – Case ν= 2.5 radial covariance, adaptive sparse grids error.
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Figure 3.2 – Case ν= 2.5 tensor covariance, adaptive sparse grids error.
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(a) Quasi-optimal sparse grids error: tensor covariance.
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(b) Quasi-optimal sparse grids error: radial covariance.

Figure 3.3 – Case ν = 2.5, quasi-optimal sparse grids error obtained with tensor (left) and radial
(right) covariance function.

gaussian weight �, by sampling the difference between the exact value of the Quantity of Interest Q

and its sparse grid approximation over a set of 10000 points randomly sampled from a multivariate
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Figure 3.4 – Case ν = 2.5, radial covariance function. Interpolation error with different weight
functions for the Quasi Optimal (OPT) and Adaptive

(
profit indicators Deltaint (AD-D) and Weighted

Linf / new points (AD-WLNP)
)

cases. wor k = WI,m , N∗ = 60, card(R) = 10000. Dashed lines
represent the slopes -0.5 (black) and -1 (orange).
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Figure 3.5 – Case ν = 2.5, tensor covariance function. Interpolation error with different weight
functions for the Quasi Optimal (OPT) and Adaptive

(
profit indicators Deltaint (AD-D) and Weighted

Linf / new points (AD-WLNP)
)

cases. wor k = WI,m , N∗ = 60, card(R) = 10000. Dashed lines
represent the slopes -0.5 (black) and -1 (orange).

standard gaussian distribution:∥∥Q −S m
I [Q]

∥∥
C 0
π(Γ) ≈ max

y∈R

∣∣∣(Q(y)−S m
I [Q](y)

)
π(y)

∣∣∣.
Observe that the number of random variables considered by S m

I [Q] is increasing as the sparse grids

algorithm keeps running; thus, we choose R ⊂ RN∗
, with N∗ sufficiently larger than the number

of random variables activated by the most refined sparse grids. The results are shown in Figure

3.4 and 3.5, and indicate that the sparse grid pointwise weighted approximation error is indeed

decreasing. Here we report only the results obtained with tensor covariance. These results suggest

again that the various sparse grid construction techniques considered in this work behave similarly,

and in particular “weighted L∞” based sparse grids do not show particular gains with respect to the
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“deltaint”-based ones.

The sparse grids considered in this test are the same ones used to obtain the results shown in Figures

3.1,3.2 and 3.3; again we remark that the number of active variables remains significantly smaller

than the number of variables N∗ = 60 used to compute our approximated sample space R. We

actually observe convergence in the norms ‖·‖C 0
�(Γ) and ‖·‖C 0

π(Γ); moreover the “weighted L∞” norms

of the differences between the exact sample Q and its sparse grid reconstruction S m
I [Q] converge

with a similar rate when using the exponential weight π and the gaussian one �.

Discussion

To conclude the presentation of this reference case in Figure 3.6-(a) we report a comparison between

some of the errors previously presented; for the quasi-optimal case, we include in the definition

of the work also the extra cost needed to compute the rates g1, ..., gN in (3.12), cf. [60, 11]; more

precisely, the n-th rate is estimated by fixing all variables but yn to their expected value, computing

the value of the QoI increasing the number of collocation points along yn and then fitting the

resulting interpolation error: in practice, this amounts to solving 25 linear systems per random

variable, which are included in the work count. In Figure 3.6-(b) we show the convergence obtained

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

work

er
ro

r

 

 

MC error
OPT
OPT NN
AD−WLinf/NP
ADNN−WLinf/NP
AD−D
ADNN−D

(a) ν= 2.5: comparison adaptive / quasi-optimal.
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Figure 3.6 – Tensor covariance: sparse grids error for different regularities of the input random field.

by applying the sparse grid algorithm to a problem depending on a rough input random field: it is

clear that in such a case the sparse grid approximation does not bring any significant improvement

with respect to a standard Monte Carlo scheme and therefore its use is not recommended.

3.6.2 Permeabilities with high variability: σ2 = 4

Here we show how the sparse grid approximation suffers the effects of a larger variability of the

input. In Figures 3.7-3.9 we repeat the previous computations by changing σ in σ= 2.By looking at

the results it appears evident that the convergence properties of the adaptive schemes deteriorate

when considering larger values of σ; however if from the one hand the quasi-optimal convergence

looks pretty bad, on the other hand the adaptive scheme seems at least to be more robust; in

fact in the case σ= 2, all errors coming from isotropic and tensor covariances and obtained with

“deltaint-based” and “weighted L∞-based” profits, present a better constant and a slightly better

rate than both, standard MC and QMC.
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(a) Profit indicator: deltaint / new points (AD-D/NP and
ADNN-D/NP).
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Figure 3.7 – Case ν= 2.5, σ= 2, adaptive sparse grids error.
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(a) Profit indicator: deltaint / new points (AD-D/NP and
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Figure 3.8 – Case ν= 2.5, σ= 2, adaptive sparse grids error.
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(a) Quasi-optimal sparse grids error: tensor covariance.
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(b) Quasi-optimal sparse grids error: radial covariance.

Figure 3.9 – Case ν = 2.5, σ = 2, quasi-optimal sparse grids error obtained with tensor (left) and
radial (right) covariance function.

If we look at the number of random variables activated by the algorithm it is clear what is happening:

since the variability of the input field is large, the algorithm before activating new random variables
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tends to add points to the first directions; again we claim that this is a pre-asymptotic effect and

that at a certain point, once a sufficiently large number of points has been added to the sparse grid

along the first directions, some sudden drop of the error should occur.

3.6.3 Conditioned Darcy problem

Here we want to estimate the effects of including in the model some additional information that

could be available in practical cases. In particular we imagine to have at our disposal 9 measure-

ments a1, ..., a9, listed in the vector a ∈R9×1, of the permeability a located in the points {0,1/2,1}2

sorted in the list xm . Since the log-permeability is Gaussian, it is straightforward to obtain the law

of the conditioned log-permeability γcond (x,ω) = (γ(x,ω)|γ(xm
1 ,ω) = log(a1), .....,γ(xm

9 ,ω) = log(a9)
)
,

in fact the conditioned mean and covariance functions are given by

μcond (x) =μ−covγ(x,xm)covγ(xm ,xm)−1a,

covcond (x,y) =covγ(x,y)−covγ(x,xm)covγ(xm ,xm)−1covγ(xm ,y),

where covγ(x,xm) ∈R1×9, covγ(xm ,y) ∈R9×1 and covγ(xm ,xm) ∈R9×9. Since the conditioned covari-

ance does not depend on the measurements a, the KL basis depends only on the number and the

location of the measurements, which is fixed in our case. In Figures 3.10-3.12 we can observe how,

for σ= 2, the performance of the adaptive / quasi-optimal sparse grid algorithms is incomparably

better in the conditioned case than in the unconditioned one (cf. Figures 3.7-3.12). we observe

very good convergence properties for all schemes, especially if compared with the corresponding

unconditioned case in which there was no significant improvement with respect to the standard

MC case.

Observe that in the conditioned case, if we look at the number of random variables activated,

there is a significant difference between the adaptive and the quasi-optimal scheme: the former

activates a moderate number of random variables, comparable with the numbers we obtained in

the unconditioned case, while the quasi-optimal schemes tend to activate many random variables

at the beginning; at the moment we are not able to provide a valid explanation to this behavior.

3.7 Conclusions

In this chapter we presented an improved version of the standard adaptive sparse grid algorithm;

in particular we set up a general framework based on the choice of suitable error indicators to

measure the overall sparse grid error. The methods proposed are able to handle several issues: they

can be applied to solve problems on both, bounded and unbounded domains, by using nested or

non-nested nodes; moreover, whenever dealing with high dimensional problems and assuming

that a “weak ordering” of the random variables holds, they can be used in their dimension-adaptive

version, being therefore able to work with an infinite number of random variables. Several indicators

have been introduced lo drive the construction of the sparse grid in the “a posteriori” case.

For our purposes, we have then used this algorithm to solve the Darcy problem with random

log-normal permeability, and compared the results obtained by changing collocation points and

adaptivity indicators against those obtained by the quasi-optimal sparse grids algorithm. The

computational analysis has been performed on a case with smooth permeability realizations, first

by considering a reasonably small variance of the input random field, then taking into account
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Figure 3.10 – Conditioned case: ν= 2.5 radial covariance, adaptive sparse grids error.
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Figure 3.11 – Conditioned case: ν= 2.5 tensor covariance, adaptive sparse grids error.
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(a) Quasi-optimal sparse grids error: tensor covariance.
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(b) Quasi-optimal sparse grids error: radial covariance.

Figure 3.12 – Conditioned case: ν= 2.5, σ= 2, quasi-optimal sparse grids error obtained with tensor
(left) and radial (right) covariance function.

highly varying permeabilities, and finally by including into the model the information coming from

some measurements of the input random field, as it could happen in a realistic case. In all the
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these cases the sparse grid has been tested by monitoring the quadrature error committed in order

to approximate the mean of our QoI. Only in the first case, we have also tested numerically the

convergence of the sparse grid approximation in weighted maximum norm.

From this numerical investigation, we can draw the following conclusions:

1. using non-nested points in an adaptive sparse grid framework yields results that are compara-

ble to those obtained by nested points, at least in the log-normal context;

2. changing the indicator driving the adaptivity process does not have a dramatic impact on the

quality of the solution; this however may be due to the specific choice of the QoI considered

here, and more testing should be performed;

3. the sparse grid approximation will also converge with respect to suitably weighted maximum

norms;

4. in the case of smooth log-permeability fields with moderate variances the adaptive and the

quasi-optimal sparse grids perform similarly, in agreement with our previous findings on

uniform random variables, and give quite satisfactory results;

5. in the case of highly varying log-permeability fields the adaptive and the quasi-optimal sparse

grids perform again quite similarly but the convergence properties highly degenerate when

considering higher and higher variances;

6. in the case of rough fields the adaptive / quasi-optimal sparse grids alone do not significantly

improve the MC convergence and we do not advocate their use in such a case;

7. the convergence rates observed by using the dimension adaptive scheme are comparable

with the one already available in literature for problems involving bounded, e.g. uniform,

random variables.
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4 Monte Carlo-type schemes with Control
Variate

4.1 Inroduction

In the previous Chapter we introduced different sparse grid approaches to deal with numerical

polynomial approximation of quantities of interest related to the solution of partial differential

equations, and applied this methodology to solve the Darcy problem with random permeability. We

recall that we focus on the case of a lognormal permeability a = eγ having a covariance function

belonging to one of the two Matérn-type families (2.5) and (2.6); since such families cover a wide

range of possible regularities, cf. Section 2.2, the numerical method to be used has to be adapted to

the nature of the problem.

We showed in Chapter 3 how the sparse grid performs well in the presence of a smooth input field a

while it suffers the effects of the curse of dimensionality when dealing with a rough input field. More

generally, in the case of smooth random fields, different authors focused on developing (possibly

sparse) polynomial chaos expansions of the solution, either in their Galerkin or Collocation versions

(see e.g. [3, 2, 5, 64, 77]), and applied such strategies to solve the stochastic Darcy problem [35, 13].

On the other hand, as it can be seen for instance in Figure 3.6, the performance of polynomial

approximations deteriorate when dealing with problems involving rough input permeability a;

this is due to a slower decay of the KL (or Fourier) coefficients that makes slower the convergence

of the truncated field aN to a with respect to the case of a smooth permeability. Hence, a very

large number of terms (and then of random variables) has to be retained in the expansion of the

random permeability a, slowing down the convergence of polynomial approximations, which may

not be advantageous anymore with respect to standard MC-type schemes. Very popular because

of their straightforward implementation and robustness with respect to the dimensionality of the

probability space, MC-type schemes have been widely adopted to solve problems depending on

rough inputs [16, 25, 44, 45]; however, because of the poor convergence properties of the standard

MC estimator, the computational cost needed to obtain an accurate result could become easily

unaffordable. This is also due to the fact that in general, when dealing with rough coefficients, a fine

mesh is required to properly represent the roughness of the coefficient.

A way of dealing with this issue is provided by the so called Multi Level Monte Carlo method (see e.g.

[19, 7, 74, 7, 41]). In this case, instead of using a fixed triangulation having sufficiently small mesh

size h as in MC, a sequence of increasingly fine triangulations having mesh sizes h0, ...,hL = h is

considered; the idea is then to perform many computations on the coarser levels, computationally

much less expensive, and only a few on the finest level, in order to obtain the same overall accuracy
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of the standard MC estimator with a considerably smaller computational cost.

In this Chapter we focus on MC and MLMC schemes and we propose a way of combining such

sampling schemes with the methodology developed in the previous Chapter 3, that has been verified

to be very effective in the presence of smooth input random fields. More specifically we aim at using

the sparse grid as a “preconditioner” for the MC sampling, in such a way to obtain an estimator

with reduced variance. This is done thanks to the introduction of a suitable control variate, defined

starting from an auxiliary Darcy problem with a regularized version of the lognormal random field

a, namely aε, as input random datum; notice that aε will be chosen in such a way to be highly

correlated with a, implying that also the two QoI related to the original and auxiliary problems

will also be highly correlated; moreover since the random field aε is smooth the mean of the QoI

related to the auxiliary problem can be successfully approximated with a sparse grid scheme, and

the extra bias term due to the approximation of the mean of the exact control variate through sparse

grids can be easily kept under control. In general this strategy, combined with our choice of using

a regularized log-permeability field obtained via convolution of the original random field γ with

a Gaussian kernel with properly tuned variance ε2, produces significant variance reduction with

respect to the standard MC corresponding schemes. We analyze the effectiveness of this strategy in

both a single level and a multi level framework. We name our schemes respectively as Monte Carlo

method with control variate (MCCV) and Multi Level Monte Carlo method with control variate

(MLMCCV).

In particular we focus on the mean square error of the MCCV and MLMCCV estimators and provide

rigorous bounds for the associated statistical errors. Then, we optimally choose the number of

solves to be assigned to the MC (or MLMC) sampler and to the sparse grid scheme to approximate

the mean of the regularized QoI, needed to achieve a prescribed tolerance in terms of overall mean

square error. We also propose possible choices of the regularization parameter to equilibrate the

space discretization error, the statistical error and the error in the computation of the expected

value of the control variate by sparse grids.

The outline of the Chapter is the following: in Section 4.2 we introduce the idea of the control variate

approach, the MCCV estimator and the corresponding mean square error; then in Section 4.3 we

proceed with a rigorous analysis of the statistical error as a function of the discretization parameter

h and the regularization parameter ε; in Section 4.4 we introduce the MLMC approach and rewrite

the MCCV scheme in this framework. In Section 4.5 we derive a bound on the mean square error

(MSE) of the MLMCCV estimator, the main result being in Theorem 4.2. In Section 4.6 we give some

specifics about the algorithm that we used to choose the number of samples on each level as well

as the sparse grid to be used to approximate the expected value of the control variate. In Section

4.8 we present some numerical results: in particular we compare the MCCV and the MLMCCV

schemes with the classical MC and MLMC versions to show the effectiveness of such control variate

construction. Finally, we draw some conclusions in Section 4.9.

In the Chapter there are some new aspects with respect to the paper A Multi Level Monte Carlo

method with control variate for elliptic PDEs with lognormal diffusion coefficient [75]. From the

theoretical point of view at the beginning we present an analysis comparing MCCV and MC; then

we provide two complexity results in Theorems 4.5 and 4.6 concerning the two proposed algorithms

to address cases with smooth and rough input permeabilities. On the other hand, among the nu-

merical tests, we present some results obtained by using a MLMCCV estimator with level dependent

truncation of the random field.
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4.2 Monte Carlo method with control variate (MCCV)

In this section we review briefly the idea of standard Monte Carlo sampling and then introduce our

variance reduction technique. We start by denoting as Qh(ω) the quantity of interest computed by

finite elements on the structured triangulation Th for the random elementary event ω ∈Ω. The

MC idea is to approximate the mean of the quantity of interest by generating a sufficiently large

random sample of size M by solving the truncated Darcy problem (2.12), possibly with a very large

N , being N the number of random variables kept in the truncation of the input permeability, and

by computing the corresponding QoI Q(y j ), for j = 1, ..., M . In the following we will assume always

N large enough to obtain a negligible truncation error, and we will always write Q and Qh instead

than QN and QN ,h . Then the Monte Carlo (MC) estimator Q̂MC
h,M of the mean of Q associated to a

particular spatial mesh of size h and a sample size M is defined as:

Q̂MC
h,M = 1

M

M∑
i=1

Qh(yi ), (4.1)

where Qh(yi ) are independent random variables all distributed as Qh(y). The mean square error of

this estimator is given by:

e(Q̂MC
h,M )2 := E[(Q̂MC

h,M −E[Q])2] = Var(Qh)

M
+ (E[Qh −Q])2 .

Hence the error naturally splits in two terms: a statistical error given by the variance of the estimator

and a bias term related to the finite element approximation of the PDE and the quantity of interest.

The Monte Carlo approach is straightforward to implement, but unfortunately presents a rather

slow convergence rate with respect to the sample size M which makes the computation of accurate

solutions very demanding.

As mentioned in the introduction, MC methods are preferable to deterministic schemes such as

stochastic collocation and stochastic Galerkin for their robustness also in case of rough input

random fields, while sparse grid collocation methods perform significantly better in case of smooth

input data. Here we want to combine the advantages coming from these two classes of schemes to

further improve the performance of the MC method in case of rough coefficients by exploiting the

well known control variate variance reduction technique ( see e.g. [68]). The idea is to introduce an

auxiliary Darcy problem having a smoothed coefficient, which can be effectively approximated by

using the methodology developed in Chapter 3, and use the quantity of interest, computed from

the corresponding solution, as control variate in the Monte Carlo sampling.

Letγ(x,ω) andγε(x,ω) be the input random fields obtained, respectively, by considering a covariance

function of the Matérn family and the convolution of γ(x,ω) with a smooth kernel (e.g. Gaussian),

namely:

γε(·,ω) = γ(·,ω)∗φε(·) where φε(x) = e−
|x|2
2ε2 /(2πε2)

d
2 , (4.2)

analogously let aε(x,ω) = eγ
ε

(x,ω) and let p(x,ω) and pε(x,ω) denote the solutions corresponding

to the two (highly correlated) input random fields. Let us assume for the moment that we know

exactly the mean of the control variate Qε(ω) =Q(pε(·,ω)) obtained starting from the solution of the
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(a) Smoothed field aε, ε= 1/24. (b) Smoothed field aε, ε= 1/26.

(c) Smoothed field aε, ε= 1/28. (d) Original field a.

Figure 4.1 – Three different regularizations of the same realization of a. ν= 0.5, Lc = 0.5, σ= 1.

auxiliary problem having aε as input datum. We define

QCV (ω) :=Q(ω)−Qε(ω)+E[Qε].

This new random variable is such that E[QCV ] = E[Q] and

Var(QCV ) =Var(Q)+Var(Qε)−2cov(Q,Qε),

showing that the more positively correlated the two random fields are the more positively correlated

the corresponding quantities of interest are and the larger the variance reduction achievable. See

for instance in Figure 4.1 how a single realization of the smoothed random field aε(ωi ) gets closer

and closer to the original one a(ωi ), and therefore more and more correlated, when the parameter ε

gets smaller and smaller.

Observe that, in order to apply this strategy to solve the stochastic Darcy problem, we should know

the exact mean of Qε(ω). Actually we do not have this information available but, since aε(x,ω) has

smooth realizations, we can successfully use one of the previous sparse grid schemes to compute it

accurately as long as the smoothing parameter ε remains sufficiently large. Denoting by QW [Qε]

the sparse grid quadrature used to approximate the mean of Qε with W = W m
I linear solves, the

final variable to which we apply the MC sampling is

QCV
W (y) :=Q(y)−Qε(y)+QW [Qε]; (4.3)

by using linear finite elements for the solution of the truncated Darcy problem (2.12), the MCCV
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estimator is then defined as

Q̂MCCV
h,M ,W = 1

M

M∑
i=1

(
Qh(yi )−Qε

h(yi )
)+QW [Qε

h], (4.4)

where yi , i = 1, ..., M , are independent identically distributed draws from �(y). Concerning the mean

square error associated with the estimator (4.4), the following result holds:

Lemma 4.2.1. The mean square error of the estimator (4.4) can be bounded as

e(Q̂MCCV
h,M ,W )2 �

Var(Qh −Qε
h)

M
+2

(
E[Qε

h]−QW [Qε
h]
)2 +2E[Qh −Q]2. (4.5)

Proof. The mean square error associated with this estimator naturally splits into a variance and a

bias term as

e(Q̂MCCV
h,M ,W )2 = E[(Q̂MCCV

h,M ,W −E[Q])2] =
Var (QCV

W,h)

M
+E[QCV

W,h −Q]2 = Var (Qh −Qε
h)

M
+E[QCV

W,h −Q]2.

The second term on the right hand side represents the bias and can further be bounded as

E[QCV
W,h −Q]2 = E[Qh −Qε

h +QW [Qε
h]−Q]2 � 2

(
E[Qε

h]−QW [Qε
h]
)2 +2E[Qh −Q]2.

The first term on the right hand side of (4.5), represents the variance of the estimator Q̂MCCV
h,M ,W , and is

expected to be smaller than the variance of the standard MC estimator thanks to the presence of

the control variate. The second term represents the error due to the approximation of the mean of

the smoothed quantity of interest via sparse grid quadrature; the third one represents the mean of

the finite element error of the original quantity of interest. When ε goes to 0 the regularized input

random field tends to the original one. Consequently the solution pε tends to the solution p; this

means that the variance associated to the estimator tends to 0. On the other hand, according to

the previous considerations, an accurate approximation of the mean of the quantity of interest by a

sparse grid scheme could become extremely costly and practically unfeasible for rough random

fields. The parameter ε should therefore be chosen so as to yield a good variance reduction while

still keeping a manageable sparse grid approximation problem.

Remark 4.2.1. The numerical results obtained in Chapter 3 fit into this framework; by choosing a

vanishing ε, since in the previous Chapter we monitored the convergence as the weak error |Qm
I(w)[Q]−

Qm
I(wr e f )[Q]|, those results represent exactly the square root of the second term on the right hand side

of (4.5); on the other hand, when considering a positive value of ε and a rough random field a, the

regularization procedure makes the input permeability smooth and therefore similar considerations

apply to the mean of the control variate.

4.3 Error analysis of the MCCV method

In this section we study the statistical error of the MCCV estimator and give bounds on the variance

terms Var(QCV
W,h) in the case of the Stochastic Darcy Problem (2.2) with log-normal permeability.

This, in particular, implies the study of the difference Q −Qε as a function of the regularization
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parameter ε. The main result of this section is given in Theorem 4.3. Before proceeding with the

analysis, we define the random variables

aε
max (ω) = max

x∈D
aε(x,ω), aε

mi n(ω) = min
x∈D

aε(x,ω).

and restrict ourselves, in this section, to the case of a fully homogeneous Dirichlet problem (ΓD = ∂D ,

g = 0) defined on a convex C 2 bounded domain D . Moreover, we assume that the Gaussian random

field γ is defined in Rd and for technical reasons, we consider the following smoothed version γε,

slightly different from the one given in (4.2). Let Dη = {x ∈ Rd s.t. dist(x,D) ≤ η} and consider a

function ϕ ∈ C ∞(Rd ), 0 ≤ ϕ ≤ 1, ϕ = 1 on Dnε and ϕ = 0 on Dc
1 for some n ∈ N such that nε < 1.

Then, we define the smoothed field γε as

γε(x) = (γ̃∗φε)(x), where γ̃(x) =ϕ(x)γ(x) and φε(x) = e−
|x|2
2ε2

(2πε2)
d
2

. (4.6)

Essentially, Dnε represents the domain upon which the convolution integral involved in the defini-

tion (4.6) is computed up to an error that can be made arbitrarily small by increasing n. By taking

n > 3 we will haveγε = γ̃∗φε ≈ γ∗φε in D up to a very small error. On the other hand, γ̃has a compact

support so that the quantities γ̃max (ω) = maxx∈D γ̃(x,ω), γ̃mi n(ω) = minx∈D γ̃(x,ω), ‖γ̃(·,ω)‖Cα(Rd )

are all Lq
P

(Ω) functions, ∀q ∈R+ and can be bounded by the corresponding quantities on γ evaluated

in the extended domain D1. In particular, we have that |γ̃|Cα(Rd ) ≤ ‖ϕ‖Cα(Rd )‖γ‖Cα(D1). We start with

the following observation:

Lemma 4.3.1. Let γ(x,ω) be a Gaussian random field with realizations a.s. in Cα(D1) and γε(x,ω)

a smoothed version of γ(x,ω) as introduced in (4.6). Moreover set a = eγ and aε = eγ
ε

. For all

0 ≤β≤ min(α,1) it holds:

‖a(·,ω)−aε(·,ω)‖Cβ(D) �C4.3.1(ω,α)εmin(α−β,2), a.s. in Ω,

where

C4.3.1(ω,α) = amax (ω)
∥∥∥1+e(γε−γ)(·,ω)

∥∥∥
C 0(D)

(
1+|γ(·,ω)|Cmin(α,1)(D)

)
‖γ(·,ω)‖Cmin(α,3)(D1)‖ϕ(·,ω)‖Cmin(α,3)(D1).

Moreover, if α> 1, there holds also the following bound for the standard C 1 norm

‖a(·,ω)−aε(·,ω)‖C 1(D) � C̃4.3.1(ω,α)εmin(α−1,2), a.s. in Ω,

where

C̃4.3.1(ω,α) = amax (ω)
∥∥∥1+e(γε−γ)(·,ω)

∥∥∥
C 0(D)

(
1+|γ(·,ω)|C 1(D)

)
‖γ(·,ω)‖Cmin(α,3)(D1)‖ϕ(·,ω)‖Cmin(α,3)(D1).

The constants C4.3.1(ω,α) and C̃4.3.1(ω,α) are both Lq
P

integrable ∀q ∈R+.

Proof. See appendix 4.A.

Next we use this result to estimate how the distance between the solution of the original problem

(2.3) and that of the auxiliary one with smoothed coefficient aε in a given Sobolev norm, namely

‖p −pε‖H 1+β(D), depends on the regularization parameter ε. The following result holds:
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Lemma 4.3.2. Let a(x,ω) and aε(x,ω) be as in Lemma 4.3.1 and f ∈ H r−1(D) with r = min(α,1). A.s.

in Ω it holds:

‖p(·,ω)−pε(·,ω)‖H 1
0 (D) � C̃4.3.2(ω,α)‖ f ‖H r−1(D)ε

min(α,2),

‖p(·,ω)−pε(·,ω)‖H 1+β(D) �
C4.3.2(ω,α)

(α−β)2	η
‖ f ‖H r−1(D)ε

min(α−β−η,2), ∀0 ≤β< r and ∀0 < η≤α−β,

where

C̃4.3.2(ω,α) = C4.3.1(ω,α)

ami n(ω)aε
mi n(ω)

,

C4.3.2(ω,α) =

⎧⎪⎨⎪⎩
C4.3.1(ω,α)C2.2.1(ω,α)C ε

2.2.1(ω,α) α≤ 1,

C̃4.3.1(ω,α)C2.2.1(ω,α)C ε
2.2.1(ω,α) α> 1.

and C ε
2.2.1(ω,α) as in (2.4) with a replaced by aε. If the assumptions hold also for α> 1 then it is also

valid the bound

‖p(·,ω)−pε(·,ω)‖H 2(D) �C4.3.2(ω,α)‖ f ‖L2(D)ε
min(α−1,2),

Moreover, the constants C̃4.3.2(ω,α) and C4.3.2(ω,α) are Lq
P

integrable ∀q ∈R+ since a.s. in Ω it holds

aε
max (ω) ≤ amax (ω) and aε

mi n(ω) ≥ ami n(ω).

