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Abstract

In neuroscience, as in many other scientific domains, the primary form of knowledge
dissemination is through published articles in peer-reviewed journals. One challenge for
modern neuroinformatics is to design methods to make the knowledge from the tremendous
backlog of publications accessible for search, analysis and its integration into computational
models.

In this thesis, we introduce novel natural language processing (NLP) models and systems
to mine the neuroscientific literature. In addition to in vivo, in vitro or in silico experi-
ments, we coin the NLP methods developed in this thesis as in litero experiments, aimingin litero

at analyzing and making accessible the extended body of neuroscientific literature. In
particular, we focus on two important neuroscientific entities: brain regions and neural
cells.

An integrated NLP model is designed to automatically extract braiNER: brain region con-braiNER:
brain region
connectivity

nectivity statements from very large corpora. This system is applied to a large corpus of
25M PubMed abstracts and 600K full-text articles. Central to this system is the creation of a
searchable database of brain region connectivity statements, allowing neuroscientists to gain
an overview of all brain regions connected to a given region of interest. More importantly,
the database enables researcher to provide feedback on connectivity results and links back
to the original article sentence to provide the relevant context. The database is evaluated
by neuroanatomists on real connectomics tasks (targets of Nucleus Accumbens) and results
in significant effort reduction in comparison to previous manual methods (from 1 week to
2h).

Subsequently, we introduce neuroNER to identify, normalize and compare instances of
neurons in the scientific literature. Our method relies on identifying and analyzing each ofneuroNER:

identify
neurons

the domain features used to annotate a specific neuron mention, like the morphological
term “basket” or brain region “hippocampus”. We apply our method to the same corpus
of 25M PubMed abstracts and 600K full-text articles and find over 500K unique neuron
type mentions. To demonstrate the utility of our approach, we also apply our method
towards cross-comparing the NeuroLex and Human Brain Project (HBP) cell type ontolo-
gies. By decoupling a neuron mention’s identity into its specific compositional features,
our method can successfully identify specific neuron types even if they are not explicitly
listed within a predefined neuron type lexicon, thus greatly facilitating cross-laboratory
studies.

In order to build such large databases, several tools and infrastructures were developed: abluima:
large-scale
NLP

robust pipeline to preprocess full-text PDF articles, as well as bluima, an NLP processing
pipeline specialized on neuroscience to perform text-mining at PubMed scale.
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During the development of those two NLP systems, we acknowledged the need for agile
large-scale NLP approaches to rapidly develop custom text mining solutions. This led to the
formalization of the agile text mining methodology to improve the communication and collab- agile text-

miningoration between subject matter experts and text miners. Agile text mining is characterized by
short development cycles, frequent tasks redefinition and continuous performance monitor-
ing through integration tests. To support our approach, we developed , an NLP framework de- Sherlok

signed for the development of agile text mining applications.

Keywords: natural language processing, neuroinformatics, agile data science, information
extraction, big data.

Résumé

En neurosciences, comme dans de nombreux autres domaines scientifiques, la principale
forme de diffusion des connaissances se fait à travers des articles publiés dans des revues sci-
entifiques. Un grand défi pour la neuroinformatique est de concevoir des méthodes rendant
accessible ce large recueil de connaissances, ceci afin de permettre la recherche, l’analyse et
l’intégration de ces informations dans des modèles neuroinformatiques.

Dans le cadre de cette thèse, nous introduisons des modèles et systèmes de traitement
automatique du langage naturel (TALN) afin d’exploiter les données non-structurées de la
littérature neuroscientifique. Tout comme les méthode in vivo, in vitro ou in silico, nous
concevons les méthodes de TANL développés dans cette thèse comme expériences in litero, in litero

visant à analyser et à rendre accessible le vaste corpus de littérature neuroscientifique. En
particulier, nous nous concentrons sur deux entités neuroscientifiques importantes: les
régions cérébrales et les cellules neuronales.

Un modèle intégré de TALN est conçu pour extraire automatiquement et à très large échelle
des phrases soutenant une connexion entre deux régions du cerveau. Ce système est appliqué connexions

entre régions
du cerveau

à un vaste corpus de 25 millions de résumés issus de PubMed et de 600’000 articles neuro-
scientifiques intégral. Au cœur de ce système se trouve la création d’une base de données
indexée, contenant des connexions entre des régions du cerveau et permettant aux neurosci-
entifiques d’obtenir un aperçu de toutes les régions connectées à une région particulière. La
base de données est évaluée par des neuroanatomistes sur trois tâches (projections afférentes
et efférentes au noyau accumbens), résultant en un gain de temps significatif par rapport aux
recherches manuelles (temps réduit de 1 semaine à 2h).
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Par la suite, nous introduisons un second système, neuroNER, pour identifier, normaliser etidentifications
de neurones comparer des instances de neurones dans la littérature neuroscientifique. Notre méthode re-

pose sur la décomposition, l’identification et l’analyse de chacune des propriétés utilisées pour
caractériser une mention de neurone, comme par exemple le terme morphologique “cellule
pyramidale” ou la région cérébrale “hippocampe”. Nous appliquons notre méthode au même
corpus et trouvons plus de 500’000 types de neurone différents. Pour démontrer l’utilité
de notre approche, nous effectuons une analyse comparative entre NeuroLex et l’ontologie
cellulaire du Human Brain Project (HBP). En découplant l’identité d’une mention de neurone
dans ses fonctions de composition spécifiques, notre méthode réussit à identifier les types
spécifiques de neurones, même si ceux-ci ne figurent pas explicitement dans un lexique, ce
qui facilite grandement les comparaisons inter-laboratoires.

Afin de construire ces grandes bases de données, plusieurs infrastructures ont été dévelop-TANL à large
échelle pées: un outil pour prétraiter les articles intégraux en format PDF, ainsi que bluima, une plate-

forme de TALN spécialisée sur l’analyse des textes neuroscientifiques permettant d’effectuer
des fouilles de textes à l’échelle de PubMed.

Lors de l’élaboration de ces deux systèmes TALN (régions du cerveau et neurones), nous
avons reconnu la nécessité de proposer de nouvelles approches méthodologiques afin de
développer rapidement des solutions personnalisées de fouille de textes. Cela a conduit
à la formalisation de la méthodologie agile de fouille de textes (AFT, agile text mining)méthodologie

agile de
fouille de
textes

visant à améliorer la communication et la collaboration entre les experts du domaine et
les experts en fouille de textes. La méthodologie AFT est caractérisée par des cycles de
développement courts, une fréquente réadaptation des objectifs, et le monitoring continu de
la performance grâce à des tests d’intégration. Pour soutenir notre approche, nous avons
développé Sherlok, une plateforme TALN conçue pour le développement d’applications
d’AFT.

Mots-clés: traitement automatique du language naturel, neuroinformatique,
agile data science, fouille de texte, big data.
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1Introduction

Accessing the vast amounts of data and knowledge embedded in the previous decades of
neuroscience publications is essential for modern neuroinformatics. Making these data
and knowledge accessible can help scientists maintain a state-of-the-field perspective and
improve efficiency of the neuroscientific process by reducing repeated experiments and
identifying priorities for new experiments. In order to build models of neural circuitry
reflecting the current knowledge, data resulting from many years of prior research must be
integrated in the model building process.

In this introductory chapter, we lay the context of this thesis by introducing neuroinformatics
(Section 1.1.1) and natural language processing (Section 1.1.2). We continue with an
introductory story to lay the context of this thesis (Section 1.2). Then, two research
questions are formulated: large scale natural language processing for neuroscience and
agile data mining (Section 1.3). A reader’s guide to this thesis concludes this chapter
(Section 1.4).

1.1 Background
Since the seminal discoveries of Ramón y Cajal in the early twentieth century, modern
neuroscience has evolved into a myriad of subdomains, integrating theories and methods
from other fields like genetics, microbiology, computer science or physics. This evolution,
together with the challenges and importance of brain diseases spawned an unprecedented
amount of research, resulting in a vast corpus of scientific knowledge. That knowledge
has been mainly published and disseminated through natural written language in scientific
articles, so that as of today, a query on Google Scholar for “neuroscience” yields over 2
million results. This exponential flux of information is far too large for individual researchers
to ingest. There is thus a vital need to develop tools and methods to stay on top of that
growing flow of information.

Searching scientific articles is often performed manually by searching1, filtering, and manu-
ally curating scientific articles. This approach yields high quality information, but is very
time-consuming, lacks scalability and might miss relevant articles (because of the lack of
semantic information, e.g. synonyms2 and taxonomies). There is thus a need for systems
to perform scalable and precise extraction of neuroscientific information for whole-brain
modeling.

This doctoral thesis lays at the boundaries between NLP and neuroinformatics and has
been dedicated to creating useful and living links between these two disciplines. The

1E.g. using the search engine at Pubmed (http://www.ncbi.nlm.nih.gov), or using Google Scholar
(http://scholar.google.com).

2For simplicity, synonyms is used as a synonym for surface forms, and entities for synset.
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objective was neither to develop novel machine learning algorithms nor to discover ground-
breaking neuroscience principles. It was instead to push the state of the art in develop-
ing and applying NLP models and methodologies onto large corpora of neuroscientific
reports.

In addition to in vivo, in vitro or in silico [Mar06] experiments, we coin the NLP methods
developed in this thesis as in litero experiments, aiming at analyzing and making accessible in litero

the extended body of neuroscientific literature. Also, this work is striving to be interoperable
with other international efforts.

1.1.1 Neuroinformatics
Neuroinformatics is a multidisciplinary field combining neuroscience and computer sci-
ence. Its objective is to develop computational tools to further our understanding of
the brain and to structure the large amount of information that neuroscience gener-
ates.

One central area of neuroinformatics is concerned with simulating the brain at various gran- brain
simulationsularities and various scales. Such brain simulations are based on a detailed modelization of

neurons and synapses, subsequently integrated into models of microcircuits, brain networks
and eventually into whole brain systems [D’A+13]. Unlike a top-down theoretical model,
a realistic brain simulation is a bottom-up approach based on solid biophysical principles
and experimental biological constraints. These constraints are expressed in the form of
model parameters. So, simulating the brain requires assigning numerical values to a colossal
number of model parameters.

Another central area of neuroinformatics is dedicated to the integration of all available data
integrationneuroscientific data. The launch of the Human Brain Project (HBP) and the growing use of

high-throughput methodologies is expected to further accelerate the pace of neuroscientific
data production and thus exacerbates the need for neuroinformatics’ based integration
efforts.

Schematically, parameters for a brain model can be acquired or integrated from different
sources. At the simplest, it can be produced in internal experiments, e.g. a patch-clamping internal

experimentsexperiment in one’s own laboratory. In such case, one has total control over experiment
settings. However, considerably more data is required to construct a brain model that what
is possible to create in a single laboratory. Hence the need to integrate experimental results
from external laboratories.

There are international efforts to organize and publish neuroscientific data in structured organize and
integrate
external data

databases and repositories in order to be able to integrate it in brain simulations. For
example, the International Neuroinformatics Coordinating Facility (INCF)3 develops and
maintains database and computational infrastructure for neuroscientists. Alternatively, the
Neuroscience Information Framework (NIF, [Aki+11; LM13])4 is a dynamic inventory
of web-based neuroscience resources, annotated and indexed with a unified system of
biomedical terminology.

One additional source of information is through manually curated knowledge bases. Several manually
curated
knowledge
bases

3http://www.incf.org/
4http://www.neuinfo.org/
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such initiatives have been created by teams of domain experts manually curating the
scientific literature (e.g. BAMS or CoCoMac, see Brain Atlases in Section 2.1). Although
these initiatives create extremely valuable information, their creation and maintenance is
very time-intensive.

Our idea is to create semi-automated systems that, whenever structured data is not avail-
able, will mine the vast amount of unstructured textual data contained in the scientific
literature.

1.1.2 Natural language processing (NLP)5

Natural language processing (NLP) is a sub-discipline of computer science aiming at de-
veloping models and algorithms that allow computers to process and understand human
languages. The need for natural language arises by the important fact that natural languages,
unlike formal languages, are highly ambiguous, with a lot of undeclared information (implicit
shared knowledge). We humans are often not consciously aware of the complexity and am-
biguity inherent to natural language. Still, computational models often fail at understanding
mildly complex sentence constructs, and great engineering effort has to be deployed to tackle
NLP tasks that a 5 years old child would solve at ease. Nonetheless, notable achievements in
NLP include machine translation6, question answering systems [Fer+10], and email spam
filtering [And+00].

Whereas early NLP systems relied on a large set of handwritten rules and attempted to
formalize natural language (e.g. [Mul+04]), the introduction of statistical machine learning-
based approach in the 1980’s paved the way to corpus linguistics and to more flexible
approaches (e.g. [Cam+12]). Most recent NLP systems are hybrid, relying both on auto-
mated machine learning and resources hand-developed by human experts (e.g. [Ric+15]).
It is also worth mentioning the trend towards unsupervised methods (e.g. [Mik+13])
to leverage regularities in language. These promising methods are applied on large-
scale corpora and can successfully improve NLP systems by providing semantic embed-
dings [Kae+14].

