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Abstract
Photonic crystals (PhCs) are engineered nanostructures that enable an extraordinary
control over the flow of light. These structures can be fabricated out of common
semiconductors, are compatible with existing industrial fabrication technologies, and
are expected to play a major role in future devices integrating photonic circuits –
e.g. for telecommunications or in future quantum technologies. In this thesis, we
explore a wide range of properties of the most common class of PhCs, formed by a
lattice of circular holes in a semiconductor slab. To compute the electromagnetic
eigenmodes of a given structure, we use fast mode-expansion methods, which are
presented in detail here. The first application consists in a detailed analysis of the
effects of fabrication disorder on the PhC structures. It is by now well-known that
disorder is in many cases the limiting factor in device performance. Here, we shed
more light on its effects, by statistically comparing various designs for PhC cavities
with a high quality factor, and by analyzing the effect of irregular hole shapes on a PhC
waveguide. The second application presented here stems from the fact that PhCs are
in fact tremendously flexible, and their features are determined by a large number of
controllable parameters. This is on one hand a great advantage, but on the other a
great challenge when it comes to finding the optimal device for a given application. To
face this challenge, we have developed an automated optimization procedure, using a
global optimization algorithm for the exploration of an insightfully selected parameter
space. This was applied to various devices of interest, and inevitably resulted in a vast
improvement of their qualities. Specifically, we demonstrate various high-Q cavity
designs, and a slow-light coupled-cavity waveguide with extraordinary features. We
also present several experimental confirmations of the validity of our designs. Finally,
we discuss two domains in which PhCs (and our optimization procedure) can be
expected to play a major role. The first one is integrating quantum dots with the
goal of long-range, photon-assisted dot-dot coupling, with implications for quantum
information processing. We develop a semi-classical formalism, and analyze the
magnitude and attenuation length of this coupling in large PhC cavities, as well as in a
waveguide. The second outlook is in the field of topological photonics. We describe
an array of resonators, in which an effective gauge field for photons can be induced
through an appropriate time-periodic modulation of the resonant frequencies. This
results in a Quantum Hall effect for light, and, in a finite system, one-directional
edge states immune to fabrication disorder are predicted. We discuss the possibilities
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for a practical implementation, for which a PhC slab is among the most promising
platforms.

Keywords: Photonic crystals, High-Q cavities, Slow light, Mode-expansion methods,
Global optimization, Fabrication disorder, Quantum dots, Topological photonics, Light-
matter coupling, Non-linear optics
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Résumé
Les cristaux photoniques (CPh) sont des structures nano-fabriquées qui permettent
un contrôle sans précédent du flux de lumière. Ces structures peuvent être fabriquées
à partir de semi-conducteurs standards, sont compatibles avec les technologies de
fabrication industrielles existantes et devraient jouer un rôle important pour le déve-
loppement futur de circuits photoniques, par exemple pour les télécommunications
ou les technologies quantiques. Au long de cette thèse, nous explorons les propriétés
du type de CPh le plus populaire, formé d’un réseau d’orifices circulaires percés dans
une plaque de matériau semi-conducteur. Afin de calculer les modes électromagné-
tiques issus d’une telle structure, nous utilisons des méthodes numériques rapides,
faisant appel à une expansion sur une base optimale de modes électromagnétiques.
Ces méthodes sont présentées en détail. La première application est une analyse fine
de l’impact du désordre lié à la fabrication sur les CPh. Il est bien connu qu’un tel
désordre est souvent un facteur limitant pour les performances des structures. Ici,
nous élucidons l’impact de ces effets à l’aide d’une analyse statistique comparative
de différents modèles des cavités CPh à facteur de qualité (Q) élevé et en analysant
les conséquences de la présence de trous de formes irrégulières sur l’efficacité un
guide d’onde. Une deuxième application de notre méthode est rendue possible par
la grande flexibilité des CPh, dont les caractéristiques sont affectées par un grand
nombre des paramètres qui peuvent être finement contrôlés. Si d’un côté cette variété
constitue un avantage, d’autre part elle pose un grand défi pour l’optimisation de
ces structures en vue d’applications ciblées. Dans ce cadre, nous avons développé
une méthode d’optimisation automatisée, basée sur un algorithme d’optimisation
global pour l’exploration d’un espace des paramètres judicieusement choisis. Cette
méthode est appliquée à divers systèmes et conduit à une amélioration significative
de leurs propriétés. Plus spécifiquement, nous avons achevé une maximisation très
significative du facteur Q de plusieurs cavités optiques, ainsi qu’un guide d’onde à
cavités couplées propageant efficacement un flux de lumière ralentie (slow light). Nous
discutons également deux domaines d’applications pour lesquels les CPh (et notre
procédure d’optimisation) peuvent jouer un rôle majeur. Le premier est l’intégration
de boîtes quantiques, que peuvent être couplées à longue distance par l’intermédiaire
de la lumière, avec des implications directes pour le traitement quantique de l’infor-
mation. Nous développons un formalisme semi-classique, et analysons l’amplitude
et la longueur d’atténuation de ce couplage dans des longues cavités CPh ainsi que
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dans un guide d’onde. La deuxième perspective s’inscrit dans le domaine de la ‘photo-
nique topologique’. Nous proposons un réseau d’oscillateurs, dans lequel un champ
de jauge effectif pour les photons peut être induit par une modulation, périodique
dans le temps, des fréquences de résonance. Il en résulte un effet Hall quantique pour
la lumière, et dans un système fini, des états de surface résistants au désordre de fa-
brication sont attendus. Nous discutons la possibilités d’une réalisation pratique de
ce système topologique, pour laquelle les CPh semblent représenter une plate-forme
optimale.

Mots-clefs : Cristaux photoniques, Cavités à grand Q, Lumière ralentie, Méthodes
d’expansion de base, Optimisation globale, Désordre de fabrication, Boites quantiques,
Photonique topologique, Interaction lumière-matière, Optique non-linéaire
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Introduction

In 1987, two researchers independently published results that have since avalanched
into one of the most vigorously developing fields in optics and photonics. John [1]
demonstrated that light in certain dielectric lattices can exhibit behaviour reminiscent
of the localization of the electron wave-function in disordered crystals, first discussed
by Anderson [2]. Yablonovitch [3] demonstrated that periodic dielectric structures
modify the local density of states of optical modes, leading to, among other effects,
inhibited spontaneous emission. It was then quickly realized that both effects are just
scratching the surface of the vast possibilities for control of electromagnetic radiation
with dielectric lattices, and the study of Photonic Crystals (PhCs) began.

The defining characteristic of a photonic crystal is a periodic modulation of the dielec-
tric permittivity in at least one spatial dimension. The permittivity effectively acts in
a way analogous to the external potential in the Schrödinger equation, and thus, in
a PhC, the standard vocabulary of solid-state physics: Bloch momentum, Brillouin
zone, energy bands and band gaps, etc., becomes applicable. The possibility for a
full 3-dimensonal (3D) photonic band gap is a particularly striking feature of PhCs. A
structure with such a property can be viewed as a perfect mirror for the spectrum of
light with energy within the band gap. Furthermore, low-dimensional defects in the
lattice open states within the band gap that can be used for confining or guiding light,
which is widely explored for various applications.

As is often the case, nature is one step ahead of us. One way to create a colored sur-
face is through the use of pigments – molecules whose particular absorption and/or
reflection properties yield a given color. It turns out, however, that some of the most in-
tricate color patterns that we can think of are produced not through pigmentation, but
through photonic-crystal-like structures. Simply put, this means that a (quasi-) peri-
odic arrangement of an otherwise transparent material produces an interplay between
transmission and reflection (due to the band-gap effects) that results in sophisticated
color patterns. This is illustrated in Fig. 1, where we show the beautiful coloration of
an opal gemstone, a peacock feather, and a butterfly, as well as micro-graphs showing
the underlying sub-micrometer structures, through which the coloring can, at least
qualitatively, be understood. The spectrum of the reflected light is determined by,
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Figure 1: Gem-quality opal: photo in (a) and SEM micro-graph in (d); images from [4].
Peacock feather: photo in (b) and SEM image from [5] in (e). Papilio ulysses butterfly:
photo in (c) and STM micro-graph in (f) (length of scale bar: 2μm); images from [6].

among other parameters, the lattice constant, i.e. the length-scale of the periodicity.
Defects add an extra variation by trapping light of certain well-defined colors. The
possible realizations of such structural coloration are thus practically unlimited, which
is arguably not the case when using a restricted number of pigments.

The first proposals for experimental realizations of PhCs aimed at 3D structures with
omni-directional band gaps [7–9], but such structures remain challenging to fabricate
even today. In contrast, the availability of advanced silicon-chip fabrication technolo-
gies, perfected for the purposes of commercial electronics, served as an impetus for
the class of PhCs now known as photonic crystal slabs (or slab-PhCs). These devices
consist of a two-dimensional periodic pattern inscribed in a dielectric slab, with the
confinement in the third dimension provided by total internal reflection. While there
is no 3D band gap (the periodicity is in two dimensions only), a lot of fascinating – and
useful – features are still exhibited by such structures. The modeling, optimization,
and applications of slab-PhCs is thus the central topic of this thesis, which is organized
in the following manner.

Chapter 1 outlines the theory of photonic crystals in general and photonic crystal slabs
in particular, as well as their importance for applications. Cavities and waveguides,
and their important figures of merit, are introduced.

Chapter 2 presents the numerical methods used in the simulations within the subse-
quent chapters of this thesis. These include the guided-mode expansion, the Bloch-
mode expansion, and the finite-difference time-domain methods.
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Chapter 3 presents an analysis of the effect of fabrication disorder on the properties
of PhC cavities and waveguides. In many situations, this is the main limiting factor
determining all experimentally measured quantities. Quantifying the impact of imper-
fections is thus the first and most important step to understanding the experimental
limitations, and potentially overcoming them.

Chapter 4 demonstrates various device optimizations. A main focus is given to im-
proving the quality factor of a number of cavities in several different materials. A
global optimization algorithm is used to find the best configuration of a number of
experimentally accessible parameters. This has led to record-high quality factor values
both in theory and in practice. An optimization of a coupled-cavity waveguide is also
demonstrated and yields a record-high group index-bandwidth product – the main
figure of merit for slow-light applications.

Chapter 5 deals with an important potential application of PhCs: integrating quantum
dots for a solid-state quantum computation architecture. A semi-classical formal-
ism for treating a PhC-quantum dot system is outlined, and applied to the radiative
coupling of two dots in various structures. The potential for coupling at-a-distance
is analyzed, including fabrications imperfections which are once again the limiting
factor.

Chapter 6 presents a proposal for implementing the Quantum Hall effect for light in
an array of optical cavities using a dynamic modulation of the resonant frequencies.
First, a generic system is presented and its topological properties are studied. This
is followed by a discussion of possible experimental realizations, for which photonic
crystal slabs could once again prove to be the best platform.

A final remark is due. This thesis comprises results obtained in the last four years,
many of which have already been published in various scientific journals. Thus, in
some cases, the presentation here is adapted from the corresponding publications.
When this is the case, it is clearly stated in the introduction of the Sections, and our
collaborators are properly acknowledged. To help the reader in recognizing Sections
and Subsections with only minor changes from already published manuscripts, an
asterisk (*) is placed at the end of their titles. We note that care was taken for the whole
thesis to still be a coherent, well-organized read.
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1 Introduction to Photonic Crystals

This Chapter presents both a theoretical and a practical introduction to photonic crys-
tals. Light propagation in general and in a periodic medium in particular is discussed in
Section 1.1. The early proposals for photonic crystals are summarized in Section 1.2.1.
The specific class of photonic crystal slabs, which have gained significant popularity in
the last decade and are the main object of study of this thesis, is presented in Section
1.2.2. Finally, the two most important functional elements – waveguides and cavities –
are discussed in Section 1.3, and some important figures of merit like the group index,
Quality Factor (Q), and Mode Volume (V) are defined.

1.1 Theoretical preliminaries

The mathematics needed to describe light propagation in periodic structures is a
combination of Maxwell’s equations and the theory of Bloch states borrowed from
solid-state physics. An overview is presented below, while a detailed discussion and a
derivation of some intermediate steps can be found in e.g. Refs. [10, 11].

1.1.1 From Maxwell to Helmholtz

Classical electromagnetism in a material is fully contained within the four Maxwell
equations, which, in their most general formulation, read

∇ ·D = ρ, ∇ ·B = 0, (1.1)

∇×E = −∂B
∂t
, ∇×H = J+

∂D

∂t
,

where E is the electric field, D is the displacement field, H is the magnetic field, and
B is the magnetic induction. For the study of photonic crystals, several simplifying
assumptions can be made from the very start. First, we assume no free charges (ρ = 0)
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Chapter 1. Introduction to Photonic Crystals

and currents (J = 0), i.e. we look at light propagation and neglect the sources. We also
assume a non-magnetic medium in which B = μ0H, with μ0 the vacuum permeability,
which is true for a wide range of semiconductors. For the displacement field (in a
macroscopic material with no birefringence), we have

Di = ε0ε(r, ω)Ei + ε0
∑
j,k

χ
(2)
ijk(r, ω)EjEk +O(E3), (1.2)

with ε(r, ω) the relative dielectric permittivity and χ(2) the second-order susceptibility
tensor (higher orders enter in the O(E3) terms). The dependence of ε on the angular
frequency ω, i.e. the material dispersion, can be neglected if we consider a narrow
interval around some ω0 and set ε(r) appropriately for that frequency. The limit of
small electric field magnitude and/or small susceptibility (as compared to ε), in which
all but the first terms of eq. (1.2) can be neglected, is the linear-response limit. While
this is usually fulfilled in the structures we study here, most applications rely on the
presence of the non-linear second- and/or higher-order terms in eq. (1.2). In fact,
enhancing these effects is one of the major goals of this thesis. Fortunately, they can
typically be analyzed in a perturbative sense after the linear-response modes of a
structure are found.

With the assumptions enumerated thus far, the Maxwell equations simplify to

∇ · [ε(r)E] = 0, ∇ ·H = 0, (1.3)

∇×E+ μ0
∂H

∂t
= 0, ∇×H− ε0ε(r)

∂E

∂t
= 0,

where the E and H fields depend on (r, t). The spatial and temporal dependences are,
however, separable, and, since there are no time-dependent terms, any solution is a
superposition of harmonic modes that oscillate at a given frequency:

H(r, t) = H(r)e−iωt, E(r, t) = E(r)e−iωt. (1.4)

With this final consideration, the original problem starting with the Maxwell equations
is reduced to finding all solutions of the Helmholtz equation for the magnetic field:

∇×
(

1

ε(r)
∇×H(r)

)
=

(ω
c

)2
H(r), (1.5)

with c the speed of light in vacuum. This is the starting point for all simulations in the
chapters to follow. The electric field corresponding to a solution of eq. (1.5) can be
obtained through

E(r) =
i

ωε0ε(r)
∇×H(r). (1.6)
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1.1. Theoretical preliminaries

1.1.2 Eigenvalue problem

Equation (1.5) looks like an eigenvalue problem: some operator acting on the mag-
netic field yields a constant times this same magnetic field. As we will see, the eigen-
decomposition is a useful tool for finding allowed solutions of a system, and also reveals
the similarities between electromagnetism and single-particle quantum mechanics.
First, we define an inner product

(Hμ,Hν) =

∫
H∗

μ ·Hνdr, (1.7)

which turns the vector space of {H(r)} – i.e. the set of all functions from R
3 to C

3 –
into a Hilbert space. In this space, eq. (1.5) is defined as finding the eigenmodes of the
linear operator

Θ̂ • ≡ ∇×
(

1

ε(r)
∇× •

)
. (1.8)

This the can be shown [11] to be Hermitian, i.e. (Θ̂Hμ,Hν) = (Hμ, Θ̂Hν), as well
as positive semi-definite, which means that all the eigenvalues (ω/c)2 are real and
positive, as needed if ω is to be interpreted as the frequency of light. In addition, two
modes Hμ and Hν that correspond to frequencies ωμ �= ων are orthogonal, in the sense
that (Hμ,Hν) = 0. Furthermore, if there is a number of degenerate modes at a given
frequency, a finite set of those can be chosen such that the elements are all orthogonal
to each other, and span the sub-space of solutions at that frequency. Finally, we note
that the equation Θ̂H(r) = (ω2/c2)H(r) is strongly reminiscent of the Schrödinger
equation of Quantum Mechanics, ĤΨ(r) = EΨ(r), where the same considerations
enumerated here hold and are commonly employed.

1.1.3 Bloch’s theorem

For an exhaustive discussion of the theory outlined in this section, we refer the reader
to chapters 1, 2, 9, and 10 of [12] and/or chapters 4, 5 and 7 of [13].

If the operator Θ̂ has spatial periodicity such that Θ̂(r) = Θ̂(r+R) for any r and some
R, then the Bloch theorem can be applied. In particular, the translation operator T̂R,
which acts as T̂RH(r) = H(r+R), commutes with the operator Θ̂, and so the two can
be diagonalized simultaneously:

Θ̂H = (ω2/c2)H; T̂RH = c(R)H. (1.9)

In addition, solutions to eq. (1.5) have an extra conserved quantum number, apart
from the frequency ω. A short explanation is due: the term ‘quantum number’ here is
used only due to the analogy with quantum mechanics; we are fully in the domain of
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Chapter 1. Introduction to Photonic Crystals

classical electromagnetism, but the resulting wave equation is conceptually similar
to the single-particle Schrödinger equation. An important difference is that in the
latter, only normalized solutions are physical, while in our case arbitrary amplitudes
are allowed. However, all symmetry considerations that are standard in quantum
mechanics also hold here, and in particular - Bloch’s theorem, which is a consequence
of the discrete translation symmetry. The theorem states that the eigenvalue of the
translation operator in eq. (1.9) can be written as c(R) = exp(ikR), where the Bloch
momentum k is a conserved quantity (the quantum number). Alternatively this means
that a solution to eq. (1.5) can be written as

H(r) = exp(ikr)u(r), (1.10)

with u(r) a function periodic with R. In our discussion to follow, we will not always
have periodicity of Θ̂ in all three spatial dimensions; it is thus convenient to re-state
the theorem for a single spatial dimension in which periodicity is present. Assume that
ε(x, y, z) = ε(x+ x0, y, z) for all x and some x0 (thus enforcing the same periodicity on
Θ̂). Then, any solution to eq. (1.5) can be written as a Bloch state:

H(x, y, z) = exp(ikxx)ukx(x, y, z), (1.11)

where ukx(x, y, z) = ukx(x + x0, y, z). Written in this form, it is easy to extract an
important consequence of Bloch’s theorem: the system is fully described by values of
kx within a finite region. In particular, assume −π/x0 < kx < π/x0, and Gx = nx2π/x0,
with nx an integer. Then, any Bloch state of momentum kx +Gx is given by

H(r) = exp(ikxx)[exp(iGxx)ukx(r)] = exp(ikxx)ũ(r), (1.12)

where we used the fact that exp(iGxx) is x0−periodic to absorb it into a new function
ũ that has the required properties for a Bloch state. The interval −π/x0 < kx < π/x0 is
called the Brillouin Zone (BZ) of the crystal.

In dimensions higher than one, a Brillouin zone (a subspace of k-values which is
the minimum needed to fully describe the system) can also be defined through the
notions of a Bravais lattice and a reciprocal lattice, and of a Wigner-Seitz cell. Any
three-dimensional periodicity can be represented in terms of three primitive vectors
(a1, a2,a3), taken with the smallest possible norm in the three (not necessarily orthog-
onal) directions in which the structure is periodic. The latter clarification is needed
since, if a function is periodic with ai, it is also periodic with any integer multiple of
ai. In fact, starting from the set (a1, a2,a3), the set of all points at positions R such
that R = n1a1 + n2a2 + n3a3 for integer n1, n2, n3, is called the Bravais lattice of the
crystal. The importance of this is that the crystal can be fully described by a single,
finite primitive cell that is repeated in all directions, always centred at a Bravais lattice
site. The primitive cell, or the Wigner-Seitz cell, is constructed such that it contains
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1.1. Theoretical preliminaries

Figure 1.1: Wigner-Seitz cells in two dimensions. Rectangular lattice in (a) – real space,
and (b) – reciprocal space. Triangular lattice in (c) – real space and (d) – reciprocal
space. The primitive vectors are also shown, and the Wigner-Seitz (or ‘primitive’) cell
is shaded in orange.

only one lattice site and has the smallest volume such that, when repeated, it spans
all space. The construction is illustrated in Fig. 1.1(a) and (c), in two dimensions for
clarity. Starting from a lattice site, a line is drawn to each of the neighbouring lattice
sites; then, a plane orthogonal to each line and passing through its centre is drawn,
and the volume enclosed within the crossing planes is the primitive cell. Due to its
periodicity, the function u(r) appearing in eq. (1.10) only needs to be computed within
this restricted domain.

The space of crystal momenta k – which has the same dimensionality as that of the
real-space periodicity – is called the reciprocal space. We can also define a lattice in
this space – the reciprocal lattice – with primitive vectors bj such that aibj = 2πδij .
The Wigner-Seitz cell of the reciprocal lattice, shown in Fig. 1.1(b) and (d) for the 2D
lattices of (a) and (d) respectively, is then the Brillouin zone of the crystal, which has
the significance mentioned above: the Bloch momentum k can be restricted to within
this region only.

We conclude this section with a few more definitions: the dependence of the frequency
of a Bloch state on the momentum, i.e. the function ω(k), is called the dispersion
relation. A plot of the dispersion (of all of the allowed states) for k within the Brillouin
zone is called the band diagram. A sub-interval of the ω-axis for which no state is
supported by the structure for any k is called a band gap. For easier visualization of the
band diagram in 2D and 3D, a 1D path in k-space traversing all high-symmetry points
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Chapter 1. Introduction to Photonic Crystals

Figure 1.2: Photonic band structure of the diamond lattice of air spheres in a dielectric
medium of permittivity ε = 13. Reprinted from [11].

can be chosen such that a band gap appearing in this representation is guaranteed to
hold for any other momentum (see [12, 13], and also Fig. 1.2).

1.2 Photonic crystals

1.2.1 In 3 dimensions

Discovering a periodic dielectric medium with a complete, 3D band gap was the main
goal of early photonic crystal research. The first theoretical proposal came from Ho
and colleagues [14] in 1990, who simulated the band diagram of a structure composed
of a diamond lattice of air spheres embedded in a dielectric material. As shown in Fig.
1.2, a wide band gap is opened for a relative permittivity ε = 13 of the dielectric, which
is a value similar to the one of some commonly used semiconductors, like Silicon
(Si) or Gallium Arsenide (GaAs). Unfortunately, despite 25 years of improvement
of our nanofabrication techniques, such a structure with a band gap centred in the
visible or the Near Infra-red (NIR) spectrum remains outside the domain of what is
experimentally feasible.

To fit within the boundaries imposed by fabrication technologies, in 1991 Yablonovitch
et al. [7] proposed a clever design that resulted in the first experimentally measured
photonic band gap. The material, now dubbed ‘Yablonovite’, is made starting from
a dielectric slab, in which cylindrical holes at three different angles are drilled in a
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1.2. Photonic crystals

Figure 1.3: (a): The fabrication proposed by Yablonovitch and colleagues; image
reprinted from the original paper [7]. (b): Photonic band structure of the material,
reprinted from [11].

periodic manner as shown in Fig. 1.3(a). This results in a 3D structure that can be
thought of as a face-centered cubic lattice of non-circular air ‘atoms’. The structure
presents an omni-dicrectional band gap (Fig. 1.3(b)), which was also observed in
experiment [7].

A number of other 3D photonic crystal implementations have since been realized in
practice. These include (but are not limited to) self-assembled colloidal or ‘inverse
opal’ crystals [15–18], woodpile [8,9,19,20] and inverse woodpile [9,21,22] crystals, and
stacked 2D crystals [23, 24]. These all represent important conceptual developments
that have extremely high potential for applications due to their 3D band gaps. Thus
far, however, they all share the same disadvantage of being challenging to fabricate, in
particular in a manner that is scalable and easy to integrate in existing technologies.
For this reason, the class of PhCs that is currently most widely investigated in view of
applications is that of photonic crystal slabs, which we introduce in the subsequent
Section (1.2.2).

1.2.2 In dielectric slabs

The idea of slab-PhCs is based on the fact that a planar layer (i.e. a ‘slab’) of a dielectric
material can confine light due to total internal reflection, as illustrated in Fig. 1.4(a). In
the Figure, we label by d the thickness of the slab, and by ε its dielectric permittivity,
which is related to another commonly used material constant, the refractive index
n, through ε = n2. In this system, the solutions of eq. (1.5) can be characterized by
their in-plane momentum k||, which is a conserved quantity due to the continuous 2D
translation symmetry. The energy spectrum of modes supported by the slab versus this
in-plane momentum is plotted in panel (b). For a given k|| (notice we only consider
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Chapter 1. Introduction to Photonic Crystals

Figure 1.4: (a): A dielectric slab of thickness d and permittivity ε acts as a planar
waveguide due to total internal reflection. (b): Dispersion with respect to the in-plane
momentum k||. Discrete, guided solutions exist in the region between ω = ck|| and
ω = ck||/n, while a continuum of solutions exists in the ‘light cone’ above ω = ck||,
where kz is real and the modes are not confined inside the slab.

the magnitude of the vector k|| since the system is isotropic), there is a solution at any
frequency ω larger than ck||. This region of the dispersion diagram is called the light
cone, because the corresponding modes are not truly confined inside the slab, but
are instead propagating above or below it, with a momentum in the vertical direction
given by kz =

√
ω2/c2 − k2||. In contrast, below the light line ω = ck||, only a discrete

number of modes is allowed, and those are truly guided inside the slab, in the sense
that they are exponentially decaying (evanescent) above and below it (the formula
for kz still holds, but it yields an imaginary value whose magnitude is the exponential
decay length). In the asymptotic limit k|| → ∞, all the discrete guided bands tend to
ω = ck||/n. Below that line, no solutions are permitted.

The modes in 1.4(b) are classified based on their parity with respect to reflection
in the xy-plane, as well as with their being Transverse Electric (TE) or Transverse
Magnetic (TM) [25]. There is a bit of confusion that may arise here, so we discuss
the underlying symmetries in more detail. In general, if the operator Θ̂ is invariant
under a transformation Ô, i.e. if Ô−1Θ̂Ô = Θ̂, then Ô is called a symmetry of the
system, and the eigenvectors of Θ̂ are also eigenvectors of Ô, and can be classified
by their corresponding eigenvalue. This argument was already used to introduce the
momentum k, which is a conserved quantity due to the translational symmetry. Now
we look at the specific case where Ô represents mirror reflection with respect to a plane.
This operation is unitary (reflecting twice brings back the initial state), and so the
possible eigenvalues are ±1. A small technicality worth noting is that under reflections,
the electric field transforms as a vector, Ô(E(r)) = (ÔE)(Ô−1r), while the magnetic
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1.2. Photonic crystals

Figure 1.5: (a): Cross-section of a dielectric slab as in Fig. 1.4(a). (b)-(e): Spatial
dependence in the z-direction of the in-plane electric and magnetic field components
for the four possible guided band symmetries (Fig. 1.4(b)), assuming a wave-vector k‖
in the y-direction (orthogonal to x and z in panel (a)). (b): σxy = 1, TE (σyz = −1); (c):
σxy = −1, TM (σyz = 1); (d): σxy = 1, TM (σyz = 1); (e): σxy = −1, TE (σyz = −1).

field transforms as a pseudo-vector: Ô(H(r)) = −(ÔH)(Ô−1r) (see e.g. Chapter 6
of [26]). Nevertheless, if σ = ±1 is the eigenvalue of a particular eigenstate, it has a
global meaning in the sense that Ô(H(r)) = σH(r), Ô(E(r)) = σE(r). Now, let E⊥
and E‖ denote the electric field components that are respectively perpendicular and
parallel to the reflection plane, and same with H⊥ and H‖ for the magnetic field. It is
then straightforward to see that for σ = 1 modes, both E⊥ and H‖ must vanish on the
plane, and, similarly, for σ = −1 modes, both H⊥ and E‖ must vanish on the plane.

In the case of a two-dimensional system (e.g. with no z-dependence of ε, E, H), there
is a symmetry with respect to reflection in the xy-plane (we denote the reflection
operator σ̂xy). Thus, the modes can be classified through their parity, and the ones with
σxy = 1 have zero electric field in the z direction, while the ones with σxy = −1 have
a vanishing Hz component. The former case corresponds to electric field transverse
to the reflection plane and so the modes are often called TE, while in the latter case
the magnetic field is transverse, hence the label TM. In the case of the slab geometry,
however, the σxy and the TE/TM classifications no longer match. In particular, in this
3D system, the reflection in the xy-plane is only a symmetry for the plane at z = 0 (the
one bisecting the slab, see Fig. 1.5(a)), and so it is only in that plane that Ez or Hz must
vanish; they can be non-zero at any point which is not in the center of the slab. On the
other hand, there is another reflection symmetry in the system – with respect to the k‖z
plane for a mode of in-plane momentum k‖. Assuming without loss of generality that
this momentum is along y (Fig 1.5(a)), we see that modes with σyz = 1 have zero Hy

and Hz everywhere. The only non-zero component is Hx, and such modes can thus
be appropriately called TM. It must be kept in mind, however, that the E-field can also
have an in-plane component (Ex vanishes, but notEy). Similarly, modes with σyz = −1

can only have an electric field along x and are thus TE, even though, again, Hy is not
necessarily zero. In Fig. 1.4(b), modes of eigenvalue +1 of the reflection operator σ̂xy
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Chapter 1. Introduction to Photonic Crystals

Figure 1.6: (a): Example of a photonic crystal slab consisting of a hexagonal lattice of
pitch a of circular air-holes of radiusR in a slab of some dielectric material of thickness
d. The 2D primitive cell of the crystal is highlighted in orange. (b) (Reprinted from [11]):
band diagram for in-plane propagating modes. Red lines show σxy = +1 modes, while
blue lines: σxy = −1.

are plotted with solid lines, while modes of eigenvalue −1 are plotted with dashed lines.
In addition, TE modes are plotted in blue, while TM modes are plotted in red.

To further illustrate the important distinction between the two classifications, in Fig.
1.5(b)-(e) we show the z-dependence of the magnetic and electric field components in
the plane of the slab, for the four possible combinations of symmetry eigenvalues. The
TE/TM classification now comes from the σyz symmetry (assuming k‖ along y), and
not from the σxy one. Panels (d) and (e) are of particular interest, since they illustrate
the two cases which are not possible in a 2D geometry: σxy = 1, TM, and σxy = −1, TE.
Generally, TE modes have zero Ez everywhere, while σxy = 1 modes have zero Ez on
the z = 0 plane; the analogous holds true for TM, σxy = −1, and Hz.

Based on the discrete, confined modes of the slab, we can introduce a 2D-periodic
modulation of the permittivity ε(ρ), where ρ = (x, y), with the aim of creating a band
gap, in the spirit of our discussion of Bloch states in section 1.1.3. The presence of
the light cone – the region where total internal reflection ‘fails’ – means that it is not
possible to have a complete band gap, but as we will see throughout this thesis, even
a partial one is sufficient for a wide variety of applications. An example of such a
photonic crystal slab is shown in Fig. 1.6(a), where air-holes of radiusR are made in the
dielectric in a periodic fashion. In this example, the holes form a 2D triangular lattice,
and we call the separation between nearest-neighbor holes the lattice pitch or lattice
constant, labelled by a in the Figure. The in-plane band diagram for this structure is
shown in panel (b), where Γ, M and K on the x-axis refer to the high-symmetry points
of the 2D Brillouin zone shown as an inset to the Figure. Notice that the frequency is
inversely proportional to a, which highlights an important feature of PhCs in general:
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their properties are spectrally tunable through a re-scaling of all lengths. This is why,
throughout this thesis, quantities will often be given in units of a and a/c, with c the
speed of light in vacuum.

Another important clarification about the symmetry is due. In a slab-PhC, the σ̂xy
symmetry is preserved, while the TE/TM one is generally broken by the lattice of holes.
Thus, in Fig. 1.6(b), the modes are classified only with respect to their σxy eigenvalue:
modes in red have σxy = 1, while modes in blue have σxy = −1. However, the TE/TM
analogy is often carried over especially for the low-energy modes, which are commonly
called quasi-TE or TE-like for σxy = 1, and quasi-TM or TM-like for σxy = −1. This
classification is not rigorous but still commonplace, as it is valid in the limit of very
low frequencies. Indeed, in Fig. 1.4(b) we see that the two lowest bands of the slab
are σxy = 1, TE, and σxy = −1, TM, respectively. It is however important to keep in
mind that for higher energies – or for thicker slabs – the TE/TM notation becomes
inappropriate in a slab-PhC, while the σxy classification still holds.

In a PhC slab as in Fig. 1.6(a), a partial band gap is opened for the positive-symmetry
(σxy = 1) modes (Fig. 1.6(b)), which is sufficient for many applications. Because of
that, the hexagonal lattice of circular holes has become ubiquitous in slab-PhCs, and
is the basic structure underlying all of the devices presented in this thesis.

1.3 Building blocks for applications

The potential applications of slab-PhCs are multifold, beginning with improving the
quality of telecommunication devices for example through novel laser technologies [27–
33] and all-optical computational paradigms (both optical switching [34] and optical
RAM memory [35, 36] have already been experimentally demonstrated). They can
also be used for biochemical sensing in lab-on-chip devices [37–40]. In the quantum
domain, PhC slabs can be employed for non-classical light generation [41–46], cavity
quantum electrodynamics experiments [47–49] and, ultimately, quantum computation
paradigms [50]. There are two functional elements that are ubiquitous for all these
applications: waveguides, in which light propagates in a controlled manner, and
cavities, in which light stays confined for a certain amount of time.

It is well-known that defects in the crystal structure of a band-gap material introduce
states with energies inside the band gap, which are localized in the region of the
defects (see e.g. Chapter 19 of [12] and Chapter 30 of [13]). In the case of photonic
crystals, the underlying lattice is nano-fabricated, which yields a great amount of
control, including the possibility to deliberately introduce lattice ‘defects’, which in
fact become functional elements. Below we review how, based on that principle,
waveguides and cavities can be fabricated in the PhC-slab platform.
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Figure 1.7: (a): Example of a photonic crystal waveguide consisting of a row of missing
holes in a slab-PhC as the one illustrated in Fig. 1.6(a). (b): Dispersion of modes with a
k–vector in the direction of the missing row of holes. The modes marked in black are
delocalized along the entire PhC, while the two bands marked in red and blue consist
of modes ‘guided’ within the missing-hole region. The electric field amplitude of the
mode marked by a cross is shown in the inset to panel (a).

1.3.1 Waveguides

Starting from a PhC with a (partial) band gap as the one of Fig. 1.6(a), guiding of light
can be achieved through a one-dimensional ‘defect’ in the lattice of holes. An example
is illustrated in Fig. 1.7(a) in the form of a PhC with a row of ‘missing’ holes. The
structure now has only 1D-periodicity – along the direction of the missing row. The
band diagram for modes of momentum pointing in this direction (and with σxy = 1)
is illustrated in Fig. 1.7(b); two ‘guided’ bands (marked blue and red) appear in the
spectral region where the band gap of the underlying 2D-PhC lies. Modes in those
bands are localized close to the defect region, as illustrated in the inset of panel (a). The
two bands have opposite parity with respect to reflection in the kz-plane bisecting the
defect; the symmetry eigenvalue is given in the legend of panel (b). In that panel, the
boundary of the light cone of the structure is also shown. Importantly, modes above
that line propagate within the defect region but also in the direction orthogonal to
the slab and are thus leaky or lossy, while the modes below that line are fully confined
within the slab, and thus truly guided.

Photonic crystal waveguides are of particular interest in terms of slow-light propa-
gation. ‘Slowing down’ light is one of the possible ways to increase the optical non-
linearities arising from the light-matter interaction. This is desirable for a variety of
applications [51, 52]. Slow light can be used, for example, for non-linear frequency
conversion for classical [53–55] and quantum [45, 46, 56] applications, in buffers for
optical memories (both for classical and quantum bits) [57, 58], and for radiative cou-
pling between distant quantum dots for solid-state quantum computation [50, 59, 60].
The speed of light can be modified through the material dispersion, since the group
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velocity (the velocity of energy transport) is given by vg = dω/dk, for a dispersion
relation ω(k). Close to band-edge resonances in periodic photonic structures, this
can then be made arbitrarily small in theory, since at the high-symmetry points, the
derivative of the dispersion vanishes. Guided modes close to the kxa = π point in Fig.
1.7(b)) thus have exceptional qualities: on one hand, they are below the light line, thus
lossless. On the other, the group index ng = c/vg, which is the most important figure of
merit for slow light, is arbitrarily large.

In practice, these exceptional features of PhC waveguides are somewhat limited due to
the inevitable imperfections resulting from the fabrication process. The phenomenol-
ogy of light transport in (disordered) waveguides is very similar to the one of electron
transport in a conducting medium, and analogous vocabulary is often used. For exam-
ple, disorder can be thought of as introducing scattering events, with an associated
mean scattering length Ls. For any given waveguide length Lw we can then distinguish
the regime of ballistic propagation, when the magnitude of the imperfections is suf-
ficiently low, so that Ls > Lw. In that regime it is meaningful to talk about transport,
and the group index ng is well-defined. With increasing disorder, the transmission
at the end of the device drops as light is scattered more and more strongly in non-
guided modes, or modes guided in the opposite direction. In this high-disorder limit,
Anderson localization of light is predicted and observed [1, 61–65], meaning that the
eigenmodes of the system become localized along a finite length of the device, given
by a characteristic decay length Ll. Within this regime, the group index ng is no longer
meaningful, since the dispersion is degraded and in fact the Bloch momentum is no
longer a conserved quantity. Instead, the eigenmodes have multiple k-components
that yield the spatial localization. The resulting sharp drop in transmission is some-
times referred to as back-scattering, but we note that the Anderson-localization analogy
paints a more comprehensive picture of the effect.

The mean scattering length as well as the averaged decay length depend not only on
the disorder magnitude, but also on ng, and decrease with increasing group index.
As mentioned above, ng goes to infinity at the kxa = π point of the PhC waveguide
dispersion, but, in a real device, disorder limits the maximum group index for which
we can meaningfully talk about energy transport. In addition, the imperfections also
introduce scattering to modes inside the light cone (radiating outside of the slab),
which makes all modes lossy. These effects are often the determining factor for the
quality of state-of-the-art PhC devices, and are discussed in detail in Chapters 3 and
5 of this thesis. To conclude our discussion here, it is anyway worth noting that in
PhC waveguides similar to the one of Fig. 1.7, exceptionally high values of ng ≈ 100

have already been measured [66]. In other words, the propagation of light could be
slowed down by a factor of 100 as compared to propagation in vacuum simply by using
a properly designed piece of a dielectric, which is indeed a remarkable result.
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Chapter 1. Introduction to Photonic Crystals

Figure 1.8: (a): Example of a photonic crystal cavity consisting of three missing holes
in a PhC slab. (b): Magnitude of the y-component of the electric field |Ey| of the
fundamental mode of the cavity.