Proof. We start by noticing that the original problem (2.2) satisfies the bound

‖p‖H 1
0 (D) ≤

‖ f ‖H r−1(D)

ami n
.

By considering the difference between the original and the regularized problem we get:∫
D

aε∇(p −pε)∇vdx =−
∫

D
(a −aε)∇p∇vdx, ∀v ∈V0; (4.7)

then, in order to prove the first bound, by choosing v = p −pε in (4.7), we directly get

‖p −pε‖H 1
0 (D) ≤ ‖a −aε‖C 0(D)

‖p‖H 1
0 (D)

aε
mi n

,

which, from Lemma 4.3.1 and the above bound on ‖p‖H 1
0 (D), implies the desired result. In order to

complete the proof we will use the result in Lemma 2.2.2 in Chapter 2 that states that, ∀b ∈ Cα(D),

and ∀v ∈ Hβ(D) for some 0 <β< min(α,1), the following bound holds

‖bv‖Hβ(D) �
1	
η
‖b‖Cβ+η(D̄)‖v‖Hβ(D) ∀η≤α−β.

By integrating by parts (4.7) we obtain∫
D

aε∇(p −pε)∇vdx =
∫

D
div

(
(a −aε)∇p

)
vdx =

∫
D

f̃ vdx.

In order to use the result given in Lemma 2.2.1 we need to ensure that f̃ is in Hβ−1. Indeed

‖div
(
(a −aε)∇p

)‖Hβ−1(D) � ‖(a −aε)∇p‖Hβ(D)

� 1	
η
‖a −aε‖Cβ+η‖p‖Hβ+1(D) ∀0 < η≤α−β.
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Hence for the difference p −pε the following estimate holds

‖p −pε‖H 1+β(D) �
1

α−β

aε
max (ω)‖aε(·,ω)‖Cα(D)

(aε
mi n)3(ω)

‖ f̃ (·,ω)‖Hβ−1(D)

� 1

(α−β)
	
η

aε
max (ω)‖aε(·,ω)‖Cα(D)

(aε
mi n)3(ω)

C4.3.1(ω,α)‖p‖Hβ+1(D)ε
min(α−β−η,2)

�
aε

max (ω)‖aε(·,ω)‖Cα(D)amax (ω)‖a(·,ω)‖Cα(D)

(α−β)2	η(aε
mi n)3(ω)(ami n)3(ω)

C4.3.1(ω,α)‖ f ‖Hβ−1(D)ε
min(α−β−η,2).

In the case α> 1 we use again the result given in Lemma 2.2.1

‖p(·,ω)‖H 2(D) �
amax (ω)‖a(·,ω)‖C 1(D)

a3
mi n(ω)

‖ f (·,ω)‖L2(D);

analogously we need to ensure that f̃ is in L2(D). Indeed

‖div
(
(a −aε)∇p

)‖L2(D) ≤ ‖∇(a −aε) ·∇p‖L2(D) +‖(a −aε)div(∇p)‖L2(D)

� ‖∇(a −aε)‖C 0(D)‖∇p‖L2(D) +‖a −aε‖C 0(D)‖∇p‖H 1
0 (D) � ‖a −aε‖C 1(D)‖p‖H 2 .

Therefore it holds

‖p −pε‖H 2(D) �
aε

max (ω)‖aε(·,ω)‖C 1(D)

(aε
mi n)3(ω)

amax (ω)‖a(·,ω)‖C 1(D)

(ami n)3(ω)
C̃4.3.1(ω,α)‖ f ‖L2(D)ε

min(α−1,2).

To conclude the proof we show that aε
max (ω) ≤ amax (ω) and aε

mi n(ω) ≥ ami n(ω); by periodically

extending the random field a in Rd of course there holds maxx∈Rd a(x,ω) = maxx∈D̄ a(x,ω) and

minx∈Rd a(x,ω) = minx∈D̄ a(x,ω); moreover, we obtain

aε
max = max

x∈Rd
aε = max

x∈Rd

∫
Rd

a(x − y)φε(y)d y ≤ max
x∈Rd

amax

∫
Rd

φε(y)d y = amax .

aε
mi n = min

x∈Rd
aε = min

x∈Rd

∫
Rd

a(x − y)φε(y)d y ≥ min
x∈Rd

ami n

∫
Rd

φε(y)d y = ami n .

The next theorem extends the previous result to a linear quantity of interest Q.

Theorem 4.1. Let a(x,ω) and aε(x,ω) be as in Lemma 4.3.1, f ∈ H r−1(D) and let Q(·) be a functional

on H 1−r (D), i.e. Q ∈ H r−1(D) with r = min(α,1), representing our QoI. Then a.s. in Ω it holds:

|Q(p)(ω)−Q(pε)(ω)|�C4.1(ω,α)‖ f ‖H r−1(D)‖Q‖H r−1(D)ε
min(α,2),

where

C4.1(ω,α,β) =C2.2.1(ω,α)
(
C4.3.1(ω,α)C2.2.1(ω,α)+2aε

max(ω)C2.3.1(ω,α)
)

Proof. Let us consider the adjoint problems related to the original and the auxiliary problems

having Q(·) as right hand side∫
D

a∇v∇Φdx =Q(v),
∫

D
aε∇v∇Φεdx =Q(v), ∀v ∈ H 1

0 (D)

68



4.3. Error analysis of the MCCV method

where Φ and Φε are respectively the solutions of the two adjoint problems. By choosing v = p in the

first problem and v = pε in the second problem and by taking the difference we get:

Q(p)−Q(pε) =
∫

D
a∇p∇Φdx−

∫
D

aε∇pε∇Φεdx.

By adding and subtracting some mixed terms we get:

Q(p)−Q(pε) =
∫

D
a∇p∇Φdx−

∫
D

aε∇pε∇Φεdx±
∫

D
aε∇p∇Φdx±

∫
D

aε∇pε∇Φd x;

by properly grouping the terms above we obtain:

∣∣Q(p)−Q(pε)
∣∣≤ ∣∣∣∣∫

D
(a −aε)∇p∇Φdx

∣∣∣∣+ ∣∣∣∣∫
D

aε∇(p −pε)∇Φdx

∣∣∣∣+ ∣∣∣∣∫
D

aε∇pε∇(Φ−Φε)dx

∣∣∣∣
≤ ‖a −aε‖L∞(D)‖p‖H 1

0 (D)‖Φ‖H 1
0 (D) +‖aε‖L∞(D)‖p −pε‖H 1

0 (D)‖Φ‖H 1
0 (D)+

+‖aε‖L∞(D)‖pε‖H 1
0 (D)‖Φ−Φε‖H 1

0 (D).

Since for the solutions of the smoothed and of the adjoint problems we have identical error bounds

as for the the primal one, by using Lemmas 2.2.1, 2.3.1 and 4.3.1 all with β= 0 we obtain the bound∣∣Q(p)−Q(pε)
∣∣�C4.3.1(ω,α)C 2

2.2.1(ω,α)‖ f ‖H r−1(D)‖Q‖H r−1(D)ε
min(α,2)

+aε
max(ω)C2.2.1(ω,α)C2.3.1(ω,α)‖ f ‖H r−1(D)‖Q‖H r−1(D)ε

min(α,2)

+aε
max(ω)C2.3.1(ω,α)C2.2.1(ω,α)‖ f ‖H r−1(D)‖Q‖H r−1(D)ε

min(α,2),

which proves the desired result.

With such bound on the difference between the original and the smoothed quantities of interest

we can control the mean square error associated to the MCCV estimator; it holds the following

theorem:

Theorem 4.2. Let a(x,ω) and aε(x,ω) be as in Lemma 4.3.1, and let f , Q and r be as in Theorem 4.1.

The mean square error related to the estimator (4.4) can be bounded as

e(Q̂MCCV
h,M ,W )2 � c2

4.1(α,2)‖ f ‖2
H r−1(D)‖Q‖2

H r−1(D)

εmin(α,2)

M
+2

(
E[Qε

h]−QW [Qε
h]
)2+2E[Qh −Q]2 (4.8)

where c4.1(α, q) = ‖C4.1(·,α)‖Lq
P

(Ω).

Proof. The formula of the mean square error related to the estimator (4.4) is

e(Q̂MCCV
h,M ,W )2 �

Var(Qh −Qε
h)

M
+2(E[Qε

h]−QW [Qε
h])2 +2E[Qh −Q]2.

We obtain

Var(Qh −Qε
h) ≤ ‖Qh −Qε

h‖2
L2
P

(Ω)
≤ ‖C4.1(·,α)‖ f ‖H r−1(D)‖Q‖H r−1(D)ε

min(α,2)‖2
L2
P

(Ω)

= c2
4.1(α,2)‖ f ‖2

H r−1(D)‖Q‖2
H r−1(D)ε

min(α,2)

By replacing in the inequality of the mean square error we get the desired result.

The previous result gives a bound on the variance reduction we can achieve by using this control
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variate approach. Notice that the actual variance reduction could be quite larger than predicted

by this estimate since, in its derivation, we conservatively bounded the variance of the difference

Qh −Qε
h with its second moment. Nevertheless this estimate links the variance reduction to the

regularity α < ν of the input permeability field: the higher the regularity the larger the variance

reduction, up to a maximal factor of ε2, for ν≥ 2.

4.4 Multi Level Monte Carlo method with control variate (MLMCCV)

In this section we extend the control variate approach previously introduced to a Multi Level

framework. MLMC methods [41, 19, 25, 7, 74] have been recently proposed and studied in order

to reduce the variance of the MC estimator and its overall computational cost needed to meet

a given tolerance. The basic idea is to consider a sequence of increasingly fine spatial meshes

having mesh size h0 > ... > h� > ... > hL and to use the linearity of the expectation operator to write

the mean of the quantity of interest on the finest grid hL as a telescopic sum of the mean of the

quantity of interest on the coarsest level plus a sum of correcting terms given by the difference on

two consecutive levels:

E[QhL ] = E[Qh0 ]+
L∑

�=1
E[Qh�

−Qh�−1 ].

Hence, the idea of independently estimating via standard MC estimators the terms on each level,

with suitably chosen sample sizes, in order to minimize the overall complexity. Given a sequence

{M�}L
�=0 of sample sizes to be used on each level, the Multi Level Monte Carlo (MLMC) estimator is

Q̂MLMC
{h�},{M�} =

L∑
�=0

1

M�

M�∑
i=1

(
Qh�

(y�,i )−Qh�−1 (y�,i )
)

, where Qh−1 = 0, (4.9)

where y�,i are independent identically distributed draws from �(y); the mean square error associated

to this estimator is

e(Q̂MLMC
{h�},{M�})

2 = E[(Q̂MLMC
{h�},{M�} −E[Q])2] =

L∑
l=0

Var(Qh�
−Qh�−1 )

M�
+ (E[QhL −Q]

)2 . (4.10)

In the construction of the method a key point is the choice of the sample sizes M� on each level and

the choice of the mesh sizes h�. Several strategies have been proposed by different authors. Just

to mention a few, Giles, Scheichl et al. in their works [25, 74] consider a continuous minimization

problem in M0, ..., ML to determine the sample sizes on each level given the mesh hierarchy {h�}L
�=0:

the finest level of the hierarchy is chosen so that the bias term meets half of the prescribed tolerance.

Alternatively Schwab et al. in [7] select the samples sizes to equilibrate all the L+1 terms in the right

hand side of (4.10). A global optimization of the MLMC strategy has been investigated in [28] where

the authors show that geometric sequences of h� = h0β
−�, with β> 1, lead to nearly optimal MLMC

samples; however, the corresponding meshes are in general not nested. Also, optimal strategies

might not split equally the prescribed tolerance into the discretization error and the statistical one.

Here we analyze the effects of combining this multi level strategy with the control variate approach.

To do this, we write the mean of QCV on the finest mesh as a telescopic sum following the multi

level idea:

E[QCV
W,hL

] = E[QCV
W,h0

]+
L∑

�=1
E[QCV

W,h�
−QCV

W,h�−1
].
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Then, by independently estimating through MC samplers all the terms coming from different levels,

we define the Multi Level Monte Carlo estimator with control variate (MLMCCV) as

Q̂MLMCCV
{h�},{M�},W =

L∑
�=0

1

Ml

M�∑
i=1

(
QCV

W,h�
(ω�,i )−QCV

W,h�−1
(ω�,i )

)
,

with QCV
h−1

= 0. By replacing the terms QCV
W,h�

(ω�,i ) =Qh�
(ω�,i )−Qε

h�
(ω�,i )+QW [Qε

h�
] and by noticing

that all the sparse gird quadratures except the one on the finest level cancel out, the estimator can

be equivalently rewritten as

Q̂MLMCCV
{h�},{M�},W =

L∑
�=0

1

M�

M�∑
i=1

(
Qh�

(ω�,i )−Qh�−1 (ω�,i )− (Qε
h�

(ω�,i )−Qε
h�−1

(ω�,i ))
)
+QW [Qε

hL
], (4.11)

where again Qh−1 ,Qε
h−1

= 0. Concerning the mean square error associated to the estimator (4.11),

the following result generalizes (4.10):

Lemma 4.4.1. The mean square error of the estimator (4.11) can be bounded as

e(Q̂MLMCCV
{h�},{M�},W )2 �

L∑
�=0

Var(Qh�
−Qh�−1 − (Qε

h�
−Qε

h�−1
))

M�
+2
(
E[Qε

hL
]−QW [Qε

hL
]
)2+2E[QhL−Q]2. (4.12)

Proof. The mean square error associated to this estimator naturally splits into a variance and a bias

term as

e(Q̂MLMCCV
{h�},{M�},W )2 = E[(Q̂MLMCCV

{h�},{M�},W −E[Q])2] =
L∑

�=0

Var (QCV
W,h�

−QCV
W,h�−1

)

M�
+E[QCV

W,hL
−Q]2.

The second term on the right hand side represents the bias and can further be bounded as

E[QCV
W,hL

−Q]2 = E[QhL −Qε
hL

+QW [Qε
hL

]−Q]2 � 2
(
E[Qε

hL
]−QW [Qε

hL
]
)2 +2E[QhL −Q]2.

The result is obtained by observing that Var (QCV
W,h�

−QCV
W,h�−1

) =Var(Qh�
−Qh�−1 − (Qε

h�
−Qε

h�−1
)).

As in the single level case, the first term of the right hand side of (4.12) represents the variance of the

estimator (4.11) while the second and the third represent respectively the sparse grid quadrature

and the discretization errors; observe that the statistical error is given by the sum over all levels of

the variances of the double difference Qh�
−Qh�−1 − (Qε

h�
−Qε

h�−1
): it is therefore interesting to study

how the spatial and the regularization parameters h and ε interact and how their effects combine;

in particular we want to understand if some sort of “multiplicative effect” holds, i.e. a scaling of the

type

|Qh −Q − (Qε
h −Qε)|� hβεmin(2,α), ∀β<α. (4.13)

These issues will be investigated in the next section in which we will see that indeed only a slightly

weaker results than (4.13) holds.
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4.5 Error analysis of the MLMCCV method

In this section we want to derive a rigorous bound on the statistical error related to the MLMCCV

estimator introduced in the previous section. In order to derive such a result, we will need first a

bound on the H 1+β-norm of the “double difference” p −ph − (pε−pε
h) depending on both the mesh

parameter h and the regularization parameter ε.

Lemma 4.5.1. Let a(x,ω) and aε(x,ω) be as in Lemma 4.3.1 and f ∈ H r−1(D) with r = min(α,1). By

using linear finite elements for the spatial discretization, a.s. in Ω it holds:

‖p(·,ω)−ph(·,ω)− (pε(·,ω)−pε
h(·,ω))‖H 1(D) �C4.5.1(ω,α)‖ f ‖H r−1(D) inf

0≤β<1
0<η+β≤α

hβεmin(α−β−η,2)

(α−β)2	η

where

C4.5.1(ω,α) =

⎧⎪⎨⎪⎩
1

aε
mi n

(
C4.3.1(ω,α)C2.3.1(ω,α)+ (aε

mi n +aε
max

)
C4.3.2(ω,α)

)
α≤ 1,

1
aε

mi n

(
C̃4.3.1(ω,α)C2.3.1(ω,α)+ (aε

mi n +aε
max

)
C4.3.2(ω,α)

)
α> 1.

If the assumptions hold also for α> 1 then the following bound holds as well

‖p(·,ω)−ph(·,ω)− (pε(·,ω)−pε
h(·,ω))‖H 1(D) �C4.5.1(ω,α)‖ f ‖L2(D)hε

min(α−1,2).

Proof. Let us consider the difference between the original problem and the auxiliary one in the

continuous and in the discretized case:∫
D

aε∇(p −pε)∇vd x =−
∫

D
(a −aε)∇p∇vd x ∀v ∈ H 1

0 (D);∫
D

aε∇(ph −pε
h)∇vhd x =−

∫
D

(a −aε)∇ph∇vhd x ∀vh ∈Vh,0

By taking the difference between these two equations we get∫
D

aε∇(p −pε−ph +pε
h)∇vhd x =−

∫
D

(a −aε)∇(p −ph)∇vhd x ∀vh ∈Vh,0; (4.14)

by using this equality, ∀vh ∈Vh,0, we can bound the term ‖pε
h −ph − vh‖H 1

0 (D) as

‖pε
h −ph − vh‖2

H 1
0 (D)

≤ 1

aε
mi n

∫
D

aε∇(pε
h −ph − vh ± (pε−p))∇(pε

h −ph − vh)d x

= 1

aε
mi n

(∫
D

aε∇(pε
h −ph − (pε−p))∇(pε

h −ph − vh)d x +
∫

D
aε∇(pε−p − vh)∇(pε

h −ph − vh)d x

)
= 1

aε
mi n

(
−
∫

D
(a −aε)∇(p −ph)∇(pε

h −ph − vh)d x +
∫

D
aε∇(pε−p − vh)∇(pε

h −ph − vh)d x

)
≤ 1

aε
mi n

(
‖a −aε‖L∞(D)‖p −ph‖H 1

0 (D) +aε
max‖p −pε+ vh‖H 1

0 (D)

)
‖pε

h −ph − vh‖H 1
0 (D),

so we finally get

‖pε
h −ph − vh‖H 1

0 (D) ≤
‖a −aε‖L∞(D)

aε
mi n

‖p −ph‖H 1
0 (D) +

aε
max

aε
mi n

‖pε−p − vh‖H 1
0 (D);
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using now the triangular inequality

‖pε−p − (pε
h −ph)‖H 1

0 (D) ≤ ‖pε
h −ph − vh‖H 1

0 (D) +‖pε−p − vh‖H 1
0 (D) ∀vh ∈Vh,0,

and the arbitrariness of vh , for any 0 ≤β< r , 0 < η+β≤α, we obtain

‖pε−p − (pε
h −ph)‖H 1

0 (D) ≤
‖a −aε‖L∞(D)

aε
mi n

‖p −ph‖H 1
0 (D) +

(
1+ aε

max

aε
mi n

)
inf

vh∈Vh,0

‖p −pε− vh‖H 1
0 (D)

� ‖a −aε‖L∞(D)

aε
mi n

‖p −ph‖H 1
0 (D) +

(
1+ aε

max

aε
mi n

)
‖p −pε‖H 1+β(D)h

β

�
‖ f ‖H r−1(D)

(α−β)aε
mi n

C4.3.1(ω,α)C2.3.1(ω,α)εαhβ+‖ f ‖H r−1(D)

(
1+ aε

max

aε
mi n

)
C4.3.2(ω,α)

hβεmin(α−β−η,2)

(α−β)2	η

�
‖ f ‖H r−1(D)

aε
mi n

(
C4.3.1(ω,α)C2.3.1(ω,α)+ (aε

mi n +aε
max

)
C4.3.2(ω,α)

)hβεmin(α−β−η,2)

(α−β)2	η

=C4.5.1(ω,α)‖ f ‖H r−1(D)
hβεmin(α−β−η,2)

(α−β)2	η
.

By taking the infimum over η we get the desired result. If the assumptions hold also for α> 1 then it

can be analogously shown that

‖p(·,ω)−ph(·,ω)− (pε(·,ω)−pε
h(·,ω))‖H 1(D) �C4.5.1(ω,α)‖ f ‖L2(D)hε

min(α−1,2)

The next theorem extends the previous result to a linear quantity of interest.

Theorem 4.3. Let a(x,ω) and aε(x,ω) be as in Lemma 4.3.1 and f , Q and r = min(α,1) as in Theorem

4.1. Then, by using linear finite elements for the spatial discretization, a.s. in Ω it holds:

|Q(p −ph)(ω)−Q(pε−pε
h)(ω)|�C4.3(ω,α)‖ f ‖H r−1(D)‖Q‖H r−1(D) inf

0≤t<r

ht

α− t
inf

0≤β<r
0<η+β≤α

hβεα−β−η

(α−β)2	η
,

where

C4.3(ω,α,β) =

⎧⎪⎨⎪⎩
C2.3.1(ω,α)

(
C4.3.1(ω,α)C2.3.1(ω,α)+2aε

max(ω)C4.5.1(ω,α)
)

α≤ 1,

C2.3.1(ω,α)
(
C̃4.3.1(ω,α)C2.3.1(ω,α)+2aε

max(ω)C4.5.1(ω,α)
)

α> 1.

If the assumptions hold also for α> 1 then, the following bound holds as well

|Q(p −ph)(ω)−Q(pε−pε
h)(ω)|�C4.3(ω,α)‖ f ‖L2(D)‖Q‖L2(D)h

2εmin(α−1,2).

Proof. Let us consider the adjoint problems related to the original and the auxiliary problems

having Q(·) as right hand side∫
D

a∇v∇Φd x =Q(v),
∫

D
aε∇v∇Φεd x =Q(v), ∀v ∈ H 1

0 (D)

where Φ and Φε are respectively the solutions of the two adjoint problems. Moreover, we denote
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by Φh and Φε
h their respective finite element approximation. By choosing v = p −ph in the first

problem and v = pε−pε
h in the second problem and by taking the difference we get:

Q(p −ph)−Q(pε−pε
h) =

∫
D

a∇(p −ph)∇Φd x −
∫

D
aε∇(pε−pε

h)∇Φεd x.

Using the Galerkin orthogonality and adding and subtracting some mixed terms we get:

Q(p −ph)−Q(pε−pε
h) =

∫
D

a∇(p −ph)∇(Φ−Φh)d x −
∫

D
aε∇(pε−pε

h)∇(Φε−Φε
h)d x

±
∫

D
aε∇(p −ph)∇(Φ−Φh)d x ±

∫
D

aε∇(p −ph)∇(Φε−Φε
h)d x;

By properly grouping the terms above we obtain:

∣∣Q(p −ph)−Q(pε−pε
h)
∣∣≤ ∣∣∣∣∫

D
(a −aε)∇(p −ph)∇ (Φ−Φh)d x

∣∣∣∣
+
∣∣∣∣∫

D
aε∇(p −ph − (pε−pε

h))∇(Φε−Φε
h)d x

∣∣∣∣
+
∣∣∣∣∫

D
aε∇(p −ph

)∇(Φ−Φh − (Φε−Φε
h))d x

∣∣∣∣
≤ ‖a −aε‖L∞(D)‖p −ph‖H 1

0 (D)‖Φ−Φh‖H 1
0 (D)

+‖aε‖L∞(D)‖p −ph − (pε−pε
h)‖H 1

0 (D)‖Φε−Φε
h‖H 1

0 (D)+
+‖aε‖L∞(D)‖p −ph‖H 1

0 (D)‖Φ−Φh − (Φε−Φε
h)‖H 1

0 (D).

Since for the solutions of the adjoint problems we have identical error bounds as for the the primal

ones we obtain the bound

∣∣Q(p −ph)−Q(pε−pε
h)
∣∣�C4.3.1(ω,α)C 2

2.3.1(ω,α)‖ f ‖Hβ1−1(D)‖Q‖Hβ2−1(D)
hβ1+β2εmin(α,2)

(α−β1)(α−β2)

+aε
max(ω)C4.5.1(ω,α)C2.3.1(ω,α)‖ f ‖Hβ3−1(D)‖Q‖Hβ4−1(D)

hβ3+β4εmin(α−β3−η3,2)

(α−β3)2(α−β4)
	
η3

+aε
max(ω)C4.5.1(ω,α)C2.3.1(ω,α)‖ f ‖Hβ5−1(D)‖Q‖Hβ6−1(D)

hβ5+β6εmin(α−β6−η6,2)

(α−β5)(α−β6)2	η6

where βi , i = 1, ..,6 and η j , j = 3,6 are the parameters coming from the bounds of the primal and

adjoint problems. Since the bound is valid ∀βi < r , it is possible to choose β1 = β2 = β4 = β5 = t ;

moreover the remaining part of the bound assumes its maximum value when β3 = β6 = β and

η3 = η6 = η; hence, ∀0 < t ,β< r and and η> 0 such that β+η≤α, the bound can be rewritten as

∣∣Q(p −ph)−Q(pε−pε
h)
∣∣�C4.3(ω,α)‖ f ‖H r−1(D)‖Q‖H r−1(D)

ht

α− t

hβεmin(α−β−η,2)

(α−β)2	η
.

By taking the first infimum over t and the second infimum over β and η we obtain the desired result.

If the assumptions hold also for α> 1 then it can be analogously shown that

|Q(p −ph)(ω)−Q(pε−pε
h)(ω)|�C4.3(ω,α)‖ f ‖L2(D)‖Q‖L2(D)h

2εmin(α−1,2).

Proposition 4.5.1. Up to logarithmic terms, the infima in the previous estimates can be bound as
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follows:

inf
0≤t≤min(α,1)

ht

α− t
� hmin(α,1) ∀h ≤ e−

1
α

inf
0≤β≤min(α,1)

0<η+β≤α

hβεmin(α−β−η,2)

(α−β)2	η
�

⎧⎪⎨⎪⎩
hmin(α,1)εmin(max(0,α−1),2),h ≤ e−

2
α ε

hmax(min(α−2,1),0)εmin(α,2),h ≥ e−
2
α ε

The complete result can be found in Appendix 4.B.