NLP models have been developed to deal with the different linguistic levels, among which
the morpho-lexical level (how do languages form words?), syntactic level (how do languages
form sentences?) and semantic level (how do languages convey meaning in sentences?). At
the morpho-lexical level, NLP models perform tasks such as sentence and word tokenization,morphology

or spelling error correction. At the syntactic level, NLP models have been developed to
assign part-of-speech tags to each word (e.g., adjective, verb, determinant) in a givensyntax

sentence as well as inferring the syntactic structure (grammar) of a sentence. Syntax is also
concerned with the various relationships between words (e.g., subject, object and other
modifiers). At the semantic level, NLP models deal with labeling entities like person orsemantic

proteins, clustering tokens that refer to the same entity (coreference resolution), relation
and knowledge extraction (e.g. is-a relationships or protein-protein interaction). There are
strong interdependences between the different linguistic levels (recognition is conditioned
by structuring, structuring guided by the meaning and the context). There are many
other important NLP tasks like speech processing and segmentation, sentiment analysis,

5For a thorough introduction to NLP, see [MS99] or [Raj07].
6http://translate.google.com/

1.1 Background 3



Brain 
Region Neuron properties properties 

connectivity, 
synapses 

Protein 

PPI (protein-protein interaction), 
gene transcription, degradation 

cell type, 
extent,  
e-profile,  
size, 
⁄  

   single-cell  
transcriptome 
(used in e-types  
models) 

connectivity, 
tracing 

location,  
density 
# of cells 

location, 
size, 
⁄ 

expression 

Fig. 1.1: Three major neuroscientific entities of interest and their relationships. Circles
represents the main entities of interest in neuroscientific NLP within the context of
this thesis. Arrows represents relationships of interest between these entities. Re-
lationship studied in this thesis include brain region connectivity (see Section 4.2)
and neuron properties (see Section 4.3).

natural language generation, optical character recognition, machine translation, or automatic
summarization which are out of the scope of this thesis.

bioNLP emerged as a sub-discipline of NLP in order to focus on biomedical entities and bioNLP

events, and to address specific challenges in that domain. For example, models have been
developed to recognize diseases and brain regions, or systems to identify protein-protein
interactions or brain-region connectivity (see Section 2 for an extended list of bioNLP
models and systems). bioNLP as a research community has been shaped by shared tasks like
BioCreative [Lu+11] and BioNLP [KP13]. One of the oldest and seminal task of bioNLP
was the creation of named entity recognizers for proteins and genes, based on the Genia
annotated corpus [Kim+03].

In the context of neuroscience, NLP focuses on entities like brain regions, neurons, pro- neuroNLP

teins and the interaction between them (see Figure 1.1). For example protein-protein
interaction [Bjo+11], electrophisiological properties of neurons [Tri+14] or brain-region
connectivity (Section 4.2). See [AC12; Bur+08] for a review of text-mining approaches in
neuroscience.

Note that although it is framed in a neuroscientific research environment, this thesis is
neither focusing on psycholinguistics (how do people learn and process language) nor
on neurolinguistics (where in the brain is language located). Rather, it aims at devel-
oping efficient NLP systems to facilitate knowledge extraction from the neuroscientific
literature.

1.2 Introductory Story
In this section, I explain the context of my research within the Blue Brain Project (BBP) context of my

researchand describe the first in-litero experiment we were asked to perform to extract protein
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Fig. 1.2: Early prototype of a UIMA-based graphical user interface for the extraction of
protein concentrations in cell types. The sentence in the top left panel is annotated
for instances of proteins, cell types and concentrations. The right panel provides
detailed information on individual entities.

concentration in cell types from neuroscientific articles. I describe the evolution of my under-
standing of NLP methodologies, and of the neuroscience field that led to the development
of the agile text mining methodology, the core of this thesis. The first experiment we were
asked to perform was to support BBP’s modelization effort7 by providing neuroscientists
with a searchable database of protein concentrations, classified by cell types. These protein
concentrations were to be extracted from scientific articles published in peer-reviewed papers
related to neuroscience. Figure 1.2 shows an early prototype to automatically annotate
sentences for proteins, concentrations, and cell types. Our experiment shall provide answers
to the following questions:

• In which cell type is a given protein present8?
• At which concentration?
• From which papers/data sources does this information come from?

There had been ongoing efforts at BBP to curate scientific articles for protein concentrations.
The procedure was to resort to Google Scholar and perform a manual search for a cell region,manual

search e.g. "pyramidal cell" (mind the quotes). Researchers would then manually analyze the
resulting list of abstracts (between 10 and 150 abstracts per query). In each abstract, they
would search for the keyword concentration and additionally scan tables and headers.
The extracted protein concentration would be reported in a spreadsheet or database. The
above procedure has proved to be tedious and very time consuming. As of August 2015, the
database contains 206 records from 6 distinct publications9.

Instead of serving as an initial success-story in neuroscientific information extraction, thischallenges

first experiment proved more difficult than expected and opened up several challenges
related to biomedical information extraction.

7In this case, sub-cellular modeling.
8Note that it is also of interest to find out that a protein is not present in a given cell type.
9PMIDs 21874189, 17243894, 22764236, 17110340, 15548210 and 16027175.
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First, information about concentrations is reported in various forms and units in scientific arti- concentrations

cles, for example 1.25 g/l or 35 ± 2 μg/m3. Often, the concentration is stated as a number
of copies, e.g. Table 2 of [PMID 17110340] reports the presence of 10.3 Rab3A copies
per analyzed vesicle. In other cases, the only available information is the presence (or
absence) of a protein, for example the statement “Additionally, high concentrations of AA
can lead to PKC translocation and activation in the model” in abstract [PMID 22764236].
To address this issue and enable the extraction of concentrations and other measures, we
developed an NLP module that recognizes and normalizes most units and measures used in
scientific paper (see Section 3.2.3 for the aforementioned module and for more examples of
units).

Second, the identification of cell types also proved to be challenging because the definition of cell types

cell types is disputed within the neuroscience community [MA13]. Despite some major effort
to structure the naming of cells (see e.g. [Asc+08]), the definition of neural cell types by and
large represents an open issue in the neuroscience community. This led to the development
of neuroNER, a general approach for identifying and normalizing mentions of specific neuron
types from the biomedical literature (see Section 4.3).

Third, identification and normalization of proteins mentions is a non-trivial task. Over proteins

20,000 different proteins have been discovered for humans and although there exists some
naming for human proteins10, these are not always followed. Our initial approach was
to use UniProt, a publicly available knowledge base of protein sequence and functional
information [Con+08]. However, UniProt was not primarily designed to serve as a lexical
resource for NLP. In particular, it lacks extensive synonyms and lexical variations, resulting
in low recall11. Our approach was the manual creation of a lexical-based NER, starting
with a limited list of proteins that were most important from a neuroscience point of view.
This raw list was compiled by two BBP researchers. It contained names of proteins and
genes, together with abbreviations. Some entries were extremely specific (e.g. “Plasma
membrane calcium transporting ATPase 2”), while others entries potentially exhibited high
polysemy (e.g. “ras” or “ga”). Additionally, surface forms were not linked to entities. It was
soon realized that this list could not be used for a lexical-based NER in such a raw form.
Eventually, a more compact and consistent list of approximately 300 proteins and genes was
manually compiled by a neuroscientist, drawing from terms and synonyms lists from NCBI
and UniProt (see Section 4.3).

One more challenge was the unrealistic expectation in terms of information extraction.
This became obvious, as it was difficult for domain experts themselves to come up with
a significant number of protein concentration mentions from the literature (extremely low extremely low

recallrecall). These unrealistic expectations also became apparent during a first proof-of-concept,
which consisted of a simplified experiment to extract concentrations occurrences of a
single protein (cell types were not extracted). Even for that simplified experiment, it was
challenging to find relevant sentences among PubMed abstracts. For example, we started by
focusing on SNAP-25, an important protein for neuroscience involved in mediating vesicle
docking and fusion with the presynaptic membrane in neurons. Our initial system was based
on a PubMed query for abstracts containing “Synaptosomal-Associated Protein 25[mesh]” or
“SNAP-25” (1711 results in total as of October 2011). We then identified concentrations with

10http://www.genenames.org/
11Recall is the ratio of the number of relevant records retrieved to the total number of relevant records.

In this example, missing synonyms will result in relevant records not being retrieved.
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Tab. 1.1: PubMed abstracts containing SNAP-25 and a concentration. Selected through a
PubMed search for “Synaptosomal-Associated Protein 25[mesh]” or “SNAP-25”,
subsequently filtered for the presence of a concentration annotation in the same
sentence. Concentrations are underlined.

Incubation periods of 24 h and 48 h in 50 mM KCl increased SNAP-25 levels in hip-
pocampal explants and PC12 cells, but not on cerebellar explants (Sepúlveda CM et al.,
1998)

Otherwise, a 24 h incubation with 10 microM AA increased SNAP-25 expression only in
hippocampal explants, although 100 ng/ml phorbol 12-myristate 13-acetate (PMA) did
not have effect (Sepúlveda CM et al., 1998)

In intact cells exposed to 66 nM BoNT/A, virtually all of the SNAP-25 was truncated,
accompanied by a near-complete inhibition of exocytosis; however, after their permeabi-
lization a significant level of secretion was recorded upon Ca2+-stimulation. (Lawrence
GW et al., 1997)

In HIT cells, a concentration of 30-40 nM BoNT/E gave maximal inhibition of stimulated
insulin secretion of approximately 60%, coinciding with essentially complete cleavage of
SNAP-25. (Sadoul K et al., 1995)

However, during the secretion of insulin stimulated with glucose (15.6 mM), 1 microM
arsenite decreased the activity of calpain-10, measured as SNAP-25 proteolysis. (Díaz-
Villaseñor A et al., 2008)

SNAP-25 was mainly distributed in the plasma membrane at 2.8 mM glucose, whereas the
syntaxin 1A distribution in the plasma membrane, as compared to the cytosolic fraction,
was highest at 8.3 mM glucose. (Andersson SA et al., 2011)

Here we describe Ca(2+)-dependent interaction of this site with syntaxin and SNAP25
which has a biphasic dependence on Ca2+, with maximal binding at 20 microM free
Ca2+, near the threshold for transmitter release. (Sheng ZH et al, 1996)

the above-described module, using simple collocation of concentrations and measures at
the sentence level. Not only was the number of returned abstracts very small (7 PubMed
abstracts), but also none of the extracted concentrations were effectively related to SNAP12

(see Table 1.1).

A fifth challenge is that raw textual data is available in limited quantities. While all PubMedlimited
quantities of
raw textual
data

abstracts can be licensed for text mining purposes, full-text papers impose much stricter
access policies13. This turned out to be a serious drawback, since full-text articles contained
significantly more relevant neuroscientific information than abstracts (see Section 3.1.1).
In order to process large amounts of data, several large corpora of abstracts and full-text
articles related to neuroscience were developed during the course of this thesis (see section
3.1). Acquiring information from full-text articles is further complicated by the fact that most
of them are available only in PDF. PDF is a presentational format and various preprocessing
tools had to be developed to provide precise text extraction (see Section 3.1.2). In addition, a
significant amount of relevant data is located in the tables of articles. Identifying those tables
and extracting their content proved to be a difficult task.

12That is, the concentrations were related to other entities, but were returned in the search results
because they collocated in the same sentence as SNAP.

13There are however signs that publishers are opening up to the possibility of allowing text and data
mining. See for example the roadmap signed by several prominent publishers to enable text and
data mining for non commercial scientific research in the European Union [@Stm]
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A last but important challenge is that even when it would be possible to extract events
with high precision14, the context surrounding these events is necessary to interpret and context

correctly understand the event. In our case, providing neuroscientists with a database of
protein concentrations is not sufficient. Neuroscientists need to know the conditions in
which these measures were generated. This contextual information is usually provided in
the “materials and methods” section of an article. The necessity to provide context led to the
development of user interfaces enabling researcher to quickly navigate to the original article
(see Section 4.2).

Based on this initial request to automate information extraction at the BBP, the focus of my re- requirements
for further
experiments

search has shifted toward experiments exhibiting the following properties:

• realistic expectations from domain experts, both in terms of precision and recall; the
former ensures that expected results can be reasonably automatically extracted; the
latter ensures that expected results actually exist in the literature,

• strong commitments of both neuroscience researcher and NLP researcher regarding
collaboration and communication,

• sufficient amounts of accessible raw textual data,
• means to evaluate a tasks’ performance (or willingness to create evaluation data),
• availability of NLP models like NERs (or possibility to create them).

1.3 Research Framework and
Contributions
This section lays down the three central research questions of this thesis. The first two
ones investigate the benefits and implications of using very large corpora for neuroscientific
NLP (1.3.1). The third inquires the most effective methodology to develop specialized text
mining solutions and to facilitate the communication and collaboration among stakeholders
during that development (1.3.2). Subsequently, the contributions of this thesis to the
aforementioned research questions are stated (1.3.3).

1.3.1 Large Scale NLP for neuroscience„It never pays to think until you’ve run out of data.

— Eric Brill
[BB01]

In the foreseeable future, it is very unlikely if not impossible that NLP systems will come close
to the level of sophistication of humans when it comes to understanding and analyzing a
single scientific article. There is simply too much implicit knowledge and too much subtleties
and ambiguities in written language for an NLP system to make sense of a single article as
well as a human would do15. At the same time, we have to acknowledge that it is impossible
to expect neuroscientists to read and keep up with the growing amount of published articles.

14Precision is the fraction of retrieved records that are relevant.
15For example, tasks like anaphora resolution or the detection of irony or humor are still challenging

for NLP.
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Thus, we need to stop thinking about humans and machines competing against each other
for the task of understanding textual resources. Instead, it pays to think how to design
systems leveraging the strengths of both humans and machines. Regarding that matter, one
undisputed strength of computer systems is that they can be deployed on large amounts of
data, leading to the first research question:

RQ1: How can we capture all the relevant neuroscientific textual data and how can
we process it at scale?