1.3.2 Cavities

By introducing a localized defect (aka a point defect or a 0D defect), an optical cavity,
also called an optical resonator, can be made in the slab-PhC. This is illustrated in Fig.
1.8, where the cavity is made by three missing holes in the lattice. In panel (b), we plot
the electric field profile in the xy-plane bisecting the slab, for the mode with the lowest
energy inside the photonic band gap (the fundamental mode). As can be seen, the
electric field is fully confined within the defect region. This is analogous to placing two
mirrors opposite each other: light in the intermediate region oscillates between the
mirrors, but stays confined in a finite space. Here, the ‘reflection’ is due to the photonic
band gap, and the light is confined in an impressively small region of space.

An optical cavity has no translational symmetry and thus the momentum k is not a
conserved quantity. Unlike the structures we considered so far, where we always had
continuous dispersion, the modes of a cavity are discrete, i.e. they have a certain well-
defined resonance frequency. In addition, light confined in the cavity only stays there a
finite amount of time (the cavity is inevitably lossy). Calling the resonant frequency ω0

and the lifetime τ , the electric field of a cavity mode evolves in time as

Ec(r, t) = E0(r)e
−iω0t−t/τ , (1.13)

i.e. the phase of the electric field rotates with a frequency ω0, while the field amplitude
|Ec| decays with a half-life τ (it decreases by a factor of 1/e after time τ ). One can also
define the loss rate κ = 2/τ , which has the units of frequency, as well as the complex
frequency ωc = ω0 − iκ/2, so that the electric field evolution is simply given by

Ec(r, t) = E0(r)e
−iωct. (1.14)

This particular definition of κ is commonly chosen, since the intensity of the electric
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field |Ec|2 is what is actually measured in experiments, and this decays with a lifetime
of τ/2 – thus κ represents the physically observable loss rate. In some texts, however,
the decay rate is defined as simply 1/τ , so caution is advised. With our definition of ωc,
the Fourier transform in time of the electric field has a square amplitude given by a
Lorentzian distribution,

F(ω) ∝ κ/2

(ω − ω0)2 + (κ/2)2
. (1.15)

Experimentally, this is proportional to the measured spectrum of the light emitted from
the cavity, thus κ also has the meaning of the Full Width at Half Maximum (FWHM) of
a measured spectral peak.

We can also define the dimensionless quantity Q = ω0/κ to describe the losses of the
cavity. This widely used parameter is known as the quality factor. It has a straightfor-
ward physical interpretation as the number of oscillations of the electric field inside
the cavity before its amplitude decays by a certain factor (e−π). In addition,Q is related
to the power P of the radiative losses and the energy U stored in the cavity through

Q =
ω0U

P
. (1.16)

As the name suggests, there is a fair amount of correlation between the Q of a cavity
and its quality in terms of practical applications. This is why in Chapter 4 significant
attention is directed towards maximizing the Q of various cavity designs.

Another important figure of merit of a cavity is the effective mode volume. This quanti-
fies the degree of electric field confinement, and can in some cases differ significantly
from the physical size of the cavity. There are actually several different definitions of
the mode volume stemming from different practical considerations. One of the most
common of those is derived with respect to the Purcell enhancement of the emission of
a point emitter placed in the maximum of the electric field of the cavity mode [67, 68],
and reads:

V1 =

∫
ε(r)|E(r)|2dr

max [ε(r)|E(r)|2] , (1.17)

where the integration is over all space. Other definitions are better suited for discussing
effects stemming from the non-linear light-matter interaction in the dielectric (i.e.
from the susceptibility χ, see eq. (1.2)) [69, 70]. The mode volume relevant to the Kerr
effect or to two-photon absorption is

V2 =
(
∫
ε(r)|E(r)|2dr)2∫
(ε(r)|E(r)|2)2dr . (1.18)

This definition is reminiscent of the Inverse Participation Number (IPN) in Quantum
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Mechanics, and is thus also useful when studying Anderson localization of light [1,
61–63]. For other non-linear effects, like free-carrier absorption and dispersion, yet
another definition is appropriate:

V3 =
(
∫
ε(r)|E(r)|2dr)3∫
(ε(r)|E(r)|2)3dr . (1.19)

There are numerous possible applications of cavities in the field of non-linear optics,
each with its own, sometimes complicated, dependence on the cavity quality factor
and mode volume. The figures of merit, however, typically increase with Q and de-
crease with V . We give a few examples: the Purcell enhancement factor is proportional
to Q/V1, while the cavity-emitter coupling coefficient for cavity Quantum Electrody-
namics (QED) is proportional to Q/

√
V1 [68]. Furthermore, the refractive index change

due to the accumulation of electromagnetic energy in the cavity is (roughly) propor-
tional to Q/V2 in the case of the Kerr effect, and to (Q/V3)

2 in the case of free-carrier
dispersion [69, 70]. This refractive index change (as well as the cavity-emitter coupling
in cavity-QED) can be used for example for optical switching.

Photonic crystal cavities typically have the smallest mode volumes (regardless of the
definition) when compared to any other cavities in a dielectric material. In fact, the
values are often of the order of (λ/n)3, with λ the resonant wavelength and n the
refractive index, which is the diffraction limit imposed by the wave nature of light.
This, together with the possibility for very high Q-values that we will demonstrate in
this thesis makes them attractive as functional elements for a variety of applications.
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2 Numerical Simulation of Photonic
Crystals

In this Chapter we describe the numerical tools that were used in this thesis for the
simulation of PhC structures. In Section 2.1, we give a general outline of the Finite-
difference Time-domain (FDTD) method, which is a numerical integration of Maxwell’s
equations over a discretized mesh in space and time. This method is sometimes
expensive in terms of computational time, but provides a first-principle solution that is
useful for validating the results of the mode-expansion methods that are presented in
the subsequent Sections and used throughout this thesis. The Plane-wave Expansion
(PWE), which is very robust and can be applied to any periodic structure, is outlined in
Section 2.2. Another method based on a similar idea – the Guided-mode Expansion
(GME) – is presented in Section 2.3. The application of this method is restricted to PhC
slabs only, but it has a significant advantage in the required computational time, and
is thus the method of choice for most of the simulations in the subsequent Chapters.
Because of that, we also discuss some practical aspects like convergence versus relevant
computational parameters. In Section 2.4, we present yet another related method,
the Bloch-mode Expansion (BME), which is particularly useful for analyzing disorder
effects in 1D-periodic structures.

2.1 Finite-difference time-domain

The most conceptually straightforward way to solve any differential equation is by
approximating space and time by a discrete uniform grid, and derivatives by e.g.

∂f

∂x
(xn) ≈

f(xn+1)− f(xn−1)

2Δx
, (2.1)

with f(x) some function, xn the discrete points in space and Δx the grid spacing.
Time derivatives can be approximated in an analogous way. Computational methods
employing this idea are generally called finite-difference, for obvious reasons. The
finite-difference time-domain method for solving Maxwell’s equations then simply
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consists in evolving Maxwell’s equations (1.1) in time, using a discrete mesh in both
space and time, and starting with some (usually time-dependent) current source
J(t). Both static and dynamic properties of a structure can then be inferred from the
simulated electric and magnetic field evolution.

Of course, there are numerous technicalities when it comes to stability and conver-
gence of the simulation [71]. The mesh in space has to be sufficiently fine to capture the
features of the system. For stability, the step in time Δt has to decrease proportionally
to the spatial step Δx, thus the computational time for a 3D structure typically scales
with the fourth power of the linear resolution. Furthermore, for faster convergence
it is better to compute the electric and magnetic fields at slightly different positions
within a grid cell, using the so-called Yee grid [72]. The propagation in time can also
benefit from a similar trick, and the electric and magnetic fields are usually computed
at half-steps, e.g. the E-field at time t is computed through the E-field at time t−Δt

and the H-field at time t − Δt/2. Eigenmodes of a system appear as resonances in
the Fourier transform of the time-dependent fields taken after the current sources
J(t) have decayed. The quality factor of localized modes can also be computed if an
exponential decay of the fields with time can be extrapolated (cf. eq. (1.13)).

For a comprehensive presentation of the method and all the associated technicalities,
the reader is referred to e.g. Ref. [71]. There are several sophisticated FDTD solvers
which are publicly available for free (e.g. MEEP [73]) or commercially (e.g. Lumerical
solutions [74]). Here, we use those as black-box solvers, mostly for verifying the results
of the GME and BME methods presented below. While very powerful and usually
robust, one major disadvantage of the FDTD method is that the computational time
needed to obtain the quality factor of a cavity mode increases with increasing Q, since
the simulation has to be evolved longer in time for the decay constant to be reliably
extracted. This requires simulation times of the order of ten hours or more on a modern
CPU for ultra-high-Q cavities (Q > 106), which hinders the possibility for exploration of
new cavity designs. This challenge can be tackled using some of the methods presented
below.

2.2 Plane-wave expansion

The PWE is essentially a Fourier series expansion. For a periodic structure with recip-
rocal lattice vectors G, we can expand a solution of eq. (1.5) of Bloch momentum k as

Hk(r) =
∑
G

ck(G)eiGr. (2.2)

The viability of this expansion is guaranteed by the fact that the plane-wave functions
eiGr span the Hilbert space of complex-valued, periodic functions over R3 (i.e. they
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Figure 2.1: (a): The modes of a photonic crystal slab as in Fig. 1.6(a) can be simulated
with 3D-PWE. The slab is in the plane orthogonal to the z-axis. The computational
cell for a simulation is marked in orange. In the vertical, z-direction, a ‘stack’ of
slabs is effectively simulated, with Lz increased until convergence is reached. (b):
Cross-section for a 2D-PWE simulation; the geometry has no z-dependence. The
computational cell is again highlighted in orange. The slab thickness has to be taken
into account through a properly chosen effective permittivity ε2.

form an orthonormal basis). Equation (1.5) then becomes an eigenvalue problem with
the expansion coefficients as eigenvectors:

∑
G

−ε−1(G−G′) ·
(
(k+G)× (k+G′)

)
× ck(G) =

ω2
k

c2
ck(G

′), (2.3)

where ε−1(G) is the Fourier transform of 1/ε(r),

ε−1(G−G′) =
1

V

∫
V

1

ε(r)
e−i(G−G′)rdr, (2.4)

with V the volume of the primitive cell. Eq. (2.3) is a system of an infinite number of
linear equations. This can in practice be solved by restricting the G-vectors to a finite
number, usually the ones with the lowest magnitude up to a certain cut-off Gmax. This
is analogous to discarding (very) high-frequency terms in a Fourier expansion. Solving
eq. (2.3) then amounts to diagonalizing an nG × nG matrix, where nG is the number of
G-vectors kept in the expansion.

The PWE is a very robust method and is an invaluable tool in particular for the simula-
tion of 3D PhCs. By construction, the method assumes Periodic Boundary Conditions
(PBC) and is thus best-suited for regular crystals, but it can equally well be applied
to structures with no periodicity in one or more dimensions, as long as the modes of
interest are localized in the non-periodic directions. The way 3D-PWE can be applied
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to slab-PhCs, which are periodic in 2D only, is illustrated in Fig. 2.1(a). A computa-
tional cell (marked in orange in the Figure) of some finite length Lz in the orthogonal,
z-direction can be defined, such that the effective structure consists of infinitely many
slabs stacked at a distance Lz from one another. This then allows us to define the Gz

component of the lattice vectors, which goes in integer steps of 2π/Lz. The exact PhC
modes confined in and close to the slab are obtained in the limit of Lz going to infinity;
in practice, this parameter can be increased until convergence is reached. This method
can be used to compute the PhC dispersion, but also has the extra feature that losses
due to light emission in the direction orthogonal to the slab can be directly computed
by summing over all components with a non-zero Gz.

There is a subtle trick associated with the PWE and in particular with the Fourier trans-
form of eq. (2.4), related to the fact that the permittivity presents sharp discontinuities
at the material boundaries. Namely, faster convergence with Gmax is typically reached
if the Fourier transform ε(G−G′) is computed first, and the inverse ε−1 is computed
through matrix inversion of the ε-matrix constructed with G in the columns and G′

in the rows [14, 75]. The computational complexity for this operation is the same as
the one for the matrix diagonalization: O(n3G) (when no additional properties of the
matrix can be exploited), which is then also the scaling of the PWE with the number of
plane waves. For a cubic geometry with a unit cell of size Lx, Ly, and Lz in the three
directions, and for a fixed Gmax, we have nG ∝ LxLyLz. If a large Lz is needed for
convergence, the computational time could thus become quite sizable.

One way to overcome this for slab-PhCs, which are periodic in 2D only, is to perform
a two-dimensional PWE. This means assuming no z-dependence (see Fig. 2.1(b)),
or, interpreted differently, an infinitely thick slab. The G-vectors then have just two
components, (Gx, Gy). The finite thickness of the slab can be effectively captured
through a properly defined permittivity ε̄2 of the material. This greatly reduces the
complexity (which is now just O(L3

xL
3
y)), but also comes at a cost. First, the 3D-PWE is

theoretically exact in the limit of infinite number of plane waves nG and infinite Lz;
here instead, the effective ε̄2 is an approximation that can lead to inaccuracies that are
hard to predict and estimate. Additionally, there is no way to compute out-of-plane
losses, as there is no out-of-plane Gz component.

In Section 2.3, we introduce a method which is particularly suited for the slab geome-
try and which has the same computational overhead as 2D-PWE, but overcomes its
disadvantages.
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2.3. Guided-mode expansion

Figure 2.2: (a): Example of a slab-PhC consisting of three layers – 1): lower cladding; 2):
the patterned slab; 3): upper cladding. Layers 1 and 3 are semi-infinite, while layer 2
has a thickness d. (b): Effective homogeneous layers for the guided-mode expansion;
each has the average permittivity ε̄i of the layers in (a). (c): Electromagnetic modes for
the structure in (b), which can be classified as TE or TM due to the σk‖z symmetry. In
the yellow region, there is a continuum of modes radiating both in the upper and in
the lower cladding. In the green region there is again a continuum of modes, which are
however radiating only in the lower cladding.

2.3 Guided-mode expansion

2.3.1 Definition of the method

The GME [25] bears a lot of similarity to the PWE: it is again a mode-expansion method,
and the basis functions are similar to 2D plane waves, but they are much better suited
to the slab geometry. Namely, we expand the PhC-slab modes on the basis of the
guided modes of an effective homogeneous slab, i.e. on the basis of modes as the ones
shown in Fig. 1.4, and, in a more general setting, in Fig. 2.2. Thus far in this thesis we
have only considered slabs suspended in air, but below, following closely Ref. [25], we
outline the details of the method for the more general case illustrated in Fig. 2.2(a).

We consider a PhC consisting of three layers, denote the z-direction to be orthogonal to
the layers, and call ρ the in-plane vector (x, y) (Fig. 2.2(a)). The dielectric permittivity
of the structure can thus be described by three functions ε1(ρ), ε2(ρ), ε3(ρ). We further
define the averaged values

ε̄i =
1

S

∫
S
εi(ρ)dρ, i = 1 · · · 3, (2.5)
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where S is the area of the 2D unit cell, and assume ε̄2 > ε̄1, ε̄3, so that modes can be
localized in the intermediate layer due to total internal reflection. The basis for the
GME is then obtained by considering a structure composed of three effective, homo-
geneous slabs of permittivity ε̄1..3 (Fig. 2.2(b)), whose eigenmodes can be computed
analytically and are given in Ref. [25] and shown in Fig. 2.2(c). Notice that in the case
ε̄1 �= ε̄3, the σxy symmetry is not present, while the TE/TM symmetry is still present for
the homogeneous layers (Fig. 2.2(c)), but not for the PhC (see Section 1.2.2).

Next, we index the discrete guided modes, i.e. the modes below both light lines in Fig.
2.2(c), by μ = (g, α), with g the in-plane momentum, and α the band number. We can
then expand the Bloch modes of momentum k of the 2D-periodic PhC on the basis of
these guided modes of the effective homogeneous structure:

Hk(r) =
∑
μ

cμHμ(ρ, z). (2.6)

This basis is not complete, since it does not include the continuum of radiative modes.
However, it is a very good starting point for the computation of modes confined in
the PhC slab, which are the modes of interest. Coupling to the radiative components
can be included in a perturbative fashion as will be shown below. Due to the Bloch
theorem, only guided modes of momentum k+G, with G a reciprocal lattice vector,
can contribute to the above summation. Thus, below we assume μ = (g, α) = (k +

G, α). We also note that the guided modes are orthogonal, i.e. (Hμ,Hν) = δμν , with
the notation of eq. (1.7), and ν = (k+G′, α′). Using this and the expansion of eq. (2.6),
we obtain once more an eigenvalue problem, which can be written as

∑
G′,α′

Hμνcν =
ω2
k

c2
cμ, (2.7)

with the matrix for diagonalization Hμν given by

Hμν = (Hμ,ΘHν), (2.8)

which can also be written as

Hμν =

∫
1

ε(ρ)

(
∇×H∗

μ(ρ, z)
)
· (∇×Hν(ρ, z)) dρdz. (2.9)

The z-integration in the above expression can be carried out analytically, while the
ρ-integration introduces, just as in the case of the PWE, the Fourier transform of ε−1 as
given in eq. (2.4). The final form of the matrix elements Hμν can be found in Ref. [25].

The GME outlined thus far has the same computational complexity as 2D-PWE, but
uses a basis better-suited to the slab geometry. In particular, the slab thickness d
enters analytically in the z-integration in eq. (2.9). Another advantage of the method
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Figure 2.3: (a)-(b): Cross-section views for a photonic crystal consisting of a silicon
slab with a hexagonal lattice of air holes, grown on silicon oxide. The 2D unit cell
used for the GME computation is highlighted in orange. (c): The GME-computed PhC
modes confined within the silicon slab (evanescent in both claddings), for k in the ΓX
direction. The Brillouin zone of the crystal is shown as an inset.

is the fact that the coupling of the PhC modes to the continuum of radiative modes
can be estimated in a Fermi-golden-rule fashion. Namely, the imaginary part of the
eigenvalue (ω2

k/c
2) can be computed through

−

(
ω2
k

c2

)
= π

∑
G′

∑
λ,j

|Hrad
k |2ρj

(
k+G′;

ω2
k

c2

)
, (2.10)

where λ labels polarization of the radiative guided modes (TE or TM), j = 1, 3 labels

whether those modes are leaky in the upper or the lower cladding, and ρj
(
k+G′; ω

2
k

c2

)
is their 1D photonic density of states at fixed wave-vector. The matrix element Hrad

k is
the overlap between a PhC mode and a leaky mode,

Hrad
k =

∫
1

ε(r)
(∇×H∗

k(r)) ·
(
∇×Hrad

k+G′,λ,j(r)
)
dr, (2.11)

and can be computed using the expansion of eq. (2.6) and the analytical matrix
elements between guided and leaky modes of the slab (see [25]). The quality factor
of a PhC mode can thus also be found through Q = ωk/κ, where ωk is the real part of√
ω2
k + i
(ω2

k), and κ is twice the imaginary part.

In Fig. 2.3, we show the modes of a photonic crystal computed using the GME method.
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The structure we consider is a silicon slab grown on Silicon Oxide (SiO2) (Fig. 2.3(a)-
(b)), where the silicon slab is patterned by a hexagonal lattice of air holes. Even though
the primitive cell of the structure is hexagonal (see Fig. 1.6), here we use a square
cell (highlighted in orange in Fig. 2.3(b)), whose area is two times larger than that of
the unit cell. This is recurrent in almost all GME simulations shown in this thesis: a
square computational cell is used unless there is a very particular argument against it.
There are several reasons for this. The main one is related to the fact that, as discussed
in Section 2.2, the best way to avoid problems due to the discontinuity of ε(ρ) is to
compute the Fourier transform ε−1(G−G′) through a matrix inversion of the matrix
with elements εGG′ = ε(G−G′). In the case of a square computational cell, and thus a
square lattice of G-points in reciprocal space, this matrix has a particular form, namely
it is block-Toeplitz, where each block is itself a Toeplitz matrix [75]. This allowed
us to implement an algorithm [76, 77] for an efficient inversion of the matrix, which
decreases the complexity from O(n3Gx

n3Gy
) to O(n3Gx

n2Gy
), where nGx and nGy are the

number of distinct Gx and Gy values, respectively. This left the diagonalization of the
matrix of eq. (2.9) as the bottleneck of the computation. However, this can also be
significantly improved by looking for a limited number of eigenvalues (e.g. the Ne

lowest-energy ones) instead of for all of them, using e.g. a Lanczos method. These two
improvements – one for the matrix inversion and one for the diagonalization – reduce
the computational time in some cases by an order of magnitude. We also note that the
quantities of interest – like a PhC band gap, a waveguide dispersion, or a cavity mode
and Q-factor, can be computed with any computational cell that fits the underlying
periodicity, i.e. we are not restricted to using the smallest-area, primitive cell.

The modes of the particular PhC of Fig. 2.3 are shown in panel (c) for k in the KX
direction (i.e. ky = 0). The structural parameters we used are d = 0.5a, r = 0.3a,
nSi = 3.46, nSiO2 = 1.44. The guided modes in the expansion were truncated at
Gmax = 4 × 2π/a and αmax = 4, although convergence within the y-axis scale of the
plot was already reached around Gmax = 3 × 2π/a and αmax = 3. Obviously, these
parameters need to be increased to compute the higher-frequency PhC modes, but
those are rarely of interest. Importantly, the structure does not present a photonic
band gap. This is due to the fact that the σxy symmetry is broken by the different
claddings above and below the slab. In the case of the symmetric system, as we saw in
Fig. 1.6(b), there is a band gap for the positive-symmetry modes, and no band gap for
the negative-symmetry ones. Here, these modes are all mixed, which means no band
gap overall. This shows that preserving the symmetry with respect to the z = 0 plane
of a slab-PhC is of great importance (this is illustrated further below, see Fig. 2.6 and
the related discussion).

28



2.3. Guided-mode expansion

Figure 2.4: Highlighted in green: an example of a computational cell for a PhC cavity
simulation using the GME. Effectively, due to the PBC, an array of cavities is simulated.
With increasing Lx and Ly, the coupling between modes localized on different sites
decreases exponentially.

2.3.2 Simulating localized modes

The GME assumes periodic boundary conditions and is thus ideal for simulating
band structures of regular crystals, but it can also be used for defect-based functional
elements like the ones introduced in Section 1.3. The simulation of PhC cavities in
particular is in the backbone of this thesis, and is thus discussed in detail here. The
idea is that, since the cavity mode is localized in a small region of space (cf. Fig. 1.8(b)),
we can take a large enough computational cell such that the field becomes negligible
at the boundaries. This approach is similar to the way the 3D-PWE can be applied to
PhC slabs, as discussed in Section 2.2, and is further illustrated in Fig. 2.4 for an L3
cavity. We take a computational cell of size Lx × Ly around the defect that defines the
cavity (in the L3 case, the three missing holes). Effectively, this results in simulating
the Bloch modes of a periodic lattice of cavities, as shown in the Figure. In the limit of
vanishing field overlap between modes localized at different lattice sites, the ‘band’
of cavity modes becomes k-independent (i.e. ‘flat’), and has the resonant frequency
ωk = ω0 of an isolated cavity.

In Fig. 2.5, we illustrate a computation of an L3 cavity optimized for a high quality
factor. The particular five-shift design used here is taken from Ref. [78] and is discussed
in much more detail in Chapter 4. The underlying PhC is formed by a silicon slab
of thickness d = 220nm suspended in air, with a hexagonal lattice of air holes with
parameters a = 400nm and r = 100nm. In Fig. 2.5(a), we show the dispersion of this
PhC-slab, computed as in Fig. 2.3. The σxy symmetry in this case is preserved, and we
only show the positive-symmetry modes, for which there is a band gap. In panel (b), we
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Chapter 2. Numerical Simulation of Photonic Crystals

Figure 2.5: (a): σxy = 1 modes of a silicon PhC slab suspended in air, with a = 400nm,
d = 220nm, r = 100nm. Dashed black lines show the range of the y-axis in (b). (b):
GME-computed bands from an L3-cavity simulation as in Fig. 2.4, with Lx = 16a and
Ly = 12

√
3a/2. The band in red corresponds to the fundamental cavity mode. (c):

Quality factors computed for Lx = 14a, 16a, 18a, 20a, and with increasing number of
k-points in the Brillouin-zone averaging.

plot the GME-computed dispersion for a lattice of cavities as in Fig. 2.4, with Lx = 16a,
Ly = 12

√
3a/2. The red band corresponds to the fundamental (i.e. lowest-frequency)

cavity mode. Modes below that are not localized but instead come from the folding of
the PhC valence bands. The bands above, which are also flat, are all in the band gap of
the regular PhC, and constitute higher-order cavity modes.

The Bloch modes of the cavity array are periodic, i.e. they are not localized on a single
site, regardless of the size of the computational cell. However, it is possible to construct
a cavity mode which is localized on a single site. If Hk(r) are the modes belonging to
the red band in Fig. 2.5, then the Wannier function

HW (r) =
1√
Ω

∫
BZ

Hk(r)dk, (2.12)

where the integration is over the whole Brillouin zone of area Ω, is localized on the
site at x = 0, y = 0. In the limit of infinitely large Lx, Ly, when ωk = ω0, this mode is
also an eigenstate of frequency ω0. This is already to a very good approximation true
for the computation shown in Fig. 2.5(b), where the relative variation of ω is smaller
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2.3. Guided-mode expansion

than 10−4. Within this tolerance, the frequency also does not change with further
increasing the supercell size. The GME-computed resonant frequency is thus quite
stable in terms of convergence. The imaginary part of the frequency, however, has a
non-trivial k-dependence (see also Fig. 2.6 below) that has to be taken into account.
The coupling of the Wannier mode to radiative modes can be obtained in a way similar
to eq. (2.10):

−

(
ω2
0

c2

)
= π

∫
dg

∑
λ,j

|Hrad
W |2ρj

(
g;
ω2
0

c2

)
, (2.13)

where now the overlap integral Hrad
W is defined as

Hrad
W =(HW ,ΘHrad

g,λ,j) =
1√
Ω

∫
BZ

(Hk,ΘHrad
g,λ,j)dk =

1√
Ω

∫
BZ

Hrad
k δg,k+G′dk =

1√
Ω
Hrad

k , (2.14)

where Hrad
k is that of eq. (2.11) with k and G′ such that k+G′ = g (which determines

them uniquely). Thus,



(
ω2
0

c2

)
= − 1

Ω

∫
BZ

dkπ
∑
G′λ,j

|Hrad
k |2ρj

(
k+G′;

ω2
W

c2

)
=

1

Ω

∫
BZ

dk

(
ω2
k

c2

)
. (2.15)

Thus, the loss rate of the localized Wannier mode is computed by averaging out the loss
rates of the Bloch modes over the Brillouin zone. This now also allows us to compute
the Q of the cavity. To do this, we compute the integral in eq. 2.15 numerically, by
simulating N2

k points in k-space. More precisely, we take a uniformly distributed
rectangular grid defined by Nk kx-points in the interval [0, π/Lx] and Nk ky-points in
the interval [0, π/Ly]. We remark that the loss rates for negative kx and/or ky values are
identical to the ones for positive values, due to time-reversal symmetry. In Fig. 2.5(c),
we plot the Q of the L3 cavity computed with Nk = 1, 3, 6, 11, and for four different
Lx values. Nk = 1 means that the k = 0 value was taken only. As can be seen, in that
case the supercell size has a significant effect on the computed quality factor. However,
this size-dependence is suppressed by the k-averaging: the values for Lx = 16a, 18a,
and 20a in particular become very close with increasing Nk. We also note that the Q
converges fast with Nk – the results do not vary much already starting from Nk = 3.

In Fig. 2.6(a), we present a 2D map of the imaginary part 
(ω2
k), in units of (c/a)2.

There are no sharp features present, which explains the fast convergence with Nk of
the numerical integration of eq. (2.15). In the Figure, we also compare the losses of
this cavity to the ones of the same design ‘buried’ in SiO2 (panel (b)), as well as to
the same design with a SiO2 cladding on one side (panel (c)). In the buried case, the
losses are stronger because of the lower refractive index contrast between the slab
and the claddings, resulting in weaker mode confinement. The k-dependence of the
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Chapter 2. Numerical Simulation of Photonic Crystals

Figure 2.6: The k-dependent losses (i.e. 
(ω2
k) in units of (c/a)2) of the cavity Bloch

modes. (a): Air-bridge cavity (like the one analyzed in Fig. 2.5); (b): Cavity ‘buried’ in
SiO2; (c): Cavity with just one SiO2 cladding. The quality factors Q for the three cases
are also noted.

losses is, however, still smooth. In contrast, when the σxy symmetry is broken as in
panel (c), the underlying PhC no longer has a band gap (Fig. 2.3), and the cavity Bloch
modes mix resonantly with bulk-PhC modes. This produces the very sharp features
visible in the plot, which occur at values of k where the cavity and the bulk bands cross.
This leads to a significant decrease of the quality factor, and illustrates once again
the importance of preserving the σxy symmetry. Also, in the case of an asymmetric
structure, the computational advantage of the GME is somewhat lost, since a very fine
grid in k-space has to be used to properly capture all losses. We note that this can in
principle be better handled through a numerical integration using an adaptive grid,
and/or through analytically computing the band crossings where the losses present a
sharp k-dependence.

In all the computations thus far, we truncated the guided modes at Gmax = 3× 2π/a

and αmax = 4. Notice that, when the σxy-symmetry is preserved, only two guided
bands enter the computation, since bands 2 and 3 are negative-symmetry and so
decoupled (cf. Fig. 1.4(b)). In Fig. 2.7, we study the convergence of the GME-computed
quality factor with these basis-truncation parameters. The supercell size for all results
shown in the Figure was kept at Lx = 16a, Ly = 12

√
3a/2. Each line represents

the dependence of Q on one parameter while keeping the others fixed as follows:
Gmax = 3 × 2π/a for the blue and the red line, αmax = 4 for the blue and the yellow
line, and Nk = 3 for the red and the yellow line. The results are compared to the
FDTD-computed Q = 4.2× 106, which was obtained using Lumerical solutions [74].
The GME-computed Q is somewhat higher than the FDTD result, a feature that is
consistently observed for all the various simulations presented in Chapters 3 and 4.
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2.4. Bloch-mode expansion

Figure 2.7: GME-computed quality factor of the optimized L3 cavity vs. several simu-
lation parameters. We used Gmax = 3 × 2π/a for the blue and the red line; αmax = 4
for the blue and the yellow line; and Nk = 3 for the red and the yellow line. The FDTD
result is also shown.

As discussed above, convergence with Nk is reached already at Nk ≈ 3. With respect
to Gmax, there is little variation beyond 2.5× 2π/a. The convergence with the number
of bands is the slowest, but, importantly, it tends towards the FDTD result – the last
point on the red line is at Q = 4.7 × 106. This is also the fully converged GME value:
we checked that it does not change further with increasing both αmax and Gmax. This
is a good illustration that GME and FDTD match very well when the convergence
parameters are pushed. However, in the interest of computational time, we never
use such a high αmax in the simulations of Chapters 3 and 4. This is because the
main source of losses is already captured by the first guided band only – the Q of the
first red point is 5.5 × 106, which is sufficiently close to the FDTD result, especially
in terms of variations between this method and finite-element simulations that have
been reported [79]. Furthermore, we note that this difference of about 30% between
the FDTD-computed Q and the single-band GME result for this particular cavity is
among the highest observed in all the simulations of various cavity designs that we
have performed [78, 79]: very often, the difference is � 10% (cf. Table 4.1 in Chapter 4).
This validates the use of the method for fast analysis and optimization of various PhC
cavity designs using e.g. Gmax ≈ 3 and αmax = 1, while for more precise results these
parameters can be increased, at the cost of a longer computational time.

2.4 Bloch-mode expansion

In this Section we outline the Bloch-mode expansion [63, 80], which is particularly
useful for simulating large PhC structures with random disorder. The idea is illustrated
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Figure 2.8: (a): A PhC waveguide; the modes guided inside the row of missing holes
can be computed using the computational cell highlighted in green. (b): The same
waveguide but with disorder in the positions and the radii of the holes. There is no
longer any periodicity, and the full structure has to be included in the simulation. The
disorder magnitude is largely exaggerated compared to state-of-the-art silicon devices.

in Fig. 2.8 for a PhC waveguide. The Bloch modes of the regular waveguide can be
computed using a fairly small computational cell (panel (a)). Then, similarly to the
PWE and GME methods, we can use these modes as a basis to compute the modes of
a larger structure which is in some way related to the starting one – for example, the
same waveguide in the presence of fabrication imperfections (panel (b)).

The starting point of the expansion are the Bloch modes Hkn(r) of a periodic struc-
ture (here n is a number indexing different bands). These modes are solutions to eq.
(1.5) with some starting periodic permittivity profile ε(r) describing the PhC, and are
normalized according to∫

drH∗
k′n′(r)Hkn(r) = δk′kδn′n. (2.16)

In presence of disorder, the dielectric permittivity ε′(r) no longer has the lattice period-
icity or symmetries, and so the momentum k is no longer a conserved quantity. We
thus label the eigenmodes of the system by a global index β. These modes are solutions
to eq. (1.5) with the ε′(r) profile, and can be expanded on the basis of the Bloch modes
of the regular structure:

Hβ(r) =
∑
kn

Uβ(k, n)Hkn(r). (2.17)

Inserting this expansion in the Helmholtz equation (1.5) for the disordered structure,
we obtain

∑
kn

Uβ(k, n)

[
ω2
k,n − ω2

β

c2
+∇× η(r)∇×

]
Hkn(r) = 0, (2.18)

where we defined η(r) = 1
ε′(r) − 1

ε(r) , i.e. the difference of the inverse of the regular and
irregular dielectric profiles. If we now multiply eq. (2.18) by H∗

k′n′(r), integrate over r,
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and use the normalization in eq. (2.16), we obtain the eigenvalue problem

∑
k′n′

[
ω2
kn − ω2

β

c2
δkk′δnn′ + Vknk′n′

]
Uβ(k

′, n′) = 0, (2.19)

where the matrix Vknk′n′ carries the information about disorder and is defined as

Vknk′n′ =

∫
drη(r)(∇×Hkn(r))(∇×H∗

k′n′(r)). (2.20)

The starting Bloch modes Hkn can in principle be computed using any method, e.g.
FDTD or PWE, but in this thesis, we always use the GME. With the notation of the
guided-mode expansion of eq. (2.6), the matrix elements read

Vknk′n′ =
∑
μ,μ′

cnμc
∗
n′μ′

∫
drη(r)(∇×Hμ(r))(∇×H∗

μ′(r)). (2.21)

The integrals are analogous to the ones of eq. (2.9), and can be read out of Ref. [25],
with the only difference that the Fourier transform of η(r) enters in the place of that
of 1/ε(r). The Fourier transform η(g − g′) = ε′−1(g − g′) − ε−1(g − g′) yields much
better results when each of the two components is computed with the matrix-inversion
method discussed above, and here the algorithm for inverting a Toeplitz-block Toeplitz
matrix turns out particularly useful [75]. For large structures, the matrices ε′(g −
g′) and ε(g − g′) which need be inverted become very big, causing problems from
the perspective of both computational time and memory. The algorithm, however,
solves both problems, first by reducing the complexity and second by removing the
need to store the whole matrices at once. Apart from that, the size of the matrix for
diagonalization in eq. (2.19) can be controlled by truncating the computation to a fixed
number of bands (and checking convergence).

The radiative loss rates of the BME-computed modes can be computed perturbatively
exactly as with GME. The overlap integrals between the modes Hβ(r) and the leaky
modes of the slab are

Hrad
β,g =

∫
dr

1

ε′(r)
(∇×H∗

β(r)) · (∇×Hrad
gλj(r)) (2.22)

=
∑
k′n′

∑
G′α

U∗
β(k

′, n′)c∗n′(μ′)
∫

dr
1

ε′(r)
(
∇×H∗

μ′(r)
)
· (∇×Hrad

gλj(r)),

The amplitudes

Hrad
μ′,g =

∫
dr

1

ε′(r)
(
∇×H∗

μ′(r)
)
· (∇×Hrad

gλj(r)) (2.23)

are similar to the ones of eq. (2.11), but in this case the disorder is manifest in the inte-
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gration measure 1
ε′(r) , which breaks the translational invariance, and so the integrals

are no longer proportional to δkk′ . For further details concerning the BME, the reader
is directed to Refs. [63, 80], and to [75] for a convergence analysis.
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3 Fabrication Disorder in Photonic
Crystals

In this Chapter we study numerically some of the effects of fabrication imperfections
on photonic crystal structures. Section 3.1 is adapted from Ref. [79] (M. Minkov et
al., “Statistics of the disorder-induced losses of high-Q photonic crystal cavities,” Opt.
Express 21 (2013)), which was written in collaboration with Prof. Romuald Houdré and
Dr. Perumal Dharanipathy from the LASPE here at EPFL. In this work, we analyze and
compare the effect of disorder on the quality factor of six well-known photonic crystal
cavity designs. These have vastly different intrinsic quality factors, but, nevertheless,
we observe a similar behavior of the statistics of the disorder-induced light losses.
In particular, we show that for high enough disorder, such that the quality factor is
mainly determined by the disorder-induced losses, the measured quality factors differ
marginally – not only on average as commonly acknowledged, but also in their full
statistical distributions. This has implications for the optimization of cavity designs,
which is the main subject of Chapter 4.

Section 3.2 is adapted from Ref. [81] (M. Minkov and V. Savona, “Effect of hole-shape
irregularities on photonic crystal waveguides,” Opt. Lett., 37 (2012)), where we analyze
the effect of irregular hole shapes on the spectrum and radiation losses of a photonic
crystal waveguide. We find that the key parameter determining the magnitude of the
effect of disorder is the standard deviation of the areas of the holes. One implication of
this observation is that, for a fixed amplitude of the radius fluctuation around the hole,
the disorder effects are strongly dependent on the correlation angle of the irregular
shape.

3.1 Quality factor of PhC cavities

As discussed in Chapter 1, PhCs lie at the forefront of research in photonics. A variety
of photonic crystal slab cavities with high quality factors and modal volumes of the
order of the diffraction limit (λ/n)3 have already been proposed [82–89]. Such devices
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have found many applications, for example leading to one of the first observations of
the strong coupling cavity quantum electrodynamics regime [90, 91] in a solid-state
system [47]. Recently, there have been equally remarkable experimental breakthroughs
in the all-optical domain, including the realization of low-power optical switching [34,
44, 92] and optical random-access memory [35]. The demonstration of strong coupling
between two distant PhC cavities [93] is another remarkable result. The success of such
experiments is due, on one hand, to the highly sophisticated fabrication technology,
which allows for sub-nanometer precision in state-of-the-art silicon devices [94, 95],
but on the other strongly relies on the introduction of cavity designs with a sufficiently
high quality factor. However, a general feature of such designs is that the theoretically
predicted Q is often much higher – sometimes by more than an order of magnitude
– than the experimentally measured one. For some materials and wavelengths, this
can be attributed to material absorption, but for silicon at ≈ 1.5μm in particular, the
effect is unanimously attributed to disorder residual in the fabrication process. For
slab-PhCs, the most notable example is disorder in the size and positioning of air holes,
though other contributions have also been identified [96–98].