Corollary 4.5.1. Up to logarithmic terms, the bound in Theorem 4.3 becomes

∣∣Q(p −ph)−Q(pε−pε
h)
∣∣�C4.3(ω,α)‖ f ‖H r−1(D)‖Q‖H r−1(D)

⎧⎪⎨⎪⎩
h2min(α,1)εmin(max(0,α−1),2),h ≤ e−

2
α ε

hmin(α,1)hmax(min(α−2,1),0)εmin(α,2),e−
2
α ε≤ h ≤ e−

1
α .

If we look at the bound given in Theorem 4.3 and combine it with the estimates presented in

Proposition 4.5.1, since ε is fixed and h changes on different levels, we can observe what follows:

• for course levels, namely h ≥ e−
2
α ε, the infimum is achieved for β,η close to 0 and t close to

r = min(α,1);

• for fine levels, namely h < e−
2
α ε, the infimum is achieved for β, t close to r and η close to 0.

This fact can be restated by saying that, in practice, there are two convergence regimes:

• the first is obtained for sufficiently large mesh sizes h: in such a regime we get a suboptimal

h-convergence rate (with respect to the MLMC case); however, this effect is compensated by

the fact that here the variance reduction is maximal.

• the second is obtained for sufficiently small mesh sizes h: in this regime we recover the same

h-convergence rate of the standard MLMC case and, at the same time, we have a further

variance reduction, given by the factor εmin(α−1,2); notice however that the variance reduction

appears only if the input random field is sufficiently smooth (α> 1).

In general we can state that we get always an overall variance reduction with respect to the standard

MLMC case and that this variance reduction affects all the possible levels if the input random field

is sufficiently smooth (α> 1) and only the levels for which h� > e−
2
α ε otherwise. In light of these

considerations, as we will see in the next Section, different strategies can be adopted so as to activate

the control variate only on those levels in which we actually expect some variance reduction with

respect to MLMC thus avoiding waste of computational resources whenever we know that the

control variate is not capable to produce any further variance reduction.

In light of these results and considerations the mean square error associated to the MLCV estimator

satisfies the following

Theorem 4.4. Let a(x,ω) and aε(x,ω) be as in Lemma 4.3.1, and let f , Q and r be as in Theorem 4.3.
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The mean square error related to the estimator (4.11) can be bounded as

e(Q̂MLMCCV
{h�},{M�},W )2 � c2

4.3(α,2)‖ f ‖2
H r−1(D)‖Q‖2

H r−1(D)

L∑
�=0

(
inf0≤t<r

ht
�

α−t inf 0≤β<r
0<β+η≤α

hβ

�
εmin(α−β−η,2)

(α−β)2	η

)2

M�

+2
(
E[Qε

hL
]−QW [Qε

hL
]
)2 +2E[QhL −Q]2

(4.15)

where c4.3(α, q) = ‖C4.3(ω,α)‖Lq
P (Ω). If the assumptions hold also for α > 1 then it is valid also the

bound

e(Q̂MLMCCV
{h�},{M�},W )2 � c2

4.3(α,2)‖ f ‖2
L2(D)‖Q‖2

L2(D)

L∑
�=0

h4
�
ε2min(α−1,2)

M�

+
(
E[Qε

hL
]−QW [Qε

hL
]
)2 +2E[QhL −Q]2.

(4.16)

Proof. The formula of the mean square error related to the estimator (4.11) is

e(Q̂MLMCCV
{hl },{Ml },W )2 �

L∑
�=0

Var(QCV
W,h�

−QCV
W,h�−1

)

M�
+2

(
E[Qε

hL
]−QW [Qε,SC

hL
]
)2 +2E[QhL −Q]2.

We get

Var(QCV
W,h�

−QCV
W,h�−1

) ≤ 2Var(QCV
W,h�

−QCV
W )+2Var(QCV

W,h�−1
−QCV

W )

≤ 2‖Q −Qh�
− (Qε−Qε

h�
)‖2

L2
P (Ω)

+2‖Q −Qh�−1 − (Qε−Qε
h�−1

)‖2
L2

P (Ω)

� c2
4.3(α,2)‖ f ‖2

H r−1(D)‖Q‖2
H r−1(D)

⎛⎜⎝min
0≤t<r

ht
�

α− t
min

0≤β<r
0<β+η≤α

hβ

�
εα−β−η

(α−β)2	η

⎞⎟⎠
2

.

By replacing this result in the inequality for the mean square error, we get the desired result. The

result concerning the case α> 1 can be shown analogously.

4.6 The Algorithm

In this section we present the algorithm used to guarantee a mean square error smaller than a

prescribed tolerance tol . In order to be efficient, the method requires a strategy to properly select

the number of levels L and the number of samples M� to be taken on each level �= 0,1, ...,L as well

as the number of sparse grid quadrature points W to get a sufficiently accurate approximation of

the mean of the control variate E[Qε]. In the following we consider a given hierarchy of structured

meshes such that h�−1 = 2h� with a suitable coarsest mesh size h0, so that we do not include the

optimal mesh scaling in our optimization procedure. Moreover observe that the parameter ε has

been tuned and selected “ad hoc”.

Before going into the details, observe that, in light of what is stated in Theorem 4.4, we do not expect

a variance reduction on the finest levels for non smooth input random fields a, i.e. for a ∈ Cα(D̄)

with α < ν < 1. Hence, depending on the smoothness of the input random field a, two possible

strategies can be followed, namely:

• Strategy 1: if the input random field is smooth enough, i.e. if α> 1, then our theoretical results
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predict a variance reduction on each level; therefore Var(QCV
W,h�

−QCV
W,h�−1

) <Var(Qh�
−Qh�−1 )

∀� = 0, ...,L and it is advantageous to apply the MLMCCV scheme as presented in (4.11),

keeping the control variate on each level;

• Strategy 2: if the random field is rough, i.e. if α ≤ 1, then our theoretical results predict a

variance reduction only on the coarsest levels and more precisely for all the levels such that

h� > e−
2
α ε; therefore the most effective strategy consists in selecting as coarsest level the grid

of mesh size h�0 such that h�0 ≈ e−
2
α ε, keep the control variate only on this level and use a

standard MLMC method on the subsequent levels; by doing this, we need to compute the

approximate mean of the control variate on the coarsest mesh and not anymore on the finest

one as in Strategy 1, namely:

Q̂MLMCCV
{h�},{M�},W = 1

M�0

M�0∑
i=1

(
Qi

h�0
−Qε,i

h�0

)
+

L∑
�=�0+1

1

M�

M�∑
i=1

(
Qi

h�
−Qi

h�−1

)
+QW [Qε

h�0
]. (4.17)

The general algorithm used to properly choose the parameters {M�}, L and the number of sparse

grid quadrature points W is the following:

1. We run the original Darcy problem, for different mesh sizes, by using the same small number

of samples to have an estimate of the discretization error, or in other terms the weak error,

from which we fit the constants cw ,rw ∈R+ of the error model |E[Qh�
−Q]|2 = cw hrw

�
.

2. Given a prescribed tolerance 2tol 2 on the mean square error, we select the finest grid having

mesh size hL in such a way to guarantee the discretization error 2E[Qh�
−Q]2, which does not

depend on ε, to be smaller than tol 2. This, according to (4.15), implies to choose the largest

hL such that cw hrw
L ≤ tol 2/2.

3. We set h0 = O (Lc ), being Lc the correlation length of the random field a, and evaluate,

again by taking a few samples on each level, Var(QCV
W,h�

−QCV
W,h�−1

), Var(Qh�
−Qh�−1 ) and

Var(QCV
W,h�

) on the levels in which, according to the selected strategy, these quantities are

needed. Based on the estimate (4.15) we fit the statistical error in two different regions,

namely V
(
QCV

W,h�
−QCV

W,h�−1

)
≈ cs1 h

rs1

�
for � = 0, ...,�� and V

(
QCV

W,h�
−QCV

W,h�−1

)
≈ cs2 h

rs2

�
for

�= ��+1, ...,L.

4. We run the sparse grid on an increasing number of quadrature points Wk , k = 1, ...,K , to

estimate the (weak) sparse grid error. In particular, we fit the constants c,δ ∈R+ of the error

model |E[Qε]−QW [Qε]|2 = cW −δ.

5. According to the selected strategy and the previously estimated convergence rates, we com-

pute the number of samples M� for �= 0, ...,L and the number of quadrature points W to be

used in the sparse grid approximation of the expected value of the control variate by solving an

optimization problem in such a way to have, according to (4.15), the sum of the sampling error

and twice the sparse grid quadrature error smaller than tol 2. This optimization procedure is

described in the next subsection.

6. Once all the parameters appearing in the equations have been estimated the method can be

run.

We remark that this algorithm requires a certain number of samples per level to estimate all the

parameters of the different error models. These extra samples might have actually an impact on the

77



Chapter 4. Monte Carlo-type schemes with Control Variate

overall complexity of the algorithm, at least for reasonably large tolerances. A more efficient way of

fitting the error models in a standard MLMC algorithm has been proposed in [28].

4.6.1 Optimization Problem

Once the sequence of increasingly fine grids Th0 , ...,ThL has been fixed and the parameter ε suitably

tuned, we solve an optimization problem to find the optimal number of samples M� for �= 0, ...,L

and the optimal number of quadrature points W forming the sparse grid upon which the expected

value of the control variate is computed. The optimization problem minimizes the computational

cost needed to achieve a prescribed tolerance in terms of mean square error. The computational cost

needed to solve a single deterministic problem on level � is assumed to be of the form C� = kh−dρ

�

where ρ is a factor typically larger than 1 and smaller than 3/2 for optimal solvers. The model for

the computational cost associated to the MLMCCV estimator for the two strategies is:

• strategy 1:

C (M1, ..., ML ,W ) = 2M0C0 +2
L∑

�=1
M�(C�+C�−1)+W CL , (4.18)

• strategy 2:

C (M1, ..., ML ,W ) = 2M�0C�0 +
L∑

�=�0+1
M�(C�+C�−1)+W C�0 , (4.19)

where the factor 2 in the above estimates comes from the fact that on each level on which the control

variate is used, we have to solve both the original problem and the regularized one. The associated

error, according to the selected strategy is:

• strategy 1: e(M1, ..., ML ,W )2 = cs1

∑��

�=0 h
rs1
�

+cs2

∑L
�=��+1

h
rs2
�

M�
+cW −δ, where �� ≈− log2(ε)

• strategy 2: e(M1, ..., ML ,W )2 =∑L
�=��

cs2 h
rs2
�

M�
+cW −δ

Remark 4.6.1. In the estimate of the Var
(
QCV

W,h�
−QCV

W,h�−1

)
, according to the selected strategy, we

have considered only the two extreme regimes β= 0, leading to Var
(
QCV

W,h�
−QCV

W,h�−1

)
∼O

(
h

rs1

l

)
, and

β= min(α,1), leading to Var
(
QCV

W,h�
−QCV

W,h�−1

)
∼O

(
h

rs2

l

)
.

Remark 4.6.2. The parameters cs1 and cs2 strongly depend on the choice of ε.

Once all the constants appearing in the definitions of the cost and error models have been esti-

mated, according to the strategy selected, we perform a Lagrangian optimization by considering the

Lagrange function

L (M1, ..., ML ,W,λ) =C (M1, ..., ML ,W )+λ(e(M1, ..., ML ,W )2 − tol 2).

Here below we report the results of such optimization procedure in the case of Strategy 1:

• M0 =
	
λ

√
cs1 h

rs1
0

2C0
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• M� =
	
λ

√
cs1 h

rs1
�

2(C�+C�−1) for �= 1, ...,��

M� =
	
λ

√
cs2 h

rs2
�

2(C�+C�−1) for �= ��+1, ...,L

• W = (λ)
1

1+δ
(
δ c

CL

) 1
1+δ

where λ has to be computed from:

1	
λ
= tol 2

	
2C0v0 +∑L

�=1

√
2(C�+C�−1)v�+c( 1	

λ
)
−1+δ
1+δ (δ c

CL
)

−δ
1+δ

,

where v� =, � = 0, ...,L, are the fitted variances previously introduced, i.e. v� = cs1

∑��

�=0 h
rs1

�
+

cs2

∑L
�=��+1 h

rs2

�
.

Remark 4.6.3. This problem admits an optimal solution for any δ > 0; nevertheless, since we are

interested in using deterministic schemes able to speed up the convergence of our MLCV estimator,

our goal is to obtain a sparse grid convergence for the mean of the control variate that significantly

outperforms the MC one (this restricts then to δ > 1). This requirement will be verified later on in

Section 4.8.

4.7 Complexity of the Multi Level Monte Carlo with Control Variate method

In the Section 4.6.1 we showed that, depending on the regularity of the input permeability, different

algorithms are preferable. In particular, whenever we deal with smooth input fields a, our theoretical

estimates predict a variance reduction on all levels, as will be verified numerically later on; on the

other hand, when dealing with rough permeabilities a, our estimates predict a variance reduction

only on the coarsest levels. These considerations of course influence the choice of the algorithm:

in the former case we prefer to keep the control variate on each level and consider the MLMCCV

estimator as in 4.11; in the latter we properly select the coarsest level �0, we keep the control variate

only on this level and then continue with a standard MLMC scheme, as in the estimator defined in

(4.17).

In this Section we provide two complexity results for each one of these two strategies. Let us start

with the result concerning the smooth case. Observe that, since we are providing an asymptotic

result, we are not considering the two regimes for the contribution concerning the variance term, cf.

(4.15).

Theorem 4.5. Let c1, c2, c3, c, α, η, β, γ and δ be positive constants such that δ≥ 2α
2α−γ , 2α> γ and:

(i) |E[Qh�
−Qh�−1 ]| ≤ c1hα

�
,

(ii) Var(QCV
W,h�

−QCV
W,h�−1

) ≤ c2ε
ηhβ

�
,

(ii) C� ≤ c3h−γ
�

,

(iv) |E[Qε]−QW [Qε]|2 ≤ cW −δ.
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Then, asymptotically with respect to our prescribed tolerance tol , i.e. when tol → 0, there exists a

finest level L, a sequence {M�}L
�=0 and a number of sparse grid points W such that e(Q̂MLMCCV

{h�},{M�},W )2 �
tol 2 with an associated cost that scales as

Ctol (Q̂MLMCCV
{h�},{M�},W )� εη

⎧⎨⎩tol−2 if β> γ,

tol−2 log(tol )2 if β= γ,
(4.20)

where all the hidden constants do not depend on tol and depend only on c1, c2, c3 and c.

Proof. Since the result we are providing is an asymptotic one we do not track rigorously all the

constants in its derivation. We assign half of the tolerance to the bias so that |E[QhL −Q]| ≤ tol

implies

L � log2(tol−
1
α );

To prove this result we consider h� = 2−� and use again a Lagrangian optimization by minimizing

the computational cost needed to get a prescribed MSE:

L (M1, ..., ML ,W,λ) =
L∑

�=0
M�2�γ+W 2Lγ+λ(

L∑
�=0

εη2−�β

M�
+cW −δ− tol 2).

By readapting the previous results we have

M� =
	
λ
√
εη2�(−γ−β), for �= 0, ...,L; W = (λ)

1
1+δ
(
2−Lγ) 1

1+δ .

Denote x = 1	
λ

. Deriving with respect to the Lagrange multiplier generates an equation for x: for

suitable positive constants a(tol ,ε),b(tol ) we get:

x = tol 2∑L
�=0

√
2�(γ−β)εη+x

−1+δ
1+δ 2L δγ

1+δ
= tol 2

a(tol ,ε)+b(tol )x
−1+δ
1+δ

. (4.21)

Case β= γ

Observe that when tol → 0 then a(tol ,ε) ∼	
εη| log2(tol )| and b(tol ) ∼ tol−

γδ

α(1+δ) . Hence, tol → 0

implies x → 0. Since x → 0, by using δ≥ 2α
2α−γ we deduce that x scales as x ∼ tol 2	

εη| log2(tol )| . Replacing

λ= εη| log2(tol )|2tol−4 in the expression of M� and W , ant then evaluating the computational cost,

up to constants term we get:

Ctol (Q̂MLMCCV
{h�},{M�},W ) ≈

L∑
�=0

tol−2εη| log2(tol )|+ε
η

1+δ | log2(tol )| 1
1+δ tol−

4
1+δ tol

γ

α(1+δ) tol−
γ

α

≈ tol−2εη| log2(tol )|2 +ε
η

1+δ | log2(tol )| 1
1+δ tol−

1
δ+1

(
4+ γ

α
δ
)
. (4.22)

By comparing the two terms we have that, under the assumption δ ≥ 2α
2α−γ , the first term of the

above right hand side dominates the second when tol tends to 0, so that the desired bound in the

case β= γ is shown.
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Case β> γ

By looking at (4.21) we can see how the term a(tol ,ε) is bounded for any L while b(tol ) is as before;

when tol → 0 x again tends to 0 but now it scales as x = tol 2	
εη

; replacing λ= εηtol−4 in the expression

of M� and W , and then evaluating the computational cost, up to constants term we get:

Ctol (Q̂MLMCCV
{h�},{M�},W ) ≈

L∑
�=0

tol−2εη2
�(γ−β)

2 +ε
η

1+δ tol−
4

1+δ tol
γ

α(1+δ) tol−
γ

α

≈ tol−2εη| log2(tol )|+ε
η

1+δ tol−
1

δ+1

(
4+ γ

α
δ
)
. (4.23)

With analogous computations and considerations it is easy to prove the bound also in this case.

Remark 4.7.1. For the moment we have been able to prove an analogous result also in the case β< γ

only under a very restrictive condition that in many cases would not hold. However, since Theorem

4.6 refers to the case of smooth input permeabilities, the condition β≥ γ is verified.

In the rough case where the control variate is applied only on level �0, we have

Theorem 4.6. Let �0 be such that Var(QCV
W,h�0

) ≈Var(Qh�0
−Qh�0−1 ). Let c1, c2, c3, c, α, η, β, γ and δ

be positive constant such that:

(i) |E[Qh�
−Qh�−1 ]| ≤ c1hα

�
,

(ii) Var(Qh�
−Qh�−1 ) ≤ c2hβ

�
,

(ii) C� ≤ c3h−γ
�

,

(iv) |E[Qε]−QW [Qε]|2 ≤ cW −δ.

Then, asymptotically with respect to our prescribed tolerance tol , i.e. when tol → 0, by using the

Strategy 2 detailed in Sections 4.6 and 4.6.1, when β > γ, there exists a finest level L, a sequence

{M�}L
�=0 and a number of sparse grid points W such that e(Q̂MLMCCV

{h�},{M�},W )2 � tol 2 and its associated cost

Ctol (Q̂MLMCCV
{h�}L

�=�0
,{M�}L

�=�0
,W

) is asymptotically proportional to a fraction of the cost Ctol (Q̂MLMC
{h�}L

�=0,{M�}L
�=0,W

)

of the corresponding MLMC estimator,namely:

Ctol (Q̂MLMCCV
{h�}L

�=�0
,{M�}L

�=�0
,W

) ∼ 2�0(γ−β)Ctol (Q̂MLMC
{h�}L

�=0,{M�}L
�=0,W

). (4.24)

Proof. We assign again half of the tolerance to the bias so that |E[QhL −Q]| ≤ tol implies

L � log2(tol−
1
α );

The Lagrangian optimization in this case becomes:

L (M�0 , ..., ML ,W,λ) =
L∑

�=�0

M�2�γ+W 2�0γ+λ(
L∑

�=�0

2−�β

M�
+cW −δ− tol 2).

By readapting the previous results we have

M� =
	
λ
√

2�(−γ−β), for �= �0, ...,L; W = (λ)
1

1+δ
(
2−�0γ

) 1
1+δ

.
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Denote again x = 1	
λ

. Deriving with respect to the Lagrange multiplier generates an equation for x:

for suitable positive constants a(tol ,�0),b(�0) we get:

x = tol 2∑L
�=�0

	
2�(γ−β) +x

−1+δ
1+δ 2�0

δγ

1+δ
= tol 2

a(tol )+bx
−1+δ
1+δ

. (4.25)

When tol → 0 x again tends to 0 scaling as x = tol 2∑L
�=�0

	
2�(γ−β)

; replacing λ= tol−4
(∑L

�=�0

	
2�(γ−β)

)2
in

the expression of M� and W , ant then evaluating the computational cost we get:

Ctol (Q̂MLMCCV
{h�}L

�=�0
,{M�}L

�=�0
,W

) ≈
L∑

�=�0

2
�(γ−β)

2

L∑
�=�0

tol−22
�(γ−β)

2 + tol−
4

1+δ +
(

L∑
�=�0

2
�(γ−β)

2

) 2
1+δ

≈
(

L∑
�=�0

2
�(γ−β)

2

)2

tol−2. (4.26)

Since asymptotically the MLMC estimator has cost given by

Ctol (Q̂MLMC
{h�}L

�=0,{M�}L
�=0

) ≈
(

L∑
�=0

2
�(γ−β)

2

)2

tol−2,

by taking the ratio of the two we conclude by saying that the control variate generates an asymptotic

gain of a factor 2�0(γ−β).

Remark 4.7.2. The previous Theorems provided asymptotic results that actually give rather pes-

simistic bounds. Indeed, in the smooth case (ν≥ 1), by only looking at the asymptotic behavior of the

variances, we completely ignore the additional gain given by the control variate on the coarsest levels.

Moreover, we predict an asymptotic gain with respect to the standard MLMC complexity results only in

the case β≥ γ. However, notice as we want to keep the control variate on each level only when we have

a smooth random field as input; this automatically implies that the value β should be large enough

to include a wide class of problems. In the rough case we have not been able to prove asymptotic

gain with respect to the standard MLMC in the case γ≥β. Nevertheless, numerical experiments show

considerable improvements also in these cases as we will see later on.

4.8 Numerical Results

In this section we present some numerical results obtained using the proposed control vatiate

approach. We focus on results concerning the single-level MCCV and the MLMCCV approach.

Consistently, in the first case we compare the results with the ones obtained with a standard MC

scheme, while in the second one the comparison is done with the classical MLMC scheme [25]. We

recall that all the results presented hereafter are obtained in the case of a lognormally distributed

random field a(x,ω). We assume the log-permeability log(a(x,ω)) to have a covariance function

belonging to the Matérn family. Since there is not a remarkable difference between the numerical

results obtained starting from a tensor and a radial covariance function, we will consider in this

section only isotropic covariances of the form (2.5).

To compute the MC part of our control variate-based estimators (4.4) and (4.11) we perform the

sampling from the random field a(x,ω) with FFT, as described in Subsection 2.5 (similar to a

circulant embedding [31, 54, 55]), e.g. by expanding the field in a Fourier basis. More precisely, to
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avoid boundary effects that could occur when replicating periodically the covariance function, we

build the Fourier expansion on a sufficiently large domain, and then restrict the generated field to

our physical domain D . In this way we sample by FFT the original random field a on a sufficiently

fine grid so that the truncation error is negligible.

On the other hand, in order to compute the expected value of the control variate via sparse grid

approximation, we consider a KL expansion of the input random field in order to keep the number

of random variables in the expansion as small as possible. In the previous chapter we deeply

investigated the performances of such sparse grid approximations and showed how they perform

well in presence of smooth input permeabilities. Here we apply such strategies to the smoothed

problem with regularized input field aε which is C ∞(D̄) for any ε > 0 so we expect again good

performances. In all the numerical tests we used a quasi-optimal scheme (see Subsection 3.4.1)to

take care of the sparse grid part of the “control variate”-based algorithms. More details will be

provided hereafter.

We show some results obtained in the 2D case. We consider the physical domain D to be (0,1)2 and

we are interested in the simulation of an undisturbed flow from left to right which is represented by

the equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−div(a(x, y,ω)∇p(x, y,ω)) = 0 in D, a.s. in Ω,

p(0, y,ω) = 1, p(1, y,ω) = 0, y ∈ [0,1],

p y (x,0,ω) = py (x,1,ω) = 0, x ∈ (0,1).

(4.27)

In all the simulations presented hereafter we have considered a log-permeability field with correla-

tion length Lc = 0.5 and variance σ2 = 1. Also, the level � in the MLMCCV and MLMC approaches is

chosen as h� = 2−�−1, �≥ 0.

Case 1: a smooth functional

We start focusing on the approximation of the following smooth functional Q1 ∈ L2(D):

Q1(u) =
∫

D
κ(x)u(x)d x, with u ∈ H 1

ΓD
(D), κ(x) = e

− (x1−μQ )2+(x2−μQ )2

2σ2
Q

2πσ2
Q

, μQ = 1

4
, σQ = 1

8
,

and look at the quantity of interest Q1(ω) = Q1(p(·,ω)). Figure 4.2 shows the variance of Q1
�

and

the variance of the difference Q1
�
−Q1

�−1 for the standard MLMC approach as well as Q1
�
− (Q1)ε

�−1
and Q1

�
− (Q1)ε

�−1 − (Q1
�
− (Q1)ε

�−1), in the case of a rough field (ν= 1/2). As predicted by the theory,

the difference between the MCCV and MC variances becomes larger and larger when considering

smaller values of ε; at the same time, when looking at differences between consecutive levels, the

variance reduction in MLMCCV appears only on the coarsest levels and, starting from a certain level

�� ≈− log2 ε, the MLMC and MLMCCV variances are almost identical.

The second comparison, shown in Figure 4.3, demonstrates that, by considering a smoother

random field as input, the variance reduction with respect to the standard MLMC case appears on

each level, and, again, the smaller ε the more significant the variance reduction.

In Figure 4.4 and Figure 4.5 we show convergence plots for the two other sources of errors, namely

83



Chapter 4. Monte Carlo-type schemes with Control Variate

0 1 2 3 4 5 6
−26
−25
−24
−23
−22
−21
−20
−19
−18
−17
−16
−15
−14
−13
−12
−11
−10

−9
−8
−7
−6

level

lo
g 2( 

V
ar

( ⋅
 )

 )
ν=0.5, ε=0.125, N fixed

 

 

Y
l
 MLMCCV

Q
l
 MCCV

Y
l
 MLMC

Q
l
 MC

(a) ε= 1/23.
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(c) Smoothed field aε, ε= 1/25.

Figure 4.2 – Variance of Q1
�

(ω) =∫D κ(x)p�(x,ω)d x and Y 1
�

(ω) =Q1
�

(ω)−Q1
�−1(ω) on each level, for

ν= 0.5 and different values of ε.
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(a) ε= 1/23.
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(b) ε= 1/24.
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(c) ε= 1/25.

Figure 4.3 – Variance of Q1
�

(ω) =∫D κ(x)p�(x,ω)d x and Y 1
�

(ω) =Q1
�

(ω)−Q1
�−1(ω) on each level, for

ν= 2.5 and different values of ε.

the Stochastic Collocation error committed when approximating the mean of the control variate by

sparse grid, and the error coming from the spatial discretization, which determines the finest mesh

of our sequence of meshes.