One simple way to double the throughput of an NLP system is to simply double the amount of
input data16. Although this procedure seems trivial, there are at least three barriers to have
access to a larger amount of neuroscientific text. First, the data is often locked in scientific
journals requiring hefty subscription fees. Second, most articles are only available in the PDF
format, making the accurate extraction of raw text, tables and figures challenging. Third,
processing such massive amounts of text requires an adequate computing infrastructure.
Going back to the above quote from Brill, how are we to avoid running out of data in the
first place?

RQ2: How can search and analysis results become more robust and useful as we
analyze more data?

Very often, the usability of search interfaces deteriorates as more input data is incorporated.
In other words: how can we really benefit from processing more data? The reason is that
typically precision decreases as we try to increase recall. This can be observed in typical plots
of precision versus recall curves. Thus, the challenge here is to not to downgrade precision
as more input is provided to the system.

1.3.2 Agile Text Mining„We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:

• individuals and interactions over processes and tools
• working software over comprehensive documentation
• customer collaboration over contract negotiation
• responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more

— The Agile Manifesto

Over the years, there has been a steady trend towards developing highly specialized text
mining applications (TMAs) addressing very specific use cases. For examples, there exists
several specialized TMAs to extract information from scientific papers about protein-protein
interactions [Ana+10], brain-region interactions [Ric+15], or neuron-specific electrophys-
iology [Tri+14]. These TMAs deliver high-precision results by focusing on a very specific
task within a narrow domain and single language. However, these specialized tools require

16With the hypothesis that the additional data contains the same amount of relevant information than
the existing data.
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the creation of specific resources (e.g. stop-word lists, training corpus for machine learning
models, ontologies) and the development of custom TMAs for each new application. Hence
the necessity of cost-effective methodologies for developing specialized TMAs, leading to the
following research question:

RQ3: What methodologies are required to efficiently and collaboratively develop cus-
tom TMAs?

1.3.3 Contributions
In this section, we list our contribution to the above stated research questions.

RQ1: How can we capture most of the relevant neuroscientific textual data and how
can we process it at scale?

We develop tools and methods to accurately handle and preprocess full-text PDF articles
(3.1.2). These tools have demonstrated to greatly improve the text representation of PDFs
articles and thus the information extraction quality. Subsequently, we introduce bluima, an bluima

NLP pipeline for information extraction of neuroscientific content at PubMed scale (3.2).
bluima is specifically dedicated to processing neuroscientific corpora. E.g. it includes
numerous named entity recognizers for neuroscientific entities. Moreover, it was capable of
ingesting very large corpora (in the order of magnitude of several billion tokens) by deploying
it on a computer cluster. Using these tools, we create very large corpora of neuroscientific large neuro-

scientific
corpora

literature. To the best of our knowledge, no neuroscientific text-mining experiments were
performed with corpora of a comparable size.

RQ2: How can search and analysis results become more robust and useful as we
analyze more data?

Our approach is to provide neuroscientists with tools allowing them to properly understand
the extracted results. This is achieved by generating meaningful aggregations of results
that do not swamp them with information, but rather normalize data and improve their
understanding of it (see e.g. Figure 4.16, page 78). We also always provide ways of accessing
the original article from where information was extracted and provide feedback, resulting
in an interface that improves as more researchers use it (e.g. Figure 4.17 page 79). In the
case of neuroNER, the extraction rules themselves are written in a scripting language that is
quite understandable (see Figure 3.3). It means that, even though a domain expert might put the

domain
expert in the
middle

not be able to write these rules, he or she can certainly easily understand them, and possibly
discuss them with the text mining expert in order to improve them. We believe that it is a
critical benefit for a user to have simple ways to understand an analytics system, instead of
being left with a black box.

RQ3: What methodologies are required to efficiently and collaboratively develop cus-
tom TMAs?

The development of specialized TMAs requires the close collaboration of two main stake-
holders: subject matter experts (SME) and text mining practitioners (TM). The quality of
that collaboration is key to the performance of the TMA. SMEs are for example sports goods
marketers who want to enrich their content with semantic information, or biologists seeking
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Fig. 1.3: Iterative development cycle of an agile text mining application.

to extract gene mentions and interactions from the scientific literature17. SMEs know what
information can be extracted, how it is structured and possibly which knowledge bases are
available (e.g. in the forms of ontologies or lexica). TMs, on the other side, know how to
extract information. They are familiar with a wide array of natural language processing
(NLP) algorithms (e.g. tokenizers, lemmatizers, named entity recognizers, topic models) and
their usage (e.g. parametrization, scoring models). TMs know how to manage the large scale
deployment of a TMA to process millions of documents.

In order to develop TMAs effectively, SMEs ought to have simple means to access the results
of an analysis in order to evaluate the performance and provide rapid feedback. Furthermore,
for reproducibility all models and resources must be versioned and well tested to ensure
continuous improvement. TMs, on the other side, must be able to incrementally improve
their models and seamlessly release them so that SMEs can continuously evaluate them.
The TMA must provide them with a domain-specific language (DSL) to efficiently write
and compose NLP components. Both SME and TM should have a high-level overview of
understanding of each other’s work (no black box).

This third research question led to the formulation of agile text mining, a new methodologyagile text
mining to support the development of efficient TMAs. Agile text mining copes with the unpredictable

realities of creating text-mining applications. It is inspired by the Agile Manifesto [HD14].
Agile text mining applications (ATMA) are developed during short iteration cycles, lasting
from a few hours to a few days (see Figure 1.3). Short iteration cycles allow for frequent
redefinition of priorities and for rapid adaptation to changing requirements. Each iteration
starts with the selection of the most valuable features to implement during that cycle. The first
iteration cycle is deliberately short: the goal is not to deliver a perfect system at first, but to
get started with a very basic proof of concept. Usually, that first iteration involves combining
existing NLP components and resources into a minimal system. The output of every iteration
is a complete, working system that is continuously deployed on an annotated corpus or on a
medium-size corpus to evaluate it performance.

SMEs have constant access to the latest analysis artifacts that allow them to write new
functional tests to communicate how the system should perform. These tests also guarantee
that newer development will not break previous development and results. Additionally,
SMEs improve and develop new linguistic resources (e.g. lexica, ontologies or annotated

17We stress the fact that in this thesis, we define SMEs as experts in the domain targeted by the TMA,
not in text mining.
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Fig. 1.4: Overview of challenges (see section 1.2), research framework (see section 1.3)
and contributions (see section 1.3.3).

corpora for supervised ML model training) and new rules for information extraction. Based
on these, TMs implement new rules and models to validate these new test cases. An ATMA
allows TMs to perform a scale out on very large corpora without substantial modification of
the analysis system and with minimal deployment effort. Thus, an ATMA should be designed
to scale horizontally, that is: grow sub-linearly in terms of costs and complexity as data size
grows. All models and resources of the ATMA shall be versioned to ensure reproducible
analytics at any point in time.

In section 3.3, we introduce Sherlok, a system to design agile text mining applications (ATMA), Sherlok

that implements the above requirements.

Figure ?? gives an overview of this thesis’ challenges, research framework and contribu-
tions.

1.4 Reader’s guide
The structure and dependencies in this thesis are presentend in Figure 1.5 below. The present Chapter 1

IntroductionChapter 1 provided some background into neuroscience and natural language processing
(1.1), as well as an introductory story of the context surrounding this thesis (1.2). In (1.3),
research questions and contributions were stated: large scale NLP for neuroscience advocat-
ing for the use of massive corpora for NLP (1.3.1) and agile text mining, a methodology to
efficiently develop text mining applications (1.3.2).

Chapter 2 reviews the available textual resources for biomedical NLP (2.1) and the state- Chapter 2
Methodsof-the-art methods used throughout this thesis: lexical and machine learning named entity

recognizers (NERs, 2.3). Information extraction is reviewed and introduced as a way to
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Fig. 1.5: A reader’s guide to the structure and dependencies in this thesis. Orange blocks
represent contributions while gray blocks represent

improve manual literature search (2.4). Agile methods for text mining are reviewed in
Section 2.5.

Chapter 3 presents the tools developed during this thesis. The first section (3.1) de-Chapter 3
Achievements
and tools

scribes the corpora that will be used in subsequent experiments, including their prepro-
cessing. The second section (3.2) introduces bluima, a natural language processing (NLP)
pipeline focusing on the extraction of neuroscientific content. The last section (3.3) in-
troduces Sherlok, an NLP system supporting the development of agile text mining applica-
tions.

Chapter 4 presents the experiments conducted during this thesis. The first section is dedicatedChapter 4
Experiments to topic models (4.1), a type of unsupervised machine learning models for discovering the hid-

den thematic structure in document collections. Section 4.2 presents text-mining models to
extract and aggregate brain regions connectivity results from a large corpus of 8 billion words.
We demonstrate the usefulness of these models through evaluations against in-vivo connec-
tivity data and against manual review of the literature. The last section (4.3) introduces
neuroNER, an NLP model to perform automated identification and normalization of neuron
type mentions in the neuroscientific literature. This kind of decomposition and normaliza-
tion is essential for cross-laboratory studies, since neuroscience currently lacks consistent
terminologies or nomenclatures for describing neuron types.

Chapter 5 concludes with a synthesis and future research directions.Chapter 5
Synthesis
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Reader’s guide (Section 1.4 p. 12).

This chapter explains and discusses the meth-
ods relevant to this thesis1. In the first section
(2.1), textual resources available for bioNLP are
presented, for example ontologies, taxonomies
and annotated corpora. The second part of
this chapter (2.3) is devoted to named en-
tity recognition (NERs), in particular lexical-
based and machine learning-based approaches.
Information extraction is reviewed and intro-
duced in Section 2.4 as a way to improve
manual literature search. Agile methods and
NLP framework supporting agile development
of text mining solutions are reviewed in Sec-
tion 2.5.

Criterion for the selection of these methods where the followings:

• The methods are applicable and suitable to neuroscientific or biomedical corpora.
For example, we only considered tokenizers and syntactic parsers that have been
specifically trained on (and for) biomedical corpora. Domain-independent methods
are also considered.

• Outputs (e.g. entities, events) are relevant and valuable in the context of neuroinfor-
matics. This includes entities like neurons, brain regions and neurological diseases, but
also more general entities like proteins, genes and species (compare with Figure 1.1
on page 4).

• Methods and systems have been thoroughly evaluated, including proper cross-validation
and inter-annotator agreement metrics.

• Systems are publicly available and/or open-source, whenever possible.

2.1 Textual resources for biomedical NLP
(bioNLP)
A growing number of resources are available for biomedical NLP (bioNLP). In this section, we
list annotated corpora, lexica, ontologies and brain atlases.

Annotated corpora

Annotated corpora are lexical resources that have been manually annotated with entities of
interest. They represent highly valuable textual resources for bioNLP, enabling to evaluate

1Methods specific to a single section are described in that particular section.
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an NLP system and train machine learning models on it. Many of these corpora were specifi-
cally generated for a workshop’s shared task. For example, a corpus of 20,000 annotated
sentences annotated for gene names was created for the BioCreative II shared task [Wil+07]. gene names

This corpus was extended for the subsequent BioCreative III gene normalization shared
task [Lu+11] to include full-text articles that were species non-specific and thus moving
closer to a real literature curation task. Other shared task like BioNLP-ST [Néd+13; Kim+12]
have produced annotations that have been centralized in PubAnnotation2, a repository of
biomedical text annotations [KW12]. PubAnnotation represents a new collaborative and
open way of publishing text annotations using recent web technologies. The CRAFT cor- CRAFT

pus [Bad+12] is a large annotated corpora consisting of 97 full-text biomedical articles
annotated for chemicals, cells, genes, species, proteins and sequences. CALBC was the first CALBC

large-scale silver standard corpus that, unlike a gold-standard corpus, contains annotation
resulting of the harmonization of an ensemble of NERs [RS+10]. The goal was to avoid the
production of manually-annotated gold standard corpora that are time-consuming and costly.
It contains a large number of annotations (1,121,705) from 100,000 Medline abstracts,
annotated for proteins, genes, diseases and species The NCBI disease corpus is built as a disease

gold-standard resource for disease recognition [Doğ+14]. It contains 795 PubMed abstracts
annotated at the mention and concept level.

More focused on neuroscience, the WhiteText corpus contains annotations about brain re- brain regions

gions and brain connectivity. 3205 Medline abstracts were manually annotated with 17,585
brain region mentions and 5,208 connectivity statements [Fre+15]. Burns et al. manually an-
notated 21 Medline abstracts about tract-tracing experiments with annotations about brain re- tract-tracing

gions, injection location, labeling location and tracer chemical [Bur+08].

Lexica and Ontologies

An ontology is a formal representation of knowledge in a domain. An ontology goes ontology

beyond a taxonomy or a controlled vocabulary by the richness and expressiveness of re-
lationships between entities. It provides a consistent abstraction to link experimental
data with concepts. While the goal of some ontologies is to formalize as much knowl-
edge as possible, most biomedical ontologies take a more pragmatic approach and at-
tempt to create a structure enabling clear communication about existing experimental
data [LM09].

The Gene Ontology (GO) is a major bioinformatics initiative to standardize the representa- Gene
Ontologytion of gene attributes across species. At the moment, it contains over 40,000 biological

concepts used to annotate gene functions based on over 100,000 scientific papers. The
GO is part of a larger effort called the Open Biomedical Ontologies (OBO) [Smi+07] fed- OBO

erating and coordinating the development of biomedical ontologies. OBO is a growing
collection of ontologies designed to be interoperable and logically well formed. For ex-
ample, OBO contains an ontology of cell types covering the prokaryotic, fungal, animal
and plant worlds and consisting of over 680 cell types classified under several generic
categories [Bar+05].