Understanding the disorder effects has spurred some theoretical [98–100] and experi-
mental [94, 95, 98] research, which has mostly focused on two specific designs – the
L3 cavity shown in Fig. 1.8 and the heterostructure cavity introduced in Ref. [83]. In
those, the most notable conclusion is that the disorder-averaged value of the disorder-
induced cavity losses scales as σ2, where σ is the magnitude of the random fluctuations
in one spatial direction (e.g. in hole radius and/or position). Here, we will aim at a
better understanding of the statistics of the disorder effects (through investigating the
full probability distribution of Q values), and of how those compare among different
cavity designs. To this end, we analyze and compare six very different, well-known PhC
cavities with theoreticalQ-s ranging from 5.4×104 to 7.5×107, i.e. spanning more than
three orders of magnitude: the L3 [82], A3 and A1 [85, 86], heterostructure (HS) [83],
H1 [101, 102] and H0 [89, 101]. We perform a detailed statistical analysis of the disorder
effects, and conclude, most notably, that whenever the disorder-induced losses are
clearly dominating over the intrinsic ones, their statistical distribution depends weakly
on the particular cavity design, which validates and strengthens the common belief
concerning the average value of Q.

3.1.1 Cavity designs and disorder model*

The designs of the six cavities studied here are presented in Fig. 3.1. All of the devices
are based on a triangular lattice of circular air-holes of radius R in a silicon slab of
thickness d (R and d differ among designs). We have already encountered the L3 cavity
of Fig. 3.1(a) in Chapters 1 and 2; the design used here is the one also studied in
Refs. [95, 99]. It has R = 0.3a and d = (220/420)a, with a the lattice constant, and, for
Q-optimization, the two holes (marked in red) on each side of the defect are shifted
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Figure 3.1: Designs and profiles (computed with the guided-mode expansion) of the
y-component of the electric field, Ey(r), for the different cavities studied here. (a):
Improved L3 (see text); (b): A3, where the red holes are shifted outwards; (c): A1 with
the red, black, and grey holes correspondingly shifted outwards by dy, 2dy/3 and dy/3;
(d): Heterostructure, where the lattice constant is (420/410)a in the region between the
dashed lines and (415/410)a in the two regions between a dashed and a dashed-dotted
line; (e): Optimized H1: the holes marked in red are shifted outward by 0.12a and their
radius is decreased by 0.06a, the ones marked black have a radius decreased by 0.03a,
and the ones marked grey are shifted inward by 0.26a. Only the y-polarized of the two
degenerate modes is plotted; (f): Optimized H0, where the 8 holes marked in red are
shifted symmetrically: the two shifts in the x-direction are 0.14a, and 0.06a, while the
two shifts in the y-direction are 0.04a and 0.02a (cf. [89]).

outward by 0.16a, while their radius is decreased by 0.06a. The A3 and A1 cavities
(Fig. 3.1(b) and Fig. 3.1(c)) are taken as originally defined in Ref. [85], with R = 0.25a,
d = 0.472a for the A3 and R = 0.257a, d = 0.486a for the A1. The A3 cavity is formed by
first introducing a one-dimensional waveguide defect of width 0.9a, and then shifting
two holes (marked with red contours in panel (b) of Fig. 3.1) on each side of the
linear defect outward by dy = 0.0278a. The A1 cavity is similar, but the width of the
waveguide is 0.98a, and three types of hole shifts are introduced: by dy = 0.0214a

(red holes in Fig. 3.1(c)), by 2dy/3 (black holes) and by dy/3 (grey holes). Next, we
consider the heterostructure cavity first introduced in Ref. [83], with R = (110/410)a

and d = (220/410)a. It is again based on a linear waveguide (of width a), but the
cavity defect is introduced by changing the lattice constant to (420/410)a in the central
region and to (415/410)a in a region on each side (Fig. 3.1(d)). Fig. 3.1(e) shows an
optimized [102] design for an H1 cavity formed by one missing hole, with d = 0.5a and
R = 0.3a and nearby-hole shifts introduced as explained in the figure caption. This
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cavity in fact has two degenerate modes, and in the figure only the y-polarized one is
plotted. The last cavity is an optimized H0 as defined in Ref. [89], where d = 0.6a and
R = 0.26a, and the defining defect is outward shifts of neighboring holes.

In all simulations of disorder, random fluctuations in the positions and radii of the
holes were considered, with an underlying Gaussian distribution with zero mean
and standard deviation σ. The magnitude of the fluctuations was assumed to be
spatially uniform, and no hole-hole correlations were considered. Spatial correlations
between hole size and positions, as well as spatially non-uniform distribution of the
disorder parameters could easily be included in our simulations. However, since
there is to our knowledge no specific experimental characterization of the magnitude
of such distribution properties and their influence on the PhC, such an analysis is
beyond the scope of the work presented here. The disorder model can also be readily
extended to include irregular hole shapes (see Section 3.2), but we expect the important
disorder effects to be very well captured by the simpler model used here. We note
that everywhere below, by ‘disorder realization’ we understand one particular set of 3n
independent pseudo-random numbers drawn from a Gaussian distribution, giving the
shifts in the x and y positions and in the radius R of each hole (for n holes included
in the system). The magnitude of disorder included here ranges from σ = 0.001a

(relevant for state-of-the-art Si structures [94, 103]) to σ = 0.015a, i.e. also includes
values relevant for different materials like GaAs, InGaAs or InP.

3.1.2 Statistics of the disorder-induced losses*

The measured Q of a cavity can be written as

1

Q
=

1

Qt
+

1

Qd
+

1

Qa
, (3.1)

where Qt is the theoretically predicted Q-factor for the particular cavity design in
the absence of disorder (also called ‘intrinsic’), Qd is the quality factor associated to
the disorder-induced losses, and Qa accounts for any absorption (e.g. due to free
carriers or water condensation). The absorption term Qa could come from non-linear
absorption and thus depend on e.g. the mode volume or field intensity in the cavity,
but in any case it does not correspond to a stochastic effect, and for a particular
cavity, it is expected to be constant for the different disorder realizations. Since the
main interest of our analysis is the statistics of the disorder effects, this additional
constant can then be incorporated into the constant Qt. The same consideration
applies to any other systematic effect that results in losses which are independent
of the disorder realization, e.g. tilt of the hole walls. The expression of Eq. (3.1) is
commonly employed [84, 94, 95, 98, 100] and stems from the definition of Q ≡ ω0U/P ,
where U is the total electromagnetic energy of the cavity mode and P is the radiation
power (see eq. (1.16) and discussion thereof). The physical assumption entering
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Figure 3.2: For the six different cavities, (a): Dependence of the standard deviation in
the resonant mode frequency ω on the disorder magnitude σ; (b) and (c): Dependence
of the mean and standard deviation of 1/Qd on σ2. In (a) and (b), the solid lines are
determined from a linear interpolation, while in (c) the dashed lines only connect the
individual points and serve as a guide for the eye. Inset in (c): zoom-in over the low-σ
region.

eq. (3.1) (neglecting Qa) is then that, upon small perturbations, the frequency and
total energy of the cavity mode are approximately constant, while the total radiated
power is obtained by summing the contributions of two radiation channels: one
due to the intrinsically radiative components of a cavity mode and the other due to
disorder-induced scattering into modes radiating outside of the slab (i.e. modes with
frequency inside the light-cone). This summation is in fact not necessarily correct: the
interference between the fields emitted through the two different channels has to be
taken into account, which could potentially be destructive. This interference can be
to a good approximation neglected when one of the channels is strongly dominating,
but could be important when Qt ≈ Qd. Nevertheless, in our analysis we use Eq. (3.1),
bearing in mind that Qd is, in general, a purely phenomenological quality factor that
accounts for the difference between Qt and the measured Q, and study the validity
of interpreting Qd as a quality factor associated to disorder-induced scattering losses
which do not interfere with the intrinsic cavity losses. One example for which this
interpretation is obviously not true can be found in the negative values of Qd, which
we show are possible for particular disorder realizations. Physically, this reflects the
possibility for the disorder to cancel – due to destructive interference – some of the
intrinsic radiative components, rather than introduce more losses. The possibility
for negative Qd-values is intuitive and by no means an artifact of our simulations: in
the same way that small, controlled structural changes can dramatically increase the
quality factor of a cavity (consider for example the difference between the A1 and the
A3), particular configurations of the random disorder can do just the same.

In this Section, we use the guided-mode expansion (cf. [25] and Section 2.3) to compute
theQ of a cavity with disorder, a method whose reliability was studied in Section 2.3 and
which has already been utilized for a similar study [95]. The size of the computational

41



Chapter 3. Fabrication Disorder in Photonic Crystals

Table 3.1: Intrinsic quality factors of the disorder-less cavities. The FDTD results were
taken from the corresponding references [83, 85, 89, 95, 102]. For the GME results, the
computational cell length in the x-direction was 32a for the A1, A3 and HS cavities, 24a
for the L3 cavity, and 16a for the H0 and H1. In the y-direction, the size was 16

√
3/2a

for the A1, A3, HS, 20
√
3/2 for the H1, and 14

√
3/2a for the L3 and H0.

Cavity Qt (FDTD) Qt (GME)

L3 8.9× 104 1.1× 105

A3 1× 106 1.5× 106

A1 70× 106 75× 106

HS 14× 106 20× 106

H0 2.8× 105 3.3× 105

H1 6.2× 104 5.4× 104

cell taken here is between 16a and 32a in the x-direction and between 14
√
3a/2 and

20
√
3a/2 in the y-direction, depending on the spread of the electric field of the different

cavities, and the reciprocal space was truncated to Gmax = 22π
a and αmax = 1 (see

Section 2.3), resulting in 4080 to 9120 reciprocal lattice points, depending on the cell
size. The intrinsic Qt for the six different cavities computed with the GME using these
parameters is compared to the corresponding FDTD results in Table 3.1.

Figure 3.2 shows the influence of random disorder on the resonant frequencies and
quality factors for the six different designs, computed for σ = 0.001a, 0.0014a, 0.002a,
0.003a, 0.004a and 0.005a, and for 400 disorder realizations for each cavity and each
σ. For all cavities and disorder magnitudes, the mean of the deviation from the ideal-
cavity frequency ω0, 〈ω − ω0〉, is at least one order of magnitude smaller than the
standard deviation δ(ω) = (〈ω2〉 − 〈ω〉2)1/2, thus, to a good approximation, the fre-
quency distribution can be considered centered around the ideal-cavity frequency.
In contrast, the standard deviation increases linearly with increasing σ as shown in
Fig. 3.2(a). This dependence matches previous results for the heterostructure [100],
and is here observed for all six cavities (for the H1, where two modes with frequencies
ω1 and ω2 exist, we define δ(ω) = (δ(ω1) + δ(ω2))/2). For some practical applications,
having the smallest possible δ(ω) is essential, but the main focus of this Section is the
corresponding quality factors. For a given design, the statistics of the measured Q

are determined by the statistics of Qd, which is why in Fig. 3.2(b) and Fig. 3.2(c) we
plot the mean 〈1/Qd〉 and standard deviation δ(1/Qd) =

(
〈(1/Qd)

2〉 − 〈1/Qd〉2
)1/2 vs.

σ2 for the different cavities, where 1/Qd was computed from eq. (3.1). The scaling
〈1/Qd〉 ∝ σ2 has already been numerically established for the L3 [99] and the HS [100],
and is confirmed by our results (Fig. 3.2(b)), for those two as well as the other four
cavities. The straight lines in the plot show linear interpolation based on the data.
Additionally, we find that the standard deviation (Fig. 3.2(c)) also scales linearly with σ2

for the A1 and HS in the range we consider, while for the other designs, the dependence
is linear for all but the smallest values of σ.
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An intuitive model for the disorder-induced scattering, which matches to some extent
the computed results, is to assume that 1/Qd = Acδ

2
d, where δd is a random variable

drawn from a Gaussian distribution of zero mean and standard deviation σ. Thus,
〈1/Qd〉 = Acσ

2 with Ac a design-specific constant, as observed in Fig. 3.2(b), while
〈(1/Qd)

2〉 = A2
c〈δ4d〉 = A2

c × 3σ4, which means δ(1/Qd) =
√
2Acσ

2, i.e. the standard
deviation also scales linearly with σ2, as observed in Fig. 3.2(c). However, there are
two notable deviations from this simplified expectation. One is the fast increase of
δ(1/Qd) for the A3, L3, H0 and H1 for low σ. This, however, occurs in the σ range for
which 〈1/Qd〉−1 >≈ Qt; in this situation, as discussed earlier,Qd is not determined in a
straightforward way by the absolute value of the disorder-induced scattering losses,
but instead also contains interference effects. Indeed, in this range we also observe
δ(1/Qd) > 〈1/Qd〉, meaning that negative values for 1/Qd are likely, thus the statistics
lie beyond the simple, uncorrelated assumption. The second deviation is the fact that
within the simple Gaussian-squared model, we obtain δ(1/Qd)/〈1/Qd〉 =

√
2 for all

cavities. In our simulations, this value is much lower: 0.48, 0.43, 0.36, 0.40, 0.56 and
0.67 for the L3, A3, A1, HS, H1 and H0, respectively. This means that δd is actually not
Gaussian-distributed, as 〈δ4d〉 < 3〈δ2d〉2. A likely explanation is that while it is reasonable
to expect that the statistics of the losses due to the fluctuation of a single hole follow a
Gaussian model, the statistics of the total losses (due to the fluctuations of all holes)
are not given by a direct sum over single-hole contributions. Our results show that
this cooperative effect systematically results in a decrease of the variance of the 1/Qd

distribution.

The constant Ac (the slope of the lines in Fig. 3.2(b)) can in principle be interpreted
as a measure of the robustness of a cavity to disorder effects. The values of Ac for
the different cavities are 0.159, 0.121, 0.107, 0.101, 0.273 and 0.230 for the L3, A3, A1,
HS, H1 and H0, respectively. With the exception of the HS, these decrease with in-
creasing cavity mode volume; the HS has a volume slightly lower than the A3 and
A1 combined with the lowest Ac. Additionally, a cavity with a lower Ac than the HS
has been demonstrated [104], but at the cost of an even higher mode volume. How-
ever, by investigating the full probability distribution of 1/Qd, plotted for σ = 0.0014a,
σ = 0.005a and σ = 0.015a in Fig. 3.3(a)-(c), we find that the difference is marginal
whenever 〈1/Qd〉−1 < Qt. The latter holds for all three values of σ for the A1 and
HS, and indeed the distributions for those two cavities are almost identical in all the
panels. Despite the fact that the slope of the A3 plot in Fig. 3.2(a) is visibly higher
than of the A1 and HS, already for σ = 0.005a (panel (b) of Fig. 3.3) it can be seen that
the three distributions become very close, illustrating that the difference in 〈1/Qd〉 is
actually minor. This reflects the fact that if disorder-induced losses are dominating,
which is already the case for the A3 with σ = 0.005a, for which Qt = 1.5 × 106 and
〈1/Qd〉−1 = 3.4× 105, then the full statistical distribution of those losses – and not only
the average Q – tends towards being design-independent. This conclusion is further
supported by the data for the other cavities, despite the fact that their Qt is more than
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Figure 3.3: (a)-(c): Histograms showing the occurrence of 1/Qd for the six different
cavities, computed using the GME for 1000 disorder realizations with (a): σ = 0.0014a,
(b): σ = 0.005a, and (c): σ = 0.015a. (d)-(f): Histograms showing the occurrence of Q
with the same values of σ as in (a)-(c). The insets in (d) and (e) are a zoom-in over the
low-Q range, where the L3, H0 and H1 values are sitting.

two orders of magnitude smaller than the A1 or HS values. Of course, the distributions
of the quality factors (panels (d)-(f) in Fig. 3.3) differ vastly among the different designs
for small σ, when Qt is important. However, when Qd is strongly dominant (Fig. 3.3(f)),
the distributions come close together, and it can be expected that they will be even
closer for yet higher disorder. However, this is a case which is, first of all, irrelevant
to state-of-the-art devices, second, in which the scaling 〈1/Qd〉 ∝ σ2 is expected to
break down [99], and third, in which the disorder becomes comparable to the hole
displacements defining the cavities.

The GME provides not only the resonant frequency and quality factor of a cavity, but
also the full (near-field) mode profile, through eqs. (2.6) and (1.6). A parameter which
is for example interesting for cavity-QED applications is the degree of polarization
in the center of a cavity (where a quantum dot would be placed), which for the L3,
A1, A3 and HS lies entirely along the y-direction in the ideal case. If we define the
degree of polarization in the center of a cavity as P =

|Ey(0)|2−|Ex(0)|2
|Ey(0)|2+|Ex(0)|2 , so that P = 1

for fully y-polarized field (ideal-cavity case) and P = −1 for fully x-polarized field, we
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Figure 3.4: For the three waveguide-based cavities (A1, A3 and HS), each panel shows
1/Qd in one cavity vs. 1/Qd in another for the same underlying disorder configuration,
with 1000 different configurations. First row: HS vs. A1; second row: A1 vs. A3; third
row: HS vs. A3. Across columns, σ changes from 0.0014a to 0.005a to 0.015a. The
correlation coefficient r is indicated in the top right corner of each panel. Note that the
range of the x-axis is twice larger than that of the y-axis due to the larger A3 spread.

obtain that the influence of disorder is not very profound: for the 1000 realizations
with each of the three values of σ as in Fig. 3.3, the distribution of P is always peaked
around 1, and all values are above 0.999 for σ = 0.0014a, 0.99 for σ = 0.005a, and 0.9

for σ = 0.015a. Note that the effect of disorder on the far-field is expected to be less
trivial [100], but since our GME implementation is currently not suited for computing
the far-field profile, this analysis is left for a future work.

The fact that the 1/Qd distribution for the HS, A1 and A3 are almost identical, and
that all three cavities are based on a local defect over a linear waveguide, suggests
the question of whether the same disorder realization affects the cavities in a similar
way. To investigate this, in Fig. 3.4 we plot, for the same three values of disorder as in
Fig. 3.3, 1/Qd in one cavity vs. 1/Qd in another for the same random configuration
of hole position and size shifts (taken separately from the defining cavity defect).
Strong correlation (which gets stronger with increasing σ) is indeed found, with a
correlation coefficient as high as 0.98 between the A1 and the HS for σ = 0.015a. To
understand why correlation is expected, we note that the modes of these cavities can
be expanded on the basis of Bloch modes of the waveguide (in the spirit of Section
2.4). In the ideal case, the main contribution comes from the modes close to the edge
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of the main guided band, which are perfectly lossless, and the lossy contributions
come from small components of modes above the light line [84, 88]. When disorder
is introduced in the waveguide (without a cavity), the ideally-lossless modes acquire
a finite quality factor [25, 63, 99]. We can thus further split the disorder losses of a
cavity into 1/Qd = 1/Qdes + 1/Qwm, where 1/Qdes is due to the way the disorder in
the defining defect increases the coupling to modes above the light line (i.e. disorder
makes the design sub-optimal), while 1/Qwm reflects the fact that the waveguide
modes themselves become lossy. Thus, 1/Qdes is design-dependent, while 1/Qwm is
largely ubiquitous, especially since the near-field profiles of Fig. 3.1 are very similar;
the strong correlations with increasing σ then show that the losses become increasingly
waveguide-mode dominated. Finally, we note that the A1-HS correlation is very high
even for σ = 0.0014a, which highlights the fact that those two defect cavities are
extremely similar.

3.1.3 Discussion and implications for cavity optimizations*

Our study of the disorder-induced losses provides insights that guided our subsequent
work on optimizing PhC cavities (Chapter 4). It is evident from Fig. 3.3 that, despite
the fact that the designs of the cavities studied here, as well as their theoretical Qt-
s, differ vastly, in the regime in which the disorder-induced losses are dominating
(Qd < Qt), the statistics of 1/Qd are to a good approximation design-independent.
Thus, optimizing Qt is important only if the measured Q (or, better, the 〈Q〉 measured
over many samples) is not much lower than Qt. If that is the case, there are just two
ways to significantly increase the measured Q. One is to decrease the magnitude of
disorder, which for all studied designs is related to the extrinsic losses via 〈1/Qd〉 ∝ σ2.
The second (albeit not reproducible) way is to explore the broad high-Q tail of the
probability distribution, which is visible in Fig. 3.3(d)-(f). The thickness of the tail is
related to the fact that in the disorder-dominated regime, the distribution of 1/Qd is
close to a squared Gaussian, as illustrated in Fig. 3.3(a)-(c). This results, for example,
in a 5.7% chance to find an HS cavity with Q = 7.4 × 106 – the average value with
σ = 0.001a – even within the σ = 0.0014a case. Of course, it should be kept in mind
that for such high values of the nominal Q, the measured value could be limited not
only by disorder, but also by linear absorption, or two-photon absorption and other
non-linear effects [70], which all introduce an additional effective loss rate.

Since the parameter space of hole positions and sizes in a typical PhC structure is
not only large but also inseparable (i.e. the effect of hole fluctuations on Q is highly
correlated among different holes), many local maxima of Qt can be expected. The
ideal tool for optimizing a design would thus be a global optimization algorithm – e.g.
a genetic optimization. The computational speed of the GME allows us to perform
such a global optimization, which will be presented in the next Chapter. In view of
that, the take-away message of this Section can be stated as follows: once the Qt of a
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cavity has reached a certain value (≈ 107 for current silicon-based devices, and lower
for other materials with higher magnitude of the fabrication imperfections), the best
improvement strategy is not to push Qt higher still, but instead to focus on additional
features beyond the quality factor. For example, the H0, H1, and L3 cavities studied
here all have a much smaller mode volume than the A3, A1, and HS, which is good,
but it is combined with a much lower Qt. Improving the quality factor of the former
designs is thus of greater importance than just pushing for a world-record Qt in any
PhC cavity. Beyond the mode volume and the quality factor, an optimization could
also focus on designs allowing for more sophisticated practical applications, as in e.g.
Refs. [105–109].

3.2 Effect of irregular hole shapes on PhC waveguides

As shown in Section 3.1, disorder can be the factor determining the quality of PhC
structures. It is by now well-known that fabrication imperfections also degrade the
preformance of PhC waveguides by inducing extrinsic radiation losses [61, 62, 110, 111]
and light localization [1, 63] in the vicinity of the guided band edge. Most of the
theoretical works on disorder in PhCs [62, 63, 94, 95, 110], as well as Section 3.1 here,
consider the simplest possible disorder model, namely circular holes with randomly
fluctuating radii and/or positions, and study radiation losses, spectral properties, and
light localization as a function of the fluctuation amplitude. Here, following our work in
Ref. [81], we present an analysis based on more realistic assumptions, clarifying the role
of the observed deviations from a perfectly circular shape of the PhC holes [103, 112].
We study numerically the interplay of angle correlation and radius fluctuations, and
conclude, in agreement with recent experimental evidence [103], that the relevant
parameter that quantifies the effect of disorder is the amplitude of fluctuations in the
hole area. More specifically, we employ the Bloch-mode expansion (cf. Section 2.4 and
references therein) to study the effect of irregular hole shapes on the properties of a W1
waveguide. We carry out a systematic analysis for two limiting assumptions within the
hole-shape model, namely fixed radius fluctuation (within each single hole), or fixed
hole area fluctuation (among different holes). The result clearly shows that varying the
correlation angle has practically no effect on the spectrum and radiation losses in the
second case, while it is highly determinant within the first assumption.

3.2.1 Disorder model

We consider a W1 waveguide as the one in Fig. 1.7, based on a triangular lattice of
cylindrical holes of radius R = 0.3a in a dielectric slab of thickness d = 0.5a, where
a is the lattice parameter. The permittivity is set to ε2 = 12.11 (relevant for Si) in
the dielectric material and to ε1 = 1 outside. Disorder is modeled in the form of
fluctuations in the hole profile, given by R(φ) = R+ δR(φ), where φ is the polar angle
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relative to the hole center. In particular, each hole is characterized by a different
disorder realization (no correlation between hole shapes is assumed) defined through
random Fourier expansion coefficients Cm as δR(φ) =

∑+∞
m=−∞Cme

imφ.

The Bloch modes of the regular waveguide are computed via the GME. In all computa-
tions we truncate the reciprocal space of guided modes to Gmax = 3× 2π/a, αmax = 1,
and take a computational cell as in Fig. 2.8(a), of size a in the x-direction and 5

√
3a in

the y-direction. To apply the BME, we need to compute the Fourier transforms of the
dielectric profiles of both the regular structure, ε(r), and the disordered one, ε′(r). As
usual in our study of slab-PhCs, the z dependence is trivial and can be taken care of
analytically, thus the only nontrivial task is the evaluation of the 2D Fourier transforms
of ε(ρ) and ε′(ρ) at z = 0 inside the slab. The former is readily computed [63]: let ζ be
an index running over all holes included in the computational cell, with ρζ denoting
their positions and Rζ - their radii (i.e. we allow for different radii of the holes, while
still assuming they are perfectly circular). Then, we have

ε(g) = ε2δg,0 +
ε1 − ε2
A

∑
ζ

eigρζ
2πRζ

g
J1(gRζ), (3.2)

where J1 denotes the Bessel function of the first kind and g is the magnitude of g.

The computation of ε′(g) is more involved, but we can also derive an analytical ex-
pression. First, we assume that the disordered dielectric profile is also constant in the
z-direction, i.e. ε′(r) = ε(ρ, 0). Then, we consider a slab with holes centered at the
same positions ρζ (ζ = 1, 2, . . . ) as the holes of the regular guide, but of arbitrary shape
given by a contour Rζ(φ) (in polar coordinates), i.e. we treat disorder due to irregular
hole-edge. In such a setup we have

ε′(ρ) = ε2 +
∑
ζ

(ε1 − ε2)Sζ(ρ− ρζ), (3.3)

where Sζ(ρ) is a function defined as

Sζ(ρ, φ) =

{
1, ρ ≤ Rζ(φ)

0, ρ > Rζ(φ)
(3.4)

To compute the Fourier transform ε′(g), we start from the Fourier transform of a single
function S(ρ) as defined above, for some hole profile R(φ):

S(G) =

∫
A
e−iGρd2ρ =

∫ 2π

0
dφ

∫ R(φ)

0
ρdρe−iGρ cos(θ−φ), (3.5)

where G = (G, θ) in polar coordinates. Assume that the hole profile can be represented
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as deviating slightly from a circular shape, R(φ) = R0 + δR(φ). Then,

S(G) =

∫ 2π

0
dφ

[∫ R0

0
+

∫ R0+δR(φ)

R0

]
ρdρe−iGρ cos(θ−φ) = S0(G) + δS(G), (3.6)

where we split the result into a circular hole expression, S0(G) - which is well-known,
and a correction term, δS(G). For the latter we have,

δS(G) =

∫ 2π

0
dφ

∫ R0+δR(φ)

R0

ρdρe−iGρ cos(θ−φ) (3.7)

=

∫ 2π

0
dφ

∫ R0+δR(φ)

R0

ρdρeiGρ sin(θ−φ+π
2 ),

and we make use of the Jacobi-Anger expansion:

eiω sinϕ =

∞∑
m=−∞

Jm(ω)eimϕ, (3.8)

to get

δS(G) =

∫ 2π

0
dφ

∫ R0+δR(φ)

R0

ρdρ

∞∑
m=−∞

Jm(Gρ)eim(θ−φ+π
2 )

=

∫ 2π

0
dφ

∞∑
m=−∞

imeim(θ−φ)

∫ R0+δR(φ)

R0

ρdρJm(Gρ). (3.9)

For δR small, we can expand the dρ integrals to first order,

∫ R0+δR(φ)

R0

ρdρJm(Gρ) ≈ δR(φ)R0Jm(GR0). (3.10)

Since δR(φ) is a 2π-periodic function, we can take its Fourier series expansion,

δR(φ) =

∞∑
n=−∞

Cne
inφ, (3.11)

with reality condition C−n = C∗
n. Plugging (3.10) and (3.11) in (3.9) yields

δS(G) = R0

∞∑
m,n=−∞

imeimθJm(GR0)

∫ 2π

0
dφe−imφCne

inφ

= 2πR0

∞∑
m=−∞

imeimθCmJm(GR0) (3.12)

The Fourier expansion of the dielectric profile in presence of disorder can be directly
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expressed using this result, since

ε′(g) = ε2δg,0 +
ε1 − ε2
A

∑
ζ

eigρζSζ(g), (3.13)

where A is the area of the supercell, ζ runs over all the holes centered at ρζ present in
the supercell, and Sζ(g) = S0,ζ(g) + δSζ(g) is the Fourier transform corresponding to
a Rζ(φ) = R0,ζ + δRζ(φ) profile. In the computations done here, we further simplify
this result by taking R0,ζ = R0 – constant for all holes (both in the regular and in the
disordered case), i.e. only the hole-edge disorder δR(φ) is different for every hole in
the supercell. If we characterize this by a set of Fourier-expansion parameters Cm,ζ for
hole number ζ, the expression is finally

ε′(g) = ε2δg,0+
2πR0

A
(ε1−ε2)

∑
ζ

eigρζ

[
J1(gR0)

g
+

∞∑
m=−∞

imeimθCm,ζJm(gR0)

]
. (3.14)

In the disorder model used here, we take the {Cm} coefficients for each hole to be
Gaussian random variables, whose distribution is fully determined by 〈Cm〉 and 〈|Cm|2〉.
Note that 〈Cm �=0〉 = 0, since it is an average over complex numbers with a random
phase. We further assume Gaussian correlations along φ, such that 〈δR(φ)δR(φ′)〉 =
σ2e−

(φ−φ′)2
2δ2 , where δ is the correlation angle. We verified that assuming exponential

correlations does not relevantly change our conclusions [75]. This sets 〈∑m |Cm|2〉 =
〈δR2〉 = σ2, and the dependence with m of the second moments:

〈|Cm|2〉 = σ2
∫ π

−π
e−

φ2

2δ2 e−imφdφ. (3.15)

Within this scheme, the quantities σ, δ and 〈C0〉 are still free parameters. To set them,
we consider two different models. The first one consists in assuming, for varying δ,
a given magnitude of the fluctuation of the hole radius, namely by setting 〈δR〉 = 0

and 〈δR2〉 = const, which sets 〈C0〉 = 0 and σ =
√

〈δR2〉. Fig. 3.5(a) illustrates one
realization of a hole within this model with σ = 0.006a, computed for two different
values of δ. The second model consists instead in assuming a given magnitude of
the fluctuations in the hole area A, thus setting 〈δA〉 = 0 and 〈δA2〉 = const, which
determines implicitly the parameters 〈C0〉 and σ. In panel (c) of Fig. 3.5, we show
a hole realization when those conditions are imposed, with 〈δA2〉 = 0.004a2, for the
same two values of δ as in panel (a). It can be seen that in this case the magnitude
of the radius fluctuations 〈δR2〉 depends substantially on δ, and while the profile for
δ = 0.06(2π) appears as a reasonable representation of what could be expected from a
state-of-the-art PhC [103, 112], the δ = 0.005(2π) profile displays unrealistically large
radius fluctuations.
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Figure 3.5: (a): Polar and Cartesian plots of a sample hole shape for two different
correlation angles, assuming a fixed radius fluctuation σ = 0.006a; (b): The underlying
distributions of 〈|Cm|2〉; the green dashed lines mark the region |m| ≤ 5. (c), (d): same,
assuming a fixed area fluctuation 〈δA2〉 = 0.004a2

3.2.2 Effects on the waveguide properties*

In Fig. 3.6 we plot the dispersion and radiative loss rates of the waveguide modes
computed for one disorder realizaton in a waveguide of length L = 256a. Using the
BME method, the rates were computed as explained in Section 2.4. The magnification
in the insets shows the broad variation of the rates corresponding to modes very close
to the band edge, which can be thought of as Anderson-localized cavity-like modes (cf.
Section 1.3.1) with a broad distribution of Q-s (cf. Section 3.1).

Panel (a) of Fig. 3.6 presents the fixed-〈δR2〉 model, with the four possible combi-
nations of δ = 0.06(2π), δ = 0.005(2π), σ = 0.006a and σ = 0.002a (see the legend).
As can be seen, within this model, changing δ can have an effect as dramatic as that
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Figure 3.6: Computed radiation loss rates of the waveguides with disorder. (a): 〈δR2〉 =
constmodel; (b): 〈δA2〉 = constmodel. Insets: detail of the rates close to the band edge.
On the left, the guided bands of the regular structure (solid lines) and the light cone
(dashed line) are displayed for reference.

of changing σ, with an order of magnitude difference present in the loss rates of the
modes when going from the high δ = 0.06(2π) to the low δ = 0.005(2π). In panel (b) we
show a similar plot but for the fixed-〈δA2〉 model, with the same two values of δ and
with 〈δA2〉 = 0.004a2 and 〈δA2〉 = 0.001a2. Here, in contrast, changing δ does not have
a very pronounced effect, with the radiative rates being only very slightly higher in the
low-δ case. This single-realization data, together with the sample profiles given in Fig.
3.5, suggest that fine features in the shape of the holes do not contribute as strongly to
the disorder effects as do the smooth features.

To test this further, we computed the Density of States (DOS) of the modes close to
the band edge, by a statistical average over 500 disorder realizations. The computed
DOS is plotted in Fig. 3.7, panels (a)-(b) for the fixed-〈δR2〉 model and panels (c)-(d)
for the fixed-〈δA2〉 one. To emphasize the role of the irregular hole shape, we also
plot the DOS with the commonly adopted simple disorder model of constant radius
fluctuations (corresponding to the limiting case δ → ∞). Oscillations in the high-
frequency tails originate from the finite length of the simulated waveguide. All the
computed histograms show a Lifshitz tail below the band edge. Modes in this region
are spatially localized [63, 113], and slow-light propagation is consequently hindered.

52



3.2. Effect of irregular hole shapes on PhC waveguides

D
O

S
 (

ar
b

. u
n

it
s)

 

 

δ = 0.005(2π)

δ = 0.06(2π)

δ → ∞

regular structure

band edge

0.2718 0.272 0.2722 0.2724
ωa/(2πc)

0.2718 0.272 0.2722 0.2724
ωa/(2πc)

(d)(c)

(b)(a)

Figure 3.7: Density of states of the waveguide modes close to the band edge (marked
by a dashed-dotted line), for (a): σ = 0.006a; (b): σ = 0.002a; (c): 〈δA2〉 = 0.004a2; (d):
〈δA2〉 = 0.001a2.

From the DOS it appears, once more, that the correlation angle δ has a strong effect
on the distribution only in the 〈δR2〉 = const case, where the broadening of the band
edge increases considerably for increasing δ. In this case, we also expect the parameter
δ to affect significantly all effects due to disorder, such as Anderson localization and
the resulting breakdown of slow-light propagation. We further note that in Ref. [99],
a related model for waveguide disorder was studied, assuming holes divided into
a number of constant-radius segments. Fixing the standard deviation of the radii,
the dependence of the out-of-plane losses could thus be computed as a function
of the number of segments N , which defines a correlation length Lc = 2πR0/N . A
maximum of the losses was found for N = 5, i.e. at a finite correlation length. Our
results show instead that the disorder effects increase monotonously with increasing
correlation angle, thus also with correlation length, which in our model can be defined
as Lc = R0δ. We find this result more intuitive in view of the above discussion of
hole-area fluctuations. The discrepancy could be simply due to the different disorder
models that were used, but in principle further investigation is recommended.

In all our simulations, the sum in eq. (3.14) was restricted to |m| ≤ mmax. We have
carefully checked that all results were well converged starting at mmax = 5 (dashed-
dotted lines in Fig. 3.5(b) and (d)). This remark corroborates our statement that fine
features in the disorder are not as relevant as the smooth ones. Intuitively, this is due
to the typical wavelength of the electromagnetic modes of the PhC, which produces a
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spatial averaging of features in the dielectric profile on a much smaller spatial scale.

3.2.3 Implications for waveguide fabrication*

The main result presented here can be broken down in two statements. First – con-
firming the suggestion made in a recent experimental study [103] – it is indeed the
magnitude of the fluctuations of the hole area, 〈δA2〉, which determines the magnitude
of the disorder effects. This is evident from Figs. 3.6 and 3.7, in which the 〈δA2〉 = const

model is virtually independent of δ. Second, when 〈δR2〉 = const is imposed instead,
the disorder effects are strongly dependent on δ, with a small correlation angle cor-
responding to much smaller loss rates and spectral broadening. Insight is provided
by comparing panels (b) and (d) of Fig. 3.5, where the average quantities 〈|Cm|2〉 are
plotted for the corresponding hole models in panels (a) and (c). The dashed-dotted
lines in panels (b) and (d) mark the convergence range |m| ≤ mmax = 5. In the case of
fixed radius fluctuation depicted in panel (b), the values of 〈|Cm|2〉 in this small-|m|
range vary considerably when varying δ. This is due to the fact that the parameters σ
and δ determine respectively the integral and the width of the distribution 〈|Cm|2〉 as a
function ofm. In the case of fixed hole-area fluctuations shown in panel (d) instead, the
two curves differ mainly in their width, while their values in the vicinity of m = 0 are
closer than in the previous case. Thus, for fixed area fluctuations, the Cm coefficients
relevant to the results vary less as a function of δ.

The fabrication process of a PhC does not correspond to either of the two limiting
models considered here. The cross section of the e-beam used for lithography and the
subsequent etching process are likely to set a typical length scale for the hole shape. For
PhCs with nominally constant hole radii, this situation is however expected to be closer
to the fixed-〈δR2〉 assumption, as panels (a) and (c) of Fig. 3.5 also clearly suggest.
We conclude that, while hole-area fluctuations are the single relevant parameter to
quantify disorder effects, this parameter is only indirectly determined by the details of
the fabrication process, which instead directly set the amplitude of radius fluctuations
and their correlation angle. If any control over those two parameters is possible in
the fabrication process, then, to increase the PhC quality, we propose to minimize the
angular scale of the hole roughness δ, while keeping its amplitude constant.
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4 Automated Optimization of Pho-
tonic Crystals

In this Chapter, we present the implementation of an automated, global optimization
of photonic crystal devices, and apply it to various structures.

In Section 4.1, we focus on the L3, H0, and H1 cavities in silicon, which are very
widespread designs due to their compactness, simplicity, and small mode volume.
However, the best designs for these cavities prior to our work had Q-values of a few
times 105 at most, namely one order of magnitude below the bound set by fabrication
imperfections and material absorption in silicon. The Section is adapted from [78]
(M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,”
Scientific Reports 4 (2014)), where we use a genetic algorithm to find a global maximum
of the quality factor of these designs, by varying the positions of few neighboring holes.
We consistently find Q-values above one million – one order of magnitude higher
than in previous devices. Furthermore, we study the effect of disorder on the optimal
designs (in the same way as presented in Section 3.1), and conclude that a similar
improvement is also expected experimentally in state-of-the-art systems.