In Figure 4.4 we have the convergence of the sparse grid approximation of the mean of the control

variate (Q1)εhL
; we compute these errors for a sequence of sparse grid quadratures using non nested

Hermite knots and having increasing number of points W . Such values of solves correspond to

different profit levels wk , k = 1, ...,K , obtained by considering the quasi optimal sparse grid built

starting from the multi-indices i such that P (i) > e−wk ; as reference solution we used the solution

corresponding to w� = wK+1; here we used K = 5 for the cases ν = 0.5 and ν = 2.5. The labels

appearing next to each point contain the number of “active variables” used to obtain that particular

approximation and, in brackets, the number of variables that have been activated at the same time.

These numbers somehow give us an idea of the shape of the underlying multi-index set I used to

compute the sparse grid approximation of the mean of the control variate and, most importantly,

tell us that these errors can be considered dimension-independent; in fact, we built our underlying

N -dimensional sparse grid by considering N = 800 variables in both cases ν = 0.5 and ν = 2.5;
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(a) ν= 0.5, ε= 1/25, fitted rate δ= 1.7286.
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Figure 4.4 – SC error computed as
(
E[(Q1)εhL

]−QW [(Q1)εhL
]
)2

versus computational cost, computed

as number of sparse grid knots W for ν= 0.5 (left) and ν= 2.5 (right).

from the labels in Figure 4.4 we can see that the number of active variables included in the sparse

grid approximations at all levels k = 1, ...,K is always significantly smaller than N = 800. The same

holds for the reference solution, built respectively over a sparse grid of approximately 23000 and

10000 nodes, presenting only 617 (respectively 539) active variables. In light of these considerations

we consider the truncation error coming from such approximation negligible, at least up to the

tolerances reached in Figure 4.4. The convergence obtained, for the square error, is significantly

faster than the one of a standard MC scheme. Moreover, the fitted algebraic error model cW −δ,

describes well the actual decay of the error.
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(b) ε= 1/24.

Figure 4.5 – Discretization error computed as E[Q1
h�

−Q1
hL

]2 for ν= 0.5 (left) and ν= 2.5 (right).

Concerning the spatial discretization error we see in Figure 4.5 that such error presents different

slopes depending on the smoothness of the input random field: in particular when a is rough (in

this case ν= 0.5) the convergence rate is close to 1; on the other hand, when the random field a has

smooth realizations (in this case ν= 2.5 so the realizations are twice differentiable) the convergence

rate is close to 2.
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Chapter 4. Monte Carlo-type schemes with Control Variate

To conclude the presentation of the numerical results we show in Figure 4.6 a plot of the overall

error; we compare here all at once the performances of the MCCV and MLMCCV methods with

the corresponding MC and MLMC schemes. Observe that the finite element error appearing

in the mean square error associated to these estimators is the same (up to a costant, set to 2

in our particular test); then, in order to make the comparison between the methods with and

without control variate as clear as possible, we select the finest mesh size hL in such a way to

have the two finite element errors comparable, i.e. a half of the prescribed tolerance 2tol 2. Then

we compare the other terms coming from the mean square error associated to the MLMC and

MLMCCV (respectively MC and MCCV) estimators, by forcing them to be smaller than tol 2. Of

course, other choices are possible concerning the algorithm (see e.g. [28, 48]) which will not be

discussed here. The error obtained with the control variate approach after having optimized all

the parameters, given as sum of the sparse grid error and the statistical error, is plotted against

the computational cost model, measured as estimated CPU time, according to the computational

cost model defined in (4.18) and (4.19) . Figure 4.6 shows a remarkable improvement in terms of

prescribed tolerance on the mean square error versus corresponding computational cost. Indeed the

control variate approach improves the performance of the classical schemes. Let us start from the

“single-level” schemes: we can see how the MCCV sampler presents a remarkable gain with respect to

standard MC due to the variance reduction induced by the control variate which is roughly speaking

O(εmin(ν,2)). According with the statement of Theorem 4.5 the MCCV rate degenerates as the MC one

(Theorem applies with β= 0) when moving towards small tolerances; this is why, although for small

tolerances (and hence coarse levels �) the two schemes converge as tol−2, starting from a certain

point they recover the asymptotic behavior tol−2− γ

α . Asymptotically the MCCV scheme is able to

achieve the same tolerances of the MC scheme with a saving in terms of computational cost of

approximatively 2 order of magnitude in the rough case (ν= 0.5) and 3 in the smooth case (ν= 2.5).

Concerning the two “multi-level” schemes, namely MLMCCV and MLMC, we do not expect to

obtain, at least asymptotically, such a big difference; in fact, according to our theoretical estimates,

the double differences Q�−Qε
�
− (Q�−1 −Qε

�−1) scales as predicted in Lemma 4.3 and therefore we

obtain a less significant variance reduction which induces a less significant computational saving.

However, according to the theory of MLMC (see for instance [25]), the variances of QoI computed

on consecutive meshes decay sufficiently fast to make the overall computational cost proportional

to the cost of a MC sampler on the coarsest level considered, i.e. proportional to tol−2. In this case

to achieve the same accuracy of the MLMC method, roughly speaking, the proposed MLMCCV

method presents a gain in terms of computational time of about 1 order of magnitude in the rough

case (ν= 0.5) and 2 in the smooth case (ν= 2.5); despite these factors are smaller than the ones in

the “single-level”, the asymptotic benefit of a “multi-level” strategy appears evident. Notice that for

low tolerances there is no significant difference between the performance of MLMCCV and MCCV

because this particular QoI Q1 has a small variance.

Case 2: a less smooth functional

Now we focus on a less smooth functional Q2 defined as

Q2(u,ω) =−
∫

D
a(x,ω)∇u(x) ·∇v(x)d x, with u ∈W ; (4.28)
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(a) ν= 0.5, ε= 1/25.
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(b) ν= 2.5, ε= 1/26.

Figure 4.6 – Error vs Computational cost for ν= 0.5 (left) and ν= 2.5 (right). Error = Sparse Grid error
+ Statistical error, computed as root mean square error. Computational cost estimated according to

(4.18) and (4.19), with C� = h−dρ

�
and ρ = 1.05, fitted by using a Matlab backslash command.

being W a suitable functional space and v = 1 on Γout ≡ {y ∈ (0,1), x = 1} and v = 0 on Γi n ≡ {y ∈
(0,1), x = 0}. Again we look at the quantity of interest Q2(ω) = Q2(p(·,ω),ω) that represents, in a

distributional sense, the mass flux through the outflow boundary. Indeed, for smooth a and p

satisfying problem (4.27), we have

Q2(ω) =−
∫
Γout

a(x,ω)∇p(x,ω) ·nd x. (4.29)

In the case of a fully Dirichlet problem with a ∈ Cα(D), by choosing v ≈ 1 on the boundary Γout and

v ≈ 0 on ∂D \Γout , this functional has been proven in [74] to be an Hβ−1(D) approximation of the

outflow through the boundary Γout for any 0 <β<α.

In the case of a problem with mixed boundary conditions as in (4.27), the analysis becomes slightly

more involved; a similar result can be recovered by considering the Bochner space

L2((0,1); H s
0(0,1)) (in short L2(H s

0)) as the space of the H s
0-valued functions along the horizontal

direction that are L2 integrable along the vertical direction, being H s
0 the closure of C ∞

0 in the H s

norm. This space is equipped with the norm

‖v‖L2(H s ) =
(∫1

0

(∫
(0,1)2

(v(x1, x2)− v(x ′
1, x2))2

|x1 −x ′
1|1+2s d x1d x ′

1

)
d x2

) 1
2

;

Notice that C ∞
0 (D) is dense in this space. By choosing for instance v(x1, x2) = x1 in (4.28) then we

obtain

Q2(ω) =−
∫

(0,1)2
a(x,ω)

∂p(x,ω)

∂x1
d x, (4.30)

and therefore, for any p ∈C∞
0 (D), it holds

Q2 =−
∫

D
a
∂p

∂x1
d x � ‖ ∂a

∂x1
‖L2(Hβ−1)‖p‖L2(H 1−β) � ‖a‖L2(Hβ)‖p‖L2(H 1−β) �

‖a‖L2(Cα)√
α−β

‖p‖L2(H 1−β)
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Chapter 4. Monte Carlo-type schemes with Control Variate

and the functional can be extended continuously on the whole space L2(H 1−β
0 ). Therefore, Q2 is an

L2(Hβ−1) functional ∀0 <β<α.
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(b) ε= 1/24.
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(c) Smoothed field aε, ε= 1/25.

Figure 4.7 – Variance of Q2
�

(ω) = −∫D a(x,ω)∂p�

∂x1
(x,ω)d x and of Y 2

�
= Q2

�
−Q2

�−1, for ν = 0.5 and
different ε.

In Figure 4.7 and 4.8 we show the variance reduction obtained in this case. Again in the rough case

ν= 0.5 we obtain a variance reduction only on the coarsest levels; on the other hand, for the smooth

case ν= 2.5, although we obtain a more significant variance reduction with respect to the rough

case, it seems that this reduction does not appear for all levels; therefore, from a numerical point of

view, it is preferable to keep the control variate only on the first levels �= 0, ...,�� and then continue

with a standard MLMC scheme. From a theoretical point of view for the moment we are not able to

explain why there is no variance reduction on all levels; our numerical tests show that computing

the flux as a boundary integral as in (4.29) leads to suboptimal convergence rates with respect to

the discretization mesh size h, but produces variance reduction on all levels. On the other hand

computing the flux as an integral on the whole domain D as in (4.30) produces optimal convergence

rates in h but variance reduction only on the coarsest levels. This issue is still under investigation.

In Figures 4.9 and 4.10 we show the errors coming from the approximation of the mean of the control
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(a) ε= 1/23.
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(b) ε= 1/24.
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(c) Smoothed field aε, ε= 1/25.

Figure 4.8 – Variance of Q2
�

(ω) = −∫D a(x,ω)∂p�

∂x1
(x,ω)d x and of Y 2

�
= Q2

�
−Q2

�−1, for ν = 2.5 and
different ε.

variate and from the physical discretization on a grid of mesh size hl . Analogous considerations to

the ones made in the case of the smooth functional can be done.
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To conclude we show again in Figure 4.11 the overall error given by the sum of statistical and sparse
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(a) ν= 0.5, ε= 1/25, fitted rate δ= 1.7985.
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Figure 4.9 – SC error computed as
(
E[(Q2)εhL

]−QW [(Q2)εhL
]
)2

versus computational cost, computed

as number of sparse grid knots W for ν= 0.5 (left) and ν= 2.5 (right).
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(a) ν= 0.5, rate = 1.05.
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(b) ν= 2.5, rate = 1.80.

Figure 4.10 – Discretization error computed as E[Q1
h�

−Q1
hL

]2 for ν= 0.5 (left) and ν= 2.5 (right).

grid error; in this case the gain with respect to the standard MLMC scheme is slightly smaller than

the one previously shown in Figure 1.2; again asymptotically the difference between MCCV and MC,

around 3 and 4 orders of magnitudes respectively in the rough (ν= 0.5) and smooth case (ν= 2.5), is

more remarkable than the one between MLMCCV and MLMC, around 1 and 2 orders of magnitudes

respectively in the rough (ν= 0.5) and smooth case (ν= 2.5); however the “multi-level” schemes

present a much better rate, which is again tol−2; observe how in this case the separation between

the “single-level” and the “multi-level”schemes occur earlier than in the previous case since the flux

functional is affected by a larger variance than the previous one.

4.8.1 A level-dependent approach

As briefely anticipated in section 2.5, since we use the tools coming from the FFT to generate the

realizations of the underlying permeability a on a Fourier basis, the number of random variables
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(a) ν= 0.5, ε= 1/25.
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(b) ν= 2.5, ε= 1/26.

Figure 4.11 – Error vs Computational cost for ν = 0.5 (left) and ν = 2.5 (right). Error = Sparse
Grid error + Statistical error, computed as root mean square error. Computational cost estimated

according to (4.18) and (4.19), with C� = h−dρ

�
and ρ = 1.05, fitted by using a Matlab backslash

command.

kept in the truncated field is proportional to the number of degrees of freedom of the corresponding

spatial discretization. This fact does not have an actual impact on the computational cost when

considering a MC or a MCCV scheme since the generation of the random field will be always consid-

erably less costly than solving the PDE on the current mesh; however, in a multi-level framework, if

we want to keep a fixed number of random variables on all levels, as we have done indeed so far,

this could have an impact on the computational cost on coarse levels; indeed, the cost of generating

a sample on each level would be proportional, up to logaritmic terms, to the number of random

variables included in the random field, which is O(h−2
L ), i.e. the cost of generating a sample on a

coarse level is proportional to the number of degrees of freedom in the finest one. In fact in 2D the

truncated Fourier expansion of the log-permeability γ on the expanded domain (0,L′)2 is

γ(x,y) = ∑
n∈{0,...,N }2

cn
∑

�∈{0,1}2

y�
n(ω)

2∏
i=1

cos
(πni

L′ xi

)�i

sin
(πni

L′ xi

)1−�i

. (4.31)

As soon as we fix the finest mesh size hL , we implicitly fix N so that the number of random variables

involved in the truncation is linked to the spatial resolution of the finest grid. If we want to generate

a field on the coarsest mesh with the same number of terms in the truncation we have to pay then

a cost proportional to O(h−2
L ). Since the use of FFT naturally links the parameters hL and N , it is

then possible to follow the ideas in [74] to properly define a new “multi-level”-type estimator that

considers a level-dependent truncation of the random field γ, namely γN�
. By denoting with QLD

�

the QoI Q approximated with mesh size h� and starting with a truncated field γ with N = N� in

(4.31), the sum E[QL] =∑L
�=0E[QLD

�
]−E[QLD

�−1] is still telescopic. Then by replacing Qh�
with QLD

�
in

the definition of the MLMC and MLMCCV estimators, we obtain our level dependent MLLD and

MLLDCV estimators:

Q̂MLLD
{h�},{M�} =

L∑
�=0

1

M�

M�∑
i=1

(
QLD

� (y�,i )−QLD
�−1(y�,i )

)
, where Q−1 = 0,

Q̂MLLDCV
{h�},{M�},W =

L∑
�=0

1

M�

M�∑
i=1

(
QLD

� (ω�,i )−QLD
�−1(ω�,i )− (QLD,ε

�
(ω�,i )−QLD,ε

�−1 (ω�,i ))
)
+QW [Qε

hL
].
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4.8. Numerical Results

The derivation of the corresponding mean square error is straighforward. In Figure 4.12 and 4.13

we consider again the flux Q2 as QoI and we report the decay of the variance of the difference on

consecutive levels of these level-dependent estimators.
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Figure 4.12 – Variance of Y LD
�

=QLD
�

−QLD
�−1, with QLD

�
(ω) =−∫D aN�

(x,ω)
∂pLD

�

∂x1
(x,ω)d x for ν= 0.5

and different ε.
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Figure 4.13 – Variance of Y LD
�

=QLD
�

−QLD
�−1, with QLD

�
(ω) =−∫D aN�

(x,ω)
∂pLD

�

∂x1
(x,ω)d x for ν= 2.5

and different ε.

In [74] the authors pointed out how the variance reduction desirable with such level-dependent

truncation is highly sensitive to the choice of N�. Here, for the sake of simplicity, we choose the

N� “induced by the the FFT ”, i.e. N� = L′h−1
�

; such choice turns out to be a good one: in fact

the numerical experiments show how, by using such level-dependent truncation, the MLLDCV

estimator is affected by a smaller variance than the MLMCCV one; moreover we have variance

reduction with respect to the corresponding MLLD estimator also in those situations in which

MLMCCV did not feature any variance reduction with respect to MLMC.

In Figure 4.14 we show the overall error given by the sum of statistical and sparse grid errors. Observe

how we could significantly improve the gain in terms of computational cost with respect to the

previous case in which we were keeping the same truncation on all levels.
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Figure 4.14 – Error vs Computational cost for ν= 0.5 (left) and ν= 2.5 (right). Error = Sparse Grid
error + Statistical error. Computational cost estimated according to (4.18) and (4.19).

4.9 Conclusions

In this chapter we have presented a new control variate approach that combines the use of a sparse

grid scheme with a Monte Carlo and a Multi Level Monte Carlo sampler. We then applied these

MCCV and MLMCCV algorithms to solve an elliptic partial differential equation represented by the

Darcy problem with log-normal permeability a = eγ with γ having a covariance function belonging

to the Matérn family 2.5. We consider as control variate the QoI computed starting from an auxiliary

Darcy problem with smoothed input permeability. Since such a control variate is obtained starting

from a smooth problem it is expected to be smooth also with respect to the stochastic parameters.

The crucial assumption for this method to work is then to have at our disposal a good sparse grid

quadrature scheme to compute the expected value of such control variate.

The proposed MLMCCV strategy considerably improves the performance of the standard MLMC

method in terms of error versus computational cost, in both cases of rough and smooth coefficients,

where we have always observed a gain with respect to the standard or level-dependent MLMC

method.

The choice of the regularization parameter ε is rather delicate in the case of rough coefficients, as it

should properly balance the variance reduction achievable in MLMC and the performance of the

stochastic collocation.

Also the application of a level dependent truncation of the input random field has provided signifi-

cant improvements with respect to the case in which a fixed truncation was considered; indeed,

such choice improves both computational aspects, since it speeds up the samples generation since

the FFT has to perform much less operations, and at the same time further improve the variance

reduction with respect to the other cases.
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Appendix

4.A Proof of Lemma 4.3.1

We consider a fixed ω ∈Ω and we will not specify the dependence on ω in the proof. In order to

prove Lemma 4.3.1 we will need the following three preliminary lemmas.

Lemma 4.A.1. Let γ(x) be a deterministic function in Cα(Rd ) and, ∀h ∈Rd , let us define Dh,βγ(x) as

Dh,βγ(x) = γ(x +h)−γ(x)

|h|β .

Then, ∀ 0 <β≤ min(1,α) it holds

‖Dh,βγ‖Cα−β(Rd ) ≤ (1+2
	

d)‖γ‖Cα(Rd ).

and in particular

|Dh,βγ|Cα−β(Rd ) ≤ 2
	

d |γ|Cα(Rd ).

Proof. Let us denote α= A+ s, with A ∈N and s ∈ (0,1].

• We first consider the case 0 ≤β≤α≤ 1 so that A = 0 and s =α. The norm we want to bound can

be written as

‖Dh,βγ‖Cα−β(Rd ) =‖Dh,βγ‖C 0(Rd ) +|Dh,βγ|Cα−β(Rd ) =

=‖Dh,βγ‖C 0(Rd )︸ ︷︷ ︸
(i )

+ sup
x,t∈Rd

|(Dh,βγ)(x + t )− (Dh,βγ)(x)|
|t |α−β︸ ︷︷ ︸

(i i )

.

The first term can be bounded as

(i ) = sup
x∈Rd

|γ(x +h)−γ(x)|
|h|β ≤ sup

x∈Rd

max

{
sup
|h|≥1

|γ(x +h)−γ(x)|
|h|β , sup

|h|≤1

|γ(x +h)−γ(x)|
|h|β

}

≤ sup
x∈Rd

max

{
sup
|h|≥1

(|γ(x +h)|+ |γ(x)|) , sup
|h|≤1

|γ(x +h)−γ(x)|
|h|α |h|α−β

}
≤ 2‖γ‖C 0(Rd ) +|γ|Cα(Rd ).
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The second term can be bounded as

(i i ) =max

⎧⎪⎪⎨⎪⎪⎩ sup
x,t∈Rd

|t |≥|h|

|γ(x + t +h)−γ(x + t )−γ(x +h)+γ(x)|
|h|β|t |α−β , sup

x,t∈Rd

|t |≤|h|

|γ(x +h + t )−γ(x +h)−γ(x + t )+γ(x)|
|h|β|t |α−β

⎫⎪⎪⎬⎪⎪⎭
≤max

⎧⎪⎪⎨⎪⎪⎩ sup
x,t∈Rd

|t |≥|h|

|γ(x + t +h)−γ(x + t )|+ |γ(x +h)−γ(x)|
|h|β|h|α−β , sup

x,t∈Rd

|t |≤|h|

|γ(x + t +h)−γ(x +h)|+ |γ(x + t )−γ(x)|
|t |β|t |α−β

⎫⎪⎪⎬⎪⎪⎭
≤2|γ|Cα(Rd )

Hence we get ‖Dh,βγ‖Cα−β(Rd ) ≤ 3‖γ‖Cα(Rd ) and |Dh,βγ|Cα−β(Rd ) ≤ 2|γ|Cα(Rd ).

• Let us consider now the case 0 <β≤ 1 <α so that α= A+ s with A ≥ 1. The proof can be further

divided in two parts: s >β and s <β since for s =β the result is obvious. We start with the case s >β.

The norm that we want to bound can be written as

‖Dh,βγ‖Cα−β(Rd ) = ‖Dh,βγ‖C 0(Rd ) +
A∑

k=1
|Dh,βγ|C k (Rd ) +|Dh,βγ|Cα−β(Rd )

= ‖Dh,βγ‖C 0(Rd )︸ ︷︷ ︸
(i )

+
A∑

k=1
max
|i |1=k

‖Di (Dh,βγ)‖C 0(Rd )︸ ︷︷ ︸
(i i )

+ max
|i |1=A

sup
x,t

{ |Di (Dh,βγ)(x + t )−Di (Dh,βγ)(x)|
|t |s−β

}
︸ ︷︷ ︸

(i i i )

.

In what follows, we denote ξ
y
x a point of the segment x y , i.e. ξy

x = θx + (1−θ)y for some θ ∈ [0,1].

The first term (i ) can be bounded as

(i ) = sup
x∈Rd

|γ(x +h)−γ(x)|
|h|β ≤ sup

x∈Rd

max

{
sup
|h|≥1

|γ(x +h)−γ(x)|
|h|β , sup

|h|≤1

|γ(x +h)−γ(x)|
|h|β

}

≤ sup
x∈Rd

max

{
sup
|h|≥1

(|γ(x +h)|+ |γ(x)|) , sup
|h|≤1

|∇γ(ξx+h
x ) ·h|
|h|β

}
≤ 2‖γ‖C 0(Rd ) +

	
d |γ|C 1(Rd ).

Each term of (i i ), for k = 1, ..., A−1, can be bounded as

max
|i |1=k

{
sup
x∈Rd

|Diγ(x +h)−Diγ(x)|
|h|β

}
≤ max

|i |1=k

{
sup
x∈Rd

max

{
sup
|h|≥1

(
|Diγ(x +h)|+ |Diγ(x)|

)
, sup
|h|≤1

|∇Diγ(ξx+h
i ,x ) ·h|

|h|β
}}

≤ 2|γ|C k (Rd ) +
	

d |γ|C k+1(Rd ).

The last term of (i i ) for k = A, analogously to what we did in the case 0 <β≤α≤ 1, can be bounded

as

|Dh,βγ|C A(Rd ) ≤ 2|γ|C A(Rd ) +|γ|Cα(Rd ).

Hence the term (i i ) can be bounded as

(i i ) ≤ 2|γ|C 1(Rd ) + (2+
	

d)
A∑

k=2
|γ|C k (Rd ) +|γ|Cα(Rd ).
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The last term (i i i ) can be bounded as

(i i i ) ≤ max
|i |1=A

⎧⎪⎪⎨⎪⎪⎩max

⎧⎪⎪⎨⎪⎪⎩ sup
x,t∈Rd

|t |≥|h|

|Diγ(x + t +h)−Diγ(x + t )|+ |Diγ(x +h)−Diγ(x)|
|h|β|t |s−β ,

sup
x,t∈Rd

|t |≤|h|

|Diγ(x + t +h)−Diγ(x + t )|+ |Diγ(x +h)−Diγ(x)|
|h|β|t |s−β

⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭≤ 2|γ|Cα(Rd ).

So the norm of ‖Dh,βγ‖Cα−β(Rd ) can we bounded as

‖Dh,βγ‖Cα−β(Rd ) ≤ (i )+(i i )+(i i i ) ≤ 2‖γ‖C 0(Rd )+(2+
	

d)
A∑

k=1
|γ|C k (Rd )+3|γ|Cα(Rd ) ≤ (2+

	
d)‖γ‖Cα(Rd ).

and |Dh,βγ|Cα−β(Rd ) ≤ 2|γ|Cα(Rd ).

• Let us consider now the case s <β. The quantity we want to bound becomes

‖Dh,βγ‖Cα−β(Rd ) = ‖Dh,βγ‖C 0(Rd ) +
A−1∑
k=1

|Dh,βγ|C k (Rd ) +|Dh,βγ|Cα−β(Rd )

= ‖Dh,βγ‖C 0(Rd )︸ ︷︷ ︸
(i )

+
A−1∑
k=1

max
|i |1=k

‖Di (Dh,βγ)‖C 0(Rd )︸ ︷︷ ︸
(i i )

+ max
|i |1=A−1

sup
x,t

{ |Di (Dh,βγ)(x + t )−Di (Dh,βγ)(x)|
|t |1+s−β

}
︸ ︷︷ ︸

(i i i )

.

We have already derived a bound for the terms (i ) and (i i ). The term (i i i ) can be bounded as

follows:

(i i i ) = max
|i |1=A−1

max

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
sup

x,t∈Rd

|t |≥|h|

|Di (Dh,βγ)(x + t )−Di (Dh,βγ)(x)|
|t |1+s−β

︸ ︷︷ ︸
(Ii )

, sup
x,t∈Rd

|t |≤|h|

|Di (Dh,βγ)(x + t )−Di (Dh,βγ)(x)|
|t |1+s−β

︸ ︷︷ ︸
I Ii

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
By bounding separately the two terms we get

Ii = sup
x,t∈Rd

|t |≥|h|

|Diγ(x + t +h)−Diγ(x + t )−Diγ(x +h)+Diγ(x)|
|h|β|t |1+s−β

= sup
x,t∈Rd

|t |≥|h|

|(∇Diγ(ξx+t+h
i ,x+t )−∇Diγ(ξx+h

i ,x )) ·h|
|h|β|t |1+s−β

≤ sup
x,t∈Rd

|t |≥|h|

max j=1,...,d |∂x j (Diγ(ξx+t+h
i ,x+t ))−∂x j (Diγ(ξx+h

i ,x ))|
|ξx+t+h

i ,x+t −ξx+h
i ,x |s

	
d |h||ξx+t+h

i ,x+t −ξx+h
i ,x |s

|h|β|t |1+s−β

≤
	

d |γ|Cα(Rd ) sup
x,t∈Rd

|t |≥|h|

|h|1−β(|h|s +|t |s)

|t |1+s−β ≤ 2
	

d |γ|Cα(Rd ).
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Similarly for the term I Ii , we have:

I Ii = sup
x,t∈Rd

|t |≤|h|

|Diγ(x + t +h)−Diγ(x +h)−Diγ(x + t )+Diγ(x)|
|h|β|t |1+s−β

= sup
x,t∈Rd

|t |≤|h|

|(∇Diγ(ξx+t+h
i ,x+h )−∇Diγ(ξx+t

i ,x )) · t |
|h|β|t |1+s−β

≤ sup
x,t∈Rd

|t |≤|h|

max j=1,...,d |∂x j (Diγ(ξx+t+h
i ,x+t ))−∂x j (Diγ(ξx+h

i ,x ]))|
|ξx+t+h

i ,x+h −ξx+t
i ,x |s

	
d |t ||ξx+t+h

i ,x+h −ξx+t
i ,x |s

|h|β|t |1+s−β

≤
	

d |γ|Cα(Rd ) sup
x,t∈Rd

|t |≤|h|

|t |β−s(|h|s +|t |s)

|h|β ≤ 2
	

d |γ|Cα(Rd ).

and then the term (i i i ) can be bounded as (i i i ) ≤ 2
	

d |γ|Cα(Rd ). Finally the norm of ‖Dh,βγ‖Cα−β(Rd )

can we bounded as

‖Dh,βγ‖Cα−β(Rd ) ≤ (i )+(i i )+(i i i ) ≤ 2‖γ‖C 0(Rd )+(2+
	

d)
A−1∑
k=1

|γ|C k (Rd )+
	

d |γ|C A (Rd )+(1+2
	

d)|γ|Cα(Rd ).