UniProtKB/Swiss-Prot3 is a database of high-quality, manually annotated, non-redundant
protein sequences [Dim+11]. Swiss-Prot does not provide a direct taxonomy or ontology, Swiss-Prot

2http://www.pubannotation.org
3http://www.uniprot.org/help/uniprotkb
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but provides links to the GO through the UniProt-GO annotation database. UniProtKB
consists of two sections: Swiss-Prot containing manually annotated and evaluated records
and TrEMBL consisting of computationally analyzed records awaiting full manual annota-
tion.

SAO is an ontology of subcellular neuroanatomy (“mesoscale”), encompassing cellular andSAO

subcellular structure, supracellular domains, and macromolecules [Lar+07]. Its goal is
to provide the knowledge necessary to integrate data acquired across multiple scales in
neuroscience.

Medical Subject Headings4 (MeSH) is a thesaurus used for subject headings. It has a lowMedical
Subject
Headings

granularity but has the great advantage to be available for most PubMed articles. See section
4.1.4 for a detailed description.

The BioLexicon5 is a large-scale English terminological resource developed to facilitateBioLexicon

biomedical text mining. It contains over 2.2M lexical entries, over 3.3M semantic relations,
and information on over 1.8M variants and on over 2M synonymy relations [Tho+11;
Sas+08]. Sasaki et al. [Sas+09] present three applications of the BioLexicon: a dictionary-
based POS tagger, a syntactic parser, and query processing for biomedical information
retrieval.

The NIF standardized ontology (NIFSTD) consists of common neuroscience domain termi-NIFSTD

nologies structured into a unified representation of the biomedical domains typically used
to describe neuroscience data (e.g., anatomy, cell types, techniques), as well as digital re-
sources (tools, databases) being created throughout the neuroscience community. [Ima+12;
Ima+11; Bug+08]

Acknowledging that curation efforts is still very manual, highly technical, and there-
fore costly, NIF developed NeuroLex6, a semantic wiki to interface with the NIFSTD andNeuroLex

enable community-driven curation of neuroscientific terms [LM13]. Additionally, Neu-
roLex offers machine-readable knowledge representation through application public in-
terfaces (APIs). As of today, NeuroLex is tracking almost 35,000 unique neurobiological
entities (e.g. experimental techniques, anatomical nomenclature, genes, proteins and
molecules).

It must be noted that while ontologies, taxonomies or lexica are essential resources for
bioNLP, their primary purpose is often not to act as such (see discussion in Section 2.3
below).

Brain Atlases

We review selected available brain atlases and lexica, as they are a central resource for
neuroscientific NLP.

NeuroNames7 was one of the first popular neuroanatomical terminologies in the field. It con-NeuroNames

sists of more than 15,000 neuroanatomical terms. It partitions the brain in about 550 primary
structures to which all other structures, names, and synonyms are related [BD03].

4http://www.ncbi.nlm.nih.gov/mesh
5http://www.ebi.ac.uk/Rebholz-srv/BioLexicon/biolexicon.html
6http://neurolex.org/
7http://braininfo.rprc.washington.edu/Nnont.aspx
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CoCoMac8 (Collations of Connectivity data on the Macaque brain) is an manual curation CoCoMac

approach to produce a systematic record of the known wiring of the primate brain [Bak+12b;
Ste+01]. The database has become by far the largest of its kind (primate), with data manu-
ally extracted from more than four hundred published tracing studies.

The Brain Architecture Management System (BAMS) is a large inventory of data and meta- BAMS

data collated from original literature [Bot+12; BS08]9. Neuroscientists from the BAMS
project have manually curated over 600 scientific articles. They analyzed each article
(including tables, images and supplementary materials) and assessed the quality of the
experiment. Finally, they normalized brain region mentions to the BAMS ontology, and
recorded the connectivity data into a structured database (including directionality and
strength).

The Allen Brain Atlas10 seek to combine genomics with neuroanatomy, with the goal to ad- Allen Brain
Atlasvance the research on neurobiological diseases such as Parkinson’s, Alzheimer’s, and Autism

with their mapping of gene expression throughout the brain. Its nomenclature was adapted
from [Swa04], [Hof+00], BAMS [Bot+12], and BrainInfo11, as described in [@All]. It iden-
tifies 1,000 anatomical sites in the human brain, backed by more than 100 million data points
that indicate the particular gene expression and underlying biochemistry of each site. Also
available to the public is the Brain Explorer 3D viewer12.

BigBrain is a ultrahigh-resolution 3D digital atlas of the human brain [Amu+13]. It has BigBrain

a nearly cellular resolution (20 μm) and consists of 7404 histological sections acquired
through MRI and subsequently processed by neuroscientists to remove artifacts and by
software to align them.

2.2 Text Preprocessing
Text preprocessing, like segmentation of sentences or part-of-speech tagging, is a very
important step in an NLP pipeline. It has been extensively researched and there exists several
components that have been trained specifically for bioNLP and that generally deliver very
good precision and recall. Below we describe some NLP models for efficient preprocessing
of biomedical text.

The NLP tool suite13 from the Jena University provides preprocessing tools like sentence tokenization

splitters, word tokenizers and POS taggers. The ClearTK project also provides similar tools,
some trained on biomedical corpora [Ogr+08].

Biolemmatizer [Liu+12] is a lemmatizer trained for English biomedical literature, achieving a lemmatization

state-of-the-art accuracy of .99 on a sampled set of the CRAFT corpus.

Several papers with various performance (e.g. [GB08]) have been published on anaphora res- anaphora
resolutionolution for the biomedical domain, but none published their models.

BioAdi performs abbreviation recognition using a trained CRF model [Kuo+09]. On their abbreviation
recognition

8http://cocomac.g-node.org/
9http://brancusi.usc.edu/

10http://www.brain-map.org/
11http://www.braininfo.org
12http://mouse.brain-map.org/static/brainexplorer
13http://www.julielab.de/Resources/Software/NLP_Tools.html
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annotated corpus of 1200 PubMed abstracts, their system achieved a state-of-the-art F-score
of .86 with .93 precision at .80 recall. [Oka+10] developed a supervised approach for
clustering expanded forms, achieving a 0.984 accuracy and 0.986 F1 score on an experiment
of abbreviation disambiguation.

Kang [Kan+11a] compares six chunkers for biomedical text, of which OpenNLP performedchunkers

best (F-scores .89 for noun-phrase chunking and .95 for verb-phrase chunking, on the GENIA
Treebank corpus).

Several syntactic parsers have been trained on biomedical corpus, e.g. Wang [Wan+10b]syntactic
parsers trained the ENJU [MT08] and Stanford parsers [DM+06] on the GENIA dataset []. Miyao [Miy+09]

compares several parsers, and evaluates them on protein-protein interaction (PPI) extraction
from biomedical papers.

2.3 Named Entity Recognition (NER)
Several named entity recognizers (NERs) are publicly available to identify neuroscience-
relevant entities like proteins or brain regions.

To build a NER, the first and simplest approach is to match entities from a list of surface forms.
These are called lexical-based NERs. As reviewed above, several biomedical ontologies andlexical-based

NERs taxonomies are available and these can be used to build a lexical-based NER. However, most
have been designed to structure and organize a domain, but not to serve as a NER resource.
Typically, they lack appropriate synonyms and can be too specific, resulting in low recall (for
example, "Entorhinal area, lateral part, layer 6a" is a brain region from the ABA ontology
that is highly unlikely to be found in any scientific article). Another issue with lexical-based
NERs is their lack of context. For example, there is a gene synonym named “for” 14 that
would be often confused by a lexical-based NER with the preposition of the same name.
Despite these disadvantages, lexical-based NERs are simple to create and several such NERs
were created during this thesis (see Table 3.7 on page 34).

A second and more sophisticated approach to building a NER is to train a machine learning
(ML) model on annotated corpora providing examples of entities that are to be recognized.machine

learning-
based
NERs

The model relies on so-called features to take a decision on whether a group of words
represent an entity. Features can be, for example, that a word starts with a capital letter,
whether the word belongs to a lexicon or whether the previous word is a verb. A model
can includes several hundreds different features and model training consists in learning
which combinations of features are most likely to identify an entity. Once a model has been
trained on an annotated corpus, it can be used to identify entities on new, unseen text. The
advantage is that the model will match complex entities, even if they are not present in any
lexica. For example the brain region names “contralateral prepositus hypoglossal nucleus”
or “distal parts of the inferior anterior cerebellar cortex” would be correctly identified even
though they never appear in a corpus. However, a drawback of supervised ML is that corpus
annotations, required to train the model, are very time-consuming and require domain expert
knowledge. Another drawback is that unlike lexical-based NERs that commonly associate an
entity with a unique identifier, ML NERs require additional steps to normalize and associate
a recognized entity with a unique identifier. One last drawback of ML NERs is that their

14http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=12799
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performance can potentially degrade if they are not applied to the same kind of corpus than
the one they have been trained on. For example, when training a NER on PubMed abstracts,
it will not necessarily perform well on full-text articles.

Several NERs have been published to identify for proteins and genes. State-of-the-art per- proteins and
genesformance is high: Ando et al. [And07] achieved an F-score of .87 on the BioCreative2

task, using a semi-supervised approach that incorporates large amounts of unlabeled data.
However, their model has not been published. An open source alternative is BANNER15 is
open source and achieves a near-state-of-the-art F-score of .84 on the BioCreative2 task.
GeNo, an open-source system for gene name recognition and normalization achieved an
F-measure performance of .86 on the BioCreAtIvE-II test set [Wer+09]. Gimli is a state-
of-the-art protein and gene NER, achieving an average F-score of .87 on the BioCreative2
task [Cam+13].

OSCAR16 is a mature NER for chemical entities and chemical reactions [Jes+11]. chemicals

AnatomyTagger is an open-source machine learning-based NER for anatomical entities anatomical
entitiesranging from subcellular structures to organ systems [PA14]. AnatomyTagger has been

trained on the AnatEM corpus consisting 13,000 annotations of anatomical entities grouped
in 12 types such as Cellular component, Tissue and Organ.

For brain regions, NER models have been published by Burns et al. [Bur+08] and French brain regions

et al. [Fre+15]. They both rely on linear chain conditional random fields , with model fea-
tures based on morphological, lexical, syntactic and contextual information. French’s model
achieves a state-of-the-art performance of 86% recall and 92% precision on a training corpus
of 1,377 abstracts with 18,242 brain region annotations [Fre+12].

Linnaeus [Ger+10] is a species NER that uses a dictionary-based approach and a set of species

heuristics to resolve ambiguous mentions about species (97% of all mentions in PubMed
Central full-text documents resolved to unambiguous NCBI taxonomy identifiers). Wang
et al. leverage syntactic parse to assign NCBI Taxonomy identifiers to gene mention in
biomedical literature [Wan+10c]. This is of particular advantage in species non-specific
tasks like BioCreative III.

UTU is a NER for recognizing and normalizing disease and symptom mentions in electronic disease

medical records [Kae+14]. Interestingly, it includes word2vec-based vector representa-
tions [Mik+13] to solve the normalization task. DNorm is another machine learning-based
system for disease name identification and normalization [Lea+13].

Some NLP models exist to identify concentrations (or more generically, measure entities). concentrations

For example, [Wan+09b] allows to extract pharmacokinetics numerical data from PubMed
abstracts.

It must be noted that no robust NER for neuron cell types or for development stage recog-
nition could be found (whereas a rule-based NER should be able to cover most of the
expressions of developmental stages).

15http://cbioc.eas.asu.edu/banner/
16Open-Source Chemistry Analysis Routines, https://bitbucket.org/wwmm/oscar4/wiki/Home
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2.4 Information Extraction
One way to improve manual literature search is to make use of automated information ex-
traction (IE) methods. IE aims at extracting structured information from unstructured
text. For example, in the case of brain region connectivity, it facilitates the manual
search of connectivity data by analyzing very large numbers of scientific articles and
proposing to the neuroscientist a list of brain regions potentially connected (see Sec-
tion 4.2).

The methodology for IE systems starts with a targeted text preprocessing, aimed at refiningmethodology
for IE systems raw text by either removing noise (e.g. stop words) or enhancing signal (e.g. by adding

part-of-speech, chunking or syntactic parsing). The next steps involve the identification of
target entities (e.g. using NERs described above), the identification of potential events17,
and the identification of the relevant events (out of all possible events). Each individual
step of an IE systems can be implemented with machine learning, rule-based or hybrid
methods.

Typical IE tasks include protein-protein interaction (PPI) and drug-drug interaction. State-
of-the-art techniques for PPI rely on multi-class SVM [Bjo+11]. Other techniques build on
simplified syntactic parses [JG10].

Recent efforts in IE systems have been directed towards simplifying the systems while main-system
simplification taining high performance. For example, Bui et al. [Bui+13; BS11] presented a simple

biomedical IE system for the BioNLP 2013 event extraction task [Kim+13]. Their system
relies on simple syntactic patterns and consists of a learning phase during which a dictionary
and patterns are automatically generated from annotated events. During the second phase
(extraction), the said dictionary and patterns are applied to infer events from new, unseen
text. The system delivered the best performance on strict matching and the third best on ap-
proximate matching (F-scores of .48 and .50, respectively).

Similarily, Kilicoglu et al. [KB09] designed a rule-based methodology for event extraction,rule-based IE

leveraging dependency parse representations. They reached the 2nd place on the BioNLP
event shared-task [Kim+12]. One possible reason for the good performance of the rule-based
approach is that it is in general not as much aggressive as ML approaches in optimizing
against training data.