These outstanding predictions led to several collaborations with experimental groups.
Two of the ensuing results are presented in Section 4.2. In Section 4.2.1, we report
an experimental realization of an ultra-high-Q L3 cavity, using the design one of the
designs obtained in Section 4.1. The cavity was fabricated by prof. Antonio Badolato
and Yiming Lai at the University of Rochester, while the spectroscopy was performed
by prof. Matteo Galli, prof. Dario Gerace, Giulia Urbinati, and Stefano Pirotta at the
University of Pavia. The Section is adapted from our publication, Ref. [114] (Y. Lai
et al., “Genetically designed L3 photonic crystal nanocavities with measured quality
factor exceeding one million,” Appl. Phys. Lett. 104 (2014)). The measured Q = 2× 106

is among the highest recorded in any PhC cavity, and is in particular one order of
magnitude higher than that of previous L3 designs. In Section 4.2.2, adapted from
Ref [115] (U. P. Dharanipathy et al., “High-Q silicon photonic crystal cavity for enhanced
optical nonlinearities,” Appl. Phys. Lett. 105 (2014)), we report on a similar experiment,
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but utilizing an H0 cavity design also taken from Section 4.1. The cavity was fabricated
and characterized by prof. Romuald Houdré, Dr. Perumal Dharanipathy, and Mario
Tonin here in EPFL, and the measured Q-factor of 400, 000 is higher than the previous-
best theoretical value for this cavity. Additionally, this design has the advantage of a
tiny modal volume, several times smaller than that of the L3 design, which is in turn
smaller than that of other ultra-high-Q designs like the A1 or HS (Section 3.1). The two
cavities presented in Section 4.2 thus have some of the largestQ/V ratios ever reported
– an important figure of merit for most applications. They thus hold great promise
for the reliable fabrication of on-chip devices based on ultra-high-Q resonators for
nonlinear and quantum photonics.

In Section 4.3, we present other cavity optimizations that we have performed, illus-
trating further the broad applicability of our procedure. In Section 4.3.1, we present
a design for an L3 cavity in a Gallium Nitride (GaN) slab. This material has a lower
refractive index than Si, resulting in lowerQ values, but is very important for a variety of
reasons, e.g. the fact that it is transparent at optical frequencies. The optimized cavities
were fabricated by Dr. Noelia Vico-Triviño and Dr. Jean-François Carlin in the group of
Prof. Nicolas Grandjean in EPFL, and optically characterized by Giulia Urbinati and
Prof. Matteo Galli in the University of Pavia. The results, and the accompanying simu-
lations that we performed, are published in Ref. [116] (N. Vico-Triviño et al., “Gallium
nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near
infrared,” Appl. Phys. Lett. 105 (2014)). Section 4.3.1 is adapted from that publication.
In Section 4.3.2, we report on the Q-optimization of an L3 cavity in a PhC formed in a
silicon slab embedded in SiO2. This design is important in view of integrating photonic
devices with existing Complementary Metal–oxide–semiconductor (CMOS) technolo-
gies used for the fabrication of todays nano-electronic devices. Finally, in Section 4.3.3,
we report on the optimization of a cavity with respect to a figure of merit other than
the quality factor. In particular, we focus on a cavity used for the optical trapping of a
dielectric particle [109], and try to maximize the electric field in the trapping region,
thus boosting the efficiency of the device.

Section 4.4 presents another illustration of an optimization that goes beyond the qual-
ity factor of a cavity. The Section is adapted from Ref. [117] (M. Minkov and V. Savona,
“Wide-band slow light in compact photonic crystal coupled-cavity waveguides,” Optica
2 (2015)), where we propose a photonic crystal coupled-cavity waveguide with an
ultra-compact arrangement of the constituent cavities in the propagation direction.
We use the automatic optimization to tune several structural parameters to engineer
slow light with a constant group index ng over a wide bandwidth (see Section 1.3.1).
We propose several specific silicon designs, including one with ng ≈ 37 over a 20nm

wavelength range, and another one with ng ≈ 116 over a 8.8nm band, which yields a
group index-bandwidth product of 0.66 – a record value among all slow-light devices.
The design is experimentally beneficial because of its small footprint and straightfor-
ward fabrication and could find applications for optical storage or switching, and for
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generating quantum states of light.

4.1 High-Q-optimized silicon air-bridge cavities: theory

4.1.1 Background to cavity optimization*

As discussed in Section 1.3, optical nonlinearities, the Purcell effect, and radiation-
matter coupling all depend directly on the Q and inversely on the V of a cavity
mode [47, 68, 69, 118]. For this reason, a major effort has been directed towards the
maximization of Q and/or the minimization of V , i.e. to cavity optimization. To this
purpose, three different approaches can be broadly defined. The first is the inverse
problem approach [84, 88], where an effective equation for the dielectric profile is
defined starting from the desired shape of the cavity mode, through a semi-analitical
formalism. The second is the topology optimization method [119], where variations
of the entire topology of the PhC are allowed, and the objective function (either Q or
Q/V ) is maximized numerically [120–122]. Although some of these works [118, 122]
have achieved remarkably high values of Q and Q/V , the resulting cavity designs often
pose a serious technological challenge in terms of manufacturability, as they present
excessively small holes or holes with irregular pattern and sharp features. A third
and completely different strategy consists in optimizing simple PhC cavity designs by
tweaking only a few geometrical parameters (e.g. by shifting the positions and varying
the radii of nearby holes), in order to preserve the small spatial footprint and ease of
fabrication of the design. This approach has produced encouraging results, in particu-
lar for the three most widespread cavity designs, namely the L3 cavity [82,101,123,124],
the H0 cavity (also known as ‘zero-cell’ or ‘point-shift’ cavity) [89, 101], and the H1
cavity [101, 102, 125–127]. It brought in some cases an increase of the quality factor by
more than one order of magnitude – reaching values of a few hundred-thousands, or
even above one million for the H1 hexapole mode [126, 127] – while the mode volume
was only slightly increased or sometimes even reduced. A common feature of all these
optimization works however is the lack of an exhaustive exploration of the parameter
space in search of a global maximum of the objective function.

Experimentally, the quality factor of PhC cavities is limited by extrinsic losses, due to
absorption and fabrication imperfections [79,94,95,100]. More precisely, the measured
quality factor Qe can be expressed as

1

Qe
=

1

Qt
+

1

Qa
+

1

Qd
, (4.1)

where Qt is the theoretical quality factor expected from the ideal structure, while
1/Qa and 1/Qd are measures of the additional loss rates due to material absorption
and to disorder-induced extrinsic losses respectively. This formula was extensively
discussed in Section 3.1. For silicon PhCs and wavelengths in the 1.5 μm range, record

57



Chapter 4. Automated Optimization of Photonic Crystals

values of Qe ranging between one and nine million were measured on cavity designs
based on a modulation of a one-dimensional PhC waveguide [83, 85, 94, 127–129]. For
these designs, Qt ranges between 2× 107 and 108, suggesting a value of several million
for both Qd and Qa. These waveguide-based designs, however, have a considerably
larger footprint and display a mode volume up to three times larger than that of defect
cavities. There are no fundamental reasons that should prevent the quality factor of
the latter from reaching values of several million, close to the current bound set by
disorder and absorption.

Here, we adopt a simple optimization strategy. Similarly to several existing works
[28, 82, 89, 101, 102, 123, 124, 126, 127], we choose a small set of variational parameters –
typically the spatial shifts of a few holes next to the defect – thus producing designs that
can be easily realized with current nanofabrication processes. Differently from these
works however, we carry out a global exploration of the parameter space by means of
an evolutionary algorithm. Here, by ‘global’ we mean the exhaustive search for the
global maximum of the quality factor in the parameter space of choice. In this way we
demonstrate that it is possible to systematically optimize L3, H0, and H1 cavities to
values ofQt well above 106 – typically more than one order of magnitude above previous
optimal values – without a large increase of the mode volumes. The key to this drastic
improvement is the exhaustive search that finds configurations overlooked by previous
approaches, as exemplified by the simplest of the L3 designs considered here [123].
This optimization procedure is made computationally feasible thanks to the use of the
guided-mode expansion (Section 2.3) that allows calculation of the modes and quality
factors of each variation within minutes of computational time. Furthermore, we
statistically analyze the influence of fabrication imperfections on the optimal designs
and conclude that a considerable improvement in the experimental quality factor can
be expected. This has actually been confirmed by the experiments [114, 115] discussed
in Sections 4.2.1 and 4.2.2.

All cavities studied here are formed in the usual triangular lattice with pitch a of air-
holes of radius R in a silicon (n = 3.46) slab of thickness d. All lengths are expressed
in units of a, but we set the parameters such that, for the typically used thickness
d = 220nm, the resonant modes lie in the telecommunication band around λ =

1.55μm. For the simulation of a single structure, we use the GME, whose reliability for
modelling high-Q cavities was discussed extensively in Section 2.3. The computational
parameters used here are Gmax = 2.5 × 2π/a, αmax = 1 (4 in the simulations related
to Fig. 4.2(f)), and Nk = 3 (cf. Section 2.3). As a further check of the validity of the
results, all final (optimized) structures are also simulated using the 3D finite-difference
time-domain method [73]. For each of the optimized designs presented here, we also
analyze the probability density of Qe in the presence of fabrication imperfections (and
neglecting the absorption loss contribution 1/Qa). The disorder model is the same as
in Section 3.1.
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Figure 4.1: (a): The design of the L3 cavity. For quality factor optimization, shifts
of the positions of the five neighbouring holes in the x-direction were introduced,
labeled as S1x, S2x, S3x, S4x, and S5x in the figure. (b)-(m): A parameter scan of the
GME-computed quality factor values for different S1x, S2x and S3x, where S1x starts
from 0.15a in panel (b) and increases in multiples of 0.02a in every consecutive panel,
up to 0.37a in (m), and S4x = S5x = 0 in all panels.

4.1.2 Preliminary considerations*

The first cavity design we investigate is the L3 cavity that has been omnipresent in
this thesis (Fig. 4.1(a)), with d = 0.55a and R = 0.25a. The quality factor of this
cavity has already been optimized [123] with respect to shifts of the positions of three
neighbouring holes (marked S1x, S2x, and S3x in the Figure), by using a simplified
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approach in which, starting from the unshifted design, each of the three shifts has been
varied once while keeping the two others constant. To explore the extent to which this
approach is suitable, we compute a full map of the quality factor on a relevant region of
the (S1x, S2x, S3x)-space. The map is displayed in Fig. 4.1(b)-(m). There, in each panel,
Qt is plotted as a function of S2x and S3x, while the value of S1x increases from 0.15a

to 0.37a in steps of 0.02a when going from panel (b) to panel (m). Technically, these
plots already provide a global optimization of the cavity (a clear maximum of Qt can
be identified), although performed in the least practical, brute-force way. If applied
to the panels of Fig. 1 (though approximately, given the coarse S1x step used in this
figure), the simplified optimization procedure in [123] leads to the point marked by a
white cross in panel (e) (more precisely, S1x = 0.21a, S2x = 0.01a, S3x = 0.23a), i.e. far
off the maximum that can be seen in panel (k) at S1x = 0.33a, S2x = 0.26a, S3x = 0.10a.
It is also interesting to note that within the range of the plots in Fig. 4.1(b-m), two
maxima are visible - a local one around S1x = 0.25a, S2x = 0.09a, S3x = 0.21a in panel
(g) and another one which first appears at S1x = 0.29a, S2x = 0.18a, S3x = −0.10a in
panel (i) and then shifts to become the global maximum at S1x = 0.327a, S2x = 0.257a,
S3x = 0.116a. In general, an even larger number of local extrema might in principle be
present, especially for larger number of parameters, thus making the search for the
global extremum more difficult. This highlights the need for a global optimization
procedure instead of a more conventional algorithm (e.g. the conjugate gradient) that
would almost inevitably find a local rather than a global maximum.

Ideally, we would like to apply a global, stochastic (since there is no general way to come
up with a ‘good’ guess for a starting point) procedure to the problem of optimizing
the cavity parameters. Thus, we choose to employ the genetic algorithm provided in
the MATLAB R© Global Optimization Toolbox [130], which starts from a random initial
population (i.e. a set of points in parameter space) and goes on to create a sequence
of generations (new sets of such points) where the ‘fittest’ individuals are kept. The
algorithm incorporates an array of evolutionary inspired techniques, including cross-
over, random mutations, and natural selection of individuals. An ‘individual’ in our
case is simply one Q-computation for a particular set of cavity parameters, and the
higher the quality factor, the higher the assigned ‘fitness’ of the individual (i.e. its
probability to survive to the next generation and/or to be mixed with another individual
to produce an ‘offspring’ lying in parameter space somewhere in between the two).
With the increase of the number of free parameters, the number of generations needed
for convergence increases. Here, the maximum number of parameters used is 8,
in which case ≈ 300 generations each consisting of 120 individuals are needed for
convergence. This can however be greatly improved if a rough optimization is first
carried out (with a large allowed range for the free parameters), followed by a finer
optimization centered around the rough maximum. The longest optimization we ran
thus took about a week on twelve CPUs with 32GB of RAM. This would have taken
more than ten years to finish using the same machine but employing an FDTD solver
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Figure 4.2: (a)-(b): Electric field (Ey) profiles of the two optimized L3 designs; the
holes that were displaced are marked in red. (a): S1x = 0.327a, S2x = 0.257a, S3x =
0.116a. (b): S1x = 0.337a, S2x = 0.270a, S3x = 0.088a, S4x = 0.323a, S5x = 0.173a. (c):
Dependence of Qt on S2x and S3x for S1x = 0.327a; the shifts in the design of panel (a)
are marked by a white cross. (d): Histograms showing the probability of occurrence of
different Qe-values in the design of panel (a), for two different disorder magnitudes:
σ = 0.003a (red) and σ = 0.0015a (blue). The black line indicates the ideal Qt. (e):
Same as (d), for the design of (b). (f): Dependence of Qt on the overall radius and the
slab thickness, for the values of S1x − S5x corresponding to the optimal design in (b).
On the right of the dashed line, the slab becomes multi-mode at the cavity frequency.

instead of the GME.

4.1.3 Optimized L3 cavity*

We choose the objective function of the optimization to be the GME-computed quality
factor Qt. When applied to the L3 with freedom in S1x, S2x and S3x, the optimal
design is found for S1x = 0.327a, S2x = 0.257a and S3x = 0.116a (Fig. 4.2(a)). This
yields Qt = 2.1 × 106 (FDTD: 1.6 × 106), which is an increase by a factor of ≈ 6 as
compared to the previously highest value [123] of 3.3 × 105 (FDTD: 2.6 × 105), while
the mode volume (defined as in eq. (1.17)) increases from 0.77(λ/n)3 to 0.94(λ/n)3.
One obvious advantage of using evolutionary optimization rather than the brute-force
parameter scan of Fig. 4.1 is the precision with which the maximum can be pinpointed;
another one is that less than a thousand cavity computations are needed to reach this
extremum, while each of the panels of Fig. 4.1 contains 104 computations. Moreover,
the design can be further improved if two more shifts (S4x and S5x in Fig. 4.1(a)) are
allowed in the optimization, which is still easily handled by the genetic algorithm,
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although ≈ 100 generations of 80 individuals each are needed for convergence. In
this case, the optimized design is found for S1x = 0.337a, S2x = 0.270a, S3x = 0.088a,
S4x = 0.323a, and S5x = 0.173a (Fig. 4.2(b)), and has Qt = 5.1× 106 (FDTD: 4.2× 106)
with mode volume V = 0.95(λ/n)3, i.e. an increase in Qt by one order of magnitude
compared to the previous optimal values [123, 124], with an increase in the mode
volume comparable to the three-shift case. The resonant frequency of the modes is at
ωa
2πc = 0.259 for both designs, which is slightly lower than the frequency ωa

2πc = 0.263 of
the unmodified L3 (i.e. with the same d/a and R/a but with no hole shifts).

The choice of the particular hole shifts presented here is not unique, but appears
optimal for the given number of free parameters (3 or 5, respectively). A more intricate
design including 8 parameters is presented in Section 4.1.4. Having only a few hole
shifts as free parameters results in a technologically friendly structure, and in a more
compact cavity defect, characterized by a much smaller footprint on the PhC, than
waveguide-based ultrahigh-Q designs [83, 85, 88]. In addition, the present designs are
as robust to fabrication imperfections as any other high-Q PhC cavity [79], as can be
inferred from Fig. 4.2(c)-(f). In panel (c) we plot, for the three-shift L3, the dependence
of Qt on S2x and S3x as in Fig. 4.1, but for the value S1x = 0.327a corresponding
to our optimal design (the white cross indicates where the design lies with respect
to S2x and S3x). In this plot, we observe that the width of the maximum is larger
than the typical uncertainty in the hole positions (smaller than 0.005a for Si [103]).
Furthermore, in Fig. 4.2(d)-(e) we show, respectively for the three- and five-shift design,
the computed probability of occurrence of Qe-values in presence of disorder. Each
of these histograms was obtained by simulating 1000 disordered realisations of the
corresponding cavity design. The blue plot in panel (d) in particular shows that for
a state-of-the-art disorder magnitude σ = 0.0015a (i.e. about 0.6nm [94, 95], when
assuming a = 400nm in a silicon slab), the average value lies at aboutQe = 2.5×106, i.e.
quality factors one order of magnitude larger than the previous theoretical maximum
can be expected in practice, highlighting the significance of the design optimization.
Finally we note that, for a given set of optimal values of the Snx parameters, the designs
are also robust to small changes in the overall hole radius R and slab thickness d,
which can originate from an offset in the fabrication process and/or be introduced on
purpose in order to e.g. tune the resonant frequency to a desired value. To show this, in
panel (f) we plot the value of Qt obtained by varying R and d while keeping the shifts
S1x − S5x constant and set to the values obtained for the optimal design computed at
d = 0.55a and R = 0.25a. We observe that Qt > 4 × 106 for a range of R and d values
which is much larger than the fabrication uncertainty and which allows fine-tuning
of the frequency. For certain values of d and R (to the right of the dashed line in the
Figure), higher-order guided modes of the slab become non-negligible. More precisely,
the second σxy = 1 guided band of the underlying slab (cf. Fig. 1.4) becomes resonant
with the cavity mode and introduces a new loss channel [25]. We point out that, while
Qt appears to systematically increase with d in the single-mode region, it drops rapidly
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Figure 4.3: Design of the 8-shift L3 cavity. The shifts S1x to S5x are defined in the
same way as for the design of Fig. 4.2(b). Additionally, a 6-th shift in the x-direction
is introduced as marked, as well as two shifts in the y-direction. The latter consist of
moving all holes marked in white by a distance S1y in the y-direction, and all holes
marked in brown – by a distance S2y. The color map shows the absolute value of the
y-component of the electric field of the fundamental cavity mode.

as soon as d increases into the multi-mode region. An analogous trend of the loss
rates as a function of R/a and d/a is expected for the other cavity designs discussed
in this study. In principle, one could consider d/a and/or R/a as free parameters in
the optimization, but in that case setting a target wavelength, for a fixed value of d that
might arise from technological requirements, becomes more difficult.

4.1.4 L3 cavity with a Q of 20 million

To increase the Q of the L3 cavity even further, we tried increasing the number of
optimization parameters in various configurations. It was found that modifying the
hole radius of the 5 holes used in the 5-shift design of Fig. 4.2(b) does not bring a
significant improvement, and neither do position shifts in the holes further out along
the y = 0 axis (intuitively, it is straightforward to expect that the holes closest to
the cavity defect have the highest influence). We thus introduced shifts in the holes
above and below the cavity, trying various parameter configurations and running
the automated optimization for each one. The best result was obtained with the 8-
parameter design illustrated in Fig. 4.3. Using the same PhC parameters as in Section
4.1.3, the best design was found for S1−6x = [0.312, 0.209, 0.040, 0.227, 0.177,−0.014]a,
S1y = 0.058a, S2y = 0.037a, with a GME-computed Q of 23.7 × 106. This result was
obtained with the standard computation parameters, Gmax = 2.5 × 2π/a, αmax = 1,
which are however somewhat insufficient for this ultra-high-Q cavity, since the FDTD-
computed result is 14.2× 106. Of course, when increasing the parameters to Gmax =

3× (2π)/a, αmax = 9, the agreement is restored, with a GME-computed Q of 15.9× 106.
In the final analysis of this L3 cavity, it was found that theQ can be further increased by
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Figure 4.4: (a): Histograms of the probability distribution of the Qe in presence of
disorder for the optimized 8-shift cavity. 1000 disorder realizations were computed
using the GME with Gmax = 2.5 and αmax = 1. (b): Correlation between the results
of the Gmax = 2.5 and αmax = 1 and the Gmax = 3 and αmax = 9 computations for
20 disorder realizations for each of the two disorder magnitudes. The correlation
coefficient is ρ = 0.978 for σ = 0.003a, and ρ = 0.946 for σ = 0.0015a.

a slight change of the overall hole radius. This brought the maximum Q of the design,
obtained for R = 0.255a instead of 0.25a, to 20.0× 106 (FDTD: 20.9× 106).

In Fig. 4.4(a), we perform the same statistical analysis of the expected experimental Qe

as for the previous L3 designs of Section 4.1.3. We simulate 1000 disorder realizations
for the two disorder magnitudes σ = 0.003a and σ = 0.0015a. The mean value 〈Qe〉 is
higher than the one of the 5-shift design, but as expected in view of our discussion
in Section 3.1, it does not increase by much, since the losses are disorder-dominated.
The computations were performed with the parameters Gmax = 2.5× 2π/a, αmax = 1,
and are in this case sufficiently accurate, since the Q is lowered by the disorder. This
is illustrated in Fig. 4.4(b), where we plot the quality factor computed with those
parameters vs. the one computed with Gmax = 3 × 2π/a, αmax = 9, for 20 disorder
realizations for each of the two disorder magnitudes. As can be seen, the values are
very close and very strongly correlated, which justifies the use of the lower convergence
parameters to obtain the statistics of the disorder-induced losses.

4.1.5 Far-field considerations

The far field of a cavity is defined as the electromagnetic field at a large distance (e.g.
much larger than the resonant wavelength) away from the cavity region. A number of
previous works on improving the cavity Q have discussed the far-field components of
the resonant mode [83, 84, 88, 89, 101, 102, 123], and for a good reason. In a perfectly
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Figure 4.5: (a): Log-scale color map of the Fourier transform of the electric field Ey at
a plane 70nm above the PhC slab for an un-optimized L3 cavity (Q = 6900). The light
cone k2x + k2y < ω2

0/c
2 is shown with a black circle. (b): Same as (a), for the five-shift

design of Section 4.1.3 (Q = 4.2 × 106). (c): Same as (a), for the eight-shift design of
Section 4.1.4 (Q = 2.1× 107).

loss-less cavity, i.e. one with an infinitely high quality factor, the far field is zero as all
field components decay exponentially at large distances. In the case of slab-PhCs, as
discussed in Chapter 1 and Section 1.3.2 in particular, this is not possible due to the
fact that the band gap is only partial, and the cavity mode inevitably has components
that are radiating in the direction orthogonal to the slab. This results in finite far-field
components, and also in a finiteQ. In fact, the latter can be obtained by integrating the
electromagnetic energy radiated through the former [84, 131], and so the two concepts
are intimately related. To put it simply, the quality factor describes the total power
radiatively lost from the cavity, while the far field profile gives additional information
on the directions in which the electromagnetic energy is radiated.

It should be clear, then, that the goals of maximizing the cavity Q and of minimizing
the (integrated) far-field components are equivalent. If one cavity has a higher quality
factor than another, then it must also have a weaker far-field emission. Restating
the quality factor optimization into a far-field problem could still be beneficial as
illustrated by the analytical inverse-design cavity proposals of Refs. [84, 88]. However,
when it comes to the exploration of the parameter space in the framework of our
optimization scheme, there is no advantage in computing the far field instead of the
quality factor. Still, for completeness and comparison to previous works, in Fig. 4.5
we plot the Fourier transform of the electric field recorded in a plane 70nm above the
slab, for an un-optimized and for two of the optimized L3 cavities. The far field can be
computed from the Fourier components that lie inside the light cone (black circle in
the Figure) through a simple transformation [84, 131]. As predicted and can be seen in
the Figure, these components are more and more strongly suppressed as the Q of our
optimal designs increases.
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Figure 4.6: (a): The design of the H0 cavity. For quality factor optimization, shifts of the
positions of the five neighboring holes in the x-direction and the two neighboring holes
in the y-direction were introduced, labeled as S1x, S2x, S3x, S4x, S5x, S1y and S2y in the
Figure. (b)-(d): Electric field (Ey) profiles of three optimized designs with increasing
Q and V . (b): S1x = 0.216a, S2x = 0.103a, S3x = 0.123a, S4x = 0.004a, S5x = 0.194a,
S1y = −0.017a, S2y = 0.067a. (c): S1x = 0.280a, S2x = 0.193a, S3x = 0.194a, S4x =
0.162a, S5x = 0.113a, S1y = −0.016a, S2y = 0.134a. (d): S1x = 0.385a, S2x = 0.342a,
S3x = 0.301a, S4x = 0.229a, S5x = 0.116a, S1y = −0.033a, S2y = 0.093a. (e): Histograms
showing the probability of occurrence of different Qe-values in the design of panel (b),
for two different disorder magnitudes: σ = 0.003a (red) and σ = 0.0015a (blue). The
black line indicates the value of Qt. (f )-(g): Same as (e), for the designs of (c)-(d). The
σ = 0 line in panel (g) is not visible as Qt occurs beyond the axis boundary.

4.1.6 Optimized H0 cavity*

Often, obtaining the highest possible theoreticalQt is not the main goal of optimization
(see the Discussion in Section 3.1). In fact, whenQt gets above a limit set by the material
and the fabrication process (currently ≈ 5 × 106 in silicon [94]), the experimentally
measured Qe is always dominated by losses due to disorder and/or absorption, and so
weakly affected by further increase in Qt. The potential of an automated optimization
procedure is therefore best exploited when applied to other attractive properties. One
example consists in maximizing Qt while having the smallest possible mode volume,
so that Qt/V is as high as possible, since the latter is a figure of merit for applications
in both cavity QED [47,68,84] and non-linear optics [69]. With this in mind, the second
design we focus on is the H0 cavity [89, 101], namely the simple defect cavity with the
smallest known mode volume.

The design of the H0 is shown in 4.6(a); the defining defect is the shift of two holes away
from each other (S1x), the thickness of the slab taken here is d = 0.5a, while the hole
radius is R = 0.25a. For the optimization, we also use the consecutive shifts S2x − S5x,
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as well as two shifts in the vertical direction, S1y and S2y. Using S1x, S2x, S3x, S1y and
S2y, the cavity has already been optimized [89] (following the same approach already
discussed for the L3 [123]) to a quality factor of Qt = 2.8× 105, with a corresponding
mode volume V = 0.23(λ/n)3. Here, we improve on this result by on one hand using
the genetic optimization, and on the other by including S4x and S5x. It should be
mentioned that in the optimization, an allowed range of variation for each param-
eter is set. For the H0, we find that the maximum allowed S1x is a very important
parameter, increasing which produces several different optimized designs. All of those
are interesting, as increasing S1x increases the mode volume but also the Qt of the
cavity. More precisely, the designs in 4.6(b)-(d) were obtained by imposing the fol-
lowing restrictions in the genetic algorithm: S1x ≤ 0.25a, S1x ≤ 0.3a, and S1x ≤ 0.4a,
respectively. The ensuing optimal parameters [S1x, S2x, S3x, S4x, S5x, S1y, S2y] are as
follows: [0.216a, 0.103a, 0.123a, 0.004a, 0.194a, −0.017a, 0.067a] (panel (b)); [0.280a,
0.193a, 0.194a, 0.162a, 0.113a, −0.016a, 0.134a] (panel(c)); and [0.385a, 0.342a, 0.301a,
0.229a, 0.116a, −0.033a, 0.093a] (panel(d)). The corresponding quality factors are
Qt = 1.04 × 106 (FDTD: 1.04 × 106), Qt = 1.88 × 106 (FDTD: 1.66 × 106), and, re-
markably, Qt = 8.89× 106 (FDTD: 8.29× 106), while the respective mode volumes are
V = 0.25(λ/n)3, V = 0.34(λ/n)3, and V = 0.64(λ/n)3. The first among these three
designs (panel (b)) has a mode volume only slightly larger than the previous most
optimal design [89], combined to a quality factor almost four times larger. The last of
the three designs (panel (d)) instead shows a more significant increase of the mode
volume, but associated to an almost 30-fold increase of Qt with respect to the value
obtained in Ref. [89]. The resonance frequencies of the three designs decrease with the
increase of V and are ωa

2πc = 0.280, ωa
2πc = 0.275, and ωa

2πc = 0.269, respectively, while the
original cavity with S1x = 0.14 (and no other shifts) of Ref. [101] has ωa

2πc = 0.292.

Similarly to what we have done above for the L3 cavity, in Fig. 4.6(e)-(g) we present
the probability of occurrence of Qe values, computed using 1000 random disorder
realizations for each design and each disorder magnitude. From these histograms it
appears clearly that, even though design 3 has the highest theoretical Qt/V , it might
not be the best choice in practice. According to Eq. (4.1) in fact, depending on the
amount of disorder, the maximum value of the actual ratio Qe/V will in general be
achieved for a design having an intermediate value of Qt. For example, in the case
with σ = 0.003a (red curves in panels (e)-(g)), the average values of Qe (neglecting
absorption) computed from the simulations are 3.97× 105, 5.23× 105, and 6.49× 105,
respectively, meaning that the highest Qe/V would in practice be achieved by design 1.
On the other hand, for the smaller disorder σ = 0.0015a (blue curves in panels (e)-(g)),
the corresponding average values ofQe are 7.22×105, 1.12×106, and 2.02×106, and the
highest average Qe/V is achieved by design 2. For both values of σ, the expected Qe/V

for the five-shift L3 cavity is lower than that for any of the three H0 designs, thus the
latter should be the cavity of choice for applications where Q/V is the most important
figure of merit. We expect that design 3 will dominate for yet smaller values of σ, which
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Figure 4.7: (a): The design of the H1 cavity. The size of the first three hexagonal “rings”
of holes is varied for quality factor optimization, with the increase of the distance from
a hexagon vertex to the center of the cavity given byS1, S2 and S3 (marked). (b): Electric
field (Ey) profile of the y-polarized and (c): electric field (Ex) profile of the x-polarized
mode, for the optimal design S1 = 0.213a, S2 = 0.070a, S3 = −0.009a. (d): Histograms
showing the probability of occurrence of different Qe-values for two different disorder
magnitudes: σ = 0.003a (red) and σ = 0.0015a (blue). The black line indicates the ideal
Qt. (e): Histograms showing the probability of occurrence of the wavelength splitting
Δλ between the two modes, which are degenerate in the disorder-less cavity.

however appear to be currently not achievable in practice. Additionally, design 3 could
be the preferred choice for purely manufacturing reasons if quantum dots are to be
inserted in the cavity, as the field maxima are further away from the hole edges than in
the other two cavities.

4.1.7 Optimized H1 cavity*

Another interesting cavity with potential applications for polarization-entangled pho-
ton generation [105, 132] and quantum dot spin readout [133] is the H1 [28, 101, 126] –
also known as ‘single point-defect cavity’ – formed by one missing hole in the lattice
(Fig. 4.7(a)). The modes of this cavity preserve the underlying hexagonal symmetry,
and for a wide range of parameters, the fundamental (lowest-frequency) resonance
is given by two degenerate dipole modes. Based on the electric field polarization in
the center of the cavity, those are usually referred to as the y-polarized (Fig. 4.7 (b))
and x-polarized (Fig. 4.7 (c)) modes, although in fact the electric field of each of those
modes also has a non-vanishing component oriented in the orthogonal direction; how-
ever, since the near-field in the very center of the cavity as well as the far-field emission
in the z-direction (perpendicular to the slab plane) are both truly y (correspondingly
x) polarized, this labeling is in many cases appropriate, in particular for applications
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in which a quantum dot is placed in the center of the cavity. Here, we optimize the
quality factor of the dipole mode. We take d = 0.55a andR = 0.23a, and the parameters
used for design optimization, labeled S1, S2, and S3 in Fig. 4.7(a), are an increase in
the side-length of the three consecutive hexagonal “rings” around the cavity (which
is also equivalent to the increase of the distance from a vertex of a hexagon to the
cavity center). The previously most-optimal design was achieved using only the holes
at the vertices of the hexagons (but including variations of the hole radii), and has a
moderate Qt = 6.2 × 104 and a mode volume V = 0.47(λ/n)3 [102]. Here, using the
genetic algorithm with the shifts as outlined in Fig. 4.7(a), we find an optimal design at
S1 = 0.213a, S2 = 0.070a, and S3 = −0.009a, with Qt = 1.05 × 106 (FDTD: 0.97 × 106)
and V = 0.62(λ/n)3, i.e. we find a 19-fold increase in Qt coupled to an increase in V by
32%. For this cavity as well, the disorder analysis (panel (d)) suggests that Qe-values
close to a million can be expected experimentally in state-of-the-art silicon systems,
i.e. more than an order of magnitude larger than the previous theoretical values. The
modes lie at a frequency ωa

2πc = 0.253, which is, as expected, slightly lower than that of
the unmodified cavity, ωa

2πc = 0.270.

We note that while the degeneracy of the two dipole modes is an attractive feature of the
H1, it is lifted by disorder. This is why, in panel (e) of Fig. 4.7, we study the probability of
occurrence of the splitting between the modes, based on the 1000 disorder realizations
that were used for the disorder analysis in panel (d). It is important to note that there is
no absolute way to define an x-y reference frame, as three equivalent frames (rotated
60◦ from one another) exist due to the hexagonal symmetry of the cavity. This symmetry
is broken if the cavity presents preferential orientations of the axes (e.g. introduced by
lithography). In the case where only random disorder is considered, x- and y-polarized
modes can turn out to be oriented along either of the three x-y reference frames. Thus,
what we plot in panel (e) is only the difference between the resonant wavelengths of
the higher- and the lower-frequency modes, without any reference to their polarization.
What is important to note is that the splitting is of the order of hundreds of picometers,
i.e. two orders of magnitude larger than the linewidth corresponding to the typical
Qe-s (see top x-axis of panel (d)). This implies that for applications for which overlap
in frequency between the two modes is needed, some form of post-fabrication tuning
is required, the possibility for which has already been demonstrated [105, 134]. This
can also be combined with an additional modulation of the neighboring holes which
increases the emission in the vertical direction [135], which would decrease theQe and
make the tuning easier while simultaneously increasing the intensity of the collected
radiation, which is beneficial for entangled-photon generation [132, 136].

We finally address the hexapole mode of the H1 cavity, which typically lies at a higher
frequency than the dipolar modes studied above. This mode has previously been
optimized toQt = 1.6×106 [126,127] by varying only S1, with S2 = S3 = 0 in the sketch
of Fig. 4.7(a). Here, we run a global optimization of Qt by varying the three shifts, with
d = 0.55a andR = 0.22a. We could improve the previous value toQt = 3.2×106 (FDTD:
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Cavity ωa
2πc Qt (GME) Qt (FDTD) V,

(
λ
n

)3 Qt

V ,
(
n
λ

)3
L3 des. 1 0.259 2.1× 106 1.6× 106 0.94 2.2× 106

L3 des. 2 0.259 5.1× 106 4.2× 106 0.95 5.4× 106

L3 des. 3 0.254 2.0× 107 2.1× 107 0.94 2.1× 107

H0 des. 1 0.280 1.0× 106 1.0× 106 0.25 4.2× 106

H0 des. 2 0.275 1.9× 106 1.7× 106 0.35 5.4× 106

H0 des. 3 0.269 8.9× 106 8.3× 106 0.64 1.4× 107

H1 dip. 0.253 1.0× 106 1.0× 106 0.62 1.6× 106

H1 hexap. 0.261 3.2× 106 3.1× 106 1.10 2.9× 106

Table 4.1: Summary of the simulated resonant frequency, quality factor, mode volume,
and Qt/V ratio (taking the GME-computed Qt) for all the optimal designs presented
here. L3 des. 1 and 2 are shown in Fig. 4.1; L3 des. 3 – in Fig. 4.3; the three H0 designs –
in Fig. 4.6; and the H1 designs are as in Fig. 4.7.

Cavity 〈Qe〉σ1

〈Qe〉σ1
V ,

(
n
λ

)3 〈Qe〉σ2

〈Qe〉σ2
V ,

(
n
λ

)3
L3 des. 1 7.7× 105 8.2× 105 1.5× 106 1.6× 106

L3 des. 2 9.3× 105 9.8× 105 2.5× 106 2.6× 106

L3 des. 3 1.1× 106 1.2× 106 3.5× 106 3.7× 106

H0 des. 1 4.0× 105 1.6× 106 7.2× 105 3.0× 106

H0 des. 2 5.2× 105 1.5× 106 1.1× 106 3.1× 106

H0 des. 3 6.5× 105 1.0× 106 2.0× 106 3.1× 106

H1 dip. 5.3× 105 8.5× 105 8.4× 105 1.4× 106

H1 hexap. 6.6× 105 6.0× 105 1.6× 106 1.5× 106

Table 4.2: Average values of Qe and Qe/V computed over 1000 disorder realizations, in
which both hole radii and position are subject to Gaussian fluctuations with standard
deviation σ1 = 0.003a, or σ2 = 0.0015a.

3.1× 106), obtained for the optimal values S1 = 0.271a, S2 = 0.039a, and S3 = 0.018a.
The resonance frequency of this mode is ωa

2πc = 0.261, while in the unmodified cavity of
the same d and R, this mode is not present.

4.1.8 Discussion of the optimization results

The figures of merit of all designs that were presented in this Section are summarized
in Table 4.1. In Table 4.2, we show the averaged values of Qe and Qe/V in the presence
of disorder for the two disorder magnitudes used in the Figures. Notice that for the
higher disorder σ1, the values of 〈Qe〉 do not differ dramatically among the different
designs. This reflects the fact that, as was extensively discussed in Section 3.1, in the
disorder-dominated regime (whenQd � Qt), the losses are nearly design-independent.
Notice that, for the lower (but still experimentally achievable) disorder magnitude, all
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the cavities presented here have a value of 〈Qe〉/V larger than 106 (in units of (λ/n)−3),
illustrating the relevance of the designs for future applications.

The designs obtained here show that the quality factor of the three most widespread
PhC defect-cavities can be systematically optimized to well above 106 by adjusting only
a few structural parameters (only shifts of hole positions were used here), with small
increases in the mode volumes (within 50% with the exception of the third H0 design)
as compared to those of the corresponding non-optimized designs. In carrying out our
analysis, we have tried to include the radii of holes next to the cavity as additional free
parameters, but this brought no significant improvement. We therefore restricted to
shifts of hole positions only, as these are easily controlled in the fabrication process.
Our scheme leaves the possibility open to use the hole radii as free parameters for
independent optimization of an additional figure of merit. A very important conclusion
of our analysis is that the parameter space of such structural variations has to be
explored globally, using an automated optimization tool. We find that the genetic
algorithm is an excellent tool to handle this task, even with seven or eight parameters
included in the computation. Employing this algorithm was possible only due to the
computational advantage of the GME – to compute the number of cavity configurations
that was needed for the optimization using a first-principle tool like FDTD or a Finite-
element Method (FEM) would require either an enormous computational power, or
time of the order of years. This computational advantage made it also possible, for
each cavity type, to vary more structural parameters than in previous optimization
works, resulting in an even larger increase in the quality factors.