By comparing this expression with the one obtained in the previous case it is possible to conclude

that ∀h ∈Rd , 0 <β≤ min{α,1} it holds

‖Dh,βγ‖Cα−β(Rd ) ≤ (1+2
	

d)‖γ‖Cα(Rd ), |Dh,βγ|Cα−β(Rd ) ≤ 2
	

d |γ|Cα(Rd ).

Lemma 4.A.2. Let κ(x) ∈ Cα(Rd ) be a deterministic function as in Lemma 4.A.1, and let κε(x) be a

smoothed version of κ(x) defined as κε(x) = (κ∗φε)(x) with φε(x) as in (4.2). It holds:

‖κ−κε‖C 0(Rd ) ≤C (α,d)|κ|Cmin(α,2)(Rd )ε
min(α,2),

where C (α,d) = 1	
2π

d

∫
Rd |y |αe−

|y |2
2 d y.

Proof. By definition we have

|(κ−κε)(x)| =
∣∣∣∣∫

Rd
(κ(x + y)−κ(x))φε(y)d y

∣∣∣∣ ∀x ∈Rd .

• Let us start with the case 0 <α≤ 1: if κ(x) ∈ Cα(Rd ) then we obtain

|(κ−κε)(x)| ≤
∫
Rd

|κ(x + y)−κ(x)|
|y |α |y |αφε(y)d y ≤ |κ|Cα(Rd )

∫
Rd

|y |αφε(y)d y ≤C (α,d)|κ|Cα(Rd )ε
α.

• If 1 < α≤ 2 we consider a Taylor expansion of κ(x + y) around x and set α= 1+ s with s ∈ (0,1].
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Since odd moments of a normal distribution vanish, we get:

|(κ−κε)(x)| =
∣∣∣∣∫

Rd

(
∇κ(x) · y + (∇κ(ξx+y

x )−∇κ(x)) · y
)
φε(y)d y

∣∣∣∣
≤
∫
Rd

max
|i |1=1

|Diκ(ξx+y
x )−Diκ(x)|

|ξx+y
x −x|s

	
d |y |1+sφε(y)d y ≤C (α,d)

	
d |κ|Cα(Rd )ε

α.

• Finally by considering 2 <α and by expanding further the function κ, since the second moment of

a normal distribution does not vanish, we get:

|(κ−κε)(x)| =
∣∣∣∣∣
∫
Rd

(
∇κ(x) · y +

d∑
j ,k=1

∂2γ

∂x j∂xk
(ξx+y

x )y j yk

)
φε(y)d y

∣∣∣∣∣
≤C (α,d)|κ|C 2(Rd )ε

2.

Lemma 4.A.3. Let γ(x) ∈ Cα(D) and γε(x) ∈ Cα(D) be two deterministic functions and let a(x) = eγ(x)

and aε(x) = eγ
ε(x). For any 0 <β≤ min(1,α) it holds

‖a −aε‖Cβ(D) ≤ ‖a‖C 0(D)‖1+ aε

a
‖C 0(D)(1+|γ|Cβ(D))‖γ−γε‖Cβ(D).

Proof. We bound separately the terms coming from the definition of the Cβ norm, namely ‖a −
aε‖Cβ(D) = ‖a −aε‖C 0(D) +|a −aε|Cβ(D). For the first one we simply observe that

‖a −aε‖C 0(D) ≤ ‖eγ+eγ
ε‖C 0(D)‖γ−γε‖C 0(D).

For the second term we start by considering the inequality

|a −aε|Cβ(D) ≤ ‖eγ‖C 0(D)

∣∣∣1−eγ−γ
ε
∣∣∣
Cβ(D)︸ ︷︷ ︸

(i )

+|eγ|Cβ(D)︸ ︷︷ ︸
(i i )

∥∥∥1−eγ−γ
ε
∥∥∥

C 0(D)︸ ︷︷ ︸
(i i i )

.

The terms in the above equation can be bounded as follows:

(i ) ≤
∥∥∥eγ

ε−γ
∥∥∥

C 0(D)
|γε−γ|Cβ(D),

(i i ) ≤ ∥∥eγ
∥∥

C 0(D) |γ|Cβ(D),

(i i i ) ≤
∥∥∥1+eγ

ε−γ
∥∥∥

C 0(D)
‖γε−γ‖C 0(D).

By putting everything together we obtain

‖a −aε‖Cβ(D) ≤
(
‖eγ+eγ

ε‖C 0(D) +
∥∥eγ

∥∥
C 0(D) |γ|Cβ(D)

∥∥∥1+eγ
ε−γ
∥∥∥

C 0(D)

)
‖γ−γε‖C 0(D)

+∥∥eγ
∥∥

C 0(D)

∥∥∥eγ
ε−γ
∥∥∥

C 0(D)
|γε−γ|Cβ(D)

≤‖eγ‖C 0(D)‖1+eγ
ε−γ‖C 0(D)(1+|γ|Cβ(D))‖γε−γ‖Cβ(D)

which is the desired result.

Thanks to these results we can prove Lemma 4.3.1.
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Proof. (of Lemma 4.3.1.) From lemma 4.A.1 we have that γ̃ ∈ Cα(Rd ) implies Dh,βγ̃ ∈ Cα−β(Rd )

∀β≤ min(α,1). By using the definitions given in (4.6), thanks to Lemmas 4.A.2 and 4.A.1 we get∥∥Dh,βγ̃−
(
Dh,βγ̃

)ε∥∥
C 0(Rd ) �

∣∣Dh,βγ̃
∣∣
C min(α−β,2)(Rd ) ε

min(α−β,2)

�
∣∣γ̃∣∣C min(α,2+β)(Rd ) ε

min(α−β,2)

Since Dh,βγ
ε = (Dh,βγ̃

)ε and thanks to the fact that the previous estimate is valid uniformly in h, we

can take the supremum of
∥∥Dh,βγ−

(
Dh,βγ

)ε∥∥
C 0(Rd ) with respect to h. By doing this we get

|γ̃−γε|Cβ(Rd ) ≤ sup
h∈Rd

∥∥Dh,βγ−
(
Dh,βγ

)ε∥∥
C 0(Rd ) �

∣∣γ̃∣∣C min(α,2+β)(Rd ) ε
min(α−β,2).

Now we get the desired result by observing that
∣∣γ̃∣∣Cα(Rd ) ≤ ‖ϕ‖Cα(D1)‖γ‖Cα(D1) . In fact, since ϕ

vanishes on Dc
1, we obtain

∣∣γ̃∣∣Cα(Rd ) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩sup
x∈D1

y∈Rd

|γ(x)(ϕ(x)−ϕ(y))+ϕ(y)(γ(x)−γ(y))|
|x − y |α , sup

y∈D1

x∈Rd

|γ(y)(ϕ(y)−ϕ(x))+ϕ(x)(γ(y)−γ(x))|
|x − y |α

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≤ max

{
‖γ‖C 0(D1)|ϕ|Cα(Rd ) + sup

x,y∈D1

|ϕ(y)(γ(x)−γ(y))|
|x − y |α ,‖γ‖C 0(D1)|ϕ|Cα(Rd ) + sup

x,y∈D1

|ϕ(x)(γ(y)−γ(x))|
|x − y |α

}
≤ ‖γ‖C 0(D1)|ϕ|Cα(Rd ) +‖ϕ‖C 0(D1)|γ|Cα(D1) = ‖γ‖C 0(D1)|ϕ|Cα(D1) +‖ϕ‖C 0(D1)|γ|Cα(D1) ≤ ‖ϕ‖Cα(D1)‖γ‖Cα(D1).

Hence, by considering the inequality given in Lemma 4.A.3:

‖a −aε‖Cβ(D) ≤ ‖a‖C 0(D)‖1+ aε

a
‖C 0(D)(1+| log(a)|Cβ(D))‖γ−γε‖Cβ(D) a.s. in Ω;

since in D it holds γ= γ̃ we get ‖γ−γε‖Cβ(D) = ‖γ̃−γε‖Cβ(D) ≤ ‖γ̃−γε‖Cβ(Rd ) and we can conclude

that

‖a −aε‖Cβ(D) � ‖a‖C 0(D)‖1+ aε

a
‖C 0(D)(1+|γ|Cβ(D))‖ϕ‖C min(α,2+β)(D1)‖γ‖C min(α,2+β)(D1)ε

min(α−β,2)

�C4.3.1(ω,α)εmin(α−β,2).

To prove the second bound concerning the C 1 norm when α> 1 we start again from the definition:

‖a −aε‖C 1(D) = ‖a −aε‖C 0(D) + max
|i |1=1

‖Di (a −aε)‖C 0(D).

The first term, thanks to Lemma 4.A.2, can be bounded as

‖a−aε‖C 0(D) ≤ amax‖1+eγ
ε−γ‖C 0(D)‖γ−γε‖C 0(D) � amax‖1+eγ

ε−γ‖C 0(D)‖ϕ‖Cmin(α,2)(D1)‖γ‖Cmin(α,2)(D1)ε
min(α,2).

For the second term, since the derivatives and the convolution commute, we obtain

Di
(
eγ(1−eγ

ε−γ)
)
≤ |eγDi (γ)(1−eγ

ε−γ)|+|eγeγ
ε−γDi (γε−γ)| ≤ eγ

(
1+eγ

ε−γ
)(
|Di (γ)||γε−γ|+ |Diγ− (Diγ)ε|

)
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therefore we get

‖Di (a −aε)‖C 0(D) ≤ amax

∥∥∥1+eγ
ε−γ
∥∥∥

C 0(D)

(‖Diγ‖C 0(D)‖γ−γε︸ ︷︷ ︸
∈Cα(D)

‖C 0(D) +‖Diγ− (Diγ)ε︸ ︷︷ ︸
∈Cα−1(D)

‖C 0(D)

)
≤ amax

∥∥∥1+eγ
ε−γ
∥∥∥

C 0(D)

(‖Diγ‖C 0(D)‖γ̃‖Cmin(α,2)(Rd )ε
min(α,2) +‖Di γ̃‖Cmin(α−1,2)(Rd )ε

min(α−1,2))
which implies

max
|i |1=1

‖Di (a −aε)‖C 0(D) � amax

∥∥∥1+eγ
ε−γ
∥∥∥

C 0(D)

(|γ|C 1(D)‖γ̃‖Cmin(α,2)(Rd ) +‖γ̃‖Cmin(α,3)(Rd )

)
εmin(α−1,2).

Finally, by putting everything together, and by recalling that
∣∣γ̃∣∣Cβ(Rd ) ≤ ‖ϕ‖Cβ(D1)‖γ‖Cβ(D1) ∀β ∈R+,

we get the desired result:

‖a−aε‖C 1(D) � amax

∥∥∥1+eγ
ε−γ
∥∥∥

C 0(D)

(
1+|γ|C 1(D)

)
‖γ‖Cmin(α,3)(D1)‖ϕ‖Cmin(α,3)(D1)ε

min(α−1,2), a.s. in Ω.

4.B Optimal rates in Theorem 4.3

Here we present a sharper bound for the infimum inf0≤β≤min(α,1)
0<η+β≤α

hβεmin(α−β−η,2)

(α−β)2	η
than the one presented

in Proposition 4.5.1 that can be obtained with very tedious calculations.

Lemma 4.B.1. Let ε≤ e−
1

2α ; the following bounds hold:

• 1/2 ≤α≤ 1:

inf
0≤β<α

0<η+β≤α

hβεα−β−η

(α−β)2	η
�

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
hα

∣∣∣∣log
h

ε

∣∣∣∣2 | logε| 1
2 , h ≥ ε5,

hα| logh| 5
2 , h ≤ ε5

, h ≤ e−
2
α ε,

εα| logε| 1
2 h ≥ e−

2
α ε.

• 1 <α≤ 2:

inf
0≤β≤1

0<η+β≤α

hβεα−β−η

(α−β)2	η
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hεα−1| logh| 1
2 , h ≤ min(e−

5
2(α−1) ,e−

2
α−1 ε),

hα| logh| 5
2 , min(e−

5
2(α−1) ,e−

2
α−1 ε) ≤ h ≤ e−

2
α−1 ε,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
hα| logh| 5

2 , h ≤ ε5,

hα

∣∣∣∣log
h

ε

∣∣∣∣2 | logε| 1
2 , h ≥ ε5,

, if e−
2

α−1 ≤ ε5,

hα

∣∣∣∣log
h

ε

∣∣∣∣2 | logε| 1
2 , if e−

2
α−1 ≥ ε5,

,e−
2

α−1 ε≤ h ≤ e−
2

α−1 ε,

εα| logε| 1
2 , h ≥ e−

2
α ε.
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• 2 <α≤ 3:

inf
0≤β≤1

0<η+β≤α

hβεα−β−η

(α−β)2	η
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hεα−1| logh| 1
2 , h ≤ min(e−

5
2(α−1) ,e−

2
α−1 ε),

hα| logh| 5
2 , min(e−

5
2(α−1) ,e−

2
α−1 ε) ≤ h ≤ e−

2
α−1 ε,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
hα| logh| 5

2 , h ≤ ε5,

hα

∣∣∣∣log
h

ε

∣∣∣∣2 | logε| 1
2 , h ≥ ε5,

, if e−
2

α−1 ≤ ε5,

hα

∣∣∣∣log
h

ε

∣∣∣∣2 | logε| 1
2 , if e−

2
α−1 ≥ ε5,

,e−
2

α−1 ε≤ h ≤ e−
2
α ε,

⎧⎪⎨⎪⎩
εα| logε| 1

2 , if ε≥ e−
1

2(α−2) ,

hα−2ε2| logε| 1
2 , if ε≤ e−

1
2(α−2) ,

h ≥ e−
2
α ε.

• α> 3:

inf
0≤β≤1

0<η+β≤α

hβεα−β−η

(α−β)2	η
� hε2.
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5 Extension to Transport Problem

5.1 Introduction

In this chapter we extend the methodology developed so far to deal also with transport problems that

may occur when studying flows in porous media. Here the main focus lies on describing the behavior

of a contaminant driven by the Darcy velocity field and subject to molecular diffusion that takes

place in the medium at the porous level. The motion of such pollutant particles can be modeled

through a stochastic differential equation (SDE) with a Darcy velocity as drift term and a suitable

“small” diffusion coefficient to take into account the molecular diffusion. In hydrology, instead than

the molecular diffusion, people usually consider the dispersion occurring at a microscopic level

which comes from the changes of the velocity due to the pore structure of the medium (see for

instance [9, 10]). However, since at a macroscopic level such changes are actually negligible, or

at least not dominant, with respect to the ones induced by the permeability heterogeneities, we

will consider the simpler model of an SDE with a small diffusion coefficient. Unlike commonly

used approaches which are based on ensembles of pathwise solutions of the SDE model in order

to compute statistical properties related to a contaminant’s evolution, we will consider a PDE

approach instead, which is related to the underlying SDE model through the famous Feynman-Kac

representation formula. The reasons for resorting to a PDE approach are twofold. Firstly, it stems

from the fact that lack of regularity of the Darcy velocity renders a corresponding pathwise SDE

approach unfeasible (questionable at best) as the existence of a unique pathwise solution may

not be guaranteed; secondly, as we are mainly interested in problems posed on two dimensional

domains, many reliable appropriate techniques are available, so that quantities, such as first exit

times or probabilities, are easily computed using a PDE approach.

In this kind of applications people are often interested in understanding and properly modeling

how a specific solute (e.g. a pollutant) moves under the influence of the Darcy velocity: one way

of dealing with such an issue is to consider an initial concentration of a solute and look at its

corresponding spread and macro-dispersion which are computed starting from the solution of a

time dependent advection diffusion equation (see for instance [51]); here we consider a different

approach and focus on the computation of one of the most practically relevant quantity of interest

in this sort of application, the so called capture zone, which is the collection of points starting

from which a fluid particle reaches a certain boundary in the physical domain in a given (finite or

infinite) time horizon with a prescribed probability. The delineation of these capture zones and,

more generally, tracking particle problems are relevant in hydrology applications and have been

addressed by several authors in the literature [67, 37, 57, 58]. Here we consider this problem in a

101



Chapter 5. Extension to Transport Problem

more complex framework presenting two sources of randomness: one coming from the uncertain

Darcy velocity, i.e. from the uncertainty on the permeability field, and the other being given by the

Brownian motion, modeling the diffusive effects.

For a computational treatment of statistical properties related to these transport problems, we will

use the methods developed in the previous chapters, namely sparse grid as well as MLMC and

MLMCCV schemes. In particular we will focus on two quantities of interest, namely: (i ) the expected

arrival time of a particle released in a generic position x ∈ D to a specific boundary and (i i ) the

probability of the event that such arrival times is smaller than a prescribed time horizon T (capture

zone at time T at a given probability level). Observe that such quantities of interest are not random

variables anymore but random fields as they depend on the starting position x ∈ D ; moreover this

random field depends on two sources of randomness corresponding to the Darcy velocity and the

Brownian motion, respectively, which we emphasize by using the notation Q =Q(x,ω,ω′), where

ω ∈Ω and ω′ ∈Ω′ denote the different random events; more precisely ω refers to the random Darcy

velocity and ω′ to the Brownian motion. We assume these different sources of stochasticity to be

independent and write the expectation of Q as Eω,ω′
[Q] = Eω[Eω

′
[Q|ω]] so that we first get rid of the

dependence on ω′ by computing the internal expectation and then the one with respect to ω. In

this “two step” strategy we will use a PDE approach to take care of the internal expected value which

requires the solution of a parabolic (or elliptic) PDE with a stochastic (dominant) transport given by

the Darcy velocity and a (small) uniform diffusion term. Then, in order to compute the expected

value with respect to ω, we will use one of the methods developed in the previous chapters: the

particular choice is therefore deeply linked to the smoothness of the mapping x → Eω
′
[Q(x,ω, ·)|ω].

Consequently, the regularity of this mapping dictates whether or not a sparse grid approximation

technique is preferable over a MC based one.

To study the delineation of capture zones we also propose a streamline approach in a particularly

relevant study case by coupling a sparse grid approximation of the stream-function and a MC

sampler whose computation is particularly cheap.

The structure of the chapter is the following: in the first section we go through the specifics of the

model. In Section 5.3 we study the case of an undisturbed flow and look at arrival times to the outlet

by focusing on both modeling issues and numerical aspects. In Section 5.4 we model the case in

which a pumping well extracts fluid from the ground: in this case we consider the arrival times to the

well in order to compute the capture zones; notice that, for a fixed realization of the Darcy velocity,

the arrival times are not uniformly bounded random variables, and can take also infinite values; we

provide numerical results and introduce a stream-formulation approach to better address the case

in which we look at infinite time horizons. In Section 5.5 we draw some conclusions.

5.2 Problem setting

In this section we introduce the general set up that will be used in the chapter. As anticipated in the

introduction we aim at modeling the motion of fluid, or contaminant, particles driven by the Darcy

velocity u(x,ω) = −a(x,ω)∇p(x,ω). To this end we first write the stochastic differential equation

(SDE) that describes the trajectory of a single particle in our physical domain:

X σ′
x,t (s,ω) = x+

∫s

t
u(X σ′

x,t (r,ω),ω)dr +	
2σ′

∫s

t
dW (r,ω′), (5.1)
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where X σ′
x,t (s,ω) denotes the position at time s of the particle that starts from the position x at time t ,

σ′ represents the strength of molecular diffusion, modeled as a standard Brownian motion W (s,ω′)
which we assume to be independent of u(x,ω), and ω= (ω,ω′).The solution X σ′

x,t (s,ω) depends on

two independent random elementary events, ω ∈Ω and ω′ ∈Ω′ that model the uncertainty related

to the permeability of the subsurface and the one related to the diffusion occurring at the pore level,

respectively. Consistently, the resulting sampling space will be denoted by Ω=Ω×Ω′. Observe that

the SDE (5.1) holds in an almost sure sense with respect to Ω′; more precisely we have (see [65]):

• if, for a given Brownian motion W (s,ω′), the trajectory X σ′
x,t (s,ω) is an adapted process with

respect the natural filtration generated by W (s,ω′) solving (5.1), we say that X σ′
x,t (s,ω) is a

weak solution of (5.1);

• if the request above holds for any Brownian motion, i.e. Pω′
-a.s. ω′ ∈Ω′, then we say that

X σ′
x,t (s,ω) is a strong solution of (5.1).

We also recall the following definitions (see [20]):

Definition 5.2.1. There is uniqueness in law if, given two solutions of problem (5.1) X σ′,i
x,t (s,ω),

i = 1,2, defined on different filtered probability spaces, the two processes have the same law.

Definition 5.2.2. There is pathwise uniqueness if, given two solutions of problem (5.1) X σ′,i
x,t (s,ω),

i = 1,2, defined on the same filtered probability space, it holds that Pω′
(X σ′,1

x,t (s,ω) = X σ′,2
x,t (s,ω) ∀s ≥

t |ω) = 1.

Standard SDE results guarantee existence and pathwise uniqueness of a strong solution of (5.1) for

drift terms that are at least Lipschitz continuous. On the other hand, in [18, Theorem 3.1] the authors

proved that, by assuming a ∈ Cα(D), f ∈ Lq (D) for some q such that 1−d/q >α and D a bounded

C 2 domain, then the solution p of the Darcy problem with fully homogeneous Dirichlet conditions

is Cα+1(D) continuous; consequently the corresponding velocity u(·,ω) ∈ {Cα(D)}2, Pω-a.s. ω ∈Ω

with suitable Lq
Pω integrability conditions; hence, assuming to deal with {Cα(D)}2 velocity fields, the

SDE (5.1) is guaranteed to have a pathwise unique strong solution only when α≥ 1. Conversly, we

do not have a sufficient condition at our disposal which guarantees pathwise uniqueness of strong

solutions when a ∈ Cα(D) with α< 1. In such case we resort to the notion of weak solution and refer

to a sufficient condition given in [73] which states:

Lemma 5.2.1. Suppose that the transport field u(·,ω) in (5.1) is measurable and bounded for a.e.

ω ∈Ω; then there exists a weak solution of (5.1) for which uniqueness in law holds.

Proof. See [73, Theorem 5.6]

An overview of other sufficient conditions that guarantee weak existence and uniqueness in law can

be found, for instance, in [20].

Our final goal is the computation of quantities of interest related to the SDE (5.1); to achieve this

goal in what follows we first need to introduce the first passage time (FPT) to the domain D , defined

as

τσ
′

x,t (ω) = inf{s > t : X σ′
x,t (s,ω) ∉ D̄}. (5.2)
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Here τσ
′

x,t (ω) represents the first time at which a particle starting from x ∈ D at time t would exit the

domain D .

So far we looked at the problem of the transport of particles only from an SDE perspective; the fol-

lowing step will be to consider a Feynman-Kac representation formula to link a suitable probabilistic

formula to the solution of a parabolic PDE. Observe that, since the Darcy velocity is given only in

our computational domain D, we can only use models and equations that require evaluations in

D , only. Consequently, we need to make additional, yet reasonable, assumptions on the behavior

of the particles when they reach the boundary ∂D : in particular, we will consider either absorbing

or reflecting conditions on the boundary ∂D and in the following, case by case, we will detail the

choice we made depending on the problem under consideration.

In light of these considerations, from a practical point of view, instead of solving the SDE (5.1) for

many starting points x ∈ D we will consider a PDE approach. To this end, we look at the infinitesimal

generator

Lσ′ =
d∑

i=1
ui (x,ω)

∂

∂xi
+ (σ′)2 ∂2

∂x2
i

(5.3)

associated with the SDE (5.1) and we consider the following time dependent backward PDE⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂θσ
′

T (x, t ,ω)

∂t
+Lσ′θσ

′
T (x, t ,ω) = 0 for x ∈ D, t ∈ [0,T ),

θσ
′

T (x, t ,ω) = g (x, t ) for x ∈ ΓD , t ∈ [0,T ),

∂nθ
σ′
T (x, t ,ω) = 0 for x ∈ ΓN , t ∈ [0,T ),

θσ
′

T (x,T,ω) = h(x) for x ∈ D.

a.s. in Ω (5.4)

Here, as usual, ΓD and ΓN denote the Dirichlet and Neumann boundaries, g represents the Dirichlet

datum and h the final condition at time t = T . As we will see later, the solution θσ
′

T (x, t ,ω) of the

PDE (5.4), thanks to a Feynman-Kac type formula, can be expressed as an expected value with

respect to ω′ involving the process X σ′
x,t . Moreover, here the Dirichlet and Neumann conditions

represent, from an SDE point of view, absorbing and reflecting conditions, respectively: this means

that the solution of the parabolic PDE (5.4) is related to a process X σ′
x,t which is allowed to leave

the domain only through the Dirichlet boundary, while it is reflected towards the interior of the

domain when it hits the Neumann boundary. To introduce a representation formula we have to

consider the FPT to the domain defined in (5.2). Observe that, as a consequence of the absorbing

and reflecting conditions imposed on the process X σ′
x,t (s,ω), the FPT actually represents the first

time at which a particle starting from x at time t would exit the domain through the Dirichlet

boundary. Observe also that, in order to make the definition of the trajectory X σ′
x,t (s,ω) consistent

with the reflecting conditions imposed on the Neumann boundary, we have to slightly modify the

SDE (5.1) by considering an additional term that gets activated when a particle hits the Neumann

boundary. To make the presentation clearer we will consider separately the case in which no

Neumann reflecting conditions are present, and the one in which mixed boundary conditions are

imposed.