Alternatively, Vlachos et al. [Vla+09] present an almost unsupervised approach for biomedicalunsupervised
approach event extraction based on the output of a syntactic parser and standard linguistic processing,

augmented by rules acquired from the annotated development corpus. The system is
designed to be as domain-independent and unsupervised as possible, requiring only a
dictionary of verbs and a set of argument extraction rules. Their approach achieves high
precision at the cost of a relatively low recall.

Cormack et al. present an IE system based on Linguamatics’ commercial platform I2E18 [Cor+15].
Their system uses a data-driven rule-based model and a simple supervised classifier. Evalua-

17In this context, an event is a set of two or more entities that have a specific relationship between
them. For example, an event can consist of one protein that phosphorylates another protein.

18http://www.linguamatics.com/products-services/about-i2e
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tion on the test data of the i2b2/UTHealth 2014 challenge19 yielded an F-Score of 0.91, one
percent behind the top performing system.

Miwa and Ananiadou recently extended the EventMine event extraction system to alleviate remove
task-specific
tuning

the need for task-specific tuning, in particular the (hyper-)parameters of machine learning al-
gorithms. This is achieved by integrating and combining a weighting method and a covariate
shift method on the training and test instances [MA15]20.

Another trend in IE are ensemble methods, that is: the combination of the output from several ensemble
methodssystem. For example, the U-Compare event meta-service integrates nine event extraction

systems [Kon+13; Kan+11b]. Its performance achieved by the ensemble significantly
improves over individual systems.

One other trend in IE is the application to very large corpora. For example, BioContext very large
corporais an open-source event extraction system integrating and extending a number of tools

performing NER and event extraction. It has been applied to 10.9 million PubMed abstracts
and 234,000 open-access full-text articles from PubMed Central, yielding over 290,000
distinct genes/proteins mentions [Ger+12]. Alternatively, Bjorne et al. [Bjö+10] developed
an event detection system that has been deployed at PubMed scale and EvidenceFinder
has been deployed at Europe PubMed Central to search over 40M sentences about genes,
proteins, diseases and metabolites21.

2.5 Agile Methodologies
One methodology to support the development of agile text mining applications (ATMA) is
active learning. The central idea behind active learning is that a machine learning algorithm active

learningcan achieve higher performance with fewer training labels if it is allowed to select the data
from which it learns. [Set10] gives a thorough review of available active learning methods
and approaches. Also, various approaches that combine active learning and semi-supervised
learning have been presented at the ICML 2011 Workshop22. Of particular interest is DUAL-
IST23, an interactive interface for active learning. DUALIST uses a multiclass naive Bayes
classifier, and currently works for document classification only [Set11]. Another interesting
idea is generalized expectation (GE) [Dru11], to reduce annotation time by shifting from
traditional instance-labeling to feature-labeling.

Several software frameworks support the development of ATMAs. For example, NLTK [Bir06] NLTK

is a popular open-source NLP framework in Python that is extensively documented and
comes packaged with a large amount of datasets and pre-compiled models, allowing for rapid
experimentation and exploration. NLTK is rather a library than an TMA but could easily be
extended by text miners to provide a custom interface for domain experts. Orange [Dem+13] Orange

is another text mining framework allowing visual programming and Python scripting. How-
ever, a limited number of components for text mining are currently available [Xan14] and
it is not clear how large-scale analysis can be performed with it. The General Architecture
for Text Engineering (GATE) [Cun+11] is another popular and freely available TMA. GATE GATE

19https://www.i2b2.org/NLP/HeartDisease/
20http://www.nactem.ac.uk/EventMine/
21http://labs.europepmc.org/docs/EvidenceFinder.pdf
22https://sites.google.com/site/comblearn/
23https://code.google.com/p/dualist/
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contains an integrated development environment and includes a high-level domain specific
language (DSL), JAPE (Java Annotation Patterns Engine) for finite state transductions over
annotations based on regular expressions. JAPE allows building complex rule-based TMA
systems. Another popular open source TMA is the Unstructured Information Management
Architecture (UIMA) [FL04], a flexible and extensible TMA focusing on interoperability of
components and scalability. Ruta, an imperative rule language (DSL), was written to extendRuta

UIMA and enable rapid development of TMAs [Klu+14a; Klu+09]. Ruta comes with a
workbench that greatly improves productivity, including testing and semi-automatic rule
generation. However, its installation and operation is quite complex for domain experts, it
does not easily support multiuser development and requires custom manual deployment to
scale on a very large datasets. There is also a wide array of remote web services available toweb services

perform text mining. However, these are usually focused on a few narrow tasks, and it is
often not possible to rely on them for very large analysis due to bandwidth requirements and
costs. IBM Watson is a commercial cloud-based TMA framework based on UIMA [Fer+13;Watson

Fer+10]. Watson is specialized in open question answering and offers several different ser-
vices like concept expansion, relationship extraction and classification24. Argo25 [Rak+12],Argo

is a web-based workbench for composing and running TMA . It facilitates the development
of custom workflows from a selection of elementary analytics and accommodates users with
various areas and levels of expertise

24http://www.ibm.com/smarterplanet/us/en/ibmwatson/
25http://argo.nactem.ac.uk/
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Reader’s guide (Section 1.4 p. 12).

Chapter 3 presents the tools developed during this
thesis. The first section (3.1) describes the corporacorpora

that will be used in subsequent experiments, in-
cluding their preprocessing. This section is im-
portant for two reasons. First, this thesis is set
to focus on very large corpora and acquiring such
is not a light task. Second, as the old adage
goes, garbage in, garbage out, thus preprocess-
ing is an essential step to produce high-quality re-
sults.

The second section (3.2) introduces bluima, a naturalbluima

language processing (NLP) pipeline focusing on the
extraction of neuroscientific content. bluima started
as an effort to develop a high performance NLP toolkit for neuroscience. In particular, focus
was set on extracting entities that are specific to neuroscience (like brain regions) and that
are not yet covered by existing text processing systems.

The last section (3.3) introduces Sherlok, an NLP system supporting the development ofSherlok

agile text mining applications (ATMA). In this aspect, Sherlok is focused on improving the
collaboration between subject matter experts and text miners, a central goal of agile text
mining (as presented earlier in Section 1.3.2).

All tools in this chapter try to leverage existing methods, models and libraries and embraceleverage
existing
methods

as much well-established standards as possible (e.g. OBO1, RDF2, UIMA3, REST [FT02]).
Except the corpora that could not be published because of copyrights, all tools are open-
sourced with the goal to offer a simple way to replicate the experiments in this the-open-source

sis.

3.1 Corpora and Preprocessing
This section presents the different corpora created during this thesis. A short description of
the PubMed database is followed by a presentation of the pdf preprocessing toolchain. The
NLP preprocessing steps are reviewed and the different corpora created during this thesis
are described.

PubMed4 is a search engine to MEDLINE, a large online database of publications in thePubMed

biomedical domain. An important property of PubMed is that most if not all significant
publications are indexed in PubMed, making it the centralized repository of choice for

1obofoundry.org
2http://www.w3.org/RDF/
3http://docs.oasis-open.org/uima/v1.0/uima-v1.0.html
4http://www.ncbi.nlm.nih.gov/pubmed/
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Fig. 3.1: Count of articles in PubMed containing the term "neuron" in their titles or ab-
stracts. Approximately 25,000 articles were published in 2013.

biomedical text mining. As of August 2015, PubMed contained over 25 million records
of published articles, growing at over 1 million citations a year. Over 25,000 articles per
year are published that contain the term “neuron” in their titles or abstracts (see Figure
3.1). Abstracts are available for approximately 60% of the records. Licenses to text mine
XML versions of these abstracts can be obtained from PubMed. In addition to abstracts,
many PubMed records contain links to full-text articles, some of which are freely available in
PubMed Central5.

3.1.1 Comparison of abstracts and full-text
articles

We present below some statistical comparison about the differences between PubMed ab-
stracts and full-text articles. The advantage of PubMed abstracts is that they are available in
large quantities and that an abstract captures the essential semantics of that article. On the
other hand, full-text articles represent a very important data source, as they potentially con-
tain an order of magnitude more information than abstracts [Kos10].

In terms of raw text length, PubMed abstracts contain on average 996 characters (146
tokens) while full-text articles contain on average 61,251 characters (11,500 tokens)6. Full-
text articles include several sections that are typically not relevant for text mining (e.g.
acknowledgments, funding, references) and ought to be filtered out (see Section 3.1.2). In
terms of the quantity of relevant information that could be extracted, we found during our
experiments significantly more relevant information in full-text papers than in abstracts. For
example in experiments on brain region connectivity (Section 4.2), full-text papers contained
on average 6.4 times more connections of brain region mentions than abstracts . In another
experiment, over 12 times more information related to neocortical layers was found in a
corpus of full-text papers, compared to PubMed abstracts (see Table 3.1). These quantitative
results justify the additional efforts required to acquire and preprocess very large corpora in

5http://www.ncbi.nlm.nih.gov/pmc/
6See Section 3.1.4 for details about the corpora.
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Tab. 3.1: Comparison of the amount of information available in PubMed abstracts and full-
text papers, evaluated for different textual queries related to neocortical layers. A
corpus of 630,216 full-text articles contained on average over 12 times as much
mentions about layers than a corpus of 13 million PubMed abstracts (see 3.1.4
for details about the corpora).

Query Full-text PubMed abstracts Ratio

layer I 12086 1021 11.84

layer 1 5000 510 9.80

layer II 17548 1451 12.09

layer II/III 5434 441 12.32

layer 2 9512 946 10.05

layer 2/3 6315 476 13.27

layer III 12893 1094 11.79

layer II/III 5434 441 12.32

layer 3 4039 446 9.06

layer IV 20432 1502 13.60

layer 4 11193 740 15.13

layer V 23963 1912 12.53

layer 5 9350 755 12.38

layer VI 8275 695 11.91

layer 6 5368 329 16.32

TOTAL 156842 12759 12.29
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order to perform large-scale NLP (see Section 1.3.1). In the following section, we discuss
the qualitative aspects of full-text articles.

3.1.2 Content Extraction from PDF Scientific
Articles
Most scientific full-text articles are only available in PDF format7, which is essentially a
display format and has no concept of word boundaries or semantics. Additionally, even if
PDF has been formalized in a specification, the numerous programs generating PDFs output
slightly different kinds of documents, which makes it non-trivial to extract information from
them. Hence the need for reliable tools to extract text from PDFs. This section describes an
NLP processing pipeline that relies on a commercial PDF extraction library, followed by a set
of content preprocessing measures that are devised to correct errors and improve content
quality:

PDF parser

A PDF parser is a software library receiving as input a PDF file and returning its textual
content. Most advanced PDF parsers already perform preprocessing steps. Several open
source PDF libraries were considered. A qualitative evaluation was performed on a corpus of
8 PDFs and wherever necessary on a larger sample of 427 PDFs. The following list describes
the evaluated libraries 8:

• Rossinante Web Service9 is a web-service by Xerox converting PDFs to XML. The service
recognizes the structure of the document (e.g. headers/footers, page number, table of
content, image caption, footnote) and delivers high-quality extracted text. However,
the web-service latency was very high (on average over 30s) so it was decided not to
consider that service.

• LayoutAwarePDF [Ram+12] performs rule-based PDF content extraction, enabling
users to define their own layout rules in order to extract the relevant text of a PDF.
Because journals have relatively stable layouts, it is possible to define a set of rules
per journal to guide the extraction. Although this technique seems very promising, it
was not used due to the large variety of journals considered. Indeed, by mapping the
layout of 50 different neuroscience-related journals, only 45% of target PDFs articles
would be covered and to reach 75% coverage would require the mapping of 290
journals.

• Grobid uses machine-learning to extract bibliographical information from PDFs. This
feature could be useful to extract references from an article. Full-text extraction
capabilities were limited and lacked precision.

• PDFTextStream10 is a Java library exposing a hierarchical structure of a PDF article
through abstractions like pages, blocks, lines and text-units (representing a single
character). Eventually, PdfTextStream was selected for its superior performance in
word splitting, handling of document encodings11, and built-in aggregation of text.

7As opposed to machine-readable formats like XML, RDF or NXML.
8The following libraries were considered, but not further evaluated: JPedal, Apache PDF Box, PDF

Clown, iText and TET.
9http://open.xerox.com/Services/RossinanteWS

10http://snowtide.com; commercial but free to use in single-threaded applications.
11Good support for embedded font and exotic character encoding.
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• pdftotext12 is a command line tool belonging to the Xpdf software suit. It performed
relatively well on the evaluation corpus (paragraph order was respected and most
ligatures were converted; however, accents were not correctly extracted). pdftotext
was not further considered since it was not cross-platform and offered no significant
advantages over PdfTextStream.

PDF preprocessing13

The following PDF preprocessing steps were developed to improve the quality of the text
output from the selected PdfTextStream PDF parser:

• Removing non-informative footers and headers, based on a heuristics of text position
and content (Levenhstein edit distance).

• Glyph mapping correction: In some fonts, the character that is displayed in the PDF
does not correspond to the encoded one. For example, Greek letters like λ will be
extracted as l, or = (equal sign) will be encoded as 1/4 (Table 3.2). To solve this
important issue of incoherence between encoded and displayed character, the only
possible solution is to know the correct font point for each font. Fortunately, the
project pdf2svg14 contains mapping for the most common fonts describing the correct
mapping.

• Ligatures are characters composed of two or more characters merged together for
typographic reasons. When extracted from PDF documents, they remain as one single
character and must be corrected. Regular expressions have been developed to remove
ligatures and replace them with the proper group of characters (see Table 3.3).