The statistical analysis of Q-factors including structural disorder shows clearly that the
designs obtained here are as robust to disorder as other ultrahigh-Q designs [79]. In
particular, for the L3 cavity with a theoretical Q-factor Qt = 5.1× 106, state-of-the-art
fabrication quality in silicon should easily result in experimental Q-factors around
2 × 106, in the same range as current ultrahigh-Q designs based on a PhC waveg-
uide [94, 127, 128]. On the other hand, our experience shows that systematic structural
variations can rapidly suppress the Q-factor of an optimal structure. Hence, an im-
portant conclusion of our analysis is that, whenever a design needs to be significantly
varied (e.g. when strongly modifying the ratiosR/a and/or d/a, or the refractive index n
in order to, e.g., operate at a different wavelength), a new optimization must be carried
out in order to obtain the best structural design adapted to the new requirements.

4.2 High-Q-optimized silicon air-bridge cavities: experiments

The two experiments presented in this section demonstrate the validity and impor-
tance of the optimization procedure outlined in Section 4.1.
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Figure 4.8: Scanning electron micrograph of one of the fabricated super-L3 cavities.

4.2.1 Ultra-high-Q L3 cavity*

In this experiment, the five-shift L3 cavity design of Section 4.1 (Fig. 4.2(b)) was
fabricated by the group of Prof. Antonio Badolato in the University of Rochester, and
spectrally characterized by the group of Prof. Matteo Galli in the University of Pavia.
Eight groups of super-L3 cavities were fabricated in commercially available Silicon-on-
insulator (SOI) wafers. Each group comprised twenty-one nominally identical cavities,
while the hole radius was slightly varied from one group to the next, resulting in a
different nominal resonant wavelength for each group. Note that by varying only the
radius instead of applying an overall scaling factor, the design moves away from its
optimal configuration (Fig. 4.2). With our choice of fabrication parameters, the group
number five was the one nominally corresponding to the optimal design.

The SOI wafer consisted of a 220nm top silicon layer and a 3μm buffer oxide layer on a
silicon substrate. The PhC pattern was defined by 100kV electron beam lithography
direct writing using positive e-beam resist. The pattern was transferred from the resist
to the silicon top-layer by fluorine based inductively coupled plasma dry etching and
the oxide layer was removed by dilute Hydroflouric-acid wet etching. Engineered lateral
openings in the membrane made the suspended membrane free from buckling [137].
Fig. 4.8 shows a Scanning Electron Microscope (SEM) image of the super-L3 whereby
we measured the standard deviation of the hole-radii to be < 1nm.

The fundamental cavity mode was measured by cross-polarization Resonant Scattering
(RS) spectroscopy [138]. This technique is particularly well-suited for measuring
PhC cavities with ultra-high Qs, because it does not require any evanescent coupling
(e.g., through an integrated photonic crystal waveguide or an external fiber taper)
and thus directly yields the intrinsic (unloaded) Q. A schematic of the experimental
setup is shown in Fig. 4.9(a), where a 10MHz resolution tunable laser was used to
excite resonantly the cavity mode, and the light scattered by the cavity was collected
vertically in far-field with a NA = 0.9 objective. In this setting, the emission of the
fundamental mode resulted to be linearly polarized (y-direction). Using the y-direction
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Figure 4.9: (a): Schematic of the cross-polarization resonant scattering setup. P: po-
larizer, A: polarization analyzer, BS: beam splitter, FP: Fabry-Pérot interferometer. (b):
Resonant scattering spectrum of the super-L3 (open dots). Best-fitted Fano lineshape
(red line) gives a linewidth of 0.79pm, i.e. Q = 1.96× 106. The Fabry-Pérot spectrum
used for wavelength calibration is shown as a black line at the bottom of the plot.

as a reference, we excited the cavity mode with a laser beam linearly polarized at +45◦

and collected at−45◦, achieving precise control over the extinction of the reflected laser
light. While scanning, the laser wavelength was calibrated through the simultaneous
measurement of the interference fringes of a 0.8m long Fabry-Pérot interferometer
with 1.5pm free spectral range. Fig. 4.9(b) shows the RS spectrum measured on
the cavity displaying the highest Q out of the twenty-one devices in group five. The
lower curve in Fig. 4.9(b) shows the measured transmission spectrum of the Fabry-
Pérot interferometer. Fitting of the cavity resonance with a Fano lineshape [138]
demonstrates Qe = 1.96× 106, which is 20 times larger than the highest Q previously
reported in an L3 cavity [95, 123]. This corresponds to an experimentally observed
Qe/V > 2× 106(λ/n)−3, which is more than 10 times larger than the values previously
reported in an L3 cavity and ranks our design among those with the highest Qe/V

values ever reported in 2D PhCs. We note that around the time of the publication of
this result, another experimental study of silicon L3 cavities [36], optimized using an
educated-guess procedure, reported a measured Q-factor of 106 for the best cavity
(and a value Q = 0.5× 106 averaged over several devices). Our result still outperforms
these values by a factor of 2.

The other group-five L3-s all displayed a clear resonance, withQ-values lying systemat-
ically in the 106 range, as plotted in Fig 4.10. Spectra measured from devices belonging
to groups other than group-five (data not shown) resulted in Q-values ranging from
0.4× 106 to 1.1× 106. This finding is consistent with group five being the one closest
to the nominally optimal design. We notice that the Q-values measured in the non-
optimal groups are all largely exceeding the highest Q-values previously measured
for an L3, which also demonstrates the robustness of the optimized design to small
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Figure 4.10: Scatter plot of the measured Q-values and resonant wavelengths from the
twenty-one nominally identical cavities present in group five. All of them display a
clear resonance, with Q-values lying in the 106 range. The highest value (spectrum in
Fig. 4.9(b)) corresponds to Q = 1.96× 106.

variations of the overall hole radius.

The observed fluctuations in the values of Q and λ (Fig. 4.10) are expected and are
due to disorder in the fabrication process, as was analyzed extensively in Section 3.1
(see also Fig. 4.2(d)). In Fig. 4.11, we report the occurrence histograms of the values of
Q and λ measured on the group-five cavities. In both panels, we plot the theoretical
occurrence histograms obtained through GME simulations with the same disorder
model of Sections 3.1 and 4.1. The values of the disorder amplitude σ and ofQa (see eq.
4.1) were empirically adjusted to σ = 0.0014a, corresponding to (〈1/Qd〉)−1 = 4.5× 106,
and Qa = 2.1 × 106, to reproduce at best the measured histograms. A fairly good
agreement is found, although the measured Q seems to obey a narrower distribution
than the simulated one. We argue that this discrepancy might be due partly to the
limited number of experimental data, resulting in large statistical uncertainty, and
partly to the simple disorder model, which neglects possible spatial correlations in
the fluctuations of different holes. Moreover, additional aspects, such as slight surface
oxidation of the silicon membrane upon air exposure as well as surface contamination
by adsorption of water vapor molecules, may also affect the influence of disorder on
the measured Q.

In conclusion, we presented an experimental confirmation of the viability of the trans-
formative generation of L3 PhC cavities that were theoretically predicted in Section
4.1.
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Figure 4.11: Occurrence histograms of (a): Q-values and (b): resonant wavelengths,
as measured in group five. In both panels, the black lines denote the histogram
computed over 1500 simulated realizations of the super-L3 design with disorder added
as Gaussian fluctuations of the hole radii and positions. The red error bars indicate the
statistical uncertainty in the experimental data.

4.2.2 Ultra-high-Q H0 cavity*

In this Section, the experimental characterization of the optimal H0 design derived
in Section 4.1 is presented. The fabrication and spectroscopy was performed by the
group of Prof. Houdré at EPFL [115].

The optimal cavity design that we used is the ‘intermediate’ one (in terms of Q and
V ), i.e. the one of Fig. 4.6(c), which is also illustrated in Fig. 4.12(a), with an SEM
image of one fabricated cavity shown in panel (b). The thickness of the PhC slab is
220nm, while the radius of each hole is 0.25a (the lattice constant a was varied as in
the L3 experiment of Section 4.2.1, see below). The GME-computed quality factor is
Qt = 1.9× 106. The computed mode profile (Fig. 4.12(c)) corresponds to an extremely
small mode volume: V = 0.34(λ/n)3. In Fig. 4.12(d), we plot the mean value of the
quality factor and its standard deviation in the presence of disorder as a function of
σ, where each point was computed based on 1000 random disorder realizations with
the standard disorder model of this thesis (Section 3.1). Disorder reduces the Q-factor
on average, as expected, but nonetheless very high quality factors for a reasonable
fabrication disorder magnitude are predicted. Fig. 4.12(e) shows a histogram of the
probability distribution of the Q-values for σ = 0.003a, which is a reasonable estimate
of the largest fluctuations introduced in our fabrication process [103], and is consistent
with the experimental results below.

Several cavities were fabricated following the optimal design with a = 435nm on a
SOI wafer, which consists of a 220nm thick silicon layer and a 2μm thick silica (SiO2)
layer on a silicon substrate. The photonic crystal pattern is defined with electron
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Figure 4.12: (a): Schematic of the proposed design, highlighting (in red) the holes
whose positions have been optimized, with the displacement parameters correspond-
ingly labeled. The coupling W1 waveguide, at a distance from the cavity, is shown.
(b): Scanning electron micrograph of one of the fabricated cavities, with the displaced
holes encircled in blue. (c): Electric field distribution in the cavity as computed with
the guided-mode expansion. (d) Mean and standard deviation of Q in the presence
of random structural disorder, as a function of the disorder magnitude σ, computed
from 1000 simulated disorder realizations for each σ. (e): Histogram of the computed
quality factor for σ = 0.003a; the ideal Q-factor without disorder is indicated.

beam lithography (VISTEC EBPG5000) on an electro-sensitive resist (ZEP520) and
the developed pattern is further transferred into the silicon layer with an inductively
coupled plasma (ICP) AMS200 dry etcher with a SF6 and C4F8 gas mixture. The last
step is the removal of the sacrificial SiO2 layer with buffered HF (BHF) wet etching.
Coupling of continuous-wave monochromatic light into the cavity was performed in
a standard end-fire set-up with lensed fibres, adiabatically tapered ridge waveguides
and photonic crystal W1 waveguides. The cavity couples either in a side-coupling
(Fig. 4.12(a)) or in a cross-coupling (Fig. 4.14(b)) scheme, and was characterized by
a different distance to the waveguide D = n

√
3
2 a, n = 5, . . . 15. When measuring the

Q-factors, the input light power was lowered until optical nonlinearities (see below)
vanished and the device operated in a regime of linear response. Cavity emission
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spectra are shown in Fig. 4.13(b) and (c) for n = 11 and n = 15, respectively. In
panel (c), the coupling of light into the cavity is very weak, making the signal almost
comparable to the noise, which is why we used a Fano fit instead of a Lorentzian (the
former describes the spectral response of a resonance in a continuous background).
Fig. 4.13(a) shows the change in measured (loaded) Q-factor, for the side-coupled
cavities, as D is increased. The variation is due to the coupling waveguide that acts as
an additional loss channel for the cavity. [123] The error bars of the data points (only
visible for the last two points on the scale of the plot) come from the uncertainty in
the Lorentzian/Fano fits, and do not take into account the variation in Q values that
is expected among different cavities due to disorder. This, as suggested by Fig. 1(d)
and (e), is expected to be much larger than the measurement error. The maximum
measured value of Q = 400, 000 was obtained for a coupling distance n = 15. The
data in Fig. 4.13(a) suggest clearly that, at n = 15, the coupling waveguide still affects
the measured Q-factor. A conservative way of extrapolating the unloaded Q-factor
consists in assuming an exponential decay with distance of the cavity-waveguide
coupling. More precisely, we assume Q−1 = Q−1

UL + Cexp(−αD). A fit of the measured
Q-values (with C, QUL, and α as free parameters), as plotted in Fig. 4.13(a), yields
QUL = 450, 000, which should be taken as a lower bound to the actual unloaded Q-
factor. This value is in very good agreement with the maximum in the histogram of
Fig. 4.12(e), computed for a disorder amplitude σ = 0.003a, which is a very reasonable
estimate of the largest fluctuations introduced in the fabrication process. [103] Finally,
we note that Fig. 4.13(a) also shows that at short distances, where the Q-factor is
still very high (≈ 100, 000), losses are fully dominated by coupling into the waveguide
channel, which highlights the potential of this cavity for photonic applications.

The simulated modal volume V = 0.34(λ/n)3 is a reliable estimate of the corresponding
quantity for the fabricated structure [108,139]. The present nanocavity has a maximum
(loaded) Qe/V = 1.18× 106(n/λ)3 and thus ranks among those with the highest Q/V
ratio ever reported [34,69,82,94,98,102,140,141]. The amount of disorder that appears
to be present in our system suggests that the first H0 design of Section 4.1 might be
slightly better in terms of this figure of merit (see Table 4.2). Thus, we also fabricated
and characterized that cavity, which has V = 0.25(λ/n)3. The maximum measured
(loaded) Q-factor was 260, 000, corresponding to Qe/V = 1.04 × 106(n/λ)3, which is
slightly lower but very close to the value for the first fabricated design. We note that
both of those values are lower than what was measured in the super-L3 cavity (Section
4.2.1), but this is attributed to lower disorder in the L3 fabrication. Note also that the L3
experiment did not involve in- and out-coupling waveguides, while here, the intrinsic
(unloaded) Q could not be directly measured, but instead had to be extrapolated.

The Q/V ratio is a measure of the enhancement of optical nonlinearities produced
by a cavity. [69, 70, 142] To examine the nonlinear spectral properties of our design,
in Fig. 4.14(a) we show the emission spectrum, measured under continuous-wave
resonant excitation, of a cavity with measured Q-factor Q = 150, 000 in the cross-
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Figure 4.13: (a): Change in the measured Q-factor as the distance D from the side-
coupling W1 waveguide is increased. The blue line shows the best fit of the experi-
mental data to the model Q−1 = Q−1

UL + Cexp(−αD), indicating an unloaded Q-factor
QUL = 450, 000. (b) and (c): Spectra (normalized to the maximum intensity) of the
emission from the membrane surface measured for two values of the cavity-waveguide
distance, indicated by arrows in panel (a). The experimental data are fitted with a
Lorenzian curve in panel (b) and a Fano curve in panel (c), and the extracted full
width at half maximum results respectively in loaded quality factors QL = 284, 000 and
QL = 400, 000.

coupling configuration, at varying intra-cavity power. This configuration allows for a
rough estimate of the power coupled into the PhC region where the cavity is located
[127, 143]. For a given input and output power, we define the transmission coefficient
T = Poutput/Pinput. For a symmetric system (Fig. 4.14(b)), the power available in the
cavity region is then Pcavity =

√
TPinput – i.e. it depends linearly on the actual input

power – which can also be rewritten, using T from the previous expression, as Pcavity =√
PinputPoutput. In particular, for an input power from the laser Pinput = 4μW, we

measure a transmitted power Poutput ≈ 2nW in the detector after the ridge waveguide
at the cavity resonance wavelength. According to the above equation, for these values
Pcavity = 0.09μW, which sets the proportionality factor

√
T between Pcavity and Pinput

in our measurement. As shown in panel (a) of the Figure, at low power, a slight blue shift
of the cavity mode is observed and attributed to free carrier dispersion. [69] Starting at
Pcavity = 0.6μW, heating due to nonlinear absorption, and optical-Kerr nonlinearity
result in a redshift. At higher input powers, a drop in the spectral response on the red
side of the resonance indicates the onset of optical bistability. To characterize this
bistable behaviour, we sweep the input power and record the steady-state emission
intensity. A clear hysteresis with a large contrast and very low power threshold is
observed in Figs. 4.14(c) and (d), where the input laser is respectively detuned by 20pm
and 40pm above the cavity resonance. Switching power ratios Pup/Pdown of respectively
2.0 (Pup = 26μW and Pdown = 13μW) and 4.5 (Pup = 90μW and Pdown = 20μW), and
a contrast above 70% are obtained, demonstrating robust and controllable bistable
behaviour. The present cavity displays one of the lowest power thresholds for optical
bistability among 2D PhC silicon devices for which a similar power-dependent analysis
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Figure 4.14: (a): Measured emission spectrum from the cavity, as the input power is
increased. The dashed line is a guide to the eye to indicate the change in the resonance
wavelength. (b): Scanning electron micrograph of the cross-coupled cavity structure
used to measure optical nonlinearities. (c) and (d): Hysteresis plots, respectively for an
excitation wavelength red-shifted by 20pm and 40pm from the cavity resonance.

was carried out. [127, 143]

4.3 Other cavity optimizations

The range of applicability of the optimization scheme presented in Section 4.1 is very
broad. We note that the GME returns not only the quality factor but also the full mode
profile of the cavity modes, thus the same procedure can be used for optimization
of various quantities depending on the practical requirements. For example, notice
that in Section 4.1, the Q was always the figure of merit for optimization, since V is
much more weakly affected by the structural changes we considered. In the case of
the H0, or in some even more specific cases, however, it might be worth considering
Q/V – or, depending on the particular application, some other combination of those
(see Section 1.3.2) as the objective function. This is all within the scope of our au-
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tomated optimization procedure. In this section, we present several investigations
that go beyond the quality factor of silicon air-bridge cavities. In Sections 4.3.1 and
4.3.2, we present again a Q-optimization, but in systems with a lower refractive index
contrast between the slab and the claddings. In Section 4.3.3, we take advantage of the
computed electric field profiles to optimize a cavity design for the enhanced trapping
of a dielectric particle [109].

4.3.1 L3 in Gallium Nitride*

Over the past few years, there has been a strong effort, both in academia and industry,
to combine the well-established Si technology with the optoelectronic properties of
direct bandgap compound semiconductors [144, 145]. The aim is to unify different
optoelectronic devices, with various functionalities and operating wavelengths, on
the same chip while offering a reduced footprint. In this regard, GaN, Aluminum
Nitride (AlN), Indium Nitride (InN) and their ternary alloys are excellent candidate
materials for such platforms thanks to their wide direct bandgap ranging from the
Ultra-violet (UV) to the Infra-red (IR) spectral range. Their unique optoelectronic
properties are supported by the significant increase in the solid-state lighting market
which mostly relies on III-nitride light-emitting diodes. Besides the design flexibility
enabled by such a bandgap tunability, III-nitrides (III-N) possess a large second-order
nonlinear susceptibility, which is highly desirable for second harmonic generation
or frequency-doubling processes [146–151]. For instance, this should facilitate the
integration of fluorescence-based biosensors working in the green spectral range
together with devices operating in the NIR. Beyond enhanced light-matter interaction
phenomena, this material family offers additional features such as chemical inertness,
high thermal stability, and large mechanical resistance, making them well-suited for
optomechanics, [149] and biocompatibility [152].

The development of high quality (Q) factor III-N based photonic crystal cavities – both
in the 2D PhC slab and one-dimensional nanobeam geometries – was hindered by
technological issues mainly arising from their mechanical hardness and the lack of
an appropriate lattice-matched substrate. However, in recent years several groups
have overcome such challenges by reporting the fabrication of III-N PhC cavities
exhibiting comparatively large experimental Q factors. At short wavelengths, values
up to 6,300 have been demonstrated both for nanobeam cavities [153] and for defect
cavities in PhC slabs [154–156], whereas at λ ∼ 1.55μm, Q values up to 34,000 where
recently shown for GaN-on-Si PhC cavities based on the width-modulated waveguide
structure [157, 158] and up to 146,000 for AlN nanobeam structures deposited by
sputtering [159].

In view of applications, both the 2D slab and the nanobeam geometries hold great
promise as platforms for investigating strong light-matter coupling at the nano-scale,
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in a longer term perspective, the need for scalability and integrability hints at the
2D slab structure as the most suitable choice, where cavities and waveguides can be
fabricated on a single slab and arranged in a circuit-like fashion. To this purpose, the
minimization of the spatial footprint of PhC cavities is also a crucial requirement. In
previous works, either L7 or width-modulated waveguide cavities were adopted at both
visible [154–156] and IR wavelengths [158]. These designs systematically present a
Q-factor larger than their smaller siblings, but only at the cost of a larger mode volume,
and, in the case of waveguide-based designs, sub-optimal footprint. Previously, a
measured Q of 2,200 in a smaller L3 GaN-on-Si cavity has been demonstrated [157].
Here, we take advantage of the automated optimization to obtain a cavity design with
a theoretical Q = 166, 000 at λ ∼ 1.3μm. We fabricate several replicas of this design
and characterize them optically. We demonstrate high reproducibility and an average
measured (unloaded)Q-factor of 16, 900, with individual samples reachingQ = 22, 500.
We quantitatively explain the measured data – and in particular the gap to the expected
theoretical Q-factor – by deploying a model that involves the simulation of hundreds
of disorder realizations of the optimal design, and includes material absorption in the
spirit of eq. (4.1).

The high-Q L3 cavity design (Fig. 4.15(a)) was optimized for a slab consisting of a
310nm GaN (refractive index n = 2.35) and a 40nm AlN (refractive index n = 2.05) layer.
The values of n at 1.3μm were extrapolated using Sellmeier formula coefficients given
by Antoine-Vincent and co-workers for GaN on Si (111) [160]. The lattice constant is
a = 467nm, while the hole radius was kept as a free parameter. The general optimiza-
tion scheme was the one described in Section 4.1. The present problem is however
somewhat different, particularly due to the much lower refractive index contrast, and
we found that including size variations of the neighboring holes results in significantly
better designs. Thus, both the positions and the radii of the three holes nearest to the
cavity in the ΓK direction (Fig. 4.15(a)) were chosen as the parameters for optimization.
The optimal design was found for the following parameters: hole radius r = 0.2553a,
outward shifts of the three nearest holes S1−3 = [0.3482, 0.2476, 0.0573]a, shrinkage
of their corresponding radii dr1−3 = [−0.0980,−0.0882,−0.0927]a. The high Q of this
optimized design was verified using an FDTD solver [74], resulting in Q = 112, 000 at a
resonance wavelength λ = 1.329μm. The simulated electric field Ey in the center of
the slab is plotted in Fig. 4.15(b), while in panel (c) we compare the Fourier transform
of this field for an un-optimized L3 cavity with the same overall hole radius (left) and
for our optimized design (right). The Fourier components inside the light cone of our
design are strongly suppressed, which is why the value of the quality factor is more
than 65 times larger than that of the unmodified cavity (Q = 1, 700).

A technical detail worth mentioning is that the GME as outlined in Section 2.3 cannot
be applied to the exact structure, due to the 40nm AlN layer. A multi-layer guided-
mode expansion is in principle possible and in fact conceptually straightforward, but
so far it has been left for a potential future implementation. In the optimization, we
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Figure 4.15: (a): Schematic of the photonic crystal cavity design, with the AlN buffer
layer shown in beige. The three holes which were modified for the optimized Q are
marked in red. (b): Simulated electric field (|Ey|) profile of the fundamental cavity
mode. (c): Fourier components ln(|FT(Ey)|) for an unmodified cavity (left) and the
optimized one (right); the light cone is indicated by the black circle. (d): SEM top view
of a fabricated cavity. Bottom left: close-up view of one of the holes illustrating a trend
to a hexagonal shape.

thus assumed a GaN layer of thickness 350nm, which is a fairly good approximation
due to the similar refractive indexes of GaN and AlN, and the fact that the electric
field of the cavity is weaker close to the slab boundaries compared to the slab center.
However, the AlN layer does break the σxy symmetry and thus it introduces resonant
losses into the σxy = −1 modes (cf. Section 2.3), which are not taken into account by
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Figure 4.16: Resonant scattering spectrum and Fano fit of the cavity with the highest
measured quality factor (see also Fig. 4.9).

the GME. Nevertheless, the optimization yields a very good result as testified by the
65-fold (FDTD-verified) improvement with respect to an unoptimized design. For for
the sake of precision, however, all the simulations shown hereafter were performed
with the FDTD solver.

The fabrication of the optimized cavity is first based on the growth on 2-inch Si (111)
substrate by metal organic vapor phase epitaxy of a 40nm thick AlN buffer layer fol-
lowed by a 310nm thick GaN layer. The PhC lattice is subsequently patterned by e-beam
lithography using a SiO2 hard mask and dry etching techniques. Finally, a membrane
is obtained by undercutting the Si substrate, again by selective dry etching. With this
processing methodology air gaps larger than ≈ 3 μm can be achieved. Further details
on this fabrication procedure together with structural characterization can be found in
Ref. [157]. Figure 4.15(d) displays a scanning electron microscope (SEM) image of one
of the fabricated L3 cavities. As shown in the bottom left inset, one can observe a slight
deviation toward a hexagonal shape for the holes instead of the designed circular one.
This is ascribed to a crystallographic orientation-dependent selective etching which
has been previously reported in similar III-nitride based PhC lattice structures [161].
In the present case, the cavity orientation is [12̄10]. Due to expected uncertainty in the
etching, 20 groups of cavities (labeled g1− g20) were fabricated to allow for lithographic
tuning. Group g16 was targeted to have the nominal hole radius, while groups with
lower (higher) number contain cavities where all radii are increasingly smaller (larger)
in steps of 1nm. The spectroscopic characterization was performed in the same way as
for the Si L3 cavity of Section 4.2.1, see Fig. 4.9(a) and its discussion in the text.

The measured resonance wavelength of the g16 group of cavities, which was the target
nominal structure, was blue-shifted by more than 20nm from the simulated wave-
length, 1.329μm. We attribute this shift to several possible effects: the deviation of
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Figure 4.17: Simulated (blue) and measured (red) (a) resonance wavelengths and (b)
quality factors as a function of the cavity group number.

the hole radius from the target value, the uncertainty in the slab thickness, and the
uncertainty in the refractive index which comes from our Sellmeier’s law extrapolation
and potentially from free-carrier absorption. To fit the experimental data, the following
assumptions were made: GaN refractive index n = 2.33, GaN layer thickness d = 300

nm (the AlN layer was kept unchanged). In addition, a diameter increase of the holes
occurring during the etching process was observed, which resulted in group g10 having
the nominal hole radius instead of g16. We simulated the effect of disorder using our
standard model (Section 3.1), with a disorder magnitude σd = 5nm. One hundred
disorder realizations were simulated for each group gx. In the experiment, 6 replicas
within each of the following groups were measured: g1, g3, g5, g8, g10, g12, g16, g18, g20,
and in Fig. 4.17(a), we compare the results to the simulated wavelengths λsim. The blue
shaded area shows the region 〈λsim〉 ± 2σ(λsim), where the averaging is done over the
100 disorder realizations and σ() denotes the standard deviation. The agreement is ex-
cellent given all the above-mentioned uncertainties. We note that the refractive index
dispersion was neglected here as the GaN PhC structures are designed for a frequency
range far below that of the GaN bandgap. A fine-tuning of the simulated results to the
experimental ones is in principle possible, but would not bring any further insight. It
is noteworthy that over the full set of groups, the slope corresponding to the average of
the experimental wavelength (red line in Fig. 4.17(a)) follows the expected theoretical
trend (blue line) even when considering that there is a target hole diameter difference
of only 2nm between two adjacent groups (gx and gx+1). This further confirms the
reproducibility and maturity of this approach for the fabrication of III-nitride PhCs.

The measured quality factors could also be well matched to our disorder simulation
(Fig. 4.17(b)). To this purpose, constant, systematic losses with an associated quality
factor Qa were additionally assumed (see eq. (4.1)). These could be due to absorption,
but could also be related to scattering losses not captured in our disorder model,
e.g. by the slab surface roughness. The value of Qa = 40, 000 was estimated for the
best agreement between computed and experimental data. The simulated Qsim was
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computed as Q−1
sim = Q−1

d + Q−1
a , where Qd is the quality factor resulting from the

simulations in the presence of disorder, and the mean and standard deviation were
obtained by 〈Qsim〉 = 1/(〈Q−1

d 〉 + Q−1
a ), σ(Qsim) = 〈Qsim〉2σ(Q−1

d ). The light-blue
region in Fig. 4.17(b) is given by 〈Qsim〉±2σ(Qsim), and is thus the region within which,
for a Gaussian statistical distribution, 95% of the data points are expected to lie. The
scattering in the measured data matches this distribution very satisfactorily. Finally, it
is interesting to note that the quality factor slightly increases with decreasing radius,
reaching a maximum around group g3, where the theoretical Q of the design with no
disorder and no Qa is 166, 000. This is, however, followed by a drop and spread of the
Q-distribution for smaller radii, for which, in some disorder realizations, a degradation
of the cavity mode is observed (the field is no longer concentrated in the three-missing-
hole region). The existence of this super-optimal design we attribute to the non-trivial
effect that of the AlN buffer layer on the cavity Q, which is not captured by GME and
thus was not taken into account in the optimization.

In conclusion, we demonstrated a PhC L3 cavity optimized for fabrication in GaN, with
a maximum theoretical quality factor of 166, 000 at wavelengths in the ∼ 1.3μm window.
The fabricated cavities consistently showed measured quality factors above 10, 000,
and the maximum measured value wasQ = 22, 500. In addition, for the best group (g3),
the average measured Q was 16, 900, which demonstrates the growing technological
maturity of GaN-based PhCs.

4.3.2 Silicon L3 ‘buried’ in silica

For some of the potential applications of photonic crystals, e.g. in the field of optical
data transfer and manipulation, it is highly desirable for the devices to be compatible
with current CMOS technologies used in the fabrication of microprocessors. This is in
principle possible since, as we have seen, silicon is a material that is very well-suited
for PhC fabrication. In fact, the slabs used in e.g. Sections 4.2.1 and 4.2.2 were made
starting from SOI wafers normally intended for electronic chips. With this in mind,
several groups have already demonstrated the fabrication and characterization of
CMOS-compatible PhC cavities [162, 163] and waveguides [164–166]. A characteristic
feature of these devices is that the Si slab is no longer suspended in air, but is instead
buried in a low-index material, typically SiO2. This would allow for electric contacts to
be integrated above or below the device, and in addition quite simply provides extra
structural support (air-bridge PhCs can be easily broken and are thus not well-suited
for technological applications). However, the SiO2 also reduces the refractive index
contrast between slab and claddings, which, as in the case of a GaN slab, makes it
harder to obtain ultra-high-Q cavities. Nevertheless, our optimization is still relevant,
and thus, for the sake of completeness, we provide here the best design that we could
obtain for an L3 cavity in such a ‘buried’ PhC.
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To maximize the Q, we used the 8-shift design of Fig. 4.4, assuming the standard
parameters: d = 0.55a, R = 0.25a. The only change compared to Section 4.1.4 was
thus the refractive index of the claddings, which was set to n = 1.444, relevant for
SiO2. The best design was found for S1−6x = [0.391, 0.431, 0.450, 0.378, 0.218,−0.002]a,
S1y = 0.045a, S2y = 0.028a, with a Q of 4.8 × 105 (FDTD: 3.9 × 105), at a resonance
frequency ωa/2πc = 0.249. We note that this optimization assumed that the SiO2 is
also permeating the holes of the PhC slab. A separate optimization was carried out
assuming air-holes (but still SiO2 claddings), but the best design had a significantly
lower Q of 1.7× 105. We give the design parameters nonetheless, since whether or not
the SiO2 enters the holes could depend on the fabrication and is not necessarily within
the scope of experimental control. The parameters for the best air-hole cavity are as
follows: S1−6x = [0.369, 0.403, 0.405, 0.290, 0.070, 0.000]a, S1y = 0.050a, S2y = 0.021a.

4.3.3 Cavities for optical trapping

The possibility to use the light-matter interaction to ‘trap’ dielectric particles, atoms,
or even organic molecules, has revolutionized many domains of experimental physics
[167, 168]. The trapping of atoms in particular has been to various extents involved
in at least three Nobel prizes, namely the one for laser cooling (Steven Chu, Claude
Cohen-Tannoudji, William Daniel Phillips, 1997), for the achievement of Bose-Einstein
condensation (Wolfgang Ketterle, Eric Allin Cornell, Carl Edwin Wieman, 2001), and for
the cavity-quantum electrodynamics experiments (Serge Haroche, David J. Wineland,
2012). In its rudimentary form, the optical trapping, or ‘tweezing’, consists of using the
radiation pressure exerted by the light to confine the target particle to some region
of space. This naturally requires a strong light intensity impinging on the particle.
Recently, another regime of trapping was realized in a ‘hollow’ PhC cavity [109], in
which the effect of the particle on the electromagnetic mode used for confinement is
non-negligible and leads to back-action. Interestingly, in that scenario it is possible for
the particle to be trapped in a region where it ‘sees’ a very low local field intensity [169].
This could prove particularly important for lab-on-chip devices for biomedical sensing
[170, 171] when a low intensity is required for the samples to not be destroyed.

In this Section, we present an optimization of the cavity used in Ref. [109], which is
illustrated in Fig. 4.18(a). The device is based on an H2-type cavity, which is similar to
the H1 of Section 4.1.7, but the holes in the first ‘ring’ around the defect (see Fig. 4.7)
are also missing. In addition, there is an extra-large hole added in the center of the
cavity (the big circle in Fig. 4.18(a)), which is where the dielectric particle gets optically
trapped. The FDTD-computed electric field amplitude

√
|Ex|2 + |Ey|2 of the cavity

mode that was used in Ref. [109] is plotted in the Figure. The units of the color map are
(μm)−3/2, since the field is normalized as∫

V

(
|Ex(r)|2 + |Ey(r)|2

)
ε(r)dr = 1. (4.2)
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Figure 4.18: (a): Electric field amplitude
√

|Ex|2 + |Ey|2 of the cavity mode used for
trapping in Ref. [109], shown in an xy-cross-section (at z = 0, i.e. in the center of the
slab), and in an xz-cross-section (at y = 0; the shaded areas denote silicon). (b): Same
as (a), but for the optimized design. The holes marked in red and orange are shifted
outwards as described in Fig. 4.7 by an amount of S2 and S3, respectively, and their
radius is changed by dr2 and dr3, respectively.

The trapping efficiency of this device is directly proportional to the electric field inten-
sity penetrating the big central hole [109,172]. The efficiency is also proportional to the
quality factor of the cavity, but it should be noted that the experiment was performed
with the PhC slab immersed in water to facilitate bringing the dielectric particle to the
trapping region. The theoretical Q of the cavity with water in the claddings and in the
holes (refractive index nw = 1.318) is computed to be 5700 with GME (FDTD: 6400).
However, the measured Q is limited by absorption losses in the water. The highest
experimentalQwas thus about 2000, while the typical values were around 1000. Taking
this into consideration, we optimized a cavity for an increased field overlap with the
trapping region without a considerable sacrifice of the Q. More precisely, the objective
function Fh was defined as follows. For Qt > 2000,

Fh =
1

R2
H

∫
BH

(
|Ex(ρ, z = 0)|2 + |Ey(ρ, z = 0)|2

)
dρ, (4.3)

whereRH is the radius of the big hole, which was kept as a free parameter (within some
limits), and the integration is inside that hole and in the z = 0 plane only. For values of
Qt < 2000, the objective function of eq. (4.3) was simply rescaled by a factor ofQt/2000,
in order to suppress designs which would result in significantly lower Q-s than the
experimentally measured one. Apart from RH , the other free parameters chosen were
the position and size of the two rings of nearby holes, which were shifted outwards
in the same way as illustrated in Fig. 4.7, by an amount of S2 and S3, respectively,
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Figure 4.19: (a): Same as panel (a) in Fig. 4.18, replotted here for comparison to (b).
(b): The optimized H1 design. The holes marked in black and red are shifted outwards
as described in Fig. 4.7 by an amount of S1 and S2, respectively, and their radius is
changed by dr1 and dr2, respectively.

and whose radius was changed by an amount dr2 and dr3, respectively (Fig. 4.18(b)).
The general PhC parameters were set to d = 220nm, a = 430nm, R = 110nm, as for
the experimental setup of Ref. [109]. The optimal design was found for S1 = −0.015a,
S2 = −0.009a, dr1 = 0.072a, dr2 = 0.099a, RH = 0.076a. The fact that the holes
around the cavity need to be pushed towards the center and increased in size can be
understood intuitively, since the electric field mostly concentrates in the high-index
material. The modification then ‘pushes’ more electric field into the big hole, by leaving
less space for the field to spread in the dielectric. The objective function defined as in
eq. (4.3) for this optimized design is Fh = 0.137 (FDTD: Fh = 0.182), which is only a
marginal increase from the starting, unmodified design, which has Fh = 0.126 (FDTD:
Fh = 0.172). Still, the improvement is visible in Fig. 4.18.

To further improve the device, we also designed another structure based on an H1-type
cavity, as illustrated in Fig. 4.19(b). The parameters used in this optimization are
RH , as well as the outward shifts and radius changes S1, S2, dr1, dr2, as illustrated in
the Figure. The overall PhC parameters were taken as in the first optimization. The
optimal design was found for S1 = 0.201a, S2 = 0.022a, dr1 = −0.072a, dr2 = 0.075a,
RH = 0.074a. This results in Fh = 0.160 (FDTD: Fh = 0.206), which is now a significant
improvement of ≈ 25% over the unmodified design, and is clearly visible in Fig. 4.19.
We note that the quality factors of both optimized designs are higher than 2000, thus,
experimentally, similarQ-values to the ones measured in the seminal experiment [109]
can be expected. The values of Fh and Q for the three cavities discussed here are
summarized in Table 4.3.
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Cavity Fh (GME) Fh (FDTD) Q (GME) Q (FDTD)

H2 unopt. 0.126 0.172 5700 6400
H2 opt. 0.137 0.182 2100 2500
H1 opt. 0.160 0.209 2100 2400

Table 4.3: A comparison of the three trapping cavities: unoptimized H2 (used in [109]),
optimized H2, and optimized H1. The electric field integral inside the big hole Fh, as
defined in eq. (4.3), and the theoretical quality factor Q are given, computed both with
GME and with FDTD.

The optimization presented here is an important illustration of the applicability of
our scheme, and the GME in particular, to optimizing PhC systems for a quality that
goes beyond the cavity Q. The new designs and their qualities were communicated
to the group of prof. Houdré, where the seminal experiment was performed, and a
new sample employing both of them is planned for fabrication and characterization.
It is also worth noting that a similar cavity can be used for other applications, such
as stimulated emission from colloidal quantum dots [173]. This would also benefit
from our optimization, since the dots are in the hollow region, and the light-matter
coupling increases with increasing electric field amplitude of the cavity mode.

4.4 Optimized coupled-cavity waveguide

4.4.1 Preliminary considerations*

In Section 1.3.1, we discussed the importance of slow light as a means to enhance
the effects due to optical non-linearities. Periodic photonic structures like the W1
waveguide are particularly suited for applications in that domain, since the group
index ng can be made arbitrarily large in the vicinity of the band edge. Additionally,
a significant control over the dispersion is possible through suitable engineering of
the photonic structure. Because of this, silicon PhCs have led to impressive slow-light
results [52], in particular in line-defect waveguide systems [53, 54, 66, 174], and in
Coupled-cavity Waveguides (CCWs) (also called coupled-resonator optical waveguides
or CROWs) [46, 55, 58, 175–178].