Since in this section we consider a particular realization of the Darcy velocity u(x,ω), for the sake of

notation we will often omit the dependence on ω, when this does not create any ambiguity.
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5.2.1 Pure Dirichlet case: ΓD = ∂D

To establish a link between the solution of the SDE X σ′
x,t defined in (5.1) and the one of the PDE, θσ

′
T ,

in (5.4), we will consider the process X σ′
x,t (s,ω) absorbed (or stopped) as soon as it hits the boundary

∂D at time τσ
′

x,t (ω) and use the Feynman-Kac representation formula (see e.g. [65]) which states:

θσ
′

T (x, t ,ω) = Eω
′
[g
(

X σ′
x,t (τσ

′
x,t (ω),ω),τσ

′
x,t (ω)

)
1{τσ

′
x,t (ω)≤T } +h(X σ′

x,t (T,ω))1{τσ
′

x,t (ω)>T }|ω].

Notice that here, since we deal with two sources of randomness, we first fix the Darcy velocity and

then average over all Brownian motions: hence, the use of a conditional expectation with respect

to ω. However, to properly use such representation formula, we first need to ensure the existence

of the solution of the SDE (5.1) and that of the PDE (5.4) in some suitable sense. Since we want

to deal with a wide range of permeability fields, i.e. resulting from a Matérn covariance function

(2.5) or (2.6) with parameter ν≥ 0.5, we will use the concept of viscosity solution introduced by P. L.

Lions and co-workers a few decades ago [6]. Suppose for simplicity that the domain D is bounded,

connected, and with C 2 boundary; we have the following definitions:

Definition 5.2.3. Let ω be fixed and θ : D × [0,T ] →R be a lower semicontinuous function. Then θ

is also a viscosity sub-solution of (5.4) if ∀ψ ∈C ∞(D ⊗ [0,T ]) it holds: if θ(x, t)−ψ(x, t ) has a local

maximum at (x̂, t̂ ), then we have

θ(x,T ) ≤ h(x,T ),

∂ψ

∂t
(x̂, t̂ )+Lσ′ψ(x̂, t̂ ) ≤ 0.

Definition 5.2.4. Let ω be fixed and θ : D × [0,T ] →R be a upper semicontinuous function. Then θ is

also a viscosity super-solution of (5.4) if ∀ψ ∈C ∞(D ⊗ [0,T ]) it holds: if θ(x, t ,ω)−ψ(x, t ) has a local

minimum at (x̂, t̂ ), then we have

θ(x,T ) ≥ h(x,T ),

∂ψ

∂t
(x̂, t̂ )+Lσ′ψ(x̂, t̂ ) ≥ 0

Definition 5.2.5. Let ω be fixed. The function θσ
′

T (x̂, t ,ω) : D × [0,T ] →R is a viscosity solution if it is

a viscosity sub-solution and a viscosity super-solution at the same time.

Viscosity solutions of (5.4) can be found under weaker assumptions on the transport field, in partic-

ular it is possible to recover the well posedness of PDE (5.4) also for non differentiable velocities.

Moreover it is possible to link such a result to the solution of the SDE (5.1) also when the latter is not

defined in a strong sense and pathwise uniqueness is not guaranteed. The following result, given in

[65, Theorem 3.46]), holds:

Lemma 5.2.2. Let the set {(x, t ) ∈ ΓD×[0,T ] : Pω′
(τσ

′
x,t (ω) > t |ω) = 0} be closed for any ω ∈Ω and let the

boundary and final datum be such that g (x,T ) = h(x) on ΓD . Furthermore assume g ∈C (ΓD × [0,T ]),

h ∈C (ΓD ) and u ∈ {Cα(D)}2 with 0 <α. Then equation (5.4) admits a unique viscosity solution such

that, for a.e. ω ∈Ω, θσ
′

T (·, ·,ω) ∈ C (ΓD )×C ([0,T ]). Moreover the following representation formula

holds:

θσ
′

T (x, t ,ω) = Eω
′
[g (X σ′

x,t (τσ
′

x,t (ω),ω),τσ
′

x,t (ω))1{τσ
′

x,t (ω)≤T } +h(X σ′
x,t (T,ω))1{τσ

′
x,t (ω)>T }|ω]. (5.5)
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Proof. See [65].

Under the assumptions of Lemma 5.2.2 equation (5.4) allows us to efficiently compute statistical

properties (e.g. expectations) related to the FPT τσ
′

x,t (ω) defined through the stochastic process X σ′
x,t .

In fact, we only have to properly choose the final and the boundary data h and g . It is important

to observe that the result stated in Lemma 5.2.2 does not require any Lipschitz condition on the

transport field u and, at the same time, ensures existence and uniqueness of a viscosity solution

of the PDE, even if pathwise uniqueness does not hold. Since θσ
′

T (x, t ,ω) is defined through an

expected value, in this case it is sufficient to have uniqueness in law (as guaranteed by Lemma 5.2.1)

of the process X σ′
x,t to properly define such expectation since the probability space (Ω′,F ′,P′) and

the Brownian motion W (s,ω′) do not play a crucial role.

In the following we will mainly focus on two choices of g and h, which allow us to link the solution

of the parabolic PDE (5.4), θσ
′

T (x, t ,ω), to quantities of interest both related to the FPT through the

Feynman-Kac formula (5.5). Specifically we consider:

• Mean of min(τσ
′

x,t ,T ): g (x, t) = t , h(x) = T . This choice leads to the expectation of the mini-

mum between the FPT of a fluid particle starting from x at time t ≤ T and the considered time

horizon T :

θσ
′

T (x, t ,ω) = Eω
′
[τσ

′
x,t (ω)1{τσ

′
x,t (ω)≤T } +T 1{τσ

′
x,t (ω)>T }|ω] = Eω

′
[min{τσ

′
x,t (ω),T }|ω]. (5.6)

• Exit probability: g (x, t) = 1, h(x) = 0. This choice leads to the exit-probability, i.e. the prob-

ability that a particle starting from x at time t ≤ T , leaves the domain within the finite time

horizon T :

θσ
′

T (x, t ,ω) = Eω
′
[1{τσ

′
x,t (ω)≤T }|ω] =Pω′

(τσ
′

x,t (ω) ≤ T |ω). (5.7)

Mean first passage time

Here we further detail a strategy that can be followed to compute the mean first passage time

through the boundary ∂D. Notice first that the solution θσ
′

T (x, t ,ω) to (5.6) can directly be derived

from Lemma 5.2.2. However this solution represents the expectation Eω
′
[min{τσ

′
x,t ,T }|ω] while we

would like to consider Eω
′
[τσ

′
x,t |ω]. Since it is reasonable to assume τσ

′
x,t (ω) to be a bounded random

variable, it is possible to take T sufficiently large to obtain a formula for the mean FTP.

An alternative approach to directly compute the mean of the FPT is to consider a suitable elliptic

PDE. In fact, by eliminating the dependence on t , we define the FPT as τσ
′

x = τσ
′

x,0. Notice that τσ
′

x (ω)

represents the time that a particle needs to reach the boundary starting from x, while τσ
′

x,t (ω) is

the time at which the particle starting from x at time t reaches the boundary. Starting from this

FPT it is possible to link the expected value of τσ
′

x with respect to all Brownian motion, which will

be denoted as τ̄σ
′

x (ω) = Eω
′
[τσ

′
x (ω)|ω], to the solution of an elliptic PDE; therefore τ̄σ

′
x satisfies the

following problem with homogeneous Dirichlet conditions:⎧⎨⎩Lσ′ τ̄σ
′

x =−1 in D × [0,T ),

τ̄σ
′

x = 0 on ΓD × [0,T ).
(5.8)
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Intuitively, one can obtain this result by choosing, as in (5.6), g = t and h = T , and by looking at

the problem solved by ησ
′

T (x, t ,ω) = θσ
′

T (x, t ,ω)− t with θσ
′

T (x, t ,ω) again defined as in (5.6). Then, by

taking the limit for T →∞ and recalling that the Darcy velocity does not depend on time, there

holds τ̄σ
′

x (ω) = limT→∞ησ
′

T (x,0,ω).

When we are interested in the computation of the mean first passage time, equation (5.8) is much

more appealing than equation (5.4) from a computational point of view since the time-dependence

is dropped. Equation (5.4), provided to take T sufficiently large, produces a time-dependent solution

that, evaluated at time t = 0, reproduces the solution τ̄σ
′

x of (5.8). For this elliptic equation, similarly

to the parabolic PDE case, a well posedness result holds and again the solution τ̄σ
′

x (ω) can be

obtained thanks to a Feynman-Kac representation formula. The following result holds, given in [65,

Theorem 3.49]), holds:

Lemma 5.2.3. Let the set {(x, t ) ∈ ΓD : Pω′
(τσ

′
x (ω) > t |ω) = 0} be closed for any ω ∈Ω. Moreover assume

g ∈C (ΓD ) and u ∈ {Cα(D)}2 with 0 <α. Then the PDE (5.8) admits a unique viscosity solution such

that, for a.e. ω ∈Ω, θσ
′
(x,ω) ∈C (D̄). Furthermore the following representation formula holds:

τ̄σ
′

x (ω) = Eω
′
[τσ

′
x (ω)|ω]. (5.9)

Proof. See [65].

Again, viscosity solutions can be also defined for a non-differentiable Darcy velocity u. Analogously

to the previous case, the uniqueness of the time independent viscosity solution τ̄σ
′

x (ω) is related to

the uniqueness in law of the trajectories of the PDE (5.1).

Exit probability

Here we further detail the case in which we might be interested in computing the probability of a

particle starting from x exiting the domain in a prescribed time horizon T . In this case we look at

the solution θT defined in (5.7) evaluated at time t = 0. Notice that in this case equation (5.7) can

not be derived directly using Lemma 5.2.2 as the compatibility assumption is not met. However the

equality (5.7)turns out to be valid nonetheless.

Lemma 5.2.4. Consider the problem (5.4), with the choice g = 1, h = 0. Even if the compatibility

hypothesis g (x,T ) = h(x) , x ∈ ΓD , in Lemma 5.2.2 is not satisfied, equation (5.7) still holds.

Proof. Denote the support of h : D →R as supp(h) = {x ∈ D : h(x) �= 0} and consider a sequence of

non-negative functions {hn(x)}n∈N such that:

• hn(x) = 1 ∀x ∈ ΓD ,

• hn ∈C (D̄) and 1 ≥ h1(x) ≥ h2(x) ≥ ... ≥ hn(x)...,

• supp(hn) ⊂ {x : dist(x,ΓD ) ≤ 1/n}.

• denote by θσ
′

T,n(x, t ,ω) the solution of (5.4) corresponding to the choice g = 1, h = hn , for

which the representation formula (5.5) holds:

θσ
′

T,n(x, t ,ω) =Pω′
(τσ

′
x,t (ω) ≤ T |ω)+Eω

′
[hn(X σ′

x,t (T ))1{τσ
′

x,t (ω)>T }|ω]. (5.10)
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We now have to verify that limn→∞Eω
′
[hn(X σ′

x,t (T ))1{τσ
′

x,t (ω)>T }|ω] = 0. We begin by observing that

Eω
′
[hn(X σ′

x,t (τσ
′

x,t (ω)))1{τσ
′

x,t (ω)>T }|ω] < Eω
′
[1{X σ′

x,t (T )∈supp(hn )}1{τσ
′

x,t (ω)>T }|ω].

Hence it is possible to bound the right hand side of this inequality by Pω′
{X σ′

x,t (T ) ∈ supp(h1)} <∞
and use the dominate convergence theorem to obtain

lim
n→∞Eω

′
[hn(X σ′

x,t (T ))1{τσ
′

x,t (ω)>T }|ω] = Eω
′
[ lim
n→∞hn(X σ′

x,t (T ))1{τσ
′

x,t (ω)>T }|ω]

= Eω
′
[1{X σ′

x,t (T )∈ΓD }1{τσ
′

x,t (ω)>T }|ω] = 0,

since either τσ
′

x,t (ω) > T and X σ′
x,t (T ) ∉ ΓD , or τσ

′
x,t (ω) ≤ T , so that 1{τσ

′
x,t (ω)>T } = 0. In both cases

we have that the limit for n → ∞ tends to 0 and equation (5.7) holds. Indeed observe that this

argument shows a L1(D× [0,T ]) convergence of θσ
′

T,n(x, t ,ω) to θσ
′

T (x, t ,ω) as indicated in (5.7). More-

over, observe that the solution θσ
′

T,n of the PDE with final datum hn , when n →∞, converges in

L2([0,T ], H 1(D)).

Vanishing diffusion limit

In many practical situations the values of σ′ are typically very small. Therefore we will also in-

vestigate the case of a vanishing diffusion coefficient σ′ = 0. In this case, of course, since we are

changing the nature of the mathematical model we will have to properly modify the boundary

conditions to deal with the resulting hyperbolic equations. It will then be crucial to be able to

identify, possibly uniformly with respect to all possible Darcy velocities, the inflow boundary from

which the characteristics start. From the pathwise SDE point of view, by denoting with Xx,t = X 0
x,t

the solution of (5.1) in the vanishing diffusion case, it is possible to show that X σ′
x,t converges to Xx,t

when u ∈ {C1(D)}2; this can be done by applying Gronwall’s Lemma to the equation

|X σ′
x,t (s)−Xx,t (s)| = |

∫s

t
u(X σ′

x,t (r ))−u(Xx,t (r ))dr +σ′W (s)|

≤
∫s

t

|u(X σ′
x,t (r ))−u(Xx,t (r ))|

|X σ′
x,t (s)−Xx,t (s)| |X σ′

x,t (s)−Xx,t (s)|dr +|σ′W (s)|

≤ ‖u‖{C1(D)}2

∫s

t
|X σ′

x,t (s)−Xx,t (s)|dr +|σ′W (s)|

≤ |σ′W (s)|exp{‖u‖{C1(D)}2 (s − t )},

upon noticing that the right hand side tends to zero when σ′ → 0. A similar result at the SDE level

can not be recovered when dealing with rough velocities u ∈ {Cα(D)}2, α< 1. On the other hand, if

we consider the PDEs (5.4) and (5.8), the viscosity solutions are still well defined even in the case of

vanishing diffusion. This can be seen, for instance, by applying again the dominated convergence

theorem analogously to what was previously done in Lemma 5.2.4. However, as a consequence of

the dominated convergence it is possible only to prove L1(D × [0,T ]) convergence. As the vanishing

diffusion limits θT (x,ω) = θ0
T (x,ω) and τ̄x(ω) = τ̄0

x(ω) could be discontinuous, it is not possible to

prove a convergence result with respect to the C 0 norm.
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5.2.2 Mixed case: |ΓN | > 0

In this subsection we briefly address an extension of the previous results to the case of mixed

(Dirichlet-Neumann) boundary conditions as in problem (5.4). Notice that in order to make the

definition of the trajectory X σ′
x,t (s,ω) consistent with the reflecting conditions imposed on the

Neumann boundary, we have to slightly modify the SDE (5.1) by considering an additional term

that will be activated whenever a particle hits the Neumann boundary. To do so, we first need the

following definition.

Definition 5.2.6. The total variation of a function f : [a,b] →R, a ≤ b ∈R, which we denote by V a
b f ,

is defined as

V a
b f = sup

n∈N+
(

n∑
i=0

| f (xi+1)− f (xi )|, with x0 = a ≤ ... ≤ xn = b).

We denote by BV ([a,b],R) the corresponding space of functions with bounded total variation.

Now, suppose that we stop the process X σ′
x,t (s,ω) as soon as it hits the Dirichlet boundary. This

process evolves according to the following reflected SDE (see [65]),⎧⎨⎩X σ′
x,t (s,ω) +Kx,t (s,ω) = x+∫s

t u(X σ′
x,t (r,ω),ω)dr +∫s

t

	
2σ′dW (r,ω′),

Kx,t (s,ω) =∫s
t n(X σ′

x,t (r,ω))1{X σ′
x,t (s,ω)∈ΓN }dV s

t |Kx,t (r,ω)|, (5.11)

until it is stopped. Here n is the outward normal to the domain and Kx,t represents the process

that ensures that the process X σ′
x,t is reflected into D whenever it hits the Neumann boundary. The

FPT τσ
′

x (ω) of the reflected process is then defined as in (5.2) but using the reflected trajectories

(5.11). It is possible to use the same Keynman-Kac representation formula (5.5) to compute both

the mean FPT and the exit probability from the domain. This is true since we are dealing with

homogeneous boundary conditions. A more general formula dealing also with non homogeneous

Neumann conditions can be found in [65].

In the next section we apply, and properly adapt, these ideas to the cases of an undisturbed flow

from left to right and to a case of a flow induced by a pumping well that extracts fluid from the

subsurface.

5.3 Case 1: an undisturbed flow from left to right

In this section we again consider the Darcy velocity obtained starting from equation (4.27), modeling

an undisturbed flow from left to right on the square domain D = (0,1)2. Starting from such a velocity

field, we now consider the arrival times to the outlet. Specifically, we define the arrival time as the

time needed by the particle to pass the outlet Γout = {x ∈ D̄ s.t. x1 = 1}. To model this situation at the

SDE level we use a reflecting condition on the top and bottom boundaries {x ∈ D̄ s.t. x2 ∈ {0,1}} and

also on the inlet Γi n = {x ∈ D̄ s.t. x1 = 0}, according to problem (5.11). Observe that the underlying

velocity is tangential to the domain on the top and bottom boundaries. As the main transport goes

from left to right it is reasonable to assume that for any particle leaving the domain from these two

boundaries there will be another entering the domain with an opposite vertical velocity. Moreover,

notice that in the vanishing diffusion limit, at least for smooth velocity fields u ∈ {C1(D)}2, for which

the pathwise uniqueness of trajectories is guaranteed, there will not be any particle starting from

the interior of D that will touch those boundaries, nor will there be particles entering the domain
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through these boundaries from the outside. In other words, the reflection never occurs. At the

same time notice that the flow enters the domain from the inlet; in practice the flow enters the

domain from here and continues towards the right; since the diffusion σ′ we consider is quite

small it is very unlikely (although not impossible) that a trajectory starting from a point x at a

certain distance to the inlet could go back and hit the inlet; even in the case this happens, it is

reasonable to assume that the particle would be pushed back into the domain. This situation can

be reasonably modeled via reflecting conditions since, especially for small diffusion, it is quite

unlikely that particles would try to exit the domain from one of these three reflecting boundaries.

Moreover such a modeling assumption would influence the solution only in the proximity of such

boundaries. The only portion of ∂D from which particles can exit the domain is Γout . We define

therefore our FPT again as in (5.2), by considering now a process X σ
x,t that is reflected as soon as hits

the top, bottom and left boundary. Specifically we will be interested in the computation of the time

independent FPT τσ
′

x (ω) = τσ
′

x,0 defined according to (5.2). As motivated in the previous section, we

will tackle the problem using a PDE approach. In fact, by imposing Dirichlet conditions on Γout and

homogeneous Neumann conditions on the other three edges of the square, we look for a suitable

PDE whose solution represents our QoI.

According to what has been stated in the previous section, it is possible to compute the expected

value of the FPT τσ
′

x,t (ω)by solving the corresponding parabolic PDE. Since in this case the expected

value of τσ
′

x (ω) is bounded as we have an underlying transport from left to right, it is computationally

advantageous to consider the elliptic PDE instead of the parabolic one:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lσ′ τ̄σ

′
x (ω) =−1 in D,

τ̄σ
′

x (ω) = 0 on Γout ,

∇τ̄σ′
x (ω) ·n = 0 on ∂D \Γout .

(5.12)

If, on the other hand, we are interested in computing the probability of τσ
′

x (ω) being smaller than a

prescribed T then we consider the parabolic PDE⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂θσ
′

T (x, t ,ω)

∂t
+Lσ′θσ

′
T (x, t ,ω) = 0 in D × [0,T ),

θσ
′

T (x, t ,ω) = 1 on Γout × [0,T ),

∂nθ
σ′
T (x, t ,ω) = 0 on ∂D \Γout × [0,T ),

θσ
′

T (x,T,ω) = 0 on D.

(5.13)

At this point we have to deal with quantities of interest which are random fields indexed with respect

to space and time. As usual we consider a truncation of the input permeability field a used to

compute the Darcy velocity, by parametrizing the random event ω with y (see Chapter 3). Therefore

also θσ
′

T (x, t ,ω) and τ̄σ
′

x (ω) are evaluated as θσ
′

T (x, t ,y) and τ̄σ
′

x (y) respectively.

Now the idea is to adapt the methodology of sparse grid approximations and MCCV methods to this

class of problems (either (5.13) or (5.13)).

110



5.3. Case 1: an undisturbed flow from left to right

5.3.1 Spatial Discretization

Since we consider the case of small molecular diffusion σ′, equation (5.13) is typically transport

dominated. Moreover when dealing with exit probabilities, the discontinuous condition on the

parabolic boundary Γout ×[0,T )∪D×{t = T } induces a propagation of sharp fronts (in the vanishing

diffusion limit the solution has a propagating discontinuity). We therefore use a discontinuous

Galerkin (DG) formulation for its good stability properties (see [14, 66, 50]). Here we briefly introduce

the DG weak formulation we used to approximate the PDE (5.13) or (5.12)). First we introduce

jumps and averages of scalar and vector valued functions across edges of the considered regular

triangulation Th . Let e be an interior edge between the triangles T1 and T2, E i the set of all interior

edges, E D the set of all Dirichlet edges and E N the set of all Neumann edges; moreover let n1 and n2

be the two normal vectors on e pointing exterior to T1 and T2 respectively. For a scalar piecewise

linear function v on Th , such that vi = v |Ti , we define

{v} = 1

2
(v1 + v2), [v] = v1n1 + v2n2 on e ∈ E i . (5.14)

Analogously for a vector valued function we define

{v} = 1

2
(v1 +v2), [v] = v1 ·n1 +v2 ·n2 on e ∈ E i . (5.15)

If e ∈ E D ∪E N then {v} = v , [v] = vn, {v} = v and [v] = v ·n where there is no ambiguity of notation.

With these definitions at hand we can define the bilinear forms and the functional that will be

involved in the weak formulation: we have

ah(w, v) = ∑
T∈Th

∫
T

(σ′)2∇w ·∇v −w(u ·∇v)dx, (5.16)

bh(w, v) = ∑
e∈E i∪E D

∫
e
(σ′)2{∇w} · [v]+η(σ′)2{∇v} · [w]+ β

|e| [w][v]dγ− ∑
e∈E i∪E N

∫
e
{wu} · [v]dγ,

(5.17)

�h(v) = ∑
e∈E D

∫
e

g u ·nvdγ−η(σ′)2∇v ·ng + β

|e|v g dγ. (5.18)

Here β> 0 is a parameter penalizing jumps of the solution across the edges while η can be chosen

equal to 0, 1 or −1 depending on the desired treatment of the diffusion term. The spatial standard

DG weak formulation of equation (5.4) therefore is: find θσ
′

T,h(x, t ,y) ∈Vhsuch that

∑
T∈Th

∫
T
−
∂θσ

′
T,h(x, t ,y)

∂t
vdx+ah(θσ

′
T,h(x, t ,y), v)+bh(θσ

′
T,h(x, t ,y), v) = �(v), ∀v ∈Vh , a.e in Ω,

(5.19)

where Vh = {v ∈ L2(D) : v |T ∈ P1(T ), T ∈ Th}. In the numerical results that we will present later,

instead of considering the simple average {uw} we actually considered the upwind value of uw ,

namely

{uw}up =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
uw1 if u ·n1 > 0,

uw2 if u ·n1 < 0,

u{w} if u ·n1 = 0,
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which leads to the DG upwind (DGUP) weak formulation of equation (5.4): find θσ
′

T,h(x, t ,y) ∈Vhsuch

that

∑
T∈Th

∫
T
−
∂θσ

′
T,h(x, t ,y)

∂t
vdx+ah(θσ

′
T,h(x, t ,y), v)+bup

h (θσ
′

T,h(x, t ,y), v) = �(v), ∀v ∈Vh , a.e in Ω

(5.20)

where bup
h (w, v) = bh(w, v)+∑e∈E i

∫
e
|u·n|

2 [w][v]dγ. This can be seen as a stabilized version of the

original DG scheme. Concerning the convergence of such DGUP scheme, since we would like to

have a uniform estimate with respect to σ′, we refer to the result given in [14] for pure transport

equations: there the authors proved as, for a fixed transport u, the error between the exact and the

DGUP solution verifies the following estimate:

‖θσ′
T,h(·, t ,y)−θσ

′
T (·, t ,y)‖DG(D) ≤C (t )h

3
2

where ‖·‖DG(D) =
(
‖ ·‖L2(D) +

∑
e∈Th

∫
e
|u·n|

2 [·][·]dγ
) 1

2
. Notice however that such an estimate has been

proved only for a C 1(D̄) transport field and under suitable regularity assumptions on θσ
′

T,h(·, t ,y)

(see [14]).

To conclude this section, to actually use this DGUP scheme we perform an implicit treatment of the

time derivative and solve for any time step a spatial problem as in (5.20).

5.3.2 Approximation of the mean FPT through MLMCCV

So far we introduced a parabolic PDE to approximate the probability of the FPT being smaller than

T and an elliptic PDE to compute the expected value of the FPT. We are still left with the choice of a

numerical method for the (external) expectation with respect to the random Darcy velocity (hence

the random log-permeability). Let us focus on the expected arrival time τ̄σ
′

x (y). To approximate this

function, it is again possible to use a sparse grid scheme or a MC-based one. It is hence crucial to

understand whether or not this quantity is smooth with respect to y. It turns out that, a smooth

velocity u generates smooth arrival times, al least for a sufficiently large time horizon. In fact, for the

parabolic problem (5.13), we obtain non smooth solutions for sufficiently small time horizon since,

due to the incompatibility between the boundary condition g = t and the final datum T , we have

a non smooth front evolving towards the left. However, as soon as we consider sufficiently large

time horizon (hence also for the elliptic problem (5.12)), such front exits the domain from the left

boundary Γi n and the regularity of the PDE solution depends only on the regularity of u. This can be

seen by taking derivatives of the parabolic PDE with respect to the stochastic parameters. Indeed:

∂(∂ykθ
σ′
T (x, t ,y))

∂t
+u ·∇(∂ykθ

σ′
T (x, t ,y))+ (σ′)2Δ(∂ykθ

σ′
T (x, t ,y)) =−∂yk u ·∇θσ′

T (x, t ,y),

so that,by multiplying the equation by ∂ykθ
σ′
T (x, t ,y) and integrating over D , we get

1

2

d‖∂ykθ
σ′
T (x, t ,y)‖2

L2(D)

d t
− (σ′)2‖∇(∂ykθ

σ′
T (x, t ,y))‖2

L2(D) =−
∫

D
∂yk u ·∇θσ′

T (x, t ,y)∂ykθ
σ′
T (x, t ,y)dx.
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5.3. Case 1: an undisturbed flow from left to right

Now, integrating with respect to the time from t to T we obtain

1

2
‖∂ykθ

σ′
T (x, t ,y)‖2

L2(D) +
∫T

t
(σ′)2‖∇(∂ykθ

σ′
T (x, s,y))‖2

L2(D)d s ≤ 1

2
‖∂ykθ

σ′
T (x,T,y)‖2

L2(D)

+
∫T

t
‖∂yk u‖L∞(D̄)‖∇θσ

′
T (x, s,y)‖L2(D)‖∂ykθ

σ′
T (x, t s,y)‖L2(D)d s.