• Hyphenated words are words separated by hyphens to accommodate the text layout.
In scientific articles, the text is usually justified and layed out in narrow columns,
resulting in a lot of words being hyphenated. Hyphens can not be removed blindly, as
they are sometimes part of a word (e.g. blind-folded) and sometimes added during
the PDF document generation (see Table 3.4). A rule-based algorithm was developed
to merge hyphens, based on 6 negative rules: W1 (the first word) or W2 (the second
word) contains only one character; last character of W1 is a number; first character of
W2 is a number; last character of W1 is a Greek letter; first character of W2 is a Greek
letter. Only if none of these rules are satisfied will the word be dehyphenated.

• Scientific articles frequently use abbreviations throughout the text. These are identified
using an existing machine learning model [MAC12] and then expanded throughout
the article to their long form. The model has a reported performance of 98% precision
and 93% recall on a standard data set

• Paragraph-Level Filtering is performed to remove non-informative paragraphs like
acknowledgments or contact section using manually created rules.

• References: most scientific articles include bibliographical references citing related
works. These references bring lots of noise to the NLP analysis, through proper names,
journal names, and numbers. Simple rules (regular expressions) based on paragraph
title do not perform well (only 83% accurate) and thus a supervised machine learning
model (maximum entropy) was developed. The training corpus consisting of 1467

12http://linux.die.net/man/1/pdftotext
13Parts of this section have been published by a students that I co-supervised during my PhD,

see [Rol13].
14https://bitbucket.org/petermr/pdf2svg
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Encoded character Correct character Font PMID
1/4 (U+00BC) = (U+003D) AdvP4C4E74 16988649

≥ (U+003E) 4 (U+0034) AdvPi1 16988649

1 (U+0031) + (U+002B) Universal-GreekwithMathPi 10634775

2 (U+0032) - (U+002D) Universal-GreekwithMathPi 10634775

3 (U+0033) = (U+003D) Universal-GreekwithMathPi 10634775

4 (U+0034) ± (U+00B1) Universal-GreekwithMathPi 10634775
a (U+00AA) © (U+00A9) AdvPSSym 16962970

2 (U+0032) - (U+002D) AdvP7DED 16962970

3 (U+0033) = (U+003D) AdvP7DED 16962970

6 (U+0036) ± (U+00B1) AdvP7DED 16962970
Tab. 3.2: Examples of incoherent glyph/encoding correspondence. For example on the 4th

line, without glyph mapping correction, “=” (equal sign) would be incorrectly
displayed as “1/4”.

Unicode name Codepoint UTF-8 In large sample

LATIN SMALL LIGATURE FF U+FB00 ef ac 80 yes

LATIN SMALL LIGATURE FI U+FB01 ef ac 81 yes

LATIN SMALL LIGATURE FL U+FB02 ef ac 82 yes

LATIN SMALL LIGATURE FFI U+FB03 ef ac 83 yes

LATIN SMALL LIGATURE FFL U+FB04 ef ac 84 yes

LATIN SMALL LIGATURE LONG S T U+FB05 ef ac 85 no

LATIN SMALL LIGATURE STF U+FB06 ef ac 86 no

LATIN SMALL LETTER AE U+00E6 c3 a6 yes

LATIN SMALL LIGATURE IJ U+0133 c4 b3 no

LATIN SMALL LIGATURE OE U+0153 c5 93 yes
Tab. 3.3: List of supported ligatures. Right column states whether the ligature was present

in a large sample of PubMed documents.

positive and 1502 negative examples was generated automatically by selecting the
text following a “Reference” chapter (positive example), or by selecting a paragraph at
random (negative example, verified manually). The machine learning model contains
21 features (see Table 3.5). Selected features capture the structural pattern of a
reference, not the lexical structure. Model performance is 0.97 F-score, using 30
independent repetitions of 10-fold cross validation.

3.1.3 Pre-processing for PubMed

The different PubMed corpora (see 3.1.4) were preprocessed according to the following
scheme. Tokenization was performed using the OpenNLP-wrappers developed by JulieLab
for sentence segmentation, word tokenization and part-of-speech tagging [Tom+06] were
used and updated to uimaFIT. Stopword removal: a few frequent tokens are removed which
carry little meaning for our application, such as prepositions and conjunctions as well as
punctuation marks. This list was created manually and is not very extensive. Lemmatization
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W1 W2 Wrong Correct PMID

endolysin-β- galactosidase endolysin-βgal. . . endolysin-β-gal. . . 21810267

(TC- 344B (TC344B (TC-344B 21810267

70- Hz 70Hz 70-Hz 10634775

OHIP- NL OHIPNL OHIP-NL 18405359

Self- reported Selfreported Self-reported 18405359

(OHIP- E) (OHIPE) (OHIP-E) 18405359
Tab. 3.4: Example of wrong dehyphenations. W1 and W2 are two words to be hyphenated.

YEARS
// 1978
years "19[56789]\\d|20[01]\\d"
// 1978b
years_abcd "19[56789]\\d[abcd]|20[01]\\d[abcd]"
// (2010)
years_parenthesis "\\((19[56789]\\d|20[01]\\d)\\)"

VOLUMES, PAGES
// 385-420
volume "\\d+ ?[–-] ?\\d+"
// Comp. Neurol. 167: 385-420
volume_more "\\d+: ?\\d{1,4} ?[–-] ?\\d{1,4}"
// pages
pages "p.? \\d+ [–-] \\\\d+"

AUTHOR
// Gurdjian, E. S.
author1 "[A-Z]\\w+, [A-Z]\\."
// Beckstead RM (1979)
author2 "[A-Z]\\w+ [A-Z][A-Z ,]"
// Newman, R., and S. S. Winans
author3 ", and [A-Z]\\. [A-Z]"
// repetitions: Boussaoud D, Ungerleider LC, Desimone R
author4 "(, [A-Z]\\w+ [A-Z]{1,2}){2,}"
// , {comma, name}
author5 ", [A-Z]\\w+ [A-Z]"
// 4 Brodmann, K., V
// 17. Sorensen OW,
author6 "\\d{1,2}\\.? [A-Z]\\w+,? [A-Z]"
// S. Araki, Y. Tamori, M. Kawanishi, H. Shinoda, J. Masugi....
author6 "(([A-Z]\\.)?[A-Z]\\. [A-Z]\\w+, ){2,10}"
// Diesmann, M., and Morrison, A.
// Ferster, D., and Spruston, N.
author7 "((and )?[A-Z]\\w+, ([A-Z]\\. ?){1,2},? ?){2,6}"

MISCELANEOUS
proceedings "Proceedings of"

NEGATIVE EXAMPLES
// (Beckstead RM <-- parenthesis!
neg_author_parenthesis "\\([A-Z]\\w+ [A-Z][A-Z ,]"
// Gurdjian, E <-- parenthesis!
neg_author_parenthesis2 "\\([A-Z]\\w+, [A-Z]"
// ng (Rosenmund et al., 1998; Smith and Howe, 2000), a
neg_inline_ref "\\([A-Z]\\w+.{3,40}\\d+\\)"

neg_figure "^Fig(ure)?\\.? \\d+.*"
neg_table "^Tab(le)?\\.? \\d+.*"
neg_copyright "[Cc]opyright.{1,10}\\d{4}"

Tab. 3.5: Regular expressions to identify bibliographical references. To prevent model
overfitting, these features only capture the structural pattern of a reference, not
the lexical structure.
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Corpus Raw Text Size Documents |ξ| (Raw) |ξ| |V | (raw) |V |
PubMed Abstracts 11.2GB 13,293,649 2 × 109 1.1 × 109 10.8 × 106 310,000

PubMed Neuroscience ∼ 50GB 630,216 4 × 109 2.3 × 109 3.8 × 107 266,000

PubMed 100K ∼ 1GB 100,000 57 × 106 1 × 109 1.1 × 106 125,000

Tab. 3.6: Statistics of the used corpora. The number of documents refers to non-empty
documents after pre-processing. The columns |ξ| (number of tokens) and |V | (size
of vocabulary) refer to the pre-processed corpus.

is performed by the domain-specific tool BioLemmatizer [Liu+12]. BioLemmatizer relies
on a lexicon, together with rules that generalize morphological transformations to handle
out-of-vocabulary words. BioLemmatizer achieves an lemmatization accuracy of 99% on
a sampled set of the CRAFT corpus [Bad+12]. Abbreviation recognition (the task of
identifying abbreviations in text) is performed by BIOADI [Kuo+09]. See Section 2.2 for
further description of the above methods.

3.1.4 PubMed Corpora
Table 3.6 summarizes statistics of the generated corpora. The first corpus consists of all
PubMed article containing an abstract (13.2 million in total as of November 2014). The
second corpus contains 630,216 full-text articles focused on neuroscience. It was generated
by aggregating articles from the personal libraries of all researchers in our research institute.
This process was facilitated by the massive collaborative use of Zotero15. In addition,
full-text papers containing mentions of brain regions were collected from the PubMed
Central Open Access Subset and from open access journals related to neuroscience. Full-
texts PDFs were subsequently processed using the pipelines described in Section 3.1.2
above.

The third corpus is an evaluation corpus consisting of a subset of 100,000 PubMed abstracts
related to neuroscience. The selection was done by randomly selecting abstracts containing
one of the following MeSH16 terms: “Electrophysiology”, “Models, Neurological”, “Nervous
System”, “Nervous System Diseases”, “Nervous System Malformations”, “Nervous System
Neoplasms”, “Nervous System Physiological Phenomena”, “Neurons”, “Neurons, Afferent”,
“Neurons, Efferent”, “Parkinson Disease”, “Parkinson Disease, Postencephalitic”, “Parkinson
Disease, Secondary”, “Post-Synaptic Density”.

Unfortunately, the corpora presented in this chapter cannot be openly redistributed, as this
is not allowed in the PubMed license. However, all preprocessing tools to generate these cor-
pora from PubMed-leased abstracts are publicly available at https://github.com/BlueBrain/bluima
under an open source license (see Section 3.2 for details).

15www.zotero.org
16See Section 4.1.4 for description of MeSH.
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3.2 bluima: a UIMA-based NLP Toolkit for
Neuroscience17

This section describes bluima, a natural language processing (NLP) pipeline focusing on
the extraction of neuroscientific content and based on the UIMA framework [FL04]18.
bluima builds upon models from biomedical NLP (BioNLP) like specialized tokenizers
and lemmatizers. It adds further models and tools specific to neuroscience (e.g. named
entity recognizer for neuron or brain region mentions) and provides collection readers
for neuroscientific corpora. The resulting code and models are publicly available at
https://github.com/BlueBrain/bluima. Three novel UIMA components are proposed:
the first allows configuring and instantiating UIMA pipelines using a simple scripting lan-
guage, enabling non-UIMA experts to design and run UIMA pipelines. The second component
is a common analysis structure (CAS) store based on MongoDB, to perform incremental anno-
tation of large document corpora. The third component extracts and normalizes complex sci-
entific measures like 17.3 millimole/l. from scientific article

3.2.1 Introduction
bluima started as an effort to develop a high performance natural language processing (NLP)
toolkit for neuroscience. In particular, focus was set on extracting entities that are specific to
neuroscience (like brain regions and neurons) and that are not yet covered by existing text
processing systems.

After careful evaluation of different NLP frameworks, the UIMA software system was selected
for its open standards, its performance and stability, and its usage in several other biomedi-
cal NLP (bioNLP) projects; e.g. JulieLab [Hah+08], ClearTK [Ogr+08], DKPRo [DCG09],
cTAKES [Sav+10], ccp-nlp, U-Compare [Kon+13], SciKnowMine [Ram+10], Argo [Rak+12].
Initial development went fast and several existing bioNLP models and UIMA components
could rapidly be reused or integrated into UIMA without the need to modify its core system,
as presented in Section 3.2.2.

Once the initial components were in place, an experimentation phase started where different
pipelines were created, each with different components and parameters. Pipeline definition
in verbose XML was greatly improved by the use of uimaFIT [OB09] (to define pipelines in
compact Java code) but ended up being problematic, as it requires some Java knowledge
and recompilation for each component or parameter change. To allow for a more agile
prototyping, especially by non-specialist end users, a pipeline scripting language was created.
It is described in Section 3.2.2.

Another concern was incremental annotation of large document corpus. For example, the
ability to run an initial pre-processing pipeline on several millions of documents and annotate
them again at a later time. The initial strategy was to store the documents on disk, and
overwrite them every time they would be incrementally annotated. Eventually, a CAS store
module was developed to provide a stable and scalable strategy for incremental annotation,
as described in Section 3.2.2. Finally, Section 3.2.3 presents two case studies illustrating

17A version of this chapter has been published as [Ric+13]
18UIMA stands for unstructured information management applications and is freely available at

http://uima.apache.org/
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Name Source Scope # forms

Age HBP age of organism, developmental stage 138

Sex HBP sex (male, female) and variants 10

Method HBP experimental methods in neuroscience 43

Organism HBP organisms used in neuroscience 121

Cell HBP cell, sub-cell and region 862

Ion channel Channelpedia [Ran+11] ion channels 868

Uniprot Uniprot [Bai+05] genes and proteins 143,757

Biolexicon Biolexicon [Tho+11] unified lexicon of biomedical terms 2.2 Mio

Verbs Biolexicon verbs extracted from the Biolexicon 5,038

Cell ontology OBO [Bar+05] cell types (prokaryotic to mammalian) 3,564

Disease ont. OBO [Osb+09] human disease ontology 24,613

Protein ont. OBO [Nat+11] protein-related entities 29,198

Brain region Neuronames [BD03] hierarchy of brain regions 8,211

Wordnet Wordnet [Fel10] general English 155,287

NIFSTD NIF [Ima+11; Bug+08] neuroscience ontology 16,896
Tab. 3.7: Lexica and ontologies used for lexical matching.

the scripting language and evaluating the performance of the CAS store against existing
serialization formats.