There is no unique figure of merit for a slow-light system, but there are several impor-
tant (and not always independent) parameters. The group index ng = c/vg, with vg the
group velocity, is the slow-down factor as compared to the light propagation in vacuum,
and non-linear effects typically scale with this quantity. While it is hard to significantly
change the refractive index n of a material using simple manipulations, the group
index can be dramatically modified through engineering of the material dispersion,
since vg = dω/dk. Although this value can be theoretically arbitrarily small in PhCs, it is
inevitably restricted in practice by effects of localization and light losses due to disorder
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(see discussion in Section 1.3.1). Localization for high ng in particular has been shown
to severely restrict the length-scale on which one could meaningfully talk about light
transport [61, 62, 179]. In practice, the best achieved ng values are of a few hundred at
a given frequency [176, 177], while ng � 100 in wide-band devices [66]. For a realistic
system, it is thus natural to restrict the target ng values to a similar magnitude, and
focus instead on improving other figures of merit. These include: low Group Velocity
Dispersion (GVD) (i.e. second-order dispersion d2ω/dk2), which is necessary for pulsed
operation; high Delay-Bandwidth Product (DBP), which, for a fixed group index means
a wide operational bandwidth; and low-loss/high-transmission propagation.

In view of these parameters, PhC CCW systems used thus far have some major pros
and cons. The advantages are that a very high ng with a reasonably low GVD can be
achieved, and that losses can be made extremely low using Q ≈ 106 cavities. The
disadvantages are that the operational bandwidth is typically small, and that having
sufficiently many cavities in order to obtain a continuous spectrum requires very long
(> 100μm) structures, which are very challenging to fabricate. In this Section, we
show how to overcome both of those difficulties in an ultra-compact PhC CCW design,
which we optimize for a high, constant ng within a large bandwith, for several different,
experimentally-relevant values of the group index.

A few remarks are in order. Following Ref. [180], from here on we use the Group Index-
Bandwith Product (GBP) (also referred to as the normalized DBP) instead of the DBP as
a figure of merit of the CCW performance, and we compute the loss due to out-of-plane
radiation in units of [dB/ns] instead of the more standard choice, [dB/cm]. This brings
the advantage of using quantities which are independent of the device length, and also
facilitates the comparison to other systems. In addition, the requirement for low GVD is
translated to the related (but not equivalent) requirement [66,180] for an approximately
constant ng: we define a relative variation ΔR and require |ng − 〈ng〉|/〈ng〉 < ΔR.
Finally, we remark that for an approximately constant ng ≈ 〈ng〉 within a bandwith
Δω, the GBP is ngΔω/ω ≈ Δk/ω, where Δk is the range of momenta associated to
the bandwidth Δω centered at ω. Thus, in a periodic structure of period L in the
propagation direction, the maximum achievable GBP is given by π/(Lω), and ω is fixed
by the target operational wavelength.

Motivated by this consideration, we propose a PhC coupled-cavity array with an
extremely short spatial periodicity (Fig. 4.20(a)). The structure is based on a chain
of L3 cavities, and the underlying PhC has the exact same parameters as in Section
4.1.3. With this particular zig-zag arrangement, the unit cell size in the propagation
direction y is 2

√
3a, but in fact, due to the symmetry with respect to the x = 0 axis,

the effective periodicity is of half this pitch, Ly =
√
3a. Intuitively this is to say that

no gap can open at the boundary of the first Brillouin zone (at π/(2Ly)), and a larger
k−space of twice the width can be considered. This can be more formally illustrated
within a tight-binding model for a chain of cavities. To do that, we use the operator
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Figure 4.20: (a): CCW composed of coupled L3 PhC cavities; the propagation direction
is the vertical, y-axis. The unit cell of the infinite structure is marked by dashed
lines. For dispersion optimization, the radius of all holes marked in red is varied by
an amount Δr1, and that of all holes marked in green – by Δr2. (b): Tight-binding
dispersion of a chain of cavities with first- and second-neighbor coupling, t1 and t2.
The dashed lines show the folded bands in the case of two cavities included in the unit
cell, which is an equivalent representation.

formalism that is standard in quantum mechanics, since it is concise and intuitive to
read out, but we note that we are not discussing any quantum effects – the formalism
is equally well suited to classical field propagation. We denote with ci and c†i the ladder
operators for cavity i, with Li the position of cavity i, and with Ly – the inter-cavity
spacing. With first- and second-neighbor coupling and one cavity per unit cell, the
Hamiltonian reads

H =
∑
i

[ω0

2
c†ici − t1(c

†
ici+1)− t2c

†
ici+2

]
+ h.c. (4.4)

Fourier transforming to k-space through cj =
∑

k e
ikLjck, this becomes

H(k) = ω0 − 2t1 cos(Lyk)− 2t2 cos(2Lyk), (4.5)
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and so the dispersion ω(k) is given by

ω(k)− ω0 = −2t1 cos(Lyk)− 2t2 cos(2Lyk), (4.6)

where the Brillouin zone for k is from −π/Ly to π/Ly. If we consider instead the same
system but written in terms of two cavities A and B in the unit cell, the Hamiltonian
reads

H =
∑
i

[ω0

2
(c†AicAi + c†BicBi)− t1(c

†
AicBi + c†BicAi+1)

−t2(c†AicAi+1 + c†BicBi+1)
]
+ h.c. (4.7)

Defining Ck = (cAk, cBk)
T , the Fourier space Hamiltonian is H(k) = C†

kH(k)Ck, with

H(k) =

(
ω0 − 2t2 cos(2Lyk) −t1(1 + ei2Lyk)

−t1(1 + e−i2Lyk) ω0 − 2t2 cos(2Lyk)

)
(4.8)

Diagonalizing this 2-by-2 matrix gives the dispersion, which now consists of two bands
but the Brillouin zone is twice smaller: k from −π/(2Ly) to π/(2Ly). Since the system
is physically the same, when ‘unfolded’, the two bands match the band obtained in eq.
(4.6). This is illustrated in Fig. 4.20(b) for the structure of panel (a), using generic first-
and second-neighbor couplings t1 and t2. Note that these coefficients are identical
for the cavities on the left and on the right of the x = 0 plane. The dispersion curves
computed with periodicity Ly (one cavity in the unit cell) or 2Ly (two cavities in the
unit cell) are plotted for comparison, for several values of t1 and t2.

For dispersion optimization, we would like to be able to tune the cavity couplings. To a
first approximation, we can imagine that modifying the radius of the red and green
holes in Fig. 4.20(a) can be used to control t1 and t2, respectively. We see from Fig.
4.20(b) that when t2 becomes comparable to t1, a degeneracy appears within a finite
frequency domain, which prevents low-GVD propagation. To verify that this can be
avoided in our design, in Fig. 4.21 we show the results of a simulation of a system with
two cavities only, arranged in each of the two possible ways as shown in the top insets
of each panel. The simulation was performed using the GME, and also verified with an
FDTD solver [74]. The fundamental modes of the cavities are coupled, producing an
anti-symmetric and a symmetric mode, and the splitting Δω = ωS − ωAS is twice the
coupling constant t (as can be inferred from eq. (4.7), considering just two cavities).
Thus, t1 and t2 as a function of the radius of the modified holes can be computed, and
are plotted in Fig. 4.21. An interesting observation was recently made [181] that in
PhCs, the frequency splitting can be either positive or negative, and moreover could
be tuned from one sign to the other – crossing zero – by a simple modulation, which
we also observe in Fig. 4.21(b). This is in fact crucial for the compactness of our
design, since it allows us to arrange the cavities as shown in Fig. 4.21(a) – with second
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Figure 4.21: (a): Cavity-cavity coupling in a system of two cavities arranged as shown
in the top inset, depending on the radius change Δr of the holes marked in red. Val-
ues obtained with the guided-mode expansion (blue line) and the finite-difference
time-domain (red crosses) methods are shown. Bottom right inset: frequency of the
symmetric (yellow) and anti-symmetric (purple) modes vs. Δr. (b): Same as (a) but for
a different arrangement, shown in the top left inset.

neighbors separated by a small physical distance – and still have an arbitrarily small t2,
which, as can be seen in Fig. 4.21(b), crosses 0 for a given radius change. To conclude
this discussion, we note that the tight-binding approximation provides important
insights but is rather crude, and so for all simulations below, we use the guided-mode
expansion to find the true PhC eigenmodes.

4.4.2 Optimization of the PhC CCW*

Encouraged by the considerations of Section 4.4.1, we proceed with an optimization of
the GBP, using the genetic algorithm to find the optimal PhC parameters in the same
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Figure 4.22: (a): Electric field |Ey| profile of the mode marked by a black cross in (b).
The green and red holes are modified as in Fig. 4.20(a), while the white holes are
shifted outwards by an amount Δx, and have a radius changed by Δr3. (b) Wavelength
dispersion of the optimized design; the black dashed line marks the Brillouin zone for
periodicity 2Ly. Modes from the dashed-line band propagate in the direction opposite
to the one of the solid-line band. The operational band-width Δω is marked by a
light-red region (extending into panels (c) and (d)). (c): Group index dispersion; in
light yellow, the region 〈ng〉(1±ΔR) is marked. (d): Dispersion of the radiative losses.

manner that has already been successfully applied throughout this Chapter. Note that
the GME is particularly well-suited for dispersion computations as it is an expansion
on the basis of propagating modes, and as it assumes periodic boundary conditions.
Of course, as illustrated in the preceeding Sections, the method is also accurate for
computing the light loss due to radiation outside of the slab. This is important, since
the basic L3 cavity has a modest quality factor of a few thousand [25, 82], but, as
illustrated in Section 4.1.3, this can be increased by several orders of magnitude using
some simple modifications of the neighboring holes. Thus, to include the possibility
for minimizing losses in the optimization, we allow for a change of radius Δr3 and
an outward shift Δx of the holes on each side of each cavity (marked in white in Fig.
4.22(a)). Our free parameters are thus (Δr1,Δr2,Δr3,Δx), but we still have freedom in
defining the objective function.

We demonstrate several optimizations below, to highlight the flexibility of our method.
For all computations, we take the standard choice [180] for the maximum allowed
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Figure 4.23: Designs with (a)-(c): 〈ng〉 = 116, G = 0.66; (d)-(f): 〈ng〉 = 88, G = 0.56;
(h)-(j): 〈ng〉 = 51, G = 0.43. Same plotting and color scheme is employed as in Fig.
4.22(b)-(d)

relative variation of the group index, ΔR = 10%, i.e. we consider the operational
band-with Δω to be the one within which |ng − 〈ng〉|/〈ng〉 < ΔR for some value of 〈ng〉
(not necessarily the arithmetic average). Thus, for a given design, after computing
ng(ω), we define the GBP as G = 〈ng〉Δω/ω, where 〈ng〉 is defined such that Δω is
largest. To also account for the radiative losses Lr, the objective function for the design
shown in Fig. 3 was set to f(Δr1,Δr2,Δr3,Δx) = G for max(Lr) < 50dB/ns, and to
G × (50dB/ns/max(Lr)) otherwise. The cut-off in the maximum allowed losses was
chosen based on the experimentally demonstrated loss in PhC waveguide systems
[180].

With this objective function, the optimization results in a design with parameters
(Δr1,Δr2,Δr3,Δx) = (−0.0385,−0.0279,−0.0759, 0.1642)a (Fig. 4.22(a)). The wave-

95



Chapter 4. Automated Optimization of Photonic Crystals

Table 4.4: Parameters and figures of merit of the optimized CCW designs presented in
this Section.

CCW Δr1/a Δr2/a Δr3/a Δx/a GBP 〈ng〉 Δλ, [nm]

Des. 1 -0.0385 -0.0279 -0.0759 0.1642 0.47 37 19.5
Des. 2 -0.0049 -0.0340 -0.1016 0.2204 0.66 116 8.8
Des. 3 -0.0221 -0.0341 -0.1200 0.2500 0.56 88 9.9
Des. 4 0.0323 -0.0002 -0.0877 0.2131 0.43 51 13.1

length dispersion plotted in Fig. 4.22(b) is obtained by setting a = 400nm; as can be
seen, the CCW guided band has very low GVD within a very wide wavelength range
of 19.5nm. The average group index is 〈ng〉 = 37, which results in a GBP of 0.47. This
value is more than twice higher than that of previous CCW systems [176, 177] and is
close to the highest theoretical value of any existing proposal. In fact, the only system
to our knowledge which has a higher theoretical GBP is a topology-optimized PhC
waveguide [182] with a GBP of 0.5 at ng = 50, which has the significant disadvantage
of requiring non-circular holes with fine features, which are challenging to fabricate.
In another proposal using a coupled-waveguide system [183], the group index and
so the GBP vary spatially along the device. A position-averaged GBP value attaining
a maximum of approximately 0.5 was estimated for such a system, but the spatial
dependence of ng remains a significant disadvantage as compared to our design.

In order to look for a higher group index ng, we perform another optimization but aim-
ing at a smaller first-neighbor coupling, which, intuitively, results in a smaller frequency
width of the guided bands, and thus – slower light. Practically we impose this by increas-
ing the distance in the x-direction (refer to Fig. 4.20(a)) between consecutive cavities by
one lattice constant a, as illustrated in the inset of Fig. 4.23(a). Notice that this results
in 4 holes marked in red (radii changed by Δr1) between consecutive cavities, instead
of 3. Running an optimization with the same objective function as above results in
a design with parameters (Δr1,Δr2,Δr3,Δx) = (−0.0049,−0.0340,−0.1016, 0.2204)a,
with 〈ng〉 = 116 within a 8.8nm band, thus with a GBP of 0.66 (Fig. 4.23(a)-(c)). This is
the highest theoretical GBP among all existing slow-light designs.

Finally, we also obtain designs with an intermediate group index by optimizing each
of the two basic designs with a different objective function, defined as G × (|〈ng〉 −
ng,t|/ng,t), for some target ng,t (notice that we drop the loss-dependence of the objec-
tive function). Setting ng,t = 80 results in the design shown in Fig. 4.23(d)-(f), with
parameters (Δr1,Δr2,Δr3,Δx) = (−0.0208,−0.0350,−0.0950, 0.2443)a, with 〈ng〉 = 88

over a 9.9nm wavelength range (GBP = 0.56). Setting ng,t = 50 yields a better design if
the three-red-hole scheme of Fig. 4.22(a) is used; the optimal design (Fig. 4.23(h) inset)
is found for (Δr1,Δr2,Δr3,Δx) = (0.0323,−0.0002,−0.0877, 0.2131)a, with 〈ng〉 = 51

over a 13.1nm bandwidth (GBP = 0.43). The parameters and figures of merit of all
designs are summarized in Table 4.4.
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Figure 4.24: Group index vs. wavelength for Design 1. Shown is the nominal structure
(yellow solid line), and a -2nm (red dashed line) or a +2nm (blue dashed line) deviation
in (a): Δr1, (b): Δr2, (c): Δr3, and (d): Δx.

The parameters are given with a high precision in case it is needed, but a sub-nanometer
control is by no means a requirement to keep the outstanding dispersion properties.
This is illustrated in Fig. 4.24, where we plot the effect of small variations of the opti-
mization parameters on the wavelength dependence of the group index, for the design
of Fig. 4.22. In the Figure, panel (a) shows variation in Δr1, panel (b) – in Δr2, panel (c)
– in Δr3, and panel (d) – in Δx. The red dashed line shows a variation of −2nm of the
respective parameter, while the blue dashed line – of +2nm. This variation is larger
than the state-of-the-art precision in Silicon devices. We note that Δr1 and Δr2 have
a much more pronounced effect than Δr3 and Δx, which can be expected since the
latter were introduced mostly to minimize losses. Most importantly, the effect of all
parameters is to slightly shift the operational band up or down in wavelength, but the
important property of the designs – high, approximately constant 〈ng〉 – is conserved.
We checked that all these conclusions hold for the other designs as well.

Of course, as discussed above, random disorder in all holes of the structure introduces
unavoidable losses both in the vertical and in the counter-propagating direction [61,
62, 179], but this was the reason for which we aimed for values of the group index and

97



Chapter 4. Automated Optimization of Photonic Crystals

the extrinsic losses which have been observed in practice in similar systems [66, 176].
Finally, we note that we checked that small variations of the material refractive index
also preserve the outstanding properties of the proposed designs, thus they can also
be implemented in materials of similar permittivity as silicon, e.g. gallium arsenide.

4.4.3 Experimental outlook

In conclusion, we presented highly optimized designs for silicon coupled-cavity waveg-
uides with a record-high group index-bandwith product, low variation of the group
index, and low out-of-plane losses. The waveguides are straightforward to fabricate
and can find a variety of applications, including high-bit-rate optical storage (very
short pulses can be used due to the large bandwidth) [52, 58], enhanced non-linear
effects like four-wave mixing (e.g. for entangled photon pair generation) [46, 54, 56]
and third-harmonic generation [53, 184], and enhanced radiative coupling between
distant quantum dots for quantum information processing [59, 60].

The outstanding properties predicted for the designs presented here, together with the
many possibilities for applications, are a strong incentive to realize these structures
in practice. To do this, we are collaborating with the group of prof. Houdré at EPFL
and prof. Badolato in Rochester. A preliminary sample has in fact been fabricated, and
very promising spectroscopic results have already been measured. The current state of
this project is that a new sample is in preparation, in which some structural challenges
that seem to have affected the first sample will be tackled. We expect this to lead to
an experimental demonstration of the highest-quality slow-light device ever reported,
opening up various possibilities for future experiments.

4.5 The impact of PhC optimization

The results presented in this Chapter could easily be considered the core of this thesis.
It is fair to argue that our optimization procedure constitutes a paradigm shift, in that
it reveals the enormous room left for exploration in the domain of photonic crystals.
Because of this, our scheme has attracted interest from research groups all over the
world and will undoubtedly be useful for years to come. This is best illustrated by
the sheer variety of the results presented here1, as well as some other results that
are part of currently ongoing projects. As an outlook, we list a few of those: one
example is a cavity with resonant modes at ω and 2ω that we have developed [185],
useful for Second-harmonic Generation (SHG). For that same application, we have also
developed GaN and AlN cavity designs with high Q and efficient vertical extraction,
which are currently under fabrication. Another idea is to optimize a self-filtering,

1Two of the results of this Chapter were featured on the cover of Applied Physics Letters [114, 115], as
well as in several press releases.
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highly efficient Four-wave Mixing (FWM) device for frequency conversion. Yet another
project is optimizing GaAs cavities at various frequencies for quantum dot integration.
We are also developing an acoustic GME code that will enable us to optimize structures
for optomechanics [186, 187]. All in all, the research directions that the optimization
scheme opens are countless.
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5 Radiative Coupling of Quantum
Dots in Photonic Crystals

In this Chapter, we derive a general formalism to model the polariton states result-
ing from the radiation-matter interaction between an arbitrary number of excitonic
transitions in semiconductor Quantum Dots (QDs) and photon modes in a photonic
crystal structure in which the quantum dots are embedded. The Chapter is adapted
from two of our publications, Refs. [60] (M. Minkov and V. Savona, “Radiative coupling
of quantum dots in photonic crystal structures,” Phys. Rev. B 87 (2013)) and [188] (M.
Minkov and V. Savona, “Long-distance radiative excitation transfer between quantum
dots in disordered photonic crystal waveguides,” Phy. Rev. B (R), 88 (2013)).

This Chapter is organized as follows: Section 5.1 gives some background to the study
of QDs in photonic structures. In Section 5.2 we lay down the semi-classical linear
response theory for a system of N distinct, spatially localized excitonic transitions in
QDs, coupled to M photonic modes of an arbitrary photonic structure. In particular,
we frame the underlying Maxwell equations into an eigenvalue problem, describing
the polariton modes of the system in analogy with the polariton formalisms for a
bulk semiconductor [189], for quantum wells [190], and for QDs in an unstructured
photonic environment [191, 192]. In Section 5.3, we apply the formalism to Ln cavities
(with n missing holes in a row) and W1 waveguides in a PhC slab. For the compu-
tation of the photonic modes, the Bloch-mode expansion is employed (cf. [63] and
Section 2.4), although any other method which provides reliable field profiles (e.g.
GME, FDTD) can also be used. We show how known single-dot radiative properties
– such as the vacuum Rabi splitting in a microcavity and the Purcell enhancement
and β-factor in a waveguide – are well reproduced. The main focus of the Section
however is the quantitative characterization of radiative coupling between two dots
in those same structures. To this purpose, we characterize the spectra of the polari-
ton eigenmodes, the time-evolution of a starting excitation in one of the dots, and
the distance-dependence of the radiative excitation transfer in a spatially extended
structure. In Section 5.4, we extend our simulations to realistic systems with different
magnitudes of fabrication disorder, both in the PhC and in the QD positioning. We
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show that, while disorder-induced light localization has a profound effect on both
the range and the magnitude of the dot-dot excitation transfer rate, this latter is still
large when compared to typical decoherence rates. Finally, Section 5.5 gives some
concluding remarks.

5.1 Motivation for studying the QD-PhC system*

In the last two decades, the design and implementation of devices for quantum infor-
mation processing has been a major goal of condensed matter physics. An essential
requirement of the quantum information paradigm is the possibility for two qubits to
interact coherently in a controlled fashion, in order to achieve controlled gate opera-
tions [193]. This must in principle be possible for each arbitrarily chosen pair of qubits
in the system. Most of the technologies, however, employ qubits which are at all times
spatially separated and do not interact directly [194–196]. The interaction can then be
achieved by means of a quantum bus, namely a spatially extended degree of freedom
interacting with all localized qubits. In a more general picture, these spatially extended
degrees of freedom might even form a quantum network connecting distant quantum
information systems [197]. A quantum bus can be of several kinds – two common
examples being phonons in chains of trapped ions [198] and microwave photons in su-
perconducting circuits [199, 200]. Photons are the most natural choice in a solid-state
system, given their low decoherence rate, high velocity, and the recent advances in the
on-chip photonic technology, especially in the photonic crystal domain.

Semiconductor QDs have long been considered as viable qubit candidates [201], as
they naturally fulfill the criteria of scalability and integrability required in a quantum
information technology. Facing the remarkable advance made in the system of spin
qubits in lateral QDs [196] – where electron spins are controlled electronically with
ohmic contacts – optical excitations in self-organized QDs have only recently caught
up in the race towards controlled quantum operations. On one hand, in fact, full single-
qubit optical control has been successfully demonstrated [202–211]. On the other,
integrating QDs in photonic structures has made significant progress, and both single-
dot Purcell enhancement in cavities [212–217] and waveguides [218–225], and strong
coupling to a cavity mode [47, 226, 227] have been demonstrated. Single-dot coupling
to light modes is in itself important for practical applications, as suggested by the
possibility of non-classical light generation [42, 43, 228, 229], or single-photon optical
switching [44]. Beyond that, short-distance coupling in quantum dot ‘molecules’
has been demonstrated [230–235], where however the coupling is enforced by the
direct overlap of the QD wave-functions and/or the electrostatic Förster dipole-dipole
interaction [236, 237], rather than by any long-distance mechanism. Altogether, these
advances suggest that the field has reached the milestone, following which the process
of long-distance, photon-mediated interaction between two or more quantum dots
should also be addressed. It has been shown that the light-matter interaction between
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a QD and the electromagnetic modes of a non-structured photonic environment is
very weak [191, 192, 238, 239], thus photonic structures are needed in order to tailor the
density of optical modes and thus enhance the radiative coupling between spatially
separated quantum dots. Indeed, short-range radiative coupling has already been
achieved in several experiments involving small optical cavities, where strong coupling
of two quantum dots to the same cavity mode was detected [240–242], and, most
recently, its coherent nature was demonstrated [243]. A photonic structure has also
brought the experimental demonstration of long-distance transfer of photons emitted
by an embedded QD. [41]

On the theoretical side, specific aspects of structures with one or more quantum dots
in a photonic environment have been studied. These include the strong coupling
regime and emission spectrum of one [68, 90, 244–246] or more [247–249] dots in a
microcavity, as well as the possibility of performing cavity-mediated qubit operations
through coherent excitation exchange in such a system [50, 250–253]. In addition,
the spontaneous emission enhancement of one dot coupled to a single waveguide
mode has been estimated [254–256], and non-trivial dynamics of single-dot cavity-
QED in presence of coupling to a second, distant cavity, have been predicted [59].
There are, however, only a few studies of the dot-dot interaction at a mesoscopic (i.e.
more than one wavelength) inter-dot distance – which is a main focus of this Chapter.
Most notably, the possibility to generate entangled states between distant QDs in
a coupled-cavity system was recently demonstrated [257], as well as the non-trivial
decay dynamics1 of two distant dots in a photonic crystallite [258]. Here, we present a
general formalism accounting for an arbitrary number of quantum dots coupled to
arbitrarily many photonic modes, which allows us to analyze the distance dependence
of the radiative interaction, the influence of fabrication disorder, and the competition
between excitation transfer at-a-distance and radiation losses.

5.2 Theoretical formalism*

Starting from Maxwell’s equations with the assumptions of a non-magnetic medium
and no free charges, but with a non-zero polarizability P, the electric field in the
frequency domain obeys the equation

∇×∇×E(r, ω)− ω2

c2
(ε(r)E(r, ω) + 4πP(r, ω)) = 0 . (5.1)

In our study, the underlying photonic structure is as usual characterized by the spatial
dependence of the dielectric constant, ε(r), while the optical response of the quantum
dots is included in the polarization vector through a non-local susceptibility tensor

1Here we prefer not to use the term ‘superradiant’, in order to avoid ambiguity with the concept of
Dicke superradiance, which has a radically different physical nature.
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[259], such that

P(r, ω) =

∫
dr′χ̂(r, r′, ω)E(r′, ω) . (5.2)

In what follows, we will consider the specific case of excitons originating from the
heavy-hole band of a semiconductor with cubic symmetry (e.g. Indium Arsenide
(InAs)), for which only the x- and y-components of the polarization couple to the
electromagnetic field according to the following susceptibility tensor [190, 260, 261]

χ̂(r, r′, ω) =
μ2cv
�

N∑
α=1

Ψ∗
α(r)Ψα(r

′)
ωα − ω

⎛
⎜⎝1 0 0

0 1 0

0 0 0

⎞
⎟⎠ . (5.3)

The formalism can be easily generalized to different forms of the susceptibility tensor.
Here, α runs over all QDs, μ2cv is the squared dipole matrix element of the inter-band
optical transition, Ψα(r) = Ψα(re = r, rh = r), and Ψα(re, rh) is the excitonic wave-
function, normalized as∫

dre

∫
drh|Ψα(re, rh)|2 = 1 . (5.4)

We denote the frequencies of the bare excitons by a superscript α, in order to distinguish
them from the frequencies of the photonic resonances, which we will later on index
with subscripts, e.g. as ωm. Notice also that here all frequencies are assumed to be
complex quantities, e.g. ωα = �(ωα)− iγ

α

2 , where γα represents the overall decay rate
of the exciton state, including any possible non-radiative mechanism and the rate of
radiative decay into photon modes that are not included among the M modes treated
exactly.

In order to turn the Maxwell equation into a self-adjoint form, we introduce the quan-
tities [262] Q(r, ω) =

√
ε(r)E(r, ω). Eq. (5.1) then becomes

ΥQ(r, ω)− ω2

c2
Q(r, ω) =

4π√
ε(r)

ω2

c2

∫
dr′χ̂(r, r′, ω)

Q(r′, ω)√
ε(r′)

, (5.5)

which is an inhomogeneous differential equation defined for the self-adjoint differen-
tial operator

Υ =
1√
ε(r)

∇×∇× 1√
ε(r)

. (5.6)

The susceptibility tensor as given in eq. (5.3) decouples the z-polarized fields. We then
define the two-dimensional field Q = (Qx, Qy). We can solve the problem using a
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Green’s function approach [263], in which the formal solution to eq. (5.5) is

Q(r, ω) = Q0(r, ω) +
4π√
ε(r)

ω2

c2

∫
dr′

∫
dr′′Ĝ(r, r′, ω)

χ̂(r′, r′′, ω)√
ε(r′′)

Q(r′′, ω). (5.7)

The Green’s tensor can be expanded onto the basis of field eigenmodes using the
resolvent representation, following Fredholm’s theory [264]

Ĝ(r, r′, ω) =
∑
m

Qm(r)⊗Q∗
m(r′)

ω2
m
c2

− ω2

c2

, (5.8)

where the Qm-s are the orthonormal eigenfunctions of Υ corresponding to eigenvalues
ω2
m/c

2, and ⊗ is an outer product defined as

A⊗B =

(
AxBx AxBy

AyBx AyBy

)
. (5.9)

The sum in eq. (5.8) runs in principle over the infinite set of eigenmodes. In most
situations of interest, however, this sum is dominated by the resonant modes of the
photonic crystal that are closest to the frequency range characterizing the excitonic
transitions. In addition, in all structures of interest (e.g. a PhC [47,48], pillar cavity [226]
or a microdisc [227]), the dots are typically embedded within the dielectric medium,
i.e. their wave-functions are non-negligible only in a region where ε(r) = ε∞, the
permittivity of the semiconductor. Thus, as the r-dependence of all quantities will
eventually enter through overlap integrals with the QD wave-functions, in eq. (5.7)
we can safely substitute

√
ε(r) =

√
ε(r′′) =

√
ε∞. Finally, in typical situations, all QD

transition frequencies lie within a small range originating from the inhomogeneous
distribution of QD sizes. A very good approximation consists then in replacing the ω
on the r.h.s. of (5.7), as well as the (ωm+ω)/2 obtained by factoring the denominator in
(5.8), with an average exciton transition frequency ω0. In order to compute the complex
frequency poles, corresponding to the resonances of the coupled system, we consider
the homogeneous problem associated with eq. (5.7). Then, by defining

Qα(ω) =

∫
drΨα(r)Q(r, ω) , (5.10)

we obtain

Q(r, ω) =
2πω0

ε∞
μ2cv
�

N∑
α=1

M∑
m=1

Qm(r)⊗Qα∗
m

(ωn − ω)(ωα − ω)
Qα(ω). (5.11)

By integrating eq. 5.7 with
∫
drΨβ(r) and defining additionally Q̃α(ω) = Qα(ω)/(ωα −
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ω), we finally obtain a set of equations (labeled by β) for the complex frequency poles

(ωβ − ω)Q̃β(ω) =
2πω0

ε∞
μ2cv
�

N∑
α=1

M∑
m=1

Qβ
m ⊗Qα∗

m

(ωn − ω)
Q̃α(ω) . (5.12)

We now define the quantities

gα
m = (gαm,x, g

α
m,y) =

(
2πω0

ε∞
μ2cv
�

)1/2

Qα
m , (5.13)

which should be interpreted as the coupling strengths between the m-th mode of the
PhC and the α-th QD. To this end, we notice that the 2N equations in (5.12) can be
solved only for those values of ω for which the N ×N matrix

Λ1 =

⎛
⎜⎜⎜⎜⎜⎝
ω1
x − ω −∑M

m=1
g1m,xg

1∗
m,x

ωm−ω · · · −∑M
m=1

g1m,xg
N∗
m,x

ωm−ω −∑M
m=1

g1m,xg
N∗
m,y

ωm−ω

−∑M
m=1

g1m,yg
1∗
m,x

ωm−ω · · · −∑M
m=1

g1m,yg
N∗
m,x

ωm−ω −∑M
m=1

g1m,yg
N∗
m,y

ωm−ω
...

. . . · · · ...

−∑M
m=1

gNm,yg
1∗
m,x

ωm−ω · · · −∑M
m=1

gNm,yg
N∗
m,x

ωm−ω ωN
y − ω −∑M

m=1
gNm,yg

N∗
m,y

ωm−ω

⎞
⎟⎟⎟⎟⎟⎠

(5.14)

is singular. This is a nonlinear equation, but we notice that it can be transformed into
a more familiar form, since it is mathematically equivalent to finding the eigenvalues
of the matrix

Λ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1
x 0 · · · 0 g11,x · · · g1M,x

0 ω1
y · · · 0 g11,y · · · g1M,y

... · · · . . .
...

... · · · ...
0 0 · · · ωN

y gN1,y · · · gNM,y

g1∗1,x g1∗1,y · · · gN∗
1,y ω1 · · · 0

... · · · . . .
...

... · · · ...
g1∗M,x g1∗M,y · · · gN∗

M,y 0 · · · ωM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.15)

More precisely, solving det(Λ1) = 0 is equivalent to solving det(Λ2−ωI(2N×M)×(2N×M)) =

0, whenever ω �= ωm ∀m = 1 . . .M . The proof can be easily obtained by, on one hand,
multiplying the equation for Λ1 by

∏M
m=1(ωm − ω), and on the other, using in the

eigenvalue problem for Λ2 the following identity for the determinant of a block-matrix:

det

(
A B

C D

)
= det(D) det(A−BD−1C) . (5.16)

The poles ω = ωm will generally exist as solutions only when a photonic mode Qm is
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fully decoupled from the system, i.e. when gα
m = 0 ∀α, in which case this mode can

safely be excluded from the very beginning. The 2N +M complex eigenvalues of Λ2

then define the frequencies (real part) and the loss rates (−2× imaginary part) of the
polariton modes of the system, while the eigenvectors

λ = (λ1x, λ
1
y, . . . λ

N
x , λ

N
y , λ1 . . . , λM ) (5.17)

define the corresponding Hopfield coefficients [189], which, for each eigenstate, give
the probability amplitude of finding an excitation in the corresponding bare-exciton
or bare-photon mode. Notice in addition that the matrix of eq. (5.15) corresponds
to a Tavis-Cummings Hamiltonian [265] in the weak excitation regime, when only
transitions from the ground state to the manifold of states with a single excitation are
considered. Thus, notice that our approach has a straightforward extension to treating
non-linear quantum dot dynamics, as the coupling constants in the off-diagonal
terms of eq. (5.15) can be used to write the Tavis-Cummings Hamiltonian in its most
general from, i.e. including transitions among all excitation-number manifolds. This
describes the system whenever the quantum dots behave as two-level systems, which is
indeed the case for small dots under resonant excitation. Our semi-classical formalism
instead treats all degrees of freedom as harmonic oscillators with linear couplings.
The two regimes give equivalent predictions in the limit of weak exciton saturation,
as in a quantum well [266]. In the quantum-dot case, the saturation is strong but
the predictions are still expected to coincide in the weak-excitation regime, when the
quantum Hamiltonian can be truncated to the single-excitation subspace.

The present formalism applies to a large variety of photonic structures and to an
arbitrary spatial distribution of QDs. In this sense, it generalizes the results that were
obtained for specific configurations [59, 68, 254–258]. As an illustrating application, in
Section 5.3 we present results obtained for the case of two quantum dots embedded in
several of the most widely studied photonic crystal structures: the L3 and Ln cavities
and the W1 waveguide.

5.3 Application: from cavities to waveguides

5.3.1 Model parameters*

In order to quantify the susceptibility of eq. (5.3), we need an appropriate model of
the exciton wave-function evaluated at equal electron and hole positions, Ψα(r) =

Ψα(re = r, rh = r). This function is not properly normalized as a function of r (the
correct normalization is over R3 × R

3 as given in eq. (5.4)). In fact, similarly to the
quantum well case [260, 261], the oscillator strength of the exciton transition in the QD
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depends on the dimensionless quantity

C2 =

∣∣∣∣
∫

drΨα(r)

∣∣∣∣
2

. (5.18)

The particular shape of the wave-function enters through the overlap integrals with
the electric field, as given in eq. (5.10). As long as the size of the QDs is much smaller
than the characteristic wavelength, the electric field varies very weakly in the region
where Ψα is non-negligible, and thus the point dipole assumption, Ψα(r) = Cδ(r− rα),
is a very good approximation. In what follows we will mostly use parameters typical of
self-organized InGaAs QDs [267], whose size lies in the 10− 20nm range, with a typical
exciton recombination energy of 1.3eV (λ ≈ 950nm). For these values, we checked
that assuming a Gaussian shape for Ψα(r) introduces little change with respect to the
Dirac-delta assumption. Notice, however, that the strong dependence [268, 269] of
the QD oscillator strength with its size is still present, carried by the normalization
constant C. One way to estimate this constant is through a microscopic model of
Ψα(r) [270, 271]. Here, instead, we take a more pragmatic approach, and compute C
based on the measured radiative decay rate of QDs. Following Ref. [191], this is given
by twice the imaginary part of the quantity

Gα = i
2π2μ2cv
�ε∞

∫ ∞

0
dk|Ψαk|2

k(2k20 − k2)

kz
, (5.19)

where Ψαk is the Fourier transform of Ψα(r). With the assumption Ψα(r) = Cδ(r− rα),
the decay rate is thus

Γα =
4

3

k30
�ε∞

d2 , (5.20)

where k0 = (ω0/c)
√
ε∞, and we defined the dipole moment d of the dot (also labeled

D [272] or μ [90]) as

d2 = μ2cvC
2 . (5.21)

eq. (5.20) coincides with the expression that is commonly adopted [68, 90, 272]. For
typical QDs [42, 43, 49], with radiative lifetime of 1ns and exciton transition energy
�ωα ≈ 1.3eV, we obtain a squared dipole moment d2 ≈ 0.51eV × nm3.

The last requirement of the problem is the knowledge of the modes of the PhC structure,
i.e. the set of orthonormal functions {Qm(r)} and their corresponding eigenfrequen-
cies ωm. Here, we use the BME to compute those, with the Bloch modes of a regular
W1 waveguide computed via GME (cf. Section 2.4). This approach is particularly well
suited for elongated PhC cavities as considered in the present work. The orthogonality
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relation is then given by∫
S
d2ρ

∫ ∞

−∞
dz Qm(ρ, z)Q∗

n(ρ, z) = δmn . (5.22)

where S is the area of the 2D computational cell in the slab plane. All the photonic
crystals we consider are based on a triangular lattice of circular holes in a dielectric
slab suspended in air. The specific parameters we chose are relevant to GaAs structures
[42, 43, 49], namely: lattice constant a = 260nm, hole radius 65nm, and slab thickness
120nm, with a real part of the refractive index

√
ε∞ = 3.41. In this Section we consider

only ideal PhC structures i.e. in the absence of any fabrication imperfections. As
discussed in detail in Chapter 3, disorder in PhCs has two important effects. First,
it determines the extrinsic radiation loss rates of otherwise fully guided modes in
waveguides, and suppresses the quality factors of high-quality PhC cavities. This effect
is here taken into account through the inclusion of a constant phenomenological
loss rate for the modes under study, related to their quality factor by γ = ω/Q. For
the L3 cavity of Section 5.3.2, we set Q = 10000 or 30000. For the longer Ln cavities
(section 5.3.3) and the W1 waveguide (section 5.3.4), we set Q = 50000 for all modes.
The second way disorder affects the results is by modifying the spatial profiles of the
electric field modes, especially in the case of waveguides. This effect is studied in detail
in Section 5.4.

5.3.2 Application to an L3 cavity*

The system of one quantum dot coupled to an L3 cavity has been widely studied
[43, 47, 49] and is thus a good starting point for testing the present formalism.