We observe that, in order to obtain a bound on the derivative of the solution with respect to one

stochastic parameter, we need extra spatial regularity of the solution of the PDE, i.e. ∇θσ′
T (x, s,y) ∈

L2(D), and at least one derivative with respect to yk , i.e.‖∂yk u‖L∞(D̄), so that a regularity result for

∂ykθ
σ′
T (x, t ,y) can be recovered by using the Gronwall Lemma. Notice that this argument also applies

(a) ν= 0.5. (b) ν= 2.5.

Figure 5.1 – Two realizations of the mean FPT through the outlet in the vanishing diffusion case for
ν= 0.5 (left) and ν= 2.5 (right). Observe that the random event y used to generate the realizations is
the same.

to the parabolic PDE in the case of vanishing diffusion, of course by losing the control on the H 1(D)

norm of the solution, since the second order PDE degenerates to a first order one. Figure 5.1 shows

two realizations of τ̄x(y) obtained starting with a rough (C 1/2(D̄), on the left) and a smooth (C 5/2(D̄),

on the right) velocity field. As predicted, also in the vanishing diffusion limit, the smoothness of

the arrival times reflects the one of the transport field. These considerations make the problems

(both the parabolic and the elliptic) suitable for a sparse grid approximation of the FPT; however,

since in the former case we have to consider a large time horizon T , we rather prefer to focus on the

elliptic problem and look at the sparse grid approximation of the arrival time τ̄σ
′

x (y) whenever the

input Darcy velocity is smooth, i.e. when the input permeability a is smooth. On the other hand,

when dealing with rough permeabilities, we can introduce an auxiliary problem with a regularized

velocity uε and then consider the corresponding smoothed arrival time τ̄σ
′,ε

x (y), satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩
uε∇τ̄σ′,ε

x (y)+ (σ′)2Δτ̄σ
′,ε

x (y) =−1 in D,

τ̄σ
′,ε

x (y) = 0 on Γout ,

∇τ̄σ′,ε
x (y) ·n = 0 on ∂D \Γout .

(5.21)

The expansion (in y) of the mean arrival time can be effectively approximated by an adaptive sparse
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grid. Notice that, since the QoI is now a random field and not a random variable anymore, in order

to compute the profit associated to each multi-index we have to use a spatial norm to quantify

the difference between the current sparse grid approximation and the one obtained by adding the

current multi-index to the current set I. We decided to use an L1(D) norm to tackle this issue.

We can now introduce a MC-type scheme with a control variate variance reduction technique by

defining

τ̄σ
′,CV

x (y) = τ̄σ
′

x (y)− τ̄σ
′,ε

x (y)+E[τ̄σ
′,ε

x (·)]; (5.22)

By following the strategy proposed in Chapter 4, we define the MLMCCV estimator as

τ̂MLMCCV
{h�},{M�},W (x) =

L∑
�=0

1

M�

M�∑
i=1

(
τ̄σ

′,CV
�

(x,yi ,�)− τ̄σ
′,CV

�−1 (x,yi ,�)
)
+QW [τ̄σ

′,ε
L (x, ·)], τ̄σ

′,CV
−1 (x,yi ,�) = 0,

(5.23)

where, as usual, yi ,� for �= 0, ...,L and i = 1, ..., M�, are independent identically distributed standard

Gaussian random variables, and τ̄σ
′,CV

�
denotes the QoI evaluated on level � with mesh size h�.

Analogously we obtain a mean square error given by the sum of the statistical, the sparse grid and

the finite element error.

Lemma 5.3.1. The pointwise mean square error of the estimator (5.23) can be bounded by

e(τ̂MLMCCV
{h�},{M�},W (x))2 �

L∑
�=0

Var(τ̄σ
′,CV

�
(x,yi ,�)− τ̄σ

′,CV
�−1 (x,yi ,�))

M�
+2

(
E[τ̄σ

′,ε
L (x, ·)]−QW [τ̄σ

′,ε
L (x, ·)]

)2

+2E[τ̄σ
′

L (x, ·)− τ̄σ
′
(x, ·)]2.

(5.24)

5.3.3 Delineation of capture zones for small temporal horizon by stochastic colloca-
tion on mean FPT

Let us focus now on the computation of the probability of the arrival time being smaller than a

prescribed time T . In particular we want to delineate the so called capture zones, i.e. the zone

starting from which a particle will reach the boundary Γout with a certain probability in a prescribed

time horizon T , that is:

ΣT,α = {x : Pω(τσ
′

x,0(ω) ≤ T ) ≥α}, 0 <α< 1. (5.25)

The most natural approach to compute such a capture zone (5.25) is to solve the parabolic equation

(5.13) for each realization of the Darcy velocity and then approximate the expected value with

respect to ω with a MC or MLMC scheme. This is the most straightforward strategy even if it is the

most costly one, as it entails the solution of a time dependent PDE for each realization of the Darcy

velocity. Moreover, the solution of this PDE is not a smooth function of the “Darcy” randomness, at

least in the vanishing diffusion limit. This is due to the incompatible boundary data (θσ
′

T (x, t) = 1

on Γout and final datum θσ
′

T (x,T ) = 0 on D) which induce a discontinuity in the limit case σ′ = 0

propagating at “random” speed.

In the case of non vanishing diffusion σ′ > 0, the solution depends analytically on the random
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5.3. Case 1: an undisturbed flow from left to right

variables y parametrizing the Darcy flow (see [62]), however with very large growth of derivatives

(due to the sharp fronts), and, equivalently, very small size of the analyticity region. Hence, sparse

grid approximation schemes are not suited to tackle this problem. For the same reason, also the

control variate approach does not bring any significant improvement with respect to the standard

MLMC scheme. In Figure 5.2 we can see how the solution introduced in (5.7) evolves in time,

(a) t = 0.8. (b) t = 0.55. (c) t = 0.3.

Figure 5.2 – Pω′
(τσ

′
x,t (ω) ≤ T |ω) for different values of t . σ= 1, p0 = 2, σ′ = 0, ν= 0.5, Lc = 0.5.

basically propagating backwards according to the Darcy velocity until the propagating front covers

the whole domain. This fact suggests that it does not make sense to consider an infinite time

horizon T since all the particles will reach, sooner or later, the outlet in both cases with or without

molecular diffusion. Consistently, also the probability front will reach the inlet so that a uniform

unit probability will be obtained for sufficiently large time horizons.

In the case of vanishing diffusion it is preferable to use again an approach based on arrival times,

which allows the use of sparse grid approximations. As we will see later on in the numerical results,

the sparse grid is actually very effective in approximating τ̄x(y) when dealing with a smooth velocity

field (respectively τ̄εx(y) when starting from rough velocities and considering smoothed versions

to build a control variate for MC simulations). In this case the probability of the arrival time being

smaller than T can be equivalently written as

Eω[1{τx(·)≤T }] = Eω[1{τ̄x(·)≤T }].

Therefore, for smooth Darcy velocities, τ̄x is a smooth function of y and can be effectively approxi-

mated by a sparse grid scheme. Hence we propose the following approximation

Eω[1{τ̄x(·)≤T ∗}] ≈ Eω[1{SI[τ̄x](·)≤T ∗}] ≈
1

M

M∑
i=1

1{SI[τ̄x](yi )<T ∗} (5.26)

where SI denotes the sparse grid interpolant defined in (3.4). In practice, since there is no diffusion,

the solution of the PDE (5.8) is not an expectation anymore (the corresponding ODE (5.1) has

deterministic trajectories); therefore, the probability over all possible Brownian motions and Darcy

velocities becomes an expected value only with respect to ω. At this point, since the sparse grid is

able to accurately approximate the (deterministic) arrival times, we can replace τ̄x with its sparse

grid interpolant by committing a small error. Since in the previous chapter we showed that the

sparse grid is well suited not only to perform quadrature but also interpolation, we now use a MC

scheme to estimate Eω[1{SI[τ̄x](·)≤T }], i.e. we sample from the sparse grid interpolant; the idea is to

operate as follows:

115



Chapter 5. Extension to Transport Problem

1. compute the sparse grid interpolant of τ̄x;

2. given a new sample yi , compute the new sample of the FPT by sparse grid interpolation, i.e.

by evaluating the sparse grid interpolant SI[τ̄x] in yi ;

3. iterate the procedure to compute a MC or MLMC estimator of the mean of the indicator

function.

It is clear that a MC scheme does not present good convergence properties in terms of asymptotic

rates but, since the cost of obtaining a sample in this case is significantly smaller than the one we

needed to solve a PDE, such strategy outperforms the others in terms of computational cost. Finally

the capture zone (5.25) is computed by looking at the level-set of the function Eω[1{SI[τ̄x](·)≤T }].

Observe that the estimate in (5.26) can be useful also when dealing with positive molecular diffusion

σ′. In this case, by using again the solution of the elliptic PDE that gives us τ̄σ
′

x (ω) = Eω
′
[τσ

′
x (ω)|ω],

thanks to [1, Theorem 2.4] we obtain

|Eω[Eω
′
[1{τσ

′
x,0(ω)≤T }|ω]]−Eω[1{τ̄σ

′
x (ω)≤T }|ω]]| = |Eω[Eω

′
[1{τσ

′
x,0(ω)≤T } −1{τ̄σ

′
x (ω)≤T }||ω]]

≤CEω[‖τσ′
x,0(ω)− τ̄σ

′
x (ω)‖

2
3

L2(Ω′)]. (5.27)

Such an estimate shows the error one would commit by approximating the correct probability

Pω(τσ
′

x,0(ω) ≤ T ) = Eω[Eω
′
[1{τσ

′
x,0(ω)≤T }|ω]] with Eω[Eω

′
[1

τ̄σ
′

x (ω)≤T }|ω]]. This error depends on the vari-

ance (with respect to all Brownian motions) of the arrival time, i.e. ‖τσ′
x,0(ω)− τ̄σ

′
x (ω)‖L2(Ω′). Observe

also that the constant C in the above bound depends on σ′ and on the L∞ norm of the probability

density function of τσ
′

x,0(·,ω) (conditioned to the event ω).

5.3.4 Numerical results

In this subsection we present the numerical results concerning the case of an undisturbed flow from

left to right. As previously mentioned, when starting from a smooth velocity field it is possible to use

a sparse grid approximation to compute the expected value of τ̄σ
′

x (ω). In this case the computational

cost to assemble the sparse grid is not so expensive since we have to solve an elliptic problem for

each node of the sparse gird (similar to the case of a standard Darcy problem). We first present the

convergence plot of the sparse grid approximation error; we consider a “deltaint”-based adaptive

sparse grid with non nested knots; by denoting our QoI Q(x,ω) = τ̄σ
′

x (ω) we measure the sparse grid

error as

‖E[Q(x,ω)]−QW [Q(x,ω)]‖L2(D) ≈ ‖QW ∗[Q(x,ω)]−QW [Q(x,ω)]‖L2(D)

being QW ∗[Q(x,ω)] our reference quadrature, computed with a sparse grid built over 3593 Hermite

points corresponding to a work W ∗ = 4017. We recall that in this case during the sparse grid

construction, to deal with random fields, the profits P (i) introduced in (3.9) through (3.17) have

been replaced with

ΔE(i) = ‖E[Δm(i)[Q]
]‖L1(D) = ‖Qm

J [Q]−Qm
I [Q]‖L1(D).

In Figure 5.3 we can observe how the sparse grid convergence behaves well, significantly improving

the performance of a standard MC scheme when dealing with smooth arrival times.
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Figure 5.3 – Case ν= 2.5: on the left the sparse gird approximation of Eω[Q(x, ·)]; on the right the
sparse grid error committed on such quantity in the L2 spatial norm versus the work evaluated as
number of solves needed to build such approximation. σ′ = 0.01, LC = 0.5, p0 = 1.

As previously anticipated, the smoothness of of Q(x,y) in y is strictly related to the smoothness of

the transport u, and then to the smoothness of the realizations of the permeability field, i.e. we have

smooth realizations of Q (respectively rough) when starting from a smooth (rough) transport u. It is

therefore possible to apply a MLMCCV strategy to this problem. In Figure 5.4 and 5.5 we show the

variance reduction obtained by considering a MLMCCV estimator with respect to the one obtained

with a standard MLMC scheme. In Figure 5.4 we consider a rough input permeability that generates

rough arrival times. What happens is consistent with the considerations done in the case of the

Darcy problem. In fact, in this case the variance reduction seems to concern only the coarsest levels;

on the other hand from a certain level on, depending on ε, the variance of the MLMCCV and MLMC

estimators become very close. Figure 5.4-(c) might suggest that the variance reduction actually

appears on all levels; however, since the two curves (the MLMC and the MLMCCV ones) are getting

closer and closer, we claim that for finer levels they should overlap, or at least behave as in Figure

5.4-(a,b). In Figure 5.5 we report the results obtained starting from a smooth input permeability
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(a) ε= 1/23.

1 2 3 4 5 6
−10

−9

−8

−7

−6

−5

−4

−3
ν=0.5, ε=0.0625

level

lo
g 2 (

V
ar

(⋅)
)

 

 

Y
l
 MLMCCV

Y
l
 MLMC

(b) ε= 1/24.
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(c) Smoothed field aε, ε= 1/25.

Figure 5.4 – Variance of Q� and Y�(x,ω) =Q�(x,ω)−Q�−1(x,ω) on each level, for ν= 0.5 and different
values of ε. σ′ = 0.01, LC = 0.5, p0 = 1.

that generates smooth arrival times. Also in this case we obtain similar results to the ones presented

in the Darcy problem: the variance reduction with respect to the MLMC case appears on all levels
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and gets significantly larger when considering smaller and smaller values of ε. In Figure 5.6 and
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(a) ε= 1/23.
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(b) ε= 1/24.
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(c) Smoothed field aε, ε= 1/25.

Figure 5.5 – Variance of Q� and Y�(x,ω) =Q�(x,ω)−Q�−1(x,ω) on each level, for ν= 2.5 and different
values of ε. σ′ = 0.01, LC = 0.5, p0 = 1.

5.7 we report the corresponding variance reduction obtained in the case of vanishing diffusion. It
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(a) ε= 1/23.
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(b) ε= 1/24.
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(c) Smoothed field aε, ε= 1/25.

Figure 5.6 – Variance of Q� and Y�(x,ω) =Q�(x,ω)−Q�−1(x,ω) on each level, for ν= 0.5 and different
values of ε. σ′ = 0, LC = 0.5, p0 = 1.
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(a) ε= 1/23.
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(b) ε= 1/24.
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(c) Smoothed field aε, ε= 1/25.

Figure 5.7 – Variance of Q� and Y�(x,ω) =Q�(x,ω)−Q�−1(x,ω) on each level, for ν= 2.5 and different
values of ε. σ′ = 0, LC = 0.5, p0 = 1.

is possible to observe how, also in this case, the variance reduction obtained are comparable with

the ones obtained with positive diffusion. The MLMCCV approach is then well suited to solve the

problem of approximating the expected value of the arrival time to the outlet in all cases.

To approximate the capture zones (5.25) we have to simulate the probability of the arrival time

118



5.4. Case 2: a flow induced by the presence of an extracting well

being smaller than T , i.e. the quantity P(τσ
′

x,0(ω) ≤ T ). Observe that for each realization of the Darcy

velocity (even the smooth ones) the corresponding probability Eω
′
[1{τσ

′
x,0(ω)≤T }|ω] presents a sharp

front for small values of diffusion σ′. Therefore we could think to use a standard MLMC scheme

to estimate the quantity P(τσ
′

x,0(ω) ≤ T ) by denoting out QoI as Q(x,ω) = Eω
′
[1{τσ

′
x,0(ω)≤T }|ω] and by

considering the corresponding MLMC estimator according to (4.9). In Figure 5.8 we show the mean

and the variance of Q computed with a MLMC scheme. As expected the probability of ending up
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Figure 5.8 – Case ν = 2.5: MLMC approximation of mean (left) and variance (right) of Q(x,ω) =
Eω

′
[1{τσ

′
x,0(ω)≤T }]. σ

′ = 0, LC = 0.5, p0 = 3, T = 0.3, L = 5.

in the outlet in T time units decreases with the distance from Γout since the transport is mainly

in the horizontal direction from left to right; by contrast the variance increases with the distance

from Γout since these probability fronts, as Figure 5.2 suggests, reach different zones of the domain

depending on the realization of the Darcy velocity. We do not report here the results concerning the

variance reduction of the MLMC scheme applied to the solution of the parabolic PDE since they

will be presented among the numerical results of the next section.

We outline again that it is possible to reuse all this methodology developed to effectively estimate

the mean arrival time. In this case for each realization of the Darcy velocity it suffices to solve an

elliptic PDE in order to obtain the quantity τ̄σ
′

x (ω); since this arrival time has smooth realizations

we have regularity also with respect to the stochastic parameters and we can successfully apply

a sparse grid scheme to approximate the mean of τ̄σ
′

x (y); then, according to what stated in the

previous subsection, we can apply a convenient MC sampler to estimate Eω[τσ
′

x,0(ω)] = Eω[τ̄σ
′

x (ω)]

taking samples from the sparse grid interpolant SI[τ̄σ
′

x ].

5.4 Case 2: a flow induced by the presence of an extracting well

In this section we focus on a different scenario, more interesting from the application’s point of view.

We consider in fact an aquifer in which a well extracts drinkable water at a constant rate q . To model

the presence of the pumping well located at x0 and compute the corresponding flow we could either

consider an external forcing term f (x) =−qδx0 (x), being δx0 the Dirac function centered in x0, and

q the constant extraction rate, or consider a small hole around x0 having the size of the physical

well and Neumann conditions to enforce the total flux around the hole to be equal to q . In this case
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we consider for simplicity a circular well of radius r � 1, and assume the flow in proximity of the

well to be radial. By adding this “well effect” to the previous undisturbed flow case, we end up with

the solution of the following Darcy problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−div(a(x,ω)∇∇∇p(x,ω)) = 0, x ∈ D \ B̄(x0,r ),

p(x,ω) = p0(1−x1) x ∈ x1 = {0,1},

a(x,ω)∂np(x,ω) = 0 x ∈ x2 = {0,1},

a(x,ω)∂np(x,ω) = q
2πr x ∈ ∂B(x0,r )

(5.28)

where B(x0,r ) denotes the open ball of radius r and center x0. For r → 0, it is then reasonable from

a modeling point of view to consider the similar problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
−div(a(x,ω)∇∇∇p(x,ω)) =−qδx0 (x), x ∈ D,

p(x,ω) = p0(1−x1) x ∈ x1 = {0,1},

a(x,ω)∂np(x,ω) = 0 x ∈ x2 = {0,1}.

(5.29)

Depending on how large the size of the physical well is with respect to the size of the domain one

can use either equation (5.28) or (5.29) to model the flow. Notice that this problem, because of

the δx0 (x) as right hand side, is not well posed in H 1(D); however, it can be rewritten in terms of

p̃(x,ω) = p(x,ω)+G(x,ω), being G(x,ω) the Green’s function that solves −div(a(x0,ω)∇∇∇G(x,ω)) =
−qδx0 (x), x ∈ R2, i.e. G(x,ω) = − q

2πa(x0,ω) log(|x− x0|). With this change of variable we obtain a

problem for p̃ which reads −div(a(x,ω)∇∇∇p̃(x,ω)) =−div((a(x,ω)−a(x0,ω))∇G(x,ω)) , x ∈ D with

proper boundary conditions. Now, since a ∈ Cα(D̄), the term a(x,ω)−a(x0,ω) absorbs part of the

singularity of ∇G(x,ω) in x0 making possible to recover the well posedness in H 1(D) for p̃. However,

since we are interested in computing arrival times to the well, we need to find a way to properly

define our arrival time. Observe that, depending on how large is the extraction rate q , some of

the particles coming from the left part of the domain will be attracted by the well while others will

continue their motion up to the right boundary Γout . To properly define the arrival time τσ
′

x,t (ω)

to the well in the bounded domain D, i.e. when the Darcy velocity is given only in D, we chose to

reflect the process X σ
x,t whenever it hits the external boundary ∂D and to absorb it as soon as it

enters the internal ball B(x0,r ). Moreover we assume the domain to be large enough so that the

perturbation caused by the extraction well does not influence the outlet Γout , i.e. u1(x,ω) > 0 for

any x ∈ Γout .

If we work with equation (5.28) we can define our FPT as

τσ
′

x,t (ω) = inf(s ≥ t : X σ
x,t (s) ∈ B(x0,r )). (5.30)

Observe that, with this definition, the particles that will reach Γout will be reflected until the diffusion

pushes them back to the well. Observe also that, in the limit of vanishing diffusion, for some starting

points x ∈ D the arrival time could be actually ∞ since, for each realization of the transport, some

particles might reach the outlet Γout instead of the well and, in the absence of diffusion, they can

not diffuse back to the well.

On the other hand, when working with equations (5.29), to properly define the arrival time to the

well we have to consider some bounded region surrounding the well small enough to assume that

once a particle reaches such region it will reach the well with unit probability in a negligible time.
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5.4. Case 2: a flow induced by the presence of an extracting well

Observe that in this case the Darcy velocity presents a singularity in x = x0, since the solution p of the

Dacry problem (5.29) behaves locally around the well as the Green’s function of the Laplace operator

in a neighborhood of such point. Also in this case, then, we consider a small ball surrounding the

location of the well and again we define the arrival time through equation (5.30), where now r does

not represent the physical size of the well but it is rather an artificial barrier.

In any case we end up with the solution of a time-dependent PDE:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂θσ
′

T (x, t ,ω)

∂t
+Lσ′θσ

′
T (x, t ,ω) = 0 in (D \ B̄(x0,r ))× [0,T ),

θσ
′

T (x, t ,ω) = g (x, t ) on ∂B(x0,r ))× [0,T ),

∂nθ
σ′
T (x, t ,ω) = 0 on ∂D × [0,T ),

θσ
′

T (x,T,ω) = h(x) on D.

(5.31)

As in the previous case of undisturbed flow, proper choices of the boundary and final conditions

allow to link the solution of this time dependent PDE to the expectation of some quantities through

the Feynman-Kac formula (5.5). Again the goals will be the computation of quantities related to the

FPT as Eω[min(τσ
′

x,0(ω),T )] and of the probability to end up in the well in a time smaller than T , i.e.

Eω[1{τσ
′

x,0(ω)≤T }] =Pω(τσ
′

x,0(ω) ≤ T ).

5.4.1 A MLMC approach to approximate expected arrival times

Let us focus on the approximation of the mean of the arrival time τσ
′

x,t (ω), i.e. Eω[τσ
′

x,t (ω)] and

consider again the PDE (5.31). By putting Dirichlet conditions on ∂B(x0,r )) we are absorbing the

process once it hits this boundary. On the other hand, we reflect it when it hits the other external

boundaries. The more remarkable difference with respect to the undisturbed case is that now, in the

vanishing diffusion case, not all the particles will eventually reach the actual outflow which is given

by the Dirichlet boundary ∂B(x0,r ). Moreover, as previously anticipated, in the vanishing diffusion

limit the arrival time defined in (5.30) can be infinite for some points x ∈ D , while in the case σ′ > 0,

even if it is finite for any realization of the Brownian motion, it might not be uniformly bounded from

above with respect to the random event ω modeling the Darcy velocities. For practical purposes we

are interested in approximating such arrival times only for those points belonging to trajectories

that end up in the well under the transport of the Darcy velocity; since, according to our reflected

SDE, also trajectories that hit first the outlet Γout reach eventually the well, even if this might induce

extremely large associated arrival times, we rather prefer to keep bounded from above our quantity

of interest by considering instead the more convenient quantity Eω[min(τσ
′

x,t (ω)),T ].

By choosing again g = t and h = T in (5.31), we start from a solution constant at time t = T ; then, by

moving back in time, the datum g = t on ∂B(0,r ) starts propagating backward in time towards left

driven by the Darcy velocity and at the same time under the effect of the diffusion (σ′)2.

Remark 5.4.1. A similar (yet different) way to model this situation in the general case σ′ > 0 was to

put a Dirichlet absorbing condition also on Γout with corresponding Dirichlet datum equal to T ;

in this case such datum, when retropropagating, would not generate any propagating front since it

would match the final condition h = T . Such choice leads to the same solution of the parabolic PDE,

i.e. Eω[min(τσ
′

x,0(ω),T )], being now τσ
′

x,0 the time needed to reach either the internal ball B(x0,r ) or

the boundary Γout . Nevertheless, because of the two different Dirichlet boundary conditions, namely

g = t on ∂B(x0,r ) and g = T on Γout , it is not possible to write an equation for the mean FPT as in the
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undisturbed case while, by putting Neumann conditions on all the external boundaries, it is possible

to write such equation for the mean FPT and numerically verify how the expected arrival time is not

bounded for any starting position x.

Since close to the well the velocity is practically radial, as it is mainly driven by the presence of

the pumping well, the solution of the PDE presents a front evolving first radially; then, at a small

distance to the well, the Darcy’s flow, which is left-to-right, becomes dominant and the front starts

moving toward left, as suggested by Figure 5.1-(a). The solution of the parabolic PDE with this

choice of boundary conditions (Neumann everywhere on ∂D) has the following interpretation (as

in (5.6))

θσ
′

T (x, t ,ω) = Eω
′
[min{τσ

′
x,t (ω),T }|ω].

Observe again that the minimum in this formula plays a crucial role as the arrival time could actually

be infinite for some points x. Our final goal is to compute the expected value Eω[min(τσx,0(ω),T )].

This can be achieved by using conditional expectation Eω[min(τσx,0(ω),T )] = Eω[Eω
′
[min(τσx,0(ω),T )|ω]].

We have therefore to approximate the mapping ω→ Eω
′
[min{τσ

′
x,t (ω,ω′),T }|ω]. Unfortunately, we do

not expect the quantity Eω
′
[min{τσ

′
x,0(ω,ω′),T }|ω] to be smooth, as a function of the spatial variable

x, because of the presence of the minimum. This fact, according to the computations carried out in

Subsection 5.3.2, implies that the function y → Eω
′
[min{τσ

′
x,0(y,ω′),T }|y] is differentiable only in the

case of non vanishing diffusion for any T , although with a C 1 norm which explodes as σ′ tends to 0.

Remark 5.4.2. Observe that also in the undisturbed case the mapping x → Eω
′
[min{τσ

′
x,t (ω,ω′),T }|ω]

might not be smooth; this is the case for instance when considering small values of T for which

the Dirichlet datum on Γout is not retropropagated far enough to reach the opposite boundary Γi n.