3.2.2 bluima Components
bluima contains several UIMA modules to read neuroscientific corpora, perform prepro-
cessing, create simple configuration files to run pipelines, and persist documents on the
disk.

UIMA Modules

bluima’s typesystem builds upon the typesystem from JulieLab [Hah+07], which was chosen typesystem

for its strong biomedical orientation and its clean architecture. bluima’s typesystem adds
neuroscientific annotations, like CellType, BrainRegion, etc.

bluima includes several collection readers for selected neuroscience corpora, like PubMed collection
readersXML dumps, PubMed Central NXML files, the BioNLP 2011 GENIA Event Extraction cor-

pus [Pyy+12], the Biocreative2 annotated corpus [Kra+08], the GENIA annotated cor-
pus [Kim+03], and the WhiteText brain regions corpus [Fre+09].

A PDF reader was developed to provide robust and precise text extraction from scien- PDF reader

tific articles in PDF format. The PDF reader is described in detail in Section 3.1.2 per-
forms content correction and cleanup, like dehyphenation, removal of ligatures, glyph
mapping correction, table detection, and removal of non-informative footers and head-
ers.

Preprocessing is performed as described in Section 3.1.3.

bluima uses UIMA’s ConceptMapper [Tan+10] to build lexical-based NERs based on several lexical-based
NERs
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Tool Advantages Disadvantages

UIMA GUI GUI minimalistic UI, can not reuse pipelines

XML descriptor typed (schema) very verbose

raw UIMA java API typed verbose, requires writing and compiling Java

uimaFIT compact, typed requires writing and compiling Java code
Tab. 3.8: Different approaches to writing and running UIMA pipelines.

neuroscientific lexica and ontologies (Table 3.7). These lexica and ontologies were either
developed in-house or were imported from existing sources. bluima wraps several machinemachine

learning-
based
NERs

learning-based NERs, like OSCAR4 [Jes+11] (chemicals, reactions), Linnaeus [Ger+10]
(species), BANNER [LG+08] (genes and proteins), and Gimli [Cam+13] (proteins). See
Section 2.3 for an overview of biomedical NERs.

Additionally, a protein NER was developed with the goal to reproduce state of the art resultsprotein NER

like BANNER and tightly integrate with other UIMA components. The NER was developed
with the ClearTK [Ogr+08] framework, that allows to reuse existing UIMA components,
while handling a lot of common operations like cross-validation and evaluation. It provides
a common interface and wrappers for popular machine learning libraries, so that one can
change models without changing much of the application code. ClearTK provides some
common feature extractors (like e.g. lowercase, hyphen, character N-gram), and allows
writing more specific ones. The NER uses a conditional random field model implemented
with the Mallet library. It was trained on the BioCreative2 corpus [Wil+07], containing
20,000 annotated sentences. The model has been evaluated using 10-fold cross-validation,
and achieves a competitive 80% F-score. The highest F-score for the BioCreative2 shared task
was 87%, but the system has not been published [And07].

Pipeline Scripting Language

There are several approaches19 to write and run UIMA pipelines (see Table 3.8). All
bluima components were initially written in Java with the uimaFIT library, that allows for
compact code. To improve the design and experimentation with UIMA pipelines, and enable
researchers without Java or UIMA knowledge to easily design and run such pipelines, a
minimalistic scripting (domain-specific) language was developed, allowing UIMA pipelines to
be configured with text files, in a human-readable format (Table 3.9). A pipeline script begins
with the definition of a collection reader (starting with cr:), followed by several annotation
engines (starting with ae:)20. Parameter specification starts with a space, followed by the
parameter name, a column and its value. The scripting language also supports embedding
of inline Python and Java code, reuse of a portion of a pipeline with include statements,
and variable substitution similar to shell scripts. Extensive documentation (in particular
snippets of scripts) is automatically generated for all components, using the JavaDoc and
the uimaFIT annotations. Eventually, the pipeline script language has been superseded by
the Ruta scripting language (see 3.3) that allows writing rules for information extraction.

19Other interesting solutions exist (e.g. IBM LanguageWare, Argo), but are not open source.
20If not package namespace is specified, bluima loads Readers and Annotator classes from the default

namespace.
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# collection reader configured with a list of files (provided as external params)
cr: FromFilelistReader
inputFile: $1

# processes the content of the PDFs
ae: ch.epfl.bbp.uima.pdf.cr.PdfCollectionAnnotator

# tokenization and lematization
ae: SentenceAnnotator
modelFile: $ROOT/modules/julielab_opennlp/models/sentence/PennBio.bin.gz

ae: TokenAnnotator
modelFile: $ROOT/modules/julielab_opennlp/models/token/Genia.bin.gz

ae: BlueBioLemmatizer

# lexical NERs, instantiated with some helper java code
ae_java: ch.epfl.bbp.uima.LexicaHelper.getConceptMapper("/bbp_onto/brainregion")
ae_java: ch.epfl.bbp.uima.LexicaHelper.getConceptMapper("/bams/bams")

# removes duplicate annotations and extracts collocated brainregion annotations
ae: DeduplicatorAnnotator
annotationClass: ch.epfl.bbp.uima.types.BrainRegionDictTerm

ae: ExtractBrainregionsCoocurrences
outputDirectory: $2

Tab. 3.9: Example of pipeline script for the extraction of brain regions mention co-
occurrences from PDF documents.

CAS Store

A CAS store was developed to persist annotated documents, resume their processing and
add new annotations to them. This CAS store was motivated by the common use case
of repetitively and incrementally processing the same documents with different UIMA
pipelines, where some pipeline steps are duplicated among the runs. For example, when
performing resource-intensive operations (like extracting the text from full-text PDF articles,
or performing syntactic parsing), one might want to perform these preliminary operations
once, store these results, and subsequently perform different experiments with different
UIMA modules and parameters. The CAS store thus allows to perform the preprocessing
only once, to then persist the annotated documents, and to perform the various experiments
in parallel.

MongoDB21 was selected as the datastore backend. MongoDB is a scalable, high-perfor-
mance, open-source, schema-free (NoSQL), document-oriented database. No schema is
required on the database side, since the UIMA typesystem acts as a schema, and data is
validated on-the-fly by the module. Every CAS is stored as a MongoDB document, along with
its annotations. UIMA annotations and their features are explicitly mapped to MongoDB
fields, using a simple and declarative language. For example, a Protein annotation is
mapped to a prot field in MongoDB. The mappings are used when persisting and loading
from the database. As of this writing, annotations are declared in Java source files. In future
versions, we plan to store mappings directly in MongoDB to improve flexibility. Persistence
of complex typesystem has not been implemented yet, but could be easily added in the
future.

Currently, the following UIMA components are available for the CAS store:

21http://www.mongodb.org/
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Write [s] Write Size [MB]
XCAS 4014 41718
XMI 4479 32236
ZIPXMI 5033 4677
MongoDB 3281 16724

Read [s] Incremental [s]
XCAS 3407 31.7
XMI 3090 42.2
ZIPXMI 2790 43.6
MongoDB 730 22.5

Fig. 3.2: Performance evaluation of MongoDB CAS Store against 3 other serialization
formats.

• MongoCollectionReader reads CAS from a MongoDB collection. Optionally, a (filter)
query can be specified, e.g.

– {pmid: 17} to query a specific PubMed document;
– {pmid:{$in:[12,17]}} to query a list of PubMed documents;
– {pmid:{ $gt: 8, $lt: 11 }} for a range of documents;
– {my_db_field:{exists:true}} for the existence of a field.

• RegexMongoCollectionReader is similar to MongoCollectionReader but allows specifying
a query with a regular expression on a specific field;

• MongoWriter persists new UIMA CASes into MongoDB documents;
• MongoUpdateWriter persists new annotations into an existing document;
• MongoCollectionRemover removes selected annotations in a MongoDB collection.

With the above components, it is possible within a single pipeline to read an existing col-
lection of annotated documents, perform some further processing, add more annotations, and
store theses annotations back into the same MongoDB documents.

3.2.3 Case Study and Evaluation

A first experiment to illustrate the scripting language was conducted on a large dataset of
full-text biomedical articles. A second simulated experiment evaluates the performance of the
MongoDB CAS store against existing serialization formats. Finally, we describe an experiment
to extract measures and units from biomedical articles.

Scripting and Scale-Out

bluima was used to extract brain region mention co-occurrences from scientific articles
in PDF. The pipeline script (Table 3.9) was created and tested on a development laptop.
Scale-out was performed on a 12-node (144-core) cluster managed by SLURM (Simple Linux
Utility for Resource Management). The 383,795 PDFs were partitioned in 767 jobs. Each job
was instantiated with the same pipeline script, using different input and output parameters.
The processing completed in 809 minutes (� 8 PDF/s).
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Tab. 3.10: Examples of scientific measures and their normalized form.

Raw Text Normalized value Normalized unit
41-55 nanomole [41-55] ·10−9 M
5,5 mm per s 5.5 ·10−3 m/s
7.16 +/- 0.09 nm [7.07-7.25] ·10−6 m
five to nine kilograms [5-9] kg

MongoDB CAS Store

The MongoDB CAS store (MCS) has been evaluated against 3 other available serialization
formats (XCAS, XMI and ZIPXMI). For each, 3 settings were evaluated: writes (CASes are
persisted to disk), reads (CASes are loaded from their persisted states), and incremental
(CASes are first read from their persisted states, then further processed, and finally persisted
again to disk). Writes and reads were performed on a random sample of 500,000 PubMed
abstracts and annotated with all available bluima NERs. Incremental annotation was
performed on a random sample of 5,000 PubMed abstracts and incrementally annotated
with the Stopwords annotator. Processing time and disk space was measured on a commodity
laptop (4 cores, 8GB RAM).

In terms of speed, the MCS significantly outperforms the other formats, especially for reads
(Figure 3.2). The MCS disk size is significantly smaller than XCAS and XMI formats, but
almost 4 times larger than the compressed ZIPXMI format. The incremental annotation is
significantly faster with MongoDB, and does not require duplicating or overwriting files,
like with the other serialization formats. The MCS could be scaled up in a cluster setup, or
using solid states drives (SSDs). Writes could probably be improved by turning MongoDB’s
"safe mode" option off. Furthermore, by adding indexes, the MCS can act as a searchable
annotation database.

Large-scale extraction of scientific measures and units

An analytics pipeline was developed to extract measures from scientific articles. In our
context, measures are defined as numerical values combined with units, e.g. 35 nM, two volts
or 102.3 ± 15 millimeters. They characterize experimental results or experimental conditions.
The former are part of the results section of a paper, while the later are part of the materials
and methods section. Extracting and normalizing them is valuable for scientists [PM09], e.g.
to incorporate them as model parameters in a brain simulation. Table 3.10 illustrates several
examples of measures found in scientific articles, together with the normalized form. The
normalized form is composed by a normalized value (where unit prefixes like milli have been
removed and factored in the value) and the unit normalized to the International System
of Units (SI). Measures are first identified using UIMA’s RegexAnnotator22 with a complex,
yet compact and readable set of regular expressions. A wide array of units is supported, in
particular SI prefixes, SI units and derived units. In addition, written numbers as well as
exotic units23 found in scientific papers are supported. Once measures are identified, they
are normalized in order to facilitate the comparison between them. Value normalization
is performed with UIMA’s RegexAnnotator. Units normalization relies on QUDT [@HK14],

22uima.apache.org/d/uima-addons-current/RegularExpressionAnnotator/
23E.g. zeptomole (10−21 mole) and yoctoseconds (10−24 seconds).
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an ontology created at NASA to handle units and measures. QUDT allows to determine
whether two quantities are commensurate, and if so, how to convert from one system to
another. For example, it is possible to convert 250 metric tons into grams, or 0.1 nanomolar
into moles per cubic meter. QUDT was extended to improve its coverage for biomedical
units. The measure NER was evaluated against a corpus of 500 full-text articles chosen at
random from the PMC open subset. Tokens that contained a digit, but were not covered by
the extractor were manually evaluated. Most of these were molecules or proteins. In total,
the corpus contained 12,975 measures. 650 measures could not be extracted, resulting in
a recall of 94.99%. The text mining system was deployed on 1,066,885 full-text articles
from the PubMed Central Open Access Subset24 and on over 23 million abstracts from the
PubMed database. 859,428,656 mentions of numerical values were identified, out of which
172,199,175 mentions contained a unit.

24http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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3.3 Agile text mining with Sherlok
The successful development of an intelligent text mining application requires the col-
laboration of two main stakeholders: subject matter experts and text miners. In or-
der to improve that collaboration, we introduced earlier a new methodology, agile text agile text

miningmining (Section 1.3.2). Agile text mining is characterized by short development cycles,
frequent tasks redefinition and continuous performance monitoring through integration
tests.

This section introduces Sherlok, a system supporting the development of agile text mining ap- Sherlok

plications (ATMA). The resulting code is publicly available at http://sherlok.io

Sherlok is designed to support the lightweight development of ATMA by facilitating the
collaboration between domain experts and text miners. In Sherlok, each ATMA is modeled as
an analysis pipeline. A Sherlok pipeline contains the following components: tests, annotation pipeline

engines, resources and scripts (see Table 3.11). It specifies all steps to perform a text mining
analysis (e.g. split words, remove determinants, annotate locations, etc.). For example, one
pipeline might perform text preprocessing followed by named entity recognition (NER) of
people and places, while another pipeline might extract mentions of neurons in scientific
text. A pipeline is expected to contain several tests consisting of some sample text and tests

the expected analysis output. Tests enable continuous monitoring of a pipeline’s validity
and ensure that subsequent development of a pipeline does not break previous progress.
Annotation engines are UIMA-based components that perform a single text analysis step Annotation

enginesin a pipeline, for example part-of-speech tagging or sentiment analysis. Annotation en-
gines are a way to conveniently encapsulate complex models (e.g. a machine learning
model) into independent, self-contained components. They can be separately configured for
each pipeline (e.g. by specifying a different tag-set for part-of-speech) and shared across
pipelines.