The cavity is a modified L3 [43, 49], where the two holes on each side of the cavity are
shifted outwards by 0.15a, and their radii are decreased by 80%. This design improves
the quality factor by more than one decade compared to that of a standard L3 cavity,
while changing the field profile only marginally. We include in the computation only
the fundamental cavity mode, shown in Fig. 5.1. We further assume the QDs to lie on
the in-plane symmetry axis of the cavity, where Qx = 0. The diagonalization of the
matrix (5.15) is then equivalent to the well-known expression

det

(
ωy − ω gc
g∗c ωc − ω

)
= 0 . (5.23)

The coupling constant gc, through eq. (5.13), is

gc =

(
2πω0

ε∞�

)1/2

dQy(rα) , (5.24)

which matches previous theoretical results [68] when the dot is sitting in the center
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Figure 5.1: Electric field of the fundamental mode of an L3 cavity, (a): Qx(r) and (b):
Qy(r). In the one-QD simulation, the dot was placed in the central maximum of the
y-field (dot position marked by a white cross). For the two-QD simulations, the dots
were placed in the corresponding secondary maxima (positions marked by white stars).

r0 of the cavity and the mode volume is defined as 1
V = |Qy(r0)|2. As expected from

eq. (5.23), for |gc|2 > |γc − γy|2/16, vacuum-field Rabi splitting appears between two
polariton modes. The energy splitting at zero dot-cavity detuning is given by 2�Ω,
where the Rabi frequency Ω is

Ω =

√
|gc|2 −

(γc − γy)2

16
. (5.25)

Using the PhC and QD parameters we already introduced, the coupling constant was
computed to be �|gc| = 147μeV, which compares perfectly with the most recently
reported result for that system [43].

After showing the way the standard one-dot cavity-QED results are reproduced with
our formalism, we now proceed to the situation of two dots coupled to the same
cavity mode (see Fig. 5.1), and so radiatively coupled to each other. We assume
a symmetric spatial configuration of the two dots with respect to the cavity center
(see Fig. 5.1), resulting in equal coupling constants �|gc| = 125μeV for the two dots.
Since usually γc � γy, i.e. the losses through the cavity mode are significantly larger
than the QD losses through other channels (both non-radiative and radiative through
modes other than the cavity mode), we set here and in all following sections γ1,2y = 0.
Given the phenomenological way these rates enter the formalism, calculations can
easily be generalized to include finite QD loss rates. Let us first consider the case
of zero dot-dot detuning δ = ω1

y − ω2
y . The relevant exciton states are in this case

the symmetric and antisymmetric linear combinations of the two QD states, whose
coupling to the cavity mode depends on the symmetry of the electric field profile. As
discussed extensively in Ref. [95], the L3 cavity symmetry is described by the D2h point
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Figure 5.2: (a): Eigenfrequencies (solid lines) and radiative rates (dashed lines) for two
QDs with no dot-dot detuning, strongly coupled to an L3 cavity mode with Q = 10000.
With a dashed-dotted line, the bare cavity resonance is also indicated. The Hopfield
coefficients for each solution, correspondingly color-coded, are presented in panels
(b): equal (in absolute value) QD coefficients and (c): cavity coefficient.

group, and its fundamental mode belongs to the B2u irreducible representation, which
is even with respect to the σ̂yz symmetry operation (mirror reflection with respect to
the yz plane) – as can also be seen from Fig. 5.1. Hence, the antisymmetric QD state
remains dark, while the symmetric one behaves as a single exciton with a coupling
constant

√
2gc.

In Fig. 5.2 (a) we plot the eigenfrequencies of the system as a function of the detuning
between the exciton resonance frequency ωy (same for both dots) and the cavity
resonance frequency ωc, as computed for a cavity quality factor of Q = 10000. We
observe vacuum Rabi splitting between an upper and a lower polariton in exactly the
same way we would for a single dot coupled to the cavity, but in addition we see a
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dark mode which is a trivial solution, ω = ωy. The splitting between the lower and the
upper polaritons at zero dot-cavity detuning is 2�Ωc = 347μeV, which for Q = 10000

corresponds exactly to an effective coupling constant of
√
2× 125μeV. The system is

further characterized in panels (b) and (c), where we plot the Hopfield coefficients
for each of the three eigenmodes (correspondingly color-coded). This clear collective
behavior has been observed experimentally in a QD-cavity system [240–243], while
the more general dependence of the effective coupling constant with the number of
coupled two-level systems N – given by

√
N |gc| – has also been observed in a circuit-

QED system [273]. It is very important to remark that this dependence has nothing to
do with the

√
N |gc| energy splitting of different rungs in a Jaynes-Cummings model,

where N would be the number of photons in the system: on the contrary, as discussed
before, here we restrict to the linear response only, which holds in the limit of vacuum
electromagnetic field. The effect in our case is simply due to the collective behavior of
the N resonant quantum dots.

The major experimental challenges to the radiative coupling of two spatially separated
quantum dots is achieving both spatial control (to ensure strong overlap between
each of the dots and the cavity mode) and spectral control (to ensure as small dot-
dot and dot-cavity detuning as possible). Typically, QDs are characterized by an
inhomogeneous distribution of exciton energies with a width of several meV. Then,
two QDs are very likely to be detuned. In Fig. 5.3, we study the same system, but
assuming a detuning δ = 300μeV. Close to resonance, all of the eigenmodes acquire a
finite component from the cavity mode. Additionally, they have both a significant |λ1y|
coefficient (panel (b)), and a significant |λ2y| coefficient (panel (c)), implying that there
is a sizable radiative coupling present. The radiative coupling is expected to vanish
as the cavity-dot detunings become much larger than the coupling constant, and an
expression for an effective coupling strength in this limit was derived in [50, 274].

We now address the question of how the excitation transfer process depends on time.
This aspect is of particular importance to assess the usefulness of the radiative excita-
tion transfer as a coupling mechanism between different qubits in a semiconductor-
based quantum gate architecture. In the present case, when polaritonic features are
spectrally resolved, one correspondingly expects the excitation to oscillate between the
different basis states, including the photon state. To illustrate this aspect, we compute
the time-dependent amplitudes of the various basis states, assuming that one QD is
excited at t = 0. From these amplitudes, we extract time-dependent probabilities of
finding the excitation in each of the basis modes, expressed in vector form as

P(t) =
∣∣e−iΛ2tλin

∣∣2 , (5.26)

where Λ2 is the matrix of eq. (5.15). These probabilities are properly normalized if one
accounts also for the probability Pout(t) of the excitation to have radiated out of the
system, i.e.

∑
Pi(t) = 1− Pout(t). In Fig. 5.4 we plot these time-resolved probabilities
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Figure 5.3: (a): Eigenfrequencies (solid lines) and radiative rates (dashed lines) for two
QDs with a dot-dot detuning of 300μeV, strongly coupled to an L3 cavity mode withQ =
10000. With dashed-dotted lines, the bare excitons and the bare cavity resonances are
also shown. The Hopfield coefficients for each solution, correspondingly color-coded,
are presented in panels (b): first exciton coefficient, (c): second exciton coefficient,
and (d): cavity coefficient.

for a starting excitation in one of the QDs, i.e. λin = (1, 0, 0). We study four different
cases: either zero dot-dot and dot-cavity detuning, or �δ = 300μeV (with the cavity
frequency tuned at the average of the two exciton frequencies), and cavity Q-factor
equal to either 10000 or 30000. In panels (a) and (b), where δ = 0, the probabilities never
decay to zero due to the presence of a dark state and the fact that no non-radiative
decay mechanism was included. In panels (c) and (d) a dark state no longer exists, and
a clear decay of the excitation with a characteristic lifetime depending on the Q-factor
is visible. All plots show that the excitation oscillates between the three possible states,
on a time scale defined through the radiative coupling strength. In particular, the
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Figure 5.4: Time evolution of the probability of an excitation in one dot to be transferred
to the second dot or to the cavity. (a): δ = 0, Q = 10000; (b): δ = 0, Q = 30000; (c)
�δ = 300μeV, Q = 10000; (d) �δ = 300μeV, Q = 30000.

probability of finding the system in an excited state of the second QD remains sizable
over several oscillation periods, showing that a significant dot-dot interaction can be
achieved with experimentally feasible parameters. These results generally agree with
specific setups of radiatively coupled QDs in photonic crystals that have been recently
studied in the literature [257, 258].

5.3.3 Application to Ln cavities*

Recently, using Ln cavities with n > 3 to achieve light-matter coupling has spurred
interest [88,275,276], as these generally have a larger quality factor than the L3 – though
at the expense of a larger mode volume and thus a smaller dot-cavity coupling strength.

Here, we investigate cavities of varying length n with a common setup, illustrated in
Fig. 5.5 for n = 11. In the figure, we show the first four modes, M1−4, of the L11 cavity,
with resonant energies 1.3065eV, 1.3125eV, 1.3269eV, and 1.3565eV, respectively. In all
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Figure 5.5: Qy(r) for the four lowest-energy modes of the L11 cavity; (a): Fundamental
mode M1, at �ω1 = 1.3065eV, (b): M2, �ω2 = 1.3125eV, (c): M3, �ω3 = 1.3269eV, (d):
M4, �ω4 = 1.3565eV. The positions of the quantum dots are marked with white stars.

the results to follow, for all n, the two dots were placed in the center of an elementary
cell on each side of the center of the defect (i.e. at a distance a from the center of the
cavity and so 2a from each other), where the coupling constants for each of them in the
n = 11 case are |�g1| = 94μeV, |�g2| = 55μeV, |�g3| = 65μeV, and |�g4| = 89μeV. Since
the smallest energy difference between the cavity resonances in this case is between ω1

and ω2, and is ≈ 6meV, i.e. much larger than all the coupling strengths, it is reasonable
to expect that the dots will never couple significantly to more than one mode. Thus,
the phenomenology of the system will be, qualitatively, the same as the one described
in Section 5.3.2, which was also verified by our computations.

The situation should change significantly when increasing the length n of the photonic
defect. Then, we expect the energy spacing between the resonant frequencies of the Ln
cavity to decrease and eventually become comparable to the typical coupling strength.
In this situation, the radiative transfer process is no longer mediated by an isolated
cavity mode, and a smooth transition to a multi-mode coupling regime is expected.
In order to determine at which cavity length this crossover occurs, one should also
consider the fact that the coupling of a dot to each individual mode decreases with
the increase of the mode volume. As a result, the crossover length is increased with
respect to what would be given by a simple assumption of constant coupling strength
per mode.

In Fig. 5.6, we plot the minimum mode-separation ω2−ω1 vs. the length n of the cavity,
and in addition show the coupling strengths |g1m| for m = 1 . . . 10. For all n, the dots
were placed as in Fig. 5.5 – at a distance a on each side of the center of the cavity. The
fact that half of the coupling constants decay much faster as a function of n is again
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Figure 5.6: (a): Black lines – coupling constants between one QD and the ten lowest
modes of an Ln cavity, vs. n; green line – energy separation between the lowest two
cavity modes. (b)-(d): Hopfield coefficients of one polariton eigenstate as a function
of the bare exciton frequency ω1

y with no dot-dot detuning, for n = 71, n = 141,
n = 211 (the values marked by dashed vertical lines in (a)). The red line shows the dot
coefficients, while the blue lines belong to the many cavity modes. (e)-(g): Same as
(b)-(d) but for another polariton state.

explained by the particular symmetry of the field profiles. It turns out that for every n,
the modes alternate between symmetric and antisymmetric w.r.t. σ̂yz, as can be seen
in Fig. 5.5 for the L11 case. In the limit of large n, the antisymmetric modes have a
small amplitude at the QD positions close to the node, resulting in a small radiative
coupling strength.
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(Q = 50000 for each mode) vs. the resonant frequency of the excitons. The insets
show close-ups over two selected regions. Blue (red) lines denote a symmetric (anti-
symmetric) combination of the QD states.

The crossover from a single-mode to a many-mode regime occurs around n = 150,
as clearly visible in Fig. 5.6. In panels (b)-(g), we show the corresponding Hopfield
coefficients for three different values of n, given by n = 71, n = 141, and n = 211, also
indicated by dashed lines in panel (a), and for two different polariton modes. Con-
sequently, for n = 71, the Hopfield coefficients of two different polariton eigenstates,
shown in panels (b) and (e) respectively, are still largely dominated by one cavity and
one dot component. On the other hand, for n = 211 – panels (d) and (g) – the value of
several photonic fractions λm is non-negligible.

In Fig. 5.7 we plot the polariton energies as a function of QD-exciton energy in the
case of the L141 cavity, for δ = 0. As mentioned already, the photon modes alternate
between symmetric and anti-symmetric w.r.t. the σ̂yz operator, hence coupling to
either the symmetric or anti-symmetric linear combination of the QD states is present.
In the Figure, the polaritons due to a combination of symmetric states are denoted
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Figure 5.8: (a): Band structure of the W1 waveguide; the dashed line shows the
light cone. The QD resonant energies are close to the band-edge energy of the main
guided band (blue). The field profiles of four guided modes in that spectral region
are shown, over a small stretch of the waveguide: (b), (c): the two degenerate modes
at �ωk = 1.30308eV (anti-symmetric combination in (b), symmetric in (c)); (d): the
symmetric mode at �ωk = 1.30224eV (e): the symmetric mode at �ωk = 1.30218eV (at
the band edge). In all computations, one QD was placed in the center of the waveguide
(white cross), while the second one was placed in the center of one of the successive
elementary cells (white stars).

by blue lines, while the anti-symmetric combinations are represented by red lines. In
the symmetric case, the exciton-photon coupling strength is always large, and an anti-
crossing occurs at every mode. In the anti-symmetric case, the results show a transition
from weak coupling (close to the lowest ωm) to strong coupling (anti-crossing is visible
in the higher-ω inset), due to the fact that the coupling strengths there become larger
than ωm/4Q. It is clear both from Figs. 5.6 and 5.7 that for n→ ∞, the dots couple to a
structured continuum of photon modes, reproducing the physics of a W1 waveguide.
This situation is studied below.
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5.3.4 Application to a W1 waveguide*

The results obtained for the Ln cavities indicate that the radiative coupling is still
sizable in very long structures and might be effective even at very long distance between
the two QDs. Here, we investigate this possibility in more detail, by considering QDs
embedded in a W1 photonic crystal waveguide.

Coupling of a single dot to a W1 waveguide (or a similar structure) with the purpose of
spontaneous emission enhancement (and the potential application as a single-photon
source) has already been widely discussed theoretically [255, 256, 277], and achieved
experimentally [218–224]. The fact that it is already possible to couple efficiently a
dot to the guided modes of the waveguide is promising in view of achieving radiative
coupling between two dots that could – due to the spatial extension of the structures
and the modes they support – extend to inter-dot distances for which targeting each
dot individually by a laser pulse is possible.

We begin our study by looking at the modes of the W1 waveguide. The band structure
is presented in Fig. 5.8(a), where two guided bands in the band-gap of the regular
crystal are visible. Strongest dot-PhC coupling is typically achieved for the smallest
group velocity (largest local density of states of the photonic modes), and so the
spectral range we concentrate on is around the band-edge of the main guided band
(blue line), where the group velocity of the ideal photonic structure vanishes. The
second guided band is spatially odd with respect to a σ̂xz reflection [25], and would
not couple to the exciton state of a QD located at the center of the waveguide. In
the simulations below, we compute the W1 modes for 2048 k-points in the interval
(−π/a, π/a], which is equivalent to simulating a waveguide of length 2048 elementary
cells with periodic boundary conditions. In panels (b)-(e) of Fig. 5.8, we show the
electric field profiles of four modes lying close in energy to the band edge of the main
guided band. As is the case with all structures we considered so far, this band has
vanishing Qx component on the symmetry axis of the waveguide, allowing us again to
include the y-polarized fields only. Furthermore, modes at ±k are degenerate – one
propagating and one counter-propagating – with real-space profiles proportional to
exp(ikx) and exp(−ikx), respectively. As basis states, we take the symmetric and the
anti-symmetric combination of the degenerate guided modes, representing the fields
by their ‘standing wave’ profiles: one with a maximum and one with a zero amplitude
in the center of the guide (compare panels (b)-(c)). Without loss of generality (due to
the PBC), we place one dot at that position, so that it couples to one of the modes only.
The second dot is then placed in the center of a successive elementary cell, and will, in
general, couple to every mode in the basis thus constructed, so even for zero dot-dot
detuning, no fully dark state is present.

In Fig. 5.9(a), we show the polariton structure in the spectral range close to the band
edge of two dots with dot-dot detuning δ = 0, with the second dot placed at the closest
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Figure 5.9: (a): Eigenfrequencies for two QDs in the waveguide, with no dot-dot
detuning. The Hopfield coefficients for the red line of (a) are shown in (b), where
the green line shows the QD coefficients |λ1y| = |λ2y|, and the black lines show all the
waveguide coefficients |λm|. The same in (c), but for the blue line of (a). The loss rate
of each mode is γw = ω1

y/50000 ≈ 26μeV.

possible distance, a, from the first one. The quality factor of each of the photonic
modes was again set to Q = 50000 for all modes. While a strong dependence of the W1

loss rates on the group velocity close to the band edge has been shown in transmission
measurements [278], this dependence is heavily influenced by back-scattering due to
disorder. In our case, we model stationary modes rather than transport, and the only
relevant radiative loss is the one out of the plane of the PhC slab. Then, the assumption
of approximately constant Q-s is realistic, as seen from microscopic modeling of
extrinsic disorder-induced losses [63,110], and Section 3.2. Polariton modes originating
from antisymmetric photon modes are essentially uncoupled and are not displayed
(although, they were still included in the computation). The coupling constants of
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each of the dots to each of the symmetric modes varies very little, and is �|g1,2m | ≈ 7μeV.
The ω = ω1

y solution (straight diagonal in panel (a)) is due to the anti-symmetric QD
combination, which is almost dark. The strongest anti-crossing behavior is exhibited
by the polariton lying below the band edge (blue line), whose Hopfield coefficients
are given in panel (c). The remaining polariton modes display similar behavior, so
the Hopfield coefficients of just one of them (the red line of (a)) are given in panel (b).
For completeness, the same plots but for �δ = 100μeV are given in Fig. 5.10. In this
case, no dark modes are present and Hopfield coefficient corresponding to the two
QDs are generally different from each other, as seen in panels (b) and (c). In both Figs.
5.9 and 5.10 we observe that anti-crossings are still present – though characterized by
a very small energy splitting – where the exciton becomes resonant with the various
guided modes. This situation can be understood as the precursor to the structured
continuous spectrum of modes that would arise in the limit of infinite waveguide
length, analogous, for example, to the polariton modes arising from the interaction
between an exciton in a two-dimensional quantum well and the three-dimensional
continuum of electromagnetic modes [190, 260].

The present formalism provides a detailed quantitative account of the effect of the
guided electromagnetic field on the radiation properties of few QDs. In particular, we
now derive the Purcell enhancement of the radiative rate characterizing a single QD,
and the distance-dependence of the radiative excitation transfer process between two
distant QDs. We compute these properties both numerically, and analytically. To this
purpose, let us consider the elements of the matrix Λ1 introduced by eq. (5.14):

Λαβ
1 = (ωα − ω)δαβ −Gαβ(ω) , (5.27)

where the coupling matrix elements Gαβ are proportional to the Green’s function of eq.
(5.8):

Gαβ(ω) =
M∑

m=1

gαmg
β∗
m

ωm − ω
= d2

2π

ε∞�

ω2

c2
G(rα, rβ , ω). (5.28)

For a structure with no sharp resonances – like the waveguide – we can take advantage
of the exciton-pole approximation and substitute ω = ω0 in the denominator, in which
case Gαα(ω0) is the self-interaction energy of each dot, while |G12(ω0)| is an effective
coupling constant for the case of two dots with zero dot-dot detuning, i.e. ω1

y = ω2
y = ω0.

In order to derive an analytical expression for the coupling, let us replace the sum
with an integral over k = kx, and use the fact that, in accordance with Bloch’s theorem,
when rα and rβ are in the center of an elementary cell, gk(rβ) = exp (−ikx)gk(rα):

Gαβ(ω0) =
a

2π

∫ π
a

−π
a

dk
|gk|2 eikx
ω(k)− ω0

. (5.29)

121



Chapter 5. Radiative Coupling of Quantum Dots in Photonic Crystals

1.3021

1.3022

1.3023

1.3024

1.3025

1.3026
R

e(
ω

),
 [

eV
]

10
−2

10
−1

10
0

|λ
|

1.3021 1.3022 1.3023 1.3024 1.3025 1.3026

10
−2

10
−1

10
0

ω
y
1, [eV]; ω

y
2 = ω

y
1 + 100μeV

|λ
|

(a)

(b)

(c)

Figure 5.10: (a): Eigenfrequencies for two QDs in the waveguide, with dot-dot detuning
�δ = 100μeV and γw as in Fig. 5.9. The Hopfield coefficients for the red line of (a) are
shown in (b), where the two green lines show the QD coefficients |λ1,2y |, and the black
lines – all the waveguide coefficients |λm|. Same in (c), but for the blue line of (a).

A few simplifications are due. First, we write ωk = �(ω(k)) and γw = −2
(ω(k)), and
assume the latter is constant, equal to ω0/Q. Furthermore, we assume |gk|2 = |g|2,
i.e. the coupling strength has weak dependence on k. This feature is due to the small
spatial extension of the exciton wave function, resulting in a very broad distribution
in Fourier space with approximately constant overlap with all guided modes, and is
also confirmed by our numerical results. Finally, by taking k0 as the positive Bloch
momentum for which the guided mode is resonant with the exciton frequency ω0, and
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defining the corresponding group velocity

vg = − dωk

dk

∣∣∣∣
k0

, (5.30)

we get

Gαβ(ω0) ≈
a

π

|g|2
vg

∫ π
a

0
dk

cos (kx)

k − k0 − i γw2vg
. (5.31)

This expression holds in the limit where the resulting spectral linewidth is small enough
so that the group velocity is still well defined. It can now be applied for example to
obtain the radiative lifetime of a single dot embedded in the waveguide as Γα =

2
(Gαα), and so

Γα =
2a

π

|g|2
vg

tan−1

(
2(k − k0)vg

γw

)∣∣∣∣
k=π/a

k=0

. (5.32)

The Purcell factor for the enhancement of the single-dot spontaneous emission rate
is then given by the ratio between eq. (5.32) and eq. (5.20). This result takes into
account the detailed structure of the photonic environment due to the waveguide. In
this respect, it generalizes the result obtained by assuming that only one Bloch mode
at wave vector k = k0 determines the radiation loss process [255, 256]. This simplified
result is recovered by taking the limit γw → 0 in the integral (5.28), namely by assuming
that the guided Bloch mode has vanishing extrinsic radiation loss rate. The emission
rate Γl of the dot into leaky modes can also be estimated numerically by restricting the
summation in eq. (5.28) to the modes which lie above the light-cone only. Then, the
β-factor in the absence of non-radiative decay mechanisms can also be computed as

β =
Γα

Γα + Γl
, (5.33)

and a further generalization to the case in which non-radiative processes are also
present follows straightforwardly.

As a development from the previous works, which consider just one dot in the waveg-
uide, we now proceed to quantify the radiative excitation transfer process between
two QDs and its dependence on inter-dot distance. The closed-form expression for
the cross-coupling term G12, obtained by carrying out the integral (5.31) reads

G12 =
a

π

|g|2
vg

[
cosh

(
x

r12
− ik0x

)
Ci

(
−i

x

r12
+ (k − k0)x

)

+i sinh

(
x

r12
− ik0x

)
Si

(
i
x

r12
− (k − k0)x

)]∣∣∣∣
k=π

a

k=0

,

(5.34)

123



Chapter 5. Radiative Coupling of Quantum Dots in Photonic Crystals

whereCi(z) and Si(z) are respectively the cosine integral and the sine integral functions,
and we defined r12 = 2vg/γw. The quantity r12 is simply the decay length associated
to the propagation of light along the resonant guided mode. We expect this decay to
characterize also the distance dependence of the radiation transfer process. Indeed,
under the ideal assumption of vanishing radiation loss rate for the guided mode,
in a one-dimensional geometry one would expect the radiative transfer process to
be independent of the distance. For comparison, as has already been shown, the
coupling strength decays as R−1

αβ in 3D bulk semiconductor [191], and as R−1/2
αβ in a 2D

planar cavity system [192]. In Fig. 5.11, we display the absolute value of G12 computed
numerically through eq. (5.28), for four different values of the exciton frequency ω0 of
the two QDs, in a waveguide of length 2048a. This quantity is compared to the result
obtained from the analytical model of eq. (5.34) and to the simpler assumption of
an exponential dependence |G12| = |G11|e−x/r12 . In panel (d), where ω0 is taken to lie
below the edge of the guided band, the group velocity cannot be properly defined, and
thus the analytical models do not apply.

Apart from this case, it is clear that the distance dependence of the inter-dot coupling
is perfectly captured by the simple exponential-decay model. The oscillations of the
numerical curve in panel (a) are due to the finite length of the waveguide and repro-
duce the spatial behavior of the Bloch mode at k = k0 that dominates the transfer
process. These oscillations cannot obviously be reproduced by the analytical model
that implicitly assumes an infinitely extended waveguide. As anticipated, the numeri-
cal results show that the distance dependence of the transfer rate is expressed by the
decay associated to the light propagation, and quantified by the decay length r12. It
is interesting to note that even for very small group velocities, e.g. vg < c/500, the
interaction distance is still of the order of 100a = 26μm, i.e. of mesoscopic scale, thus
confirming the potential of the PhC waveguide for very long-distance dot-dot coupling.

More generally, eq. (5.34) suggests that there is a compromise, enforced by the group
velocity, between strength and distance dependence of the transfer process. The overall
strength of the transfer rate depends inversely on the group velocity. This expresses
the magnitude of the local density of states at the QD exciton frequency or, in a more
suggestive picture, the fact that slow light interacts with a QD over a longer time lapse.
However, a smaller group velocity also implies a shorter characteristic decay length
r12, as we are assuming a constant radiation loss rate. In a realistic system, including
disorder, we further expect the group velocity picture to break down at frequencies
close to the band edge, where disorder-induced localization of light dominates and
the spatial decay associated to the localization length becomes shorter than r12. This
calls for an analysis including disorder effects, which we present in Section 5.4.

We conclude this Section by studying the time-dependent probability amplitudes of
the excitation lying in each mode. These quantities are plotted in Fig. 5.12, assuming
that one QD is excited at t = 0, for three different inter-dot distances and three different

124



5.3. Application: from cavities to waveguides

0 50 100 150 200 250
0

2

4

6

8

inter−dot distance, [a]

|G
12

|, 
[μ

eV
]

 

 

finite size

full model
exp(−x/r

12
) model

0 50 100 150 200 250
0

5

10

15

inter−dot distance, [a]

|G
12

|, 
[μ

eV
]

 

 

finite size

full model
exp(−x/r

12
) model

0 50 100 150 200 250
0

10

20

30

40

50

inter−dot distance, [a]

|G
12

|, 
[μ

eV
]

 

 

finite size

full model
exp(−x/r

12
) model

0 50 100 150 200 250
0

5

10

15

20

inter−dot distance, [a]

|G
12

|, 
[μ

eV
]

 

 

finite size

(a) (b)

(c) (d)

Figure 5.11: Absolute value of the off-diagonal term of the matrix in eq. (5.14), in the
exciton-pole approximation, computed numerically for a finite-size waveguide (solid
line), analytically through eq. (5.34) (dashed-dotted line), and through an exponential
decay model with characteristic distance r12 = 2vg/γw (dashed line, γw as in Fig. 5.9).
In (a): �ω0 = 1.30353eV, ng = 74, (b): �ω0 = 1.30240eV, ng = 195, (c): �ω0 = 1.30220eV,
ng = 525, (d): �ω0 = 1.30208eV, i.e. 100 μeV below the band edge.

values of ω1
y . In all cases, �δ = 100μeV was imposed. As discussed above, the transfer

mechanism is driven by several light modes. The plots show that the radiative transfer
process still occurs and, in particular, the marked oscillations are characterized on
average by a period that can be associated to an effective transfer rate �Ω = 50−60μeV.
As in short Ln cavities, this rate is quite sizable and should be observable in state-of-
the-art GaAs-based photonic structures [218–225, 276].
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Figure 5.12: Time evolution of the probability of an excitation in one dot to be trans-
fered to the second dot or to the many PhC modes (blue lines). The dot-dot detuning
is �δ = 100μeV. Horizontally across the panels, the inter-dot distance changes from
260nm to 2.6μm to 5.2μm. Vertically across the panels, the exciton frequency of the first
dot changes from (a)-(c): �ω1

y = 1.30224eV (close to the band edge), through (d)-(f):
�ω1

y = 1.30218eV (at the band edge), to (g)-(i): �ω1
y = 1.30208eV (100μeV below the

band edge energy, which is then resonant with �ω2
y).

5.4 Radiative coupling in a disordered waveguide*

In Section 5.3.4, we included only partially the effects of disorder, by introducing a
phenomenological loss rate γ to each of the ideally lossless waveguide mods. However,
the effect of Anderson localization of light (see discussion in Section 1.3.1) was not
included. In this Section, we simulate realistic systems with different magnitudes of
disorder. We show that, while light localization indeed has a profound effect on both
the range and the magnitude of the dot-dot excitation transfer rate, this latter is still
sizable, compared to typical decoherence rates, even at several μm distance.

We study the same W1 waveguide as in Section 5.3.4, and we again focus on the main
guided band in the spectral range close to the band edge (Fig. 5.13(a)-(b)). Fabrication
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Figure 5.13: (a): Band structure of the regular waveguide; the main guided band
is shown in blue, and the light cone – in dashed black. (b): Zoom-in close to the
edge of the guided band. (c)-(d): For a waveguide with disorder, y-component of
the electric field (Ey) of a mode at frequency (c): ω = 1.2980eV (dashed line in (b));
and (d): ω = 1.2993eV (dashed-dotted line in (b)). In (c), the white crosses indicate
the elementary cell centers, where we assume a quantum dot can be placed. (e):
Disorder-averaged zero-distance coupling 〈|G11(ω0)|〉, plotted as a function of the
exciton frequencyω0. (f ): Characteristic decay length of the disorder-averaged coupling
〈|G12(ω0)|〉 as a function of ω0. Full lines: Including disorder-induced localization.
Dashed lines: No localization; the decay length is simply given by 2vg/γ. In both panels
(e) and (f), three different magnitudes of disorder are shown (see legend). The vertical
dot-dashed line denotes the band-edge of the regular waveguide. For σ = 0.002a, the
2vg/γ-curve in (f) cannot be distinguished from the band edge line on the scale of the
plot. The inset in (e) shows the disorder-averaged 〈|G12(ω0)|〉 as a function of distance,
for three different values of the exciton frequency ω0, and σ = 0.004a.

disorder is introduced in the same way as in Chapters 3 and 4, i.e. random fluctuations
in the x and y positions and the radius of each hole, drawn from a Gaussian random
distribution with zero mean standard deviation σ. A waveguide of length 512a using
the BME.

As discussed in Section 1.3.1, disorder limits the maximum group index, which for
an ideal waveguide goes to infinity at the band edge. It is also worth noting that
disorder introduces modes that lie below the band edge of the regular structure, i.e.
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the density of states of the disordered guide presents a Lifshitz tail below the van
Hove singularity [63, 279]. In addition, disorder induces Anderson localization of
light [63, 64, 113], which for states close to or below the band edge can be extremely
strong. This is illustrated in Fig. 5.13 (c), where one mode of a disordered waveguide is
shown, and the electric field is localized over several elementary cells. The field profile
resembles those of PhC cavities, and both strong Purcell enhancement [64] and cavity-
like vacuum Rabi splitting [65] of a single QD coupled to such a mode has already been
observed. Modes slightly higher in frequency become more extended, and present
more than one lobes (Fig. 5.13 (d)), and in fact provide the ideal compromise between
strength and range of the dot-dot excitation transfer. Just as in Section 5.3.4, here
we always consider two dots in the waveguide, which are placed in the center of an
elementary cell (Fig. 5.13 (c)), and so at a distance multiple of a from each other.

To quantify the QD-W1 and the effective QD-QD coupling, we use the same Green’s
function formalism as in Section 5.3.4. The effective coupling strength is given as in
eq. (5.28), the only difference being that we use the disordered waveguide modes in
the summation, which depend on the particular configuration. In other words, while
localized modes always appear in the presence of disorder, their particular shape,
and the position of the localized lobes, differs vastly among disorder realizations.
Thus, here we perform the analysis using a configuration average over 400 different
realizations of the waveguide disorder, and a running average over the position of
the first dot in each particular waveguide. The dependence with inter-dot distance of
the averaged magnitude of the excitation transfer rate 〈|G12|〉 is shown in the inset of
panel (e) of Fig. 5.13 for three different exciton transition frequencies (ω0 = 1.2980eV,
ω0 = 1.2987eV and ω0 = 1.3000eV, with band edge at ω = 1.2982eV) and for σ = 0.004a.
These plots show some deviation from an exponential law at large distances, but this
is an unphysical result originating form the finite size of our simulation domain, and
occurs at very small values of G12, which are scarcely relevant to our conclusions. For
each ω0, an exponential function can thus be fitted in the region where the decay is
a straight line on a logarithmic plot, and an attenuation length can be extracted. On
this basis, panels (e) and (f) give detailed information about the dot-dot interaction for
three different disorder magnitudes. The interaction strength is quantified in panel (e),
through the averaged zero-distance term 〈|G11|〉, while the range – in panel (f) through
the interpolated attenuation length. Finally, even though the group index ng cannot be
well-defined in the presence of localization, its value in the ideal-PhC case is given on
the top x-axis in both panels.

Some previous experimental works [64, 65], in which single-dot coupling to a PhC
waveguide has been demonstrated, take advantage of large PhC disorder as a means
to have strongly localized modes. That this is beneficial is not directly obvious from
the large-disorder result shown in Fig. 5.13(e), which never exceeds 10μeV. It should
be kept in mind however that this result represents the configuration-averaged zero-
distance coupling. In few individual configurations in which the dot is sitting exactly
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on top of a strongly localized mode, the same coupling can exceed 100μeV. In any case,
such a strong disorder makes it very unlikely to have long-distance dot-dot interaction,
as can be seen from panel (f). For σ = 0.004a (≈ 1nm in typical systems, realistically
achievable), however, the attenuation length becomes sizable – of the order of 100a,
which corresponds to the 10 μm range. Notice, though, that the localization still has
a drastic effect as compared to the case studied in Section 5.3.4, i.e. when including
extrinsic losses only. This is illustrated by the dashed lines in panel (f) showing the
distance-dependence of the transfer rate in this case, which is simply determined by
the ratio 2vg/γ. In the Figure, γ was taken as the average over the loss rates, computed
through Bloch-mode expansion, for each of the disorder magnitudes, and corresponds
to a quality factor of Q = 95000 for each mode in the σ = 0.004a case. The drastic
influence of Anderson localization emerges in the fact that modes at a given frequency
are characterized by a localization length which also determines the spatial decay
of the light transport process at that frequency. The corresponding decay length is
generally much smaller than that associated to ballistic propagation in presence of a
phenomenological extrinsic loss rate.

While the configuration average gives a good estimate of the interaction strength, it
is also important to understand the underlying statistics, to know what one could
expect in an actual experiment. In Fig. 5.14(a), we plot the coupling |G12(ω0)| as a
function of the dot-dot distance, for σ = 0.004a and ω0 = 1.2985eV (indicated by an
arrow in panel (b)). The full line is the configuration-averaged quantity, the dashed
line represents the exp(−x/(2vg/γ))-dependence (i.e. neglecting localization effects),
while the dot-dashed line represents a single disorder realization. As a first remark,
when neglecting localization effects the coupling decays very slowly, illustrating again
their importance. When accounting for localization instead, the coupling decays
significantly with distance, but its magnitude at short distances is increased. This
enhancement is due to the presence of modes localized on a short spatial range that
behave similarly to resonant cavity modes. The plotted single disorder configuration
and the position of the first dot were selected from the statistical ensemble in order
to have a large zero-distance coupling, exceeding 100μeV. This is suggestive of the
fact that the statistics is characterized by a large variance. As a better illustration, we
compute the statistical distribution of the values of |G11| (for the same parameters as
in panel (a)) and plot it in Fig. 5.14(c). The distribution exhibits a very long tail towards
high values, suggesting that there is a sizable probability of having large radiative
coupling. This is highlighted in panel (b) where we plot, as a function of ω0, the
configuration-averaged value of |G11| (full line), and compare it to the value for which
the Cumulative Distribution Function (CDF) is equal to 0.95 (dashed line). Put simply,
the dashed line in Fig. 5.14(b) gives the magnitude of the coupling that one can expect
from one in every 20 samples. It is then clear that |G11| can exceed 70μeV, and a value
of above 30μeV can be expected even for frequencies for which the interaction range is
of the order of 100a.
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Figure 5.14: (a): Excitation transfer rate vs. distance without light localization (dashed),
or with, for a single disorder realization (dashed-dotted) and the configuration average
(solid), for σ = 0.004a and ω0 = 1.2985eV (indicated by an arrow in (b)). (b): The two
solid lines are the same as the σ = 0.004a lines in panels (e) and (f) of Fig. 5.13; the
dashed line shows the value of |G11| for which the CDF (panel (c)) is 0.95. (c): PDF and
CDF of |G11|, with 〈|G11|〉 and the CDF = 0.95 values explicitly indicated.

Finally, we note that the PhC disorder plays a more important – and non-trivial – role
than the imperfect positioning of the quantum dots. To illustrate this fact, we take
one specific disorder realization of the PhC waveguide, place one QD at the center
of an elementary cell of the waveguide, while for the second QD – located in another
elementary cell of the guide – we assume a random displacement from the center of
the cell, characterized by a Gauss distribution with standard deviation σD. In Fig. 5.15,
panels (a) and (b) show the computed dot-dot coupling |G12(ω0)| for one realization of
the PhC disorder and with the first dot respectively placed in two different elementary
cells, as a function of the inter-dot distance. The parameters are σ = 0.004a and
ω0 = 1.2985eV. In both panels, the green line denotes the corresponding quantity
averaged over the disorder realizations, while the other curves are computed for a
single realization and different values of σD, and are averaged over the position of the
second QD. The only effect of a finite value of σD is a rescaling of the interdot coupling
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Figure 5.15: (a), (b): For two different positions of the first dot, the excitation transfer
rate as a function of dot-dot distance, for the dots placed exactly at the center of the
elementary cells (blue line) and with some positioning disorder corresponding to a fi-
nite value of σD (black and red lines, averaged over dot positioning). The configuration
average over PhC disorder is also shown (green line).

by a factor not far from unity, which is expected, as the electric field does not vary
strongly on the length-scale of a few tens of nanometers.

5.5 Summary and outlook for the QD-PhC system

We have developed a general formalism of linear radiation-matter coupling in systems
of many QDs embedded in a photonic crystal structure. The formalism is an extension
of the exciton-polariton formalism well known for bulk semiconductors and quantum
wells. It provides a quantitative account of a variety of radiative effects, starting from
the basic microscopic parameters of the QD-PhC system. It is important to establish
a relation between the present approach and previous works that use the photonic
Green’s function [59, 254, 255, 257, 258]. The equations obtained there have the advan-
tage of highlighting the importance of each single mode in determining the effects
under study, but, on the other hand, incorporate either single-mode approximations
or perturbative expansions. Our approach is in a sense complementary, with the main
advantage coming from the fact that the problem is framed into a simple matrix diag-
onalization form, and that we make use of the Bloch-mode expansion to obtain the
exact electric field profile for each mode, which allows us to compute the couplings
independently of any approximations.