However in that case, since the vanishing diffusion characteristics coming from the Dirichlet boundary

(with datum g = t ) cover all the domain, it is possible to choose T sufficiently large to get rid of the

minimum function in (5.6) and obtain a smooth mapping. This can not be done in the case of the

extraction well since, also for infinite time horizon T , in order to properly model the arrival time

to the well, we can put on Γout either a homogeneous reflecting Neumann condition or a Dirichlet

absorbing condition g = T , both leading to realizations characterized by the presence of sharp fronts.

Such considerations suggest that, in this case, the use of a sparse grid approximation of the map y →
Eω

′
[min{τσ

′
x,t (y,ω′),T }|y] is not recommended. Also the proposed variance reduction approach, that

strongly depends on the possibility of using a sparse grid quadrature to successfully approximate

the mean of the control variate, is not well suited. In Figure 5.1 we show two realizations of

y → Eω
′
[min{τσ

′
x,t (y,ω′),T }|y], obtained starting from the same Darcy velocity and different molecular

diffusions σ′. Looking at these plots it is clear that, although they have been generated with T = 0.5,

these arrival times will not be smooth with respect to x even if we considered a very large time

horizon T since they present sharp fronts, especially the plot on the left, that separate the domain in

two regions corresponding to points starting from which a particle will or will not eventually reach

the well.

Denote our QoI as Qσ′
(x,0,y) = Eω

′
[min{τσ

′
x,0(y,ω′),T }|y]. We propose in this case to use a MLMC

strategy without any control variate technique to approximate the mean of Q as detailed in Chapter

4 in order to estimate the minimum between the arrival time and T .

Since we want to solve the parabolic PDE (5.31) also for very small diffusion, in order to avoid

numerical oscillations on coarse grids, we consider a MLMC estimator with a level-dependent
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5.4. Case 2: a flow induced by the presence of an extracting well

(a) σ′ = 0, p0 = 1, T = 0.5. (b) σ′ = 0.1, p0 = 1, T = 0.5.

Figure 5.1 – Realizations of Eω
′
[min{τσ

′
x,t (y,ω′),T }|y] for ν= 2.5 in the vanishing diffusion case (left)

and for a relatively large diffusion (right). Observe that the random event y used to generate the
Darcy velocity is the same.

diffusion coefficient σ′. More precisely, we denote Qσ′
�

(y�,i ) the solution of the parabolic PDE (5.31)

obtained for the i -th realization of the Darcy velocity, mesh size h�, time step t� ∼
√

h� and level

dependent diffusion σ′
�
= max(σ′,c

√
h�), with c > 0 properly chosen. With this definition, we can

build the MLMC estimator of Qσ′
as

Q̂σ′ MLMC
{h�},{M�},{σ′

�
}(x) =

L∑
�=0

1

M�

M�∑
i=1

(
Q

σ′
�

h�
(x,y�,i )−Q

σ′
�−1

h�−1
(x,y�,i )

)
, where Q

σ′
−1

h−1
= 0, (5.32)

where y�,i are independent identically distributed draws from �(y); the mean square error associated

to this estimator, by omitting the dependence with respect to x, is

e(Q̂σ′ MLMC
{h�},{M�},{σ′

�
})

2 = E[(Q̂σ′ MLMC
{h�},{M�},{σ′

�
}−E[Qσ′

])2] =
L∑

l=0

Var
(
Q

σ′
�

h�
(y�)−Q

σ′
�−1

h�−1
(y�)

)
M�

+
(
E[Q

σ′
L

hL
−Qσ′

]
)2

.

(5.33)

5.4.2 Delineation of capture zones for small temporal horizon

Let us consider now the problem of the delineation of the so called capture zone, i.e. the zone

starting from which a particle reaches the pumping well with at least a certain probability in a

prescribed time horizon, namely

ΣT,α = {x : Pω(τσ
′

x,0(ω) ≤ T ) ≥α}, (5.34)

with α a positve (small) real number. To compute such capture zones (5.34) we start again from the

parabolic PDE (5.31). By choosing g = 1 and h = 0 we obtain θσ
′

T (x, t ,ω) =Pω′
(τσ

′
x,t (ω) ≤ T |ω). Again

the mapping x → Pω′
(τσ

′
x,t (ω) ≤ T |ω) is not smooth for the vanishing diffusion case, while in the

diffusive case it presents degenerating derivatives (with respect to x) when σ′ goes to 0. For small

diffusion we have a sharp front evolving (see realizations in Figure 5.2); therefore the use of a sparse

grid scheme to exploit the dependence y →Pω′
(τσ

′
x,t (y) ≤ T |y) is again not recommended, since the
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corresponding analyticity region has a very small size.

(a) σ′ = 10−4, p0 = 1, T = 1. (b) σ′ = 10−1, p0 = 1, T = 1.

Figure 5.2 – Realization of Pω′
(τσ

′
x,t (y) ≤ T |y) for ν= 2.5 in the vanishing diffusion case (left) and for a

relatively large diffusion (right). Observe that the random event y used to generate the realizations
is the same.

Again a MLMC scheme seems to be a more appropriate choice. Denoting our QoI as Qσ′
(x,y) =

Pω′
(τσ

′
x,0(y) ≤ T |y), we propose a MLMC strategy on Qσ′

as detailed in the previous subsection

by taking again samples Q
σ′
�

�
(y�,i ) defined through the solution of the PDE at level � and using

equation (5.33). Notice that in this case it would make sense to look at the limit for T →∞ since the

probability does not blow up. On the other hand, as we will see in the next section, for the infinite

time horizon case another strategy will be proposed to avoid the solution of a time dependent PDE

over a large time horizon.

5.4.3 Delineation of capture zones for infinite temporal horizon: a streamline approach

In the previous subsection we dealt with the case of a small temporal horizon T . Here we present a

methodology that allows us to compute the capture zones (5.34) in the limit when T →∞ without

solving any time dependent PDE. To this end, for the sake of simplicity, we consider the formulation

(5.29) of the Darcy problem. Let us focus on the case of vanishing diffusion. As we mentioned before,

viscosity solutions for the PDE (5.31) can be found also for pure transport equation, so that actually

it holds θ0
T (x,0,ω) = 1{τ0

x,0(ω)≤T }.

Here we want to approximate the indicator function for T =∞ by introducing a streamline approach.

First notice that, in the vanishing diffusion case, there holds Pω(τ0
x,0(ω) ≤∞) = Eω[1{τ0

x,0(ω)≤∞}]. Our

idea is to approximate such expected value through a MC scheme by properly sampling the indicator

function 1{τ0
x,0(ω)≤∞} from a suitable sparse grid interpolant. Since as previously mentioned arrival

times and probabilities are not suited to be approximated by sparse grids, we introduce now a

streamline approach to delineate the capture zones introduced in (5.34). We start by decomposing

the velocity field in its regular and singular part, namely

u(x,ω) = uR (x,ω)+uS(x), (5.35)
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5.4. Case 2: a flow induced by the presence of an extracting well

with uR divergence free in D and uS(x) is the gradient of the two dimensional Green’s function

φ= log(|x−x0|)/(2π) solution of Δφ=−qδx0 (x), x ∈ R2; at the same time uS(x) can be seen as the

curl of a suitable stream function ΨS , namely uS(x) =∇×ΨS(x), with ΨS(x) =− qθ(x,x0)
2π ; here θ(x,x0)

is the counterclockwise angle that the segment xx0 forms with respect to the horizontal axis. Notice

that by construction the singular part of the transport does not depend on ω. Observe also that since

the singular Darcy velocity uS is defined on a not simply connected domain, i.e. D \{x = x0}, we have

to introduce an artificial cut in D in order to deal with a simply connected domain D̃ and give sense

to the previous definition of singular stream function ΨS(x); we operate this cut by considering a

domain D̃ = D \{x : x2 = x0,2 and x1 ≤ x0,1}. Such stream function ΨS(x,ω), associated to the singular

part of the transport, is discontinuous along the cut introduced in D̃ , with continuous derivatives

along the cut. On the other hand, since the regular part of the velocity uR is divergence free, there

exists an associated stream function ΨR such that uR (x,ω) =∇×ΨR (x,ω). Notice that in this case,

since uR is well defined on D , we do not need to introduce any artificial cut to properly define it.

At this point, starting from ∇×uR =∇× (u−uS), it is possible to derive a Laplace equation for ΨR ;

concerning the boundary conditions, we fix the stream function ΨR at an arbitrary value on the

top boundary of the domain D, and then recover the natural Neumann condition on the other

boundaries by observing that ∇ΨR ·n = uR ·t, where t is the tangent vector to the boundary. We have

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ΔΨR (x,ω) = ∂u2(x,ω)

∂x1
− ∂u1(x,ω)

∂x2
, x ∈ D,

ΨR (x,ω) = 0 x ∈ {x2 = 1},

∂nΨR (x,ω) = (u(x,ω)−uS(x)) · t x ∈ x1 = {0,1}∪x2 = 0.

(5.36)

With this strategy, it turns out that Ψ(x,ω) =ΨR (x,ω)+ΨS(x) : D̃ :→R is an actual stream function

of the transport u; then, the idea is to identify the limit trajectory that passes through the saddle

point of Ψ, located to the right of the well, and use such trajectory to delineate the zone in which all

the trajectories that sooner or later will end up in the well are concentrated.
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Figure 5.3 – Realizations of Ψ(x,ω) (left) and ΨR (x,ω) (right) corresponding to the random event ωi .

In Figure 5.3-(a) we give an illustration of what we just stated; the trajectories outlined are the

ones that are located immediately close to the limiting one; we can observe how the total stream

function is discontinuous along the cut introduced in D̃ corresponding to the choice θ(x,x0) =π
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since in our notation θ ∈ (−π,π). On the other hand in Figure 5.3-(b) it is possible to see that the

corresponding realization of ΨR is smooth with respect to the spatial coordinate x: this implies that

also the mapping y →ΨR (x,y) is smooth and, in light of what previously stated, it can be successfully

approximated by a sparse grid approximation. Notice however that, for every knot of the sparse grid

we have now to solve a Laplace problem with non homogeneous boundary conditions; in view of a

MC estimation of Eω[1{τ0
x,0(ω)≤∞}] we will need to interpolate the sparse grid approximation of ΨR

in many points yi ∈ Γ; this is done with the following procedure, i.e. by assembling the sparse grid

interpolant SI[ΨR ](x,y) and by operating as follows:

1. given a new sample yi in the MC estimator we generate a new sample of ΨR , namely Ψi
R =

SI[ΨR ](yi ), through sparse gird interpolation;

2. thanks to Ψ(x,yi ) =ΨR (x,yi )+ΨS(x) we compute the sample Ψi of the total stream function;

3. we find numerically the saddle point x∗ of Ψi and, moving from it, we delineate the two limit

trajectories;

4. we obtain a realization of the indicator function 1{τ0
x,0(ωi )≤∞} by assigning 1 to the points

between the two limit trajectories and 0 to the others: we denote such approximation as

1{A(Ψi )}(x), being A(Ψ) the region included between the two limit trajectories associated to

the stream function Ψ.

By repeating many times this procedure, it is possible to efficiently compute a MC estimator of

Eω[1{τ0
x,0(ω)≤∞}], namely

Q̂0MC
h,M (x) = 1

M

M∑
i=1

1{A(Ψi
h )}(x). (5.37)

In practice, the sparse grid interpolant of ΨR is built starting from a piecewise linear finite element

approximation, defined on a structured mesh, of problem (5.36). Hence, in step 3, each interpolated

stream function Ψi , obtained as sum of a standard linear finite element function (Ψi
R,h) and a

discontinuous finite element function (ΨS,h), will be a piecewise linear function (discontinuous

along the cut) and the numerical computation of the saddle point x∗ is done as follows:

1. denote ei , i = 1, ...,6, the edges which share the vertex x∗ 1 and ui , j , j = 1,2, the velocities

evaluated on the two adjacent triangles that share the edge ei ; moreover denote tei the vector

aligned with the edge ei .

2. suppose that the edges are ordered in such a way to turn in a clockwise sense around x∗ and

compute for any i the quantity r (i ) = (ui ,1 +ui ,2) · tei ;

3. count the changes of sign of r when passing from r (1) to r (2), till arriving to the change of

sign from r (6) to r (1);

4. if the number of sign changes is 4 then we have found the saddle point x∗, otherwise we move

to another vertex.

1Observe that the numerical saddle point has to coincide with a vertex of the triangulation.
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5.4. Case 2: a flow induced by the presence of an extracting well

Observe that the number of changes has to be 4 in order to obtain a saddle point structure around

the vertex x∗; otherwise if the number of changes is 0 then we are facing a maximum (or minimum)

while if it is equal to 2 then we are facing a common point with non horizontal tangent plane. After

an initial (small) cost needed to build the sparse grid interpolant SI[ΨR ](x,y), to generate a sample

we just need to use the sparse grid to perform an interpolation on a given value yi ; observe that in

Chapter 3 the sparse grid approximation has been shown to be suited to perform both quadrature

and interpolation.

So far we have considered a vanishing diffusion case; in general we could be interested in con-

sidering also cases with (small) positive diffusion. Unfortunately a similar approach can not be

straightforwardly extended to cover also this case. We propose to use the same estimator (5.37)

(built for the vanishing diffusion case) also in the case of positive diffusion σ′ > 0 and estimate the

error committed by such approximation. By using again [1, Theorem 2.4] it holds

|Pω(τσ
′

x,0(ω) ≤ T )−Pω(τ0
x,0(ω) ≤ T )| = |Eω[Eω

′
[1{τσ

′
x,0(ω,ω′)≤∞}−1{τ0

x,0(ω)≤∞}|ω]]| ≤ Eω[‖τσ′
x,0(ω,ω′)−τ0

x,0(ω)‖
p

1+p

Lp (Ω′)].

(5.38)

Notice that now we are not comparing the results obtained with positive diffusion with the ones

obtained by considering τ̄σ
′

x as in Subsection 5.3.3. Nevertheless, also this quantity is expected to be

negligible when considering small diffusion σ′.

5.4.4 Numerical results

We start first by presenting some results obtained by using a standard MLMC scheme to approximate

the QoI Qσ′
(x,ω) representing the probability with respect to all Brownian motion of ending up

in the well within a time T for a given realization of the Darcy velocity. This QoI is obtained as

solution of the parabolic PDE (5.31), i.e. Qσ′
(x,ω) =Pω′

(τσ
′

x,0(ω, ·) ≤ T |ω). In Figure 5.4 we report a

MLMC approximation of Pω(τσ
′

x,0(ω) ≤ T ) to give an idea of the quantity that we want to estimate. By

(a) MLMC mean, ν= 2.5. (b) MLMC variance, ν= 2.5.

Figure 5.4 – Case ν = 2.5: MLMC approximation of mean (left) and variance (right) of Q(x,ω) =
Eω

′
[1{τσ

′
x,0(ω)≤T }]. σ

′ = 0.01, LC = 0.5, p0 = 1, q = 0.5, r = 0.01, T = 0.5.

looking at the MLMC mean, as expected, the probability of ending up in the well in at most T = 0.5
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time units decreases as we move away from the well in the direction of the underlying flow (from

left to right). From this solution, the capture zones can be computed simply by taking level sets of

this function. The plot displaying the variance is interesting as it shows that the zones affected by

the largest variability are the ones immediately behind the well, with respect to the direction of the

flow. On the other hand there is basically no variability for the particles that start immediately on

the left of the well (as they fall with probability 1 into the well in short time) and for the ones that

are outside the capture zone (as they never reach the well). Here we report only the results obtained

in the case ν= 2.5 since the other concerning the rough case ν= 0.5 are analogous.

In Figure 5.5 the variance reduction obtained with a MLMC scheme with respect to a standard

MC one is shown. We show the results obtaining by using the proposed level dependent diffusion

approach and compare them with the ones obtained with a standard MLMC scheme with fixed

diffusion. Notice that the level diffusion is such that, on the finest level L, it holds σ′
L = σ′; the
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(a) MLMC and MC variances, ν= 0.5.
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(b) MLMC and MC variances, ν= 2.5.

Figure 5.5 – MLMC variance reduction (continuous line) versus MC variance (dashed line) in
the case of level dependent diffusion (in blue, label LD) and fixed diffusion (in red) for ν = 0.5
(right) and ν = 2.5 (left). The variances have been computed with respect the L2 spatial norm.
Q(x,ω) = Eω

′
[1{τσ

′
x,t (ω)≤T }]. σ

′ = 0.01, LC = 0.5, p0 = 1, q = 0.5, r = 0.01.

comparison shows how such level dependent diffusion approach actually improves the variance

reduction achievable with a MLMC scheme. Although these results seem promising, in the sense

that we obtain a good variance reduction with respect to the standard MC case, it is important to

remark how the computational cost needed to achieve practical tolerances could actually be very

high, since here we are dealing with time dependent PDEs.

In the following we report the results obtained with the streamline approach introduced in the

previous section in the vanishing diffusion case. In Figure 5.6 we show the convergence of the error

committed by approximating the regular stream function ΨR (x,ω) with a sparse grid. As in the

previous section we consider a “deltaint”-based adaptive sparse grid with non nested knots; we

denote our QoI as Q(x,ω) =ΨR (x,ω) and again we measure the sparse grid error as

‖E[Q(x,ω)]−QW [Q(x,ω)]‖L2(D) ≈ ‖QW ∗[Q(x,ω)]−QW [Q(x,ω)]‖L2(D)

being QW ∗[Q(x,ω)] the reference quadrature, computed with a sparse grid built over 937 Hermite

points corresponding to a work W ∗= 1029. The obtained convergence of the sparse grid quadrature
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Figure 5.6 – Case ν= 2.5: sparse grid approximation of the stream function ΨR (x,ω).LC = 0.5, p0 = 1.

of ΨR is again satisfactory, especially if compared with the corresponding MC error. Once we have

the regular stream function we can then use the sparse grid interpolation to generate other possible

stream functions Ψ and then build a MC estimator of the probability in (5.34). A realization of

such MC estimator obtained with M = 1000 samples is shown in Figure 5.7 in which we report the

probability of ending up in the well on an infinite time horizon and the corresponding variability,

i.e. a MC estimation of Eω[12
{τx,0(ω)≤∞}]−Eω[1{τx,0(ω)≤∞}]2.

(a) MC mean obtained with the streamline approach, ν=
2.5.

(b) MC variance obtained with the streamline approach,
ν= 2.5.

Figure 5.7 – Case ν = 2.5: MC approximation of mean (left) and variance (right) of Q(x,ω) =
1{τx,0(ω)≤∞}. LC = 0.5, p0 = 2.

5.5 Conclusions

In this Chapter we focused on problems related to the transport of particles in aquifers. In particular

we considered a model that allowed us to take into account also the molecular diffusion that could

occur at the pore level and developed a methodology to fully address the problem. The main goals

of the analysis were the computations of arrival times to specific boundaries of the domain, and

the delineation of the so called capture zones. Following this goal we gave an overview of several
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possible choices that could be made from both, a modeling and a numerical point of view. We

addressed several scenarios and possible numerical approaches outlining their advantages and

limitations.

In particular we first consider an undisturbed flow; in this case we showed that a MLMCCV scheme

is able to effectively approximate the expected FPT and proposed a strategy to adapt such result

also to compute the probability of the FPT being smaller than a prescribed time horizon: we are still

left with a rigorous error analysis to keep under control the error term (5.27).

Then we moved to a more involved case in which the underlying from-left-to-right flow is combined

with the presence of an extracting well in the domain. In this case, unfortunately, the sparse grid can

not be applied to effectively approximate either the expected FPT or the related probabilities. The

best strategy we could propose to tackle the corresponding parabolic PDEs (for both the expected

FPT and the exit probability) was a MLMC scheme which uses level dependent diffusion coefficients.

To tackle the problem of the delineation of capture zones in the case of infinite time horizon we

proposed a streamline approach: by considering the vanishing diffusion case, here we perform

an effective sparse grid approximation of the stream function related to the Darcy velocity, and

by tracking suitable trajectories, we delineate the corresponding capture zone. Then, via sparse

grid interpolation of the stream function, we build a convenient MC estimator; also in this case a

rigorous error analysis to keep under control the error term (5.38) will be needed.
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6 Conclusions and future work

In this Thesis we have studied linear PDEs with random coefficients to address specific problems

arising in hydrology related to groundwater flows taking place in a heterogeneous saturated porous

medium. We have extensively studied the Darcy boundary value problem, consisting in an elliptic

PDE having the pressure as unknown and the permeability of the medium as input diffusion

coefficient. Such quantity has been modeled as a lognormally distributed random field a(x,ω) =
eγ(x,ω), being γ(x,ω) a Gaussian random field with given Matérn-type covariance structure, which,

in turn, generates fields having a wide range of possible smoothness.

The goal of our analysis has been to develop efficient numerical schemes able to compute statistics

of quantities of interest related to the solution p, representing the pressure, of the Darcy problem.

We have considered two main approaches, a deterministic and a sampling one: the first is based on

a sparse grid stochastic collocation approximation of the quantity of interest while the second is

based on Monte-Carlo type schemes that use a suitable variance reduction technique.

Concerning the sparse grid approximation of the Darcy problem we have focused on algorithms

able to exploit the anisotropy of the quantity of interest with respect to the stochastic parameters

and considered two approaches: a quasi-optimal one, extending results already present in literature

also to the case of non-nested collocation points, and an adaptive one, in which the construction of

the underlying sparse grid is driven by different (computable) estimates of the hierarchical surplus

operators Δm(i). The two strategies have then been implemented in a dimension adaptive fashion,

namely starting with Nb random variables as buffer and then progressively adding variables on

the fly whenever a new direction is activated. It is important to remark that this implementation is

able to work formally with an infinite (countable) number of random variables, since it does not

require any a priori truncation of the input permeability. Such strategies have been verified to be

very effective to solve the Darcy problem when considering a smooth random permeability as input;

our numerical results show a much better performance of the adaptive sparse grid algorithms than

standard MC techniques. At the same time it is important to notice that the observed convergence

rates obtained with our numerical experiments are not so distant from the theoretical ones available

in literature for elliptic problems parametrized with uniform random variables. On the other hand,

such advanced adaptive sparse grid approximations have shown deteriorating performance when

applied to either shortly correlated random fields (Lc � 1) or rough input random fields. In the case

of smooth but shortly correlated input random fields we expect that the fast convergence rate is

achieved only asymptotically when the sparse grid is rich enough to resolve the fine scale structures

of the solution. In the case of longly correlated but rough random fields, the convergence rate is
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negatively affected by the lack of smoothness and might not be competitive with a MC approach.

The reason comes from the slow decay of the eigenvalues of the covariance operator whice forces

the adaptive sparse algorithm to include too many random variables even for large tolerances, thus

feeling a strong curse of dimensionality.

However, the analysis of such sparse grid approximations is still incomplete and the next crucial

step would be to complete a rigorous convergence analysis of the dimension adaptive algorithms in

the case of PDE with log-normal coefficients (partial results are only available so far for sequences

of uniform random variables and uniformly bounded and positive diffusion coefficients.)

We also considered sampling schemes in order to deal with Darcy problems characterized by a

limited spatial regularity. In particular we started from the popular Multi Level Monte Carlo method

and proposed an improved version that uses a suitable control variate to reduce the variance of

the corresponding MLMCCV estimator. Among all possible choices, we considered as a control

variate the quantity of interest Qε obtained starting from the solution of a smoothed auxiliary Darcy

problem, in which we have replaced the original permeability field a with a smoothed version

aε. The key idea was to consider a smooth control variate Qε for which a sparse grid quadrature

approximation may still be efficiently computed. Hence the necessity of carefully choosing the

smoothing parameter ε to achieve both a significant variance reduction and, at the same time, good

sparse grid approximation properties for the mean of the control variate. We performed a rigorous

analysis of the statistical error associated the MLMCCV estimator and provided explicit bounds

indicating the combined effect of the discretization parameter h� on the different levels and of the

smoothing parameter ε. Finally we showed how, asymptotically, the complexity of the MLMCCV

scheme improves the one of the standard MLMC one, and provided several numerical results

covering different scenarios to show the effectiveness of the method with respect to a standard

MLMC approach, in terms of complexity against tolerance achieved on the root MSE. An important

remark is that, for the moment, we just tuned the parameter ε ad hoc. It would be then interesting

to either include the selection of ε in the optimization procedure used to compute optimal sample

sizes and number of sparse grid nodes, or considering a level dependent choice of ε.

We then focused on another relevant problem in groundwater flows, i.e. the computation of

statistics related to arrival times defined through particle trajectories subject to (small) molecular

diffusion and driven by the stochastic Darcy velocity. In particular we addressed again the reference

scenario of a flow induced by a pressure drop between two opposite boundaries of the domain

(left-to-right flow) and a scenario in which we have modeled also the presence of an extracting

well into the physical domain. In the first case we looked at arrival times to the outlet of the

domain while in the second case we looked at arrival times to the well. We extended, whenever

possible, the methodologies developed for the Darcy flow to conveniently compute expectations

and probabilities of arrival times, which have been both properly linked to the solution of suitable

parabolic (or sometimes elliptic) PDEs via the famous Feynman-Kac formula.

In the case of the left-to-right flow, we showed how the extension of the MLMCCV scheme was

particularly effective for approximating expected arrival times to the outlet; notice that in this

case, for each realization of the Darcy velocity, we had to solve a simple elliptic equation. We were

not able to directly extend this argument also to approximate probabilities related to the arrival

times; however, in this case, we proposed to still use the sparse grid interpolant of the arrival time

to conveniently generate samples for a MC-type estimator; this approximation contains a bias

proportional to the variance (with respect to all Brownian motion) of the arrival time, cf. (5.27),

which is small for small diffusions σ′.
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On the other hand, when considering the scenario with the extraction well, since in all cases the

realizations of our quantities of interest were always presenting sharp evolving fronts, the application

of sparse grid and MLMCCV strategies was unfeasible; we therefore resorted to a standard MLMC

scheme, however, with level dependent diffusion to improve the stability of the numerical DG

scheme on coarse levels, and compared the results obtained in terms of variance reduction with

a standard MLMC. Finally, we proposed also a streamline approach to tackle the problem of the

delineation of capture zones in the case of vanishing diffusion and infinite time horizon. Here

we used again a suitable sparse grid interpolant to efficiently obtain realizations of the indicator

function representing the points starting from which a particle either reaches the well or not.

In the last chapter we presented different scenarios and shown numerical results; yet, there are

still several open issues that will have to be properly addressed. One of the most important is

certainly a more rigorous investigation of the theoretical aspects and convergence properties of

the schemes so far available only for elliptic problems. We also proposed to use convenient MC

samplers to estimate the exit-probability in different scenarios: a rigorous analysis able to keep

track of the different sources of errors affecting this schemes should be performed. In this case

we should quantify and bound the interpolation error affecting the sampling as well as other error

terms discussed in Chapter 5, cf. (5.27), (5.38).
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