All pipeline components are connected together using a high-level scripting language.
Sherlok uses the Ruta scripting language [Klu+14a; Klu+09] to orchestrate the different Ruta scripting

languageannotation engines, resources and perform rule-based transformations. The Ruta language
and its matching paradigm enable the rapid specification of comprehensible rules for knowl-
edge extraction. They allow compact representation, while still providing a high level of
expressiveness. Ruta rules are declared in plain text files and are composed of conditions and
actions. For example, the rule "(red|blue)" -> Color; contains a condition (the presence
of the text “red” or “blue”) triggering an action (the creation of a Color annotation). The

Tab. 3.11: The different components of a Sherlok ATMA

Component Requirements Format

tests simple to write, continuous testing JSON

annotation engine composable, scalable, versionable UIMA

local resource editable txt, obo

remote resource versionable git, http

Ruta scripts expressive, compact, readable, extensible, scal-
able, versionable

Ruta
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Fig. 3.3: Example script to illustrate the syntax of the Ruta language. The script matches
entities representing units (using an ontology), proteins (using a machine-learning
model) and floating-point numbers (using a regular expression). Finally, it identi-
fies simple constructs of protein concentrations.

// declares an annotation for units
// (e.g. ’millivolts’ or ’moles per liter’)
DECLARE Unit(STRING iso);
// Matches unit instances from an ontology
ONTO("$units/units_ontology.obo", Unit, "iso")};

// apply a machine-learning model for protein NER
ENGINE ners.Proteins;
EXEC(Proteins);

// match simple instances of floating-point numbers
DECLARE RealNumber;
"[-+]?[0-9]*.?[0-9]+" -> RealNumber;

// create annotations for protein concentrations
RealNumber Unit "of"? Protein {

-> MARK(ProteinConcentration, 1, 4)

exemplary script in Figure 3.3 allows matching simple occurrences of protein concentrations
like “0.5 g of GST” or “1.5 mg/ml bovine serum albumin”.

Sherlok provides an efficient system to manage local and remote resources. Most TMA dependlocal and
remote
resources

on various resources like code libraries, parameters of machine learning models or ontologies.
It is essential that these resources are decoupled from the text mining solution itself. They
are often large in size and not necessarily edited and updated by the same person that
develops and maintains the TMA. Thus, they require careful and efficient management.
Sherlok transparently exposes local resources stored on disk through its RESTful API [FT02],
so that they can be uploaded, edited and deleted. Remote resources can be seamlessly
integrated in a pipeline by specifying their remote location, using various protocols like
“http” and “git”. Sherlok will download and maintain a local copy that can be synchronized
with the remote resource if necessary. For example, a pipeline can be configured to include a
remote dictionary of brain regions from a git repository. The first time the pipeline is loaded,
Sherlok will download the remote dictionary and cache it locally. If the dictionary is edited
on the remote repository, the local copy can be flushed, and the updated dictionary will be
downloaded afresh the next time the pipeline is used.

Sherlok natively supports the OBO ontology format25 and introduces an enhanced versionOBO ontology
format called ROBO to facilitate the creation of synonym-rich ontologies. The OBO format is

compatible with other ontology formats like OWL and is a lightweight format to specify
ontologies. The OBO format attempts to achieve the following goals: human readability,
ease of parsing, extensibility and minimal redundancy. A large amount of ontologies for the
biomedical domain are already available in the OBO format through the OBO foundry26, a
suite of orthogonal interoperable reference ontologies. Many ontologies and taxonomies
are publicly available. However, most of these ontologies were designed to structure
and organize a specific domain of interest, not to serve as resources for TMA. Typically,

25OBO format specification at http://owlcollab.github.io/oboformat/doc/obo-syntax.html
26http://obofoundry.org/
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Tab. 3.12: Comparison of OBO (left) and ROBO (right) ontology formats for the same entry.
In this example, the ROBO format allows to compactly define the 6 variants of
“layer 2” using a regular expression layer[ -](II|ii|2), instead of having to
list them all.

OBO format ROBO format
[Term]
id: LAYER:001
name: layer 2
synonym: "layer-2"
synonym: "layer 2"
synonym: "layer-II"
synonym: "layer II"
synonym: "layer-ii"
synonym: "layer ii"

[Term]
id: LAYER:001
name: layer 2
rsynonym: "layer[ -](II|ii|2)"

they lack appropriate synonyms, resulting in low recall. To facilitate the management of
synonyms in an ontology, Sherlok supports an enhanced version of the OBO format called
ROBO (for regular-expression OBO)27. ROBO allows specifying synonyms through compact ROBO

regular expressions, thus improving the expressiveness and compactness of the ontology.
For example, all 6 synonyms for the “layer two” of the neocortex (“layer-2”, “layer 2”,
“layer-II”, “layer II”, “layer-ii”, “layer ii”) can be defined using the regular expression layer[
-](II|ii|2) (see Table 3.12).

Sherlok allows frictionless horizontal scale out. For local development and testing, it can be scale out

setup on a single local server with minimal requirements (a Java runtime engine). Sherlok
come with several examples and tutorial pipeline to get started with. Once a pipeline
has been successfully developed and tested on a small evaluation corpus, Sherlok can be
deployed in a distributed setup where one Sherlok instance acts as the “master” node and
all other deployed Sherlok instances (“slaves”) pull their configurations (pipelines, engines,
resources) from the master instance (see Fig. 3.4). The workload is distributed on the
slaves through a load balancer. Slaves are dynamically added or removed, depending on
the workload. This deployment scheme enables Sherlok to seamlessly and transparently
run text mining at virtually any scale. The exact same system is used for local small-scale
development and distributed scale out.

To visualize and analyze results, Sherlok can be integrated with Elasticsearch28 by enhancing Elasticsearch
integrationits index with semantic information29. That is, text mining is applied on every document

being indexed and on every incoming search query. The extracted semantic information can
then be used to improve the relevance of search results. Sherlok seamlessly integrates with
Elasticsearch, and is exposed as a custom analyzer. From the point of view of the Elasticsearch
developer, integration boils down to installing the Sherlok plugin on every Elasticsearch node,
and configuring the Sherlok analyzer. This configuration is done in Elasticsearch and includes
the specification of the pipeline script to be used, and the mapping between the information
extracted by Sherlok and the field stored in Elasticsearch.

27https://github.com/sherlok/ruta-ontologies
28Elasticsearch is a popular distributed, open source search engine, designed for horizontal scalability

and reliability
29https://github.com/sherlok/sherlastic
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Fig. 3.4: Deployment architecture for a Sherlok-based ATMA. Multiple slave Sherlok in-
stances depend on a master instance that holds all configuration. Slave instances
can be horizontally scaled to dynamically accommodate the workload.
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Reader’s guide (Section 1.4 p. 12).

Chapter 4 presents the experiments conducted during4.1
topic models this thesis. The first section is dedicated to topic mod-

els (4.1), a type of unsupervised machine learning
models for discovering the hidden thematic structure
in document collections. Because they are unsuper-
vised, they do not require annotated corpora that are
often difficult and costly to acquire. We evaluate sev-
eral existing libraries for large-scale topic modeling
(4.1.2) and train a model on a large corpus (4.1.3).
We then measure the correlation between the unsu-
pervisingly learned topics and the manually created
MeSH descriptors (4.1.4). Finally, we leverage topic
models to generate semantic profiles of several BBP
researchers through the articles they read (4.1.5).

The second section (4.2) present text-mining (TM) models to extract and aggregate brain4.2
brain
connectivity
extraction

regions connectivity results from a large corpus of 8 billion words. Models are evaluated
against in-vivo connectivity data from the Allen Brain Atlas (ABA) with an estimated pre-
cision of 78%. The resulting database contains over 4 million brain region mentions, and
over 100,000 potential brain region connections. We then evaluate these TM models to
automatically suggest targets from the literature for tractography studies. We perform an
extensive manual review of the literature to identify the projections of three selected brain
structures and compare it with the TM results. We run probabilistic tractography on one
structure (nucleus accumbens) and compare the output with the TM suggestions and the
literature review. Overall, TM models find three times as many targets as two man-weeks of
curation. The overall efficiency of the TM against manual literature review in our study is
98% recall (at 36% precision), meaning that over all the targets for the three selected seeds,
only one target has been missed by TM.

The last section (4.3) introduces neuroNER, an NLP model to perform automated identi-4.3
extraction of
neurons and
their
properties

fication and normalization of neuron type mentions in the neuroscientific literature. The
model proceeds by decomposing a neuron mention into its specific compositional features.
For example, the mention “thalamic CALB1-expressing neurons” is decomposed into two
properties: location (“thalamus”) and the genes expressed (“Calbindin”). This decompo-
sition allows comparing neurons at a more semantic level, e.g. the mention “calbindin
D-28k-positive neurons in the reticular nucleus of the thalamus” is equivalent to the previous
example, since “calbindin D-28k” can be considered a synonym for Calbindin and the “retic-
ular nucleus of the thalamus” is a subregion of the thalamus. This kind of decomposition
and normalization is essential for cross-laboratory studies, since neuroscience currently lacks
consistent terminologies or nomenclatures for describing neuron types. To demonstrate the
utility of our approach, we also apply our method towards cross-comparing the NeuroLex
and Human Brain Project (BBP) cell type ontologies.
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4.1 Topic models1

„Words do not have meanings – meanings have words.

— Geoffrey Williams, on Saussure’s theory
[Wil03]

Imagine it would be possible to search for documents based on their underlying themes.
Instead of searching for documents by keywords only, it would be possible to first define
the theme that we are interested in, and then find the documents that are related to this
theme [Ble12]. Such are the goals of topic modeling. Topic models are unsupervised Bayesian topic models

models for discovering the hidden thematic structure in document collections. They enable
semantic clustering and semantic classification of large document collections. Given a large
text corpus, a topic model is trained to learn the dominant themes present in that particular
corpus. Because they are unsupervised, they do not require annotated corpora that are often
difficult and costly to acquire.

Topics Documents Topic proportions 
and assignments 

difference 
pattern 
type 
⁄ 

current 
potential 
calcium 
⁄ 

neurons 
synaptic 
glutamate 
⁄ 

amino 
acid 
peptide 
⁄ 

Fig. 4.1: The intuitions behind latent Dirichlet allocation, illustrated on a single PubMed
abstract with PMID 128 [Son+75]; Figure adapted from [Ble12]). Four “topics” are
illustrated, each representing distributions over words (far right). Each document
is a mixture of corpus-wide topics. Each word is drawn from one of the topics. In
this example, the third topic (green) is has a higher probability in this document
(histogram on the right). The first word of the document, “inhibitory”, is drawn
from that green topic. As can be seen, the four topics that are predominant in that
abstract accurately summarize the main themes of that abstract. See Section 4.1.1
for an in-depth discussion of these results.

Figure 4.1 illustrates the application of latent Dirichlet allocation (LDA), a kind of topic illustration

1Parts of this section have been published by students that I co-supervised during my PhD. In particular,
subsections 4.1.1, 4.1.2 and 4.1.3 have been published in part in [Zim13] and subsection 4.1.4 in
part in [Cob14].
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|Z|

θd wi,d

β ϕz

Fig. 4.2: LDA as a graphical model [Cha13]. The circles with zi,d and wi,d denote the topic
and the term respectively of the i word in document d.

model, on a single PubMed abstract with PMID 128 [Son+75]. A topic model is trained on
a large corpus of PubMed abstracts, with the constraint to contain 200 topics. The trained
topic model is then applied on the aforementioned PubMed abstract. Each document is
modeled as a mixture of corpus-wide topics. Figure 4.1, right presents four topics that
were predominant in the chosen illustrative abstract. The first topic (yellow) is related to
amino acids and peptides, while the third topic (green) is related to neurons, synapses and
neurotransmitters. In the model, each word from the abstract is drawn from one of the
topics. For example, the neurotransmitter “GABA” (bottom left) belongs to the third topic
(green). This example illustrates the ability of topic model to grasp the underlying themes of
a document.

Topic models enable topic analysis of document collections [GS04]. Other purposes mightapplications

include feature extraction to improve NER in scientific papers [LW09] or automatic construc-
tion of taxonomies [Bak+12a; Wan+10a].

In this section, we briefly introduce topic models (4.1.1). Since our goal is to train a topic
model on very large corpora, we then evaluate several existing libraries for topic modeling
(4.1.2) and attempt to train a model on a very large corpus of over 600,000 full-text articles
related to neuroscience (4.1.3). As a further experiment, we leverage the MeSH (medical
subject headings) information from PubMed articles and compute a correlation measure
between the unsupervisingly learned topics and the manually created MeSH descriptors
(4.1.4). We finally apply topic modeling for generating semantic profiles of several BBP
researchers through the articles they read (4.1.5).

4.1.1 Latent Dirichlet Allocation (LDA)
This paragraph gives a very brief introduction to topic models, more specifically Latent Dirich-
let Allocation (LDA, [Ble+03]). For a detailed description see [Cha13].

A topic is a probability distribution on some vocabulary (set of words). Topic models aretopic

generative probabilistic models describing a random process creating documents, that is,
for each new word in the document, we choose a topic z and then choose the word w

according to a probability distribution of the topic ϕz. There are different ways of choosing