As examples of application, the main results presented of this Chapter concern ra-
diative effects in the systems of one or two QDs embedded in Ln cavities and the
W1 waveguide. In the case of one QD, we recover the known results for the Purcell
enhancement of the radiative rate and the vacuum Rabi splitting in the strong coupling
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regime. In the two-QD case, we quantify the strength of the radiative excitation transfer
between spatially separated QDs, which lies in the 100 μeV range at short distance.
The comparison of the single-mode coupling strength and the energy spacing between
modes in Ln cavities of increasing length clearly shows that a crossover occurs – around
n = 150 for GaAs-based systems – between single-mode and multi-mode radiative
coupling. In the multi-mode case, the radiative coupling strength through each pho-
tonic mode is smaller but the overall effective excitation transfer rate still ranges at
about 50 μeV, thus suggesting that the W1 is an ideal structure for the realization of
long-range radiative dot-dot coupling. This conclusion still holds even when account-
ing for disorder, both in the PhC and in the QD positioning. Due to the unavoidable
randomness in this case, a statistical study was needed and performed. We find that,
in a 1-out-of-20 setting, the rate still reaches 50μeV and more. The transfer time to
which this corresponds is of the order of 10ps – close to the single-qubit operation time
and much shorter than the decoherence time measured in these systems.

These results illustrate that the QD-PhC system is a candidate system to operate as a
quantum bus and achieve controlled entangling interaction between distant qubits.
This perspective is corroborated by the two following remarks. First, semiconductor
QDs have recently seen a tremendous progress [202–210] towards the physical imple-
mentation of qubits that rely on the electron or hole spin as the computational degree
of freedom, and on the interband optical transition as the main handle for single-qubit
operations. Second, the optical quantum bus technology has already been successfully
applied to achieve controlled two-qubit operations in the system of superconducting
qubits [194]. The controlled operation in that case has been achieved by moving in and
out of the anti-crossing region in the polariton spectrum arising from radiation-matter
coupling. In view of a similar development in the semiconductor QD case, at least
three steps have to be considered. First, the ability to fabricate site-controlled QDs, in
order to position them with respect to the PhC structure. This is nowadays possible
thanks to various kinds of growth on a patterned substrate [280–284]. Second, a clear
experimental proof of the radiative excitation transfer mechanism at long distance,
that might only come from ad-hoc technique such as, for example, the single-QD
two-dimensional four-wave-mixing spectroscopy [239]. Third, a reliable scheme for
dynamically controlling the exciton-photon detuning at sufficiently high speed. For
this latter task, extremely promising results are already available on the optical control
of the resonant frequency of high-Q PhC cavities [93, 127].

In short, given the rapid development of the field, the progress in all relevant direc-
tions, and the analysis presented here, it is realistic to believe that an experimental
demonstration of dod-dot coupling at-a-distance is imminent.
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6 Quantum Hall Effect for Light in
an Array of Resonators

The last Chapter of this thesis is not restricted to the domain of photonic crystals,
and is in the scope of the newly emerging field of topological photonics. The results
presented here pertain to an array of resonators, which is represented by some generic
parameters, and which could be implemented in various platforms. However, we do
note that a PhC slab is one of the most promising structures to implement the model
that will be discussed below. In that sense, this Chapter can also be seen as yet another
research direction in which the optimization procedure of Chapter 4 will be relevant.

In the following Sections, we show how an analogue of the Haldane Quantum Hall
model can be achieved in a Kagomé lattice of photonic resonators using a time-periodic
modulation of the resonant frequencies, where only the phase of the modulation varies
among different sites, in a spatially periodic manner. In Section 6.1, we present a brief
introduction to the field of topological insulators and topological photonics. In Section
6.2, we introduce the model system, and the Floquet theory we use to solve the time-
dependent Hamiltonian. We also discuss two possible geometries – the honeycomb
and the Kagomé lattices – and explain the advantages of the latter. Finally, in Section
6.3, we compute the 2D Floquet bands for several systems, and show that they have
non-zero Chern numbers, revealing their topological nature. We further show the
existence of back-scattering-immune edge states, and discuss the possibilities for a
practical implementation of the system.

6.1 Introduction to topological photonics

Topological order has opened a new frontier in the classification of distinctive phases
of matter, and is thus a center of attention of theoretical and condensed matter physics
[285]. Its study has also reached the field of photonics [286], for two main reasons. First,
photonic analogues of topological systems are a promising route to bridging theory and
experiment. Second, a signature of a topologically non-trivial material is the presence
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of one-directional edge states providing energy transport immune to disorder. This
could prove extremely valuable for slow-light photonic devices, which find a variety
of applications, but whose performance is severely limited by back-scattering due to
fabrication imperfections (cf. discussions in Sections 1.3.1 and 5.4).

Historically, topological order was first recognized in relation to the Quantum Hall
effect [285, 287]. In that area, Haldane had a ground-breaking contribution in demon-
strating that the effect can arise even with zero magnetic field averaged over a primitive
cell. The research into topological photonics was also started by Haldane in two theo-
retical studies [288, 289], which were quickly followed by an experimental realization
of a photonic topological insulator using gyromagnetic media [290]. This result was
however obtained in the GHz frequency range. Due to the lack of suitable materials,
reproducing this scheme in the visible or the near-infrared spectrum – which are the
most interesting for applications – is still a major challenge. The milestone of an exper-
imental realization of topological edge states for light in the near-infrared has been
reached using coupled microring resonators [291, 292] or coupled waveguides [293]
by taking advantage of the symmetry-induced degeneracy of rotating and counter-
rotating modes. More specifically, these systems are characterized by a preserved
Time-reversal Symmetry (TRS), which leads to an important limitation of the topologi-
cal protection. The ground-breaking result (which is now known as the Spin Quantum
Hall effect) of Kane and Mele [294] that, for electrons, this protection is still present
in TRS systems, relies on the anti-unitarity of the time-reversal operator (T 2 = −1).
For photons, this operator is unitary, and the result no longer holds [286], at least
not in its full strength. Instead, the protection relies on the symmetry that prevents
the mixing of propagating and counter-propagating modes in a waveguide, which in
practice may be broken by disorder. This suggests the need for systems where TRS
is broken [288, 289, 295–300]. Recently, the possibility to use a fine-tuned dynamic
modulation of a system to engineer a gauge field for photons has been shown both
theoretically [298] and experimentally [301, 302]. This scheme is employed here to
induce a Haldane-like magnetic flux for photons on a lattice of optical resonators.

6.2 Floquet theory and lattice geometries

The seminal work by Haldane [303] considered a honeycomb lattice (Fig. 6.1(a)) with
real first-neighbor and complex second-neighbor couplings. In the absence of the
latter, the band structure of the lattice has six Dirac points, and no band gap (Fig.
6.1(b)). Haldane showed that the complex second-neighbor hopping terms, which
result in zero average magnetic field over the unit cell, but non-zero magnetic flux
through a triangle enclosed by second-neighbor hopping, break the TRS and open
a topological band gap. Recently, this was successfully observed in a system of cold
atoms in a ‘shaken’ optical lattice [304], which, together with previous research in that
field [305–307], inspired the results presented here.
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Figure 6.1: (a): Honeycomb lattice with two sites A and B in the primitive cell (high-
lighted in orange). The Haldane model involves a complex second-neighbor hopping,
which results in a magnetic flux enclosed in the red triangle. The Brillouin zone in
reciprocal space is also shown. (b): Band structure of the lattice with first-neighbor
coupling J and zero flux Φ. Six Dirac cones at the K-points are present. (c): Kagomé
lattice with three sites in the primitive cell, and the corresponding Brillouin zone. Effec-
tive magnetic flux through a hexagon, similar to the one of the original Haldane model,
is used here to open topological band gaps. (d): The corresponding band-structure
with first-neighbor coupling J and zero flux Φ. There are again six Dirac cones, and in
addition a flat band.

For our photonic system, we start from the most general, linear, time-independent
Hamiltonian for photons on a lattice (� = 1):

HS = H0 +HJ =
∑
i

ωia
†
iai −

∑
i �=j

Jija
†
iaj , (6.1)

with a†i , the photon creation operator, and with no particular requirements for the
couplings Jij (these will come later depending on the chosen lattice geometry). We
add an on-site, time-dependent, periodic modulation of the resonant frequency with a
position-dependent intensity and phase

Ht =
∑
i

Ai cos(Ωt+ φi)a
†
iai. (6.2)
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This can be achieved for example through electro-optic modulation [308,309], optically-
induced material non-linearities [310], or optomechanical interaction with phonon
modes [186]. The total Hamiltonian HS + Ht is particle-number preserving, thus
it describes the system with any fixed number of photons (sub-spaces of different
photon numbers are decoupled). The equation also applies to classical light, since
it is a concise way to write the coupled-mode theory that can be used for an array of
optical resonators.

6.2.1 Expansion on the Floquet basis

For times much larger than the period T = 2π/Ω, it becomes meaningful to apply the
Floquet theory of quasi-energies [311, 312]. In particular, the solutions to the time-
dependent Schrödinger equation can be written as |ψn(t)〉 = exp(−iεnt)|un(t)〉, with
un(t) a T -periodic function which is a solution to

[HS +Ht − i∂t]|un(t)〉 = εn|un(t)〉 (6.3)

The spectrum εn has a Brillouin-zone like structure with Ω the width of the first zone,
i.e. for any solution |un(t)〉 of quasi-energy εn, and any integer m, exp(imΩt)|un(t)〉 is
also a solution, with eigenvalue εn +mΩ. The states |un(t)〉 form a Hilbert space of
T -periodic functions. The inner product in this space can be defined starting from the
standard bra-ket inner product 〈•|•〉 for time-independent states, and reads

〈〈•|•〉〉 = 1

T

∫ T

0
dt〈•|•〉. (6.4)

The states can be expanded on the Floquet basis given by

|{ni},m〉 = Ut(t)|{ni}〉 exp(imΩt) (6.5)

=|{ni}〉 exp
(
− i

Ω

∑
i

Ai sin(Ωt+ φi)ni + imΩt

)
,

where ni denotes the occupation number of site i, and

Ut(t) = exp

(
−i

∫ t

t0

Ht(t
′)dt′

)
(6.6)

is the time-evolution operator corresponding to the time-dependent Hamiltonian Ht,
and we assume an adiabatic switching of the modulation in order to disregard the
phase offset due to the starting time t0. Since the Hamiltonian is particle-number-
preserving, we need only consider the subspace of a single excitation in the system,∑

i ni = 1 ∀ {ni}. Equation (6.3) is then an eigenvalue problem with matrix elements
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in this basis given by

〈〈{n′j},m′|HS +Ht − i∂t|{ni},m〉〉 = δm,m′
[
〈{n′j}|H0 +mΩ|{ni}〉

]
+ (6.7)∫ T

0
ei(m−m′)Ωt exp

(
iAj

Ω
sin(Ωt+ φj)−

iAi

Ω
sin(Ωt+ φi)

)
〈{nj}|HJ |{ni}〉.

These matrix elements are then equal to

〈〈n′i,m′|HS +Ht − i∂t|ni,m〉〉 = δm,m′ (mΩ+ ωi) , (6.8)

when the particle stays on the same site, and to

〈〈n′j ,m′|HS +Ht − i∂t|ni �=j ,m〉 =
∫ T

0
ei(m−m′)ΩtJij×

exp

(
i

Ω
(Aj sin(Ωt+ φj)−Ai sin(Ωt+ φi))

)
,

(6.9)

when the particle hops from site i to site j. In eqs. (6.8) and (6.9), we label by ni the only
non-zero occupation number of {ni}. We can further use the Jacobi-Anger expansion
to simplify eq. (6.9) to

〈〈n′j ,m′|HS +Ht − i∂t|ni �=j ,m〉 = −Jm′−m (ρij) e
i(m′−m)φijJij , (6.10)

with Jn(x) the n-th Bessel function of the first kind, and the definition

ρije
iφij = (Aje

iφj −Aie
iφi)/Ω. (6.11)

6.2.2 Floquet perturbation theory

Some additional intuition can be found in writing the Floquet perturbation theory
[304, 313] for the effective time-independent Hamiltonian Heff that describes the time
evolution for timescales greater than T , in the sense that the time-evolution operator
is

U(t+ T, t) = exp

(
−i

∫ t+T

t
(HS +Ht)dt

)
= exp (−iHeffT ) . (6.12)

For a Fourier-expanded time-periodic Hamiltonian,

H(t) =
∑
m

Hme
imΩt, (6.13)
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we can write a perturbation expansion for Heff in orders of 1/Ω. Up to first order, this
reads

Heff = H0Ω +H1Ω +O
(

1

Ω2

)

= Hm=0 +
1

Ω

∞∑
m=1

1

m
[Hm, H−m] +O

(
1

Ω2

)
.

(6.14)

In our dynamically-modulated lattice, after the unitary transformation

H ′ = U †
t [HS +Ht − i∂t]Ut =

∑
i

ωia
†
iai −

∑
m

∑
ij

Jm (ρij) e
im(Ωt+φij)Jija

†
iaj , (6.15)

with the definitions of J , ρ, and φ as above, the Fourier components Hm can be easily
read out. The zero-th order of the perturbative expansion of eq. (6.14) is

H0Ω = H0 +H ′
J =

∑
i

ωia
†
iai −

∑
ij

J ′
ija

†
iaj ,

J ′
ij = JijJ0 (ρij) , (6.16)

i.e. similar to the starting HS of the static lattice, but with rescaled (but still real)
couplings J ′

ij . The first-order term is

H1Ω =

∞∑
m=1

(−1)m

Ωm

∑
ijpq

Jm(ρij)Jm(ρpq)JijJpqe
im(φij−φpq) × [a†iaqδjp − a†pajδiq]

=
∑
ij

2i

∞∑
m=1

(−1)m

Ωm

∑
p

Jm(ρip)Jm(ρpj)JipJpj × sin(m(φip − φpj))a
†
iaj , (6.17)

The (purely imaginary) term after the first sum sign can obviously be interpreted as a
new coupling amplitude, J ′′

ij , which is added to J ′
ij , thus introducing a complex phase.

The obvious interpretation of these terms is hopping from one site to another through
one intermediate site. In the same way, terms of higher order in 1/Ω represent hopping
through an increasing number of intermediate sites. The imaginary J ′′

ij thus can be
used to introduce the magnetic flux required for the Haldane effect.

6.2.3 Honeycomb lattice

In the recent experimental observation of the Haldane model with cold atoms [304],
the honeycomb lattice confining the atoms was ‘shaken’ by a periodic, elliptical modu-
lation. In the reference frame of the lattice, this results in an inertial force on the atoms,
which can be written as a site-dependent potential in the Hamiltonian. The strongest
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effect is obtained for circular modulation, in which case the Hamiltonian reads

Hlat =
∑
ij

tijc
†
icj +

∑
i

(Ci cos(Ωt) + Si sin(Ωt))c
†
ici, (6.18)

with tij the coupling constants, c†i , ci the fermion creation and annihilation operators,
Ω the frequency of the modulation, and Ci, Si – site-dependent constants. This can
obviously also be implemented through a modulation of the form of eq. (6.2), with
the remark that since both Hamiltonians are particle-number preserving, the particle
statistics (bosons or fermions) are not important. Thus, all the considerations of
Ref. [304] also hold for a lattice of optical resonators – and, in particular, a Haldane
model for photons on a honeycomb lattice can be implemented by choosing the Ai

and φi so as to match the Ci and Si that can be read out of Ref. [304], i.e. setting

Ai cos(Ωt+ φi) = Ci cos(Ωt) + Si sin(Ωt), ∀ i. (6.19)

However, we note that the circular ‘shaking’ implies an inertial force which is the same
for all lattice sites, which, written in terms of a potential in the Hamiltonian, implies a
spatial gradient. In other words, the Ci and Si arising from this circular modulation in
the cold-atom case are proportional to the position vector ri of site i, which would then
also be the case for Ai when derived from eq. (6.19). Thus, replicating the cold atom
system requires a gradient in the amplitude of the modulation of the frequency of the
optical resonators, which is on one hand experimentally challenging, and on the other
limits the scalability of such a system. Ideally, we would like to have a modulation which
shares the spatial periodicity of the underlying lattice: this is, however, impossible in
the case of the honeycomb lattice, for the following reason. This lattice has two sites in
the unit cell (marked A and B in Fig. 6.1(a)). Assuming a modulation with the same
periodicity, we are limited to two arbitrary amplitudes AA and AB , and two arbitrary
phases ϕA, ϕB . Whatever their values, however, looking at eq. (6.11), it is obvious that
φ12 = π + φ21, which means that φ12 − φ21 = π. Since all terms in the second-neighbor
imaginary hoppings (eq. (6.17)) that come out of this modulation are proportional to
sin(m(φ12 − φ21)) with m an integer, they are all zero.

In short, the Haldane model can be achieved in a dynamically modulated honeycomb
lattice, but only through a spatially-varying amplitude of the modulation. This breaks
the spatial periodicity and makes it impossible to analyze the system in momentum
space, which is a significant theoretical disadvantage. In addition, in view of potential
experimental realizations, this feature introduces an extra challenge, since the maxi-
mum amplitude of the modulation is inevitably limited, which in turn would limit the
maximum system size. Fortunately, this problem can be easily overcome by choosing
a slightly different geometry – namely, by considering the Kagomé lattice illustrated in
Fig. 6.1(c).
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6.2.4 Kagomé lattice

The Kagomé lattice (Fig. 6.1(c)) has three lattice sites per elementary cell, and the band
structure (Fig. 6.1(d)) is similar to the one of the honeycomb lattice in that there are six
Dirac cones. The main difference comes from the additional flat band. Importantly, in
the presence of a flux similar to the one of the Haldane model, topologically non-trivial
band gaps can be opened between the first and the second and/or the second and the
third bands [314, 315].

Using this lattice, it is possible to produce a non-zero Haldane-like flux through a
spatially-periodic dynamic modulation. In fact, we can even impose a constant mod-
ulation amplitude A0, and have spatial dependence only in the phase. As mentioned
above, such a simple realization has the advantage of experimental scalability, and
is also much easier to analyze theoretically, through two-dimensional Floquet band
diagrams. To make matters simpler still, we set the phase of the modulation to ϕ, 2ϕ,
and 3ϕ on A, B, C, respectively, for some constant ϕ, which is the second free parameter
of our system (together with A0).

For the starting Hamiltonian, we assume a constant resonant frequency ω0 on all sites,
and a constant first-neighbor coupling J (along the black lines in Fig. 6.1(c)). In the
presence of the modulation, the effective Hamiltonian of eq. (6.14) up to first order in
perturbation theory can then be written in k-space as

H̃ =
∑
k

A†
k (ω0 +H(k))Ak (6.20)

with

A†
k = (a†A,k, a

†
B,k, a

†
C,k), (6.21)

where a†A,k is the Fourier transform of the a†A operator creating a particle on site A, and
correspondingly for B and C. The coupling matrix is given by

H(k) = −2J

⎛
⎜⎝ 0 tAB(k) tAC(k)

t∗AB(k) 0 tBC(k)

t∗AC(k) t∗BC(k) 0

⎞
⎟⎠ , (6.22)

where the (dimensionless) couplings can be split into

tAB(k) = (tAB,0 + tAB,1) cos(ka1) + t′AB,1 cos(k(a2 + a3)),

tAC(k) = (tAC,0 + tAC,1) cos(ka2) + t′AC,1 cos(k(a1 − a3)),

tBC(k) = (tBC,0 + tBC,1) cos(ka2) + t′BC,1 cos(k(a1 + a2)),

(6.23)

where, in the first line, tAB,0 is the first-neighbor coupling from site A to site B, tAB,1
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Figure 6.2: (a): Kagomé lattice, see also Fig. 6.1. In the presence of the dynamic
modulation, the zero-order terms of the perturbation-theory effective Hamiltonian
are first-neighbor couplings (black lines), while the first-order terms are both first-
and second-neighbor couplings (red dashed lines), induced by hopping through one
intermediate site. (b): Definition of various phases under a modulation of constant
amplitude, and phases (marked in black): ϕ on site A, 2ϕ on site B, and 3ϕ on site C. In
blue, the phase φij as defined in eq. (6.11) is given for a clockwise hopping direction
(indicated by the arrow in the center of the hexagon). With red, the phase φip − φpj
entering eq. (6.17) is given, for the same hopping direction.

is the double-hop coupling (through site C) to a first-neighbor site B, and t′AB,1 is the
double-hop coupling (again through site C, but in a different direction) to a second-
neighbor site B. The vectors ai are defined such that a1 points from A to B, a2 points
from A to C, and a3 points from B to C (see Fig. 6.2(a)). Simply put, the zero-th order
effective Hamiltonian results in re-scaled first-neighbor couplings (black lines in Fig.
6.2(a)), while the first order results in all the couplings marked in dashed red lines
in the Figure, which always involve an intermediate hopping, but are both first- and
second-neighbor. The values of those couplings computed through (eq. (6.17)) are

tAC,0 = J0(2ρϕ), tAB,0 = tBC,0 = J0(ρϕ)

tAB,1 = t′AB,1 = 2i
J

Ω

∑
m

(−1)m

m
Jm(ρ2ϕ)Jm(ρϕ) sin(m(ϕ/2− π))

tAC,1 = t′AC,1 = 2i
J

Ω

∑
m

(−1)m

m
Jm(ρϕ)Jm(ρϕ) sin(mϕ)

tBC,1 = t′BC,1 = 2i
J

Ω

∑
m

(−1)m

m
Jm(ρ2ϕ)Jm(ρϕ) sin(m(π + ϕ/2)),

(6.24)

where ρϕ = 2(A0/Ω)| sin(ϕ/2)| and ρ2ϕ = 2(A0/Ω)| sin(ϕ)| are the amplitudes com-
puted through eq. (6.17) for a phase difference between sites i and j of ϕ and 2ϕ,
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Figure 6.3: (a): Quasi-energy bands computed through diagonalization on the Floquet
basis, for J = 0.1Ω, A0 = 0.9Ω, ϕ = 2.1. The bands are repeated in orders of mΩ, with
m an integer. (b): Zoom-in on the m = 0 region of (a). (c): Bands computed through a
perturbative expansion of the effective time-independent Hamiltonian. In (b) and (c),
the Chern number for each band is indicated.

respectively. In Fig. 6.2(b), we illustrate the computation of the phases that enter the
sine functions of eq. (6.24). Starting from the modulation phases (marked in black),
one first computes the value of φij (marked in blue) as defined in eq. (6.11) for all first
neighbors, and then the values of φip − φpj (marked in red) that enter eq. (6.17).

6.3 Qauntum Hall effect on the Kagomé lattice

6.3.1 Floquet bands

The exact solution for the Floquet two-dimensional quasi-energy bands of the dynami-
cally modulated Kagomé lattice can be computed with the diagonalization explained
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Figure 6.4: The (largest) width of the opened band gap due to the dynamic modulation
of frequency Ω vs. the amplitude A0 and the phase angle ϕ for the Kagomé lattice with
first-neighbor coupling J = 0.1Ω, (a): Floquet perturbation theory; (b): expansion on
the Floquet basis. (c)-(d): Same as (a)-(b), but for J = 0.5Ω. The color scheme is the
same in panels (a) and (b), as well as in panels (c) and (d).

in Section 6.2.1. The eigenstates can be written as

un(k, t) =
∑
i,m

vm,i(k, n)e
−ikRieimΩt, (6.25)

with vi,m(k, n) the eigenvectors from the diagonalization, and Ri the position of site i.

The band diagram of the system for J = 0.1Ω,A0 = 0.9Ω,ϕ = 2.1 is shown in Fig. 6.3(a)-
(b). As discussed in Section 6.2.1 and displayed in panel (a), the bands are repeated
in frequency space at an interval of Ω. In panel (b), which shows a close-up of the
zero-th order bands of panel (a), we see that band gaps are opened due to the dynamic
modulation. To quantify their topological properties, we compute the Chern number
for all bands by integrating the Berry curvature F(k) [316, 317] over the Brillouin zone:

C =
1

2π

∫
BZ

dkF(k) (6.26)

Numerically, we compute F(k) on a discrete mesh in k-space using the eigenvectors
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vm,i(k, n) [318, 319]. The non-zero Chern numbers (1, -2 and 1 for the three bands,
respectively) confirm the non-trivial nature of the band gaps.

We can also compute the bands of the system through the perturbative expansion, as
described in Sections 6.2.2 and 6.2.4. As mentioned above, this has the advantage of
making the connection between this system and the Haldane model manifest, since
the first-order terms in the expansion are imaginary couplings that introduce a flux
in the red triangle of Fig. 6.1(c). In Fig. 6.3(c), we show the bands computed by
diagonalizing this effective Hamiltonian, which agree very well with the exact solution
of panel (b), and the computed Chern numbers are the same.

Topological invariants like the Chern number cannot change as long as the band gap
remains open. Hence, the width of the band gap is an important parameter, giving an
energy scale to the topological protection against disorder (only fluctuations on a larger
scale can destroy the topological properties). Thus, in Fig. 6.4, we plot maps of the gap
width ΔT (if two gaps are present, the largest value is taken), versus the parameters A0

and ϕ. The data in panels (a) and (b) are computed for J = 0.1Ω, with the perturbation
theory Hamiltonian in (a), and the full diagonalization in (b), and show very good
agreement. In panels (c) and (d), J = 0.5Ω was used, and the agreement is no longer
present. It is natural that the perturbative expansion works well for small J/Ω when
the Floquet bands of different orders are well-separated (Fig 6.3(a)), but has limited
reliability as J increases. Importantly, however, the topological effect is present even
beyond perturbation theory: a gap of width larger than 0.2Ω is opened for J = 0.5Ω,
A0 = 1.6Ω, ϕ = 2.1. Notice that for any value of the parameters in this system, the
band gap is inevitably limited to a fraction of Ω due to the higher-order Floquet bands.

In Fig. 6.5, we show the band structures with the largest band gaps for J = 0.3Ω, J =

0.5Ω and J = 0.7Ω, with parameters A0 and ϕ chosen for the largest ΔT . Topologically,
there is a difference between the bands in Fig. 6.3(b) and 6.5(b), with Chern numbers 1, -
2, and 1, and those of Fig. 6.5(d), (f) with Chern numbers 1, 0, and -1. What is important,
however, is that in both cases there are bands with a non-zero topological invariant.
The bulk-boundary correspondence principle [285, 286] then applies, guaranteeing
the existence of gapless edge states at an interface between the topological material
and a topologically trivial one (e.g. empty space). In terms of practical applications,
propagating modes robust to disorder are thus expected to appear in a finite system.

6.3.2 Edge states

The existence of the topological edge modes is illustrated in Fig. 6.6 for a ribbon geom-
etry, with a finite number of sites in one direction, and periodic boundary conditions
in the other. The one-dimensional Floquet band structure can again be computed
by expanding on the Floquet basis, and is shown in panel (a) and (d) for J = 0.5Ω,
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Figure 6.5: (a): Width of the opened band gap vs. A0 and ϕ, for J = 0.3Ω. (b): The band
structure with the largest possible band gap for J = 0.3Ω, with A0 = 0.5Ω, ϕ = 2.1.
(c)-(d): Same as (a)-(b), for J = 0.5Ω. In (d), A0 = 1.6Ω, ϕ = 2.1. (e)-(f): Same as
(a)-(b), for J = 0.7Ω. In (f), A0 = 3.05Ω, ϕ = 2.67. The Chern number for each band is
indicated.

A0 = 1.6Ω, ϕ = 2.1. The difference between the two panels comes from the truncation
at the edges – compare panels (b) and (e). Regardless of how we truncate, there is a
band that closes the band gap of the bulk structure, due to the non-zero topological
invariants. Modes belonging to that band are localized close to the boundaries of the
ribbon; the important point, however, is that the modes at kx and −kx are localized
at opposite edges. This is illustrated in panels (c) and (f), where we plot the position
dependence of the magnitude of the eigenvectors of the two states indicated by a blue
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Figure 6.6: (a): Floquet bands for the ribbon geometry shown in (b), with a finite
number of sites in one direction (the system is truncated at the solid black lines),
and periodic boundary conditions in the other (along the dashed black lines). The
parameters are as in Fig. 6.5(d): J = 0.5Ω, A0 = 1.6Ω, φ = 2.1. (c): The spatial
dependence of the eigenstates marked in blue and red, respectively, in panel (a). The
y-axis is aligned with the y-axis of panel (b). (d)-(f): Same as (a)-(c), but for a different
truncation (compare (b) and (e)).

and a red dot in panels (a) and (d), respectively. The amplitude on the x-axis is the
quantity

∑ |vm,i(k, n)|2, where the sum is over all m, and over all sites at the same
position along y. The edge modes are exponentially localized at the boundaries (notice
the logarithmic scale on the x-axes of panels (c) and (f)), thus the overlap between the
forward and backward-propagating modes decreases exponentially with the width of
the ribbon in the y-direction. This is only possible due to the broken TRS, and ensures
protection against back-scattering in the presence of disorder.
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6.3.3 Outlook for a potential realization

Several considerations have to be made for the results presented here to have practical
implications. We have not considered the loss rate κ of the optical resonators, which
is in practice always non-zero. To be able to meaningfully talk about light transport,
this must be smaller than the coupling constant J . In addition, κ must also be smaller
than the band gap ΔT , so that the latter can be resolved. By extension, this also
implies κ � Ω. In state-of-the-art photonic crystal cavities, κ/ω0 of the order of
10−6 can now be routinely achieved [114, 129, 176] at telecommunication frequencies
ω0/2π ≈ 200THz, thus κ/2π = 0.5GHz is a reasonable and conservative assumption.
The coupling constant J is the easiest parameter to control by varying the distance
between resonators. Thus the more important challenge is to have a sufficiently high
ΔT . In fact, independently of κ, ΔT is a general figure of merit for the magnitude of the
topological protection that should be maximized.

In Ref. [298], electro-optic modulation was suggested as the practical tool for driv-
ing the resonant-frequency oscillation. This offers sufficient control over the phase,
and has been shown to be scalable [298, 320]. The maximum achievable modulation
frequency Ω/2π is of the order of several GHz. A band-gap ΔT of the order of 1GHz

could thus be achieved, which lies just above the limit set by κ. We note that this
challenge holds both for our proposal and for that of Ref. [298]. Very recently [299], it
was suggested to use the coupling of the optical resonators to localized phonon modes
to induce the frequency modulation. In this scheme, Ω is fixed by the phonon resonant
frequency, which can be as high as Ω/2π = 10GHz in two-dimensional optomechanical
crystals [321]. This is sufficiently large for our scheme, and the required phase control
can be easily implemented through the phase of the lasers driving the mechanical
oscillations [186, 299]. We note that, when compared to Refs. [298] and [299], our
proposal has a significant structural advantage, as it involves identical resonators with
no intermediate (link) elements. Another recent optomechanical scheme [300] investi-
gated the Kagomé lattice of resonators, focusing on creating and probing topological
states for sound (i.e. phonons). Within that proposal, it is also possible to create
topological states of light, but the size of the band gap is shown to be proportional to
the phonon hopping coefficient. This is typically orders of magnitude smaller than the
phonon resonant frequency, and thus also smaller than the best optical loss rate κ that
could possibly be achieved in state-of-the-art photonic devices.

While both of the modulation schemes mentioned above could be employed for an
experimental realization of our system, a third option is also worth mentioning. Using
the optically-induced Kerr nonlinearity, repeated switching at a THz rate has been
recently demonstrated in a micropillar cavity [310]. The maximum amplitude in such
a scheme is limited to only a fraction of Ω, but assuming Ω/2π = 1THz, A0 = 0.05Ω

(which can be read out of the sine-like dependence of the cavity resonant frequency
measured in Ref. [310]), J = 0.2Ω, and ϕ = 2.1, we obtain for our Kagomé lattice a
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topological band gap of width 0.033Ω, i.e. ΔT /2π = 33GHz. This value is very similar
to the magnitude of the disorder-induced fluctuations in the resonant frequencies of
nominally identical photonic crystal cavities [79, 100], and, furthermore, the latter can
in principle be reduced by post-processing techniques [322, 323]. The predicted ΔT is
thus, on one hand, two orders of magnitude larger than the loss rate of state-of-the-art
cavities, and on the other high enough to ensure a truly sizable protection against
disorder.
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Photonic crystals are in many ways similar to their electronic counterparts, i.e. ma-
terials with a well-defined crystalline lattice and an electron cloud. We have seen
throughout this thesis how many of the concepts of solid-state physics are revisited in
the PhC domain, but with light as the main actor. In particular, we have discussed in
detail the Bloch modes and band structures of various PhCs, as well as the way they are
affected by defects. Indeed, it is fair to say that the main object of study of this thesis
was defects in a periodic photonic environment. The study of fabrication disorder, i.e.
unintentional defects in the structure, which was presented in Chapter 3, is just one
example. Beyond that, the PhC cavities and waveguides that were omnipresent here
must also be recognized as defects breaking the PhC periodicity, the only difference
being that they are introduced on purpose. Just as with electronic states in a semicon-
ductor, in a band-gap photonic material localized electromagnetic modes are created
around the defects. Examples of these are the guided modes of a waveguide as well
as the confined cavity modes, but also the Anderson-localized modes in a waveguide
with random disorder. Thus, the basic element connecting all the results presented
here (with the exception of Chapter 6) is the study of the phenomenology of photonic
modes created by defects in a band-gap PhC.

Electronic and photonic crystals are indeed conceptually very similar, but they differ
greatly in some aspects. The numerical study of the former is extremely complicated,
as it requires solving the many-body Schrödinger equation: a partial differential equa-
tion defined on a domain whose dimension grows exponentially with the number of
particles included in the computation. This is then impossible to solve exactly, and the
development and testing of various numerical methods is central in solid-state physics
research. On the other hand, the number of studied materials is fairly limited, as nature
provides us with just so many possible compounds, and the chemical composition
of a substance defines its underlying crystal lattice – and no (or very limited) further
control is possible. The situation is in a way inverted in the photonic case. The fact that
light does not interact strongly with itself makes solving the Maxwell equations quite
straightforward. Of course, some non-linear behavior can be present – and is in fact
often sought after – but this can usually be studied perturbatively and/or iteratively.
In any case, exact solutions, which are impossible to obtain for electrons, are com-
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monplace in the PhC case. The second difference is that, in the photonic case, given
the rate of improvement of our technological abilities, the number of experimentally
feasible structures is more limited by imagination than anything else. Better yet, we
have the extraordinary possibility to tailor functional elements out of the PhCs, and to
control many parameters that influence their performance. All in all, this makes the
number of structures with possible importance for applications dazzlingly high. This
is a great opportunity, but one that is difficult to explore comprehensively. One could
then summarize that the biggest challenge of solid-state physics is correctly predicting
the material properties, while the biggest challenge in the study of photonic crystals is
exploring the tremendous number of potentially useful structures.

We thus believe that this thesis is a step in the right direction. Slab-PhCs, which were
the focus here, are particularly interesting, as they are straightforward to fabricate
while still holding enormous potential for applications. Most importantly, we have
shown that, through a combination of an insightful choice of a starting system and
a global optimization algorithm, a truly significant improvement can be obtained in
various devices. This illustrates the need for a continued exploration in that field.

There are a lot of future research perspectives that this work has opened. We enumer-
ate those below, loosely following the structure of the thesis itself. With respect to
numerical methods (Chapter 2), we have made the first steps towards implementing a
GME solver for the acoustic (phononic) modes of a PhC slab. This is of interest to the
emerging field of optomechanics, which has been developing lightning-fast [186, 187],
as it will allow the optimization of structures with respect to both their photonic and
their phononic properties. Regarding fabrication disorder (Chapter 3), we note that its
study has shifted to the background of our attention, and has recently been used only
as a means to understand experimental results, rather than being a focus of research in
itself. Nevertheless, some open problems that could be explored are worth noting. One
example is the effect of irregular holes on PhC cavities, i.e. a combination of Sections
3.1 and 3.2, which is straightforward to make. Other examples include the effect of
surface roughness of the slab, as well as of non-vertical holes, and, more fundamentally,
a study of Anderson localization of light in two dimensions.

The future applications of our optimization procedure (Chapter 4) are multi-fold, and
more are expected to come. One example of a currently ongoing project is an experi-
mental characterization of the CCW devices of Section 4.4.2. These have in fact already
been fabricated by the group of Prof. Badolato, and preliminary measurements in
the group of Prof. Houdré confirm their outstanding properties. Another ongoing
project is the fabrication of GaN and AlN H0-type cavities optimized for a high quality
factor and far-field emission concentrated close to the vertical direction. The goal
is to demonstrate highly efficient second-harmonic generation useful for frequency
conversion, with a second-harmonic signal in the visible range. The cavities are very
well-suited for that purpose due to their ultra-high Q/V ratio, while the vertical emis-
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sion allows for efficient in- and out-coupling of light. A preliminary sample has been
fabricated in collaboration with Prof. Houdré and Prof. Grandjean, and its charac-
terization by the group of Prof. Galli in the University of Pavia is pending. Another
project where some preliminary theoretical results have already been obtained is the
optimization of a device for spontaneous four-wave mixing with high efficiency due to
the Q/V enhancement, which in addition filters out the pump wavelength efficiently.
With sufficient pump suppression, this can serve as an on-chip, compact, heralded
single-photon source for applications in quantum optics and quantum information.
We expect finalizing a concrete proposal in the coming months.

The optimization scheme should also be beneficial for the integration of quantum dots
in PhCs (Chapter 5). In that direction, we have optimized L3 cavity designs for a GaAs
slab, targeting a high Q at two different resonant wavelengths: 980nm and 1180nm.
The former one is very commonly used when working with InGaAs QDs on a GaAs
PhC platform [42–44, 219–225]. However, the Q-values for cavities at this resonant
energy are always in the tens of thousands range, and the likely explanation is non-
negligible absorption at the surface of the slab and the holes. This problem is expected
to be stronger for light of energy close to that of the GaAs band gap, and can thus
be overcome by increasing the operational wavelength, and in fact, QDs emitting at
1200nm or more have already been demonstrated and integrated in PhCs [47, 217, 222].
Preliminary results for the optimized GaAs cavities fabricated in the group of Prof.
Badolato have shown a Q-factor close to half a million at λ = 1180nm. Integrating
QDs in such cavities would constitute a significant improvement in the solid-state
cavity-QED domain, as such a system would be deep into the strong-coupling regime.
Finally, regarding the topological photonics proposal (Chapter 6), we note that PhCs
are once again the most promising platform, as they offer a combination of high Qs,
scalability, and control over the inter-cavity couplings. The most challenging part of
this proposal is the implementation of the dynamic modulation, which will require a
clever setup for which the optimization could prove useful in many ways. Devising a
concrete proposal taking all the experimental features and limitations into account is
a challenging yet exciting outlook of our work.
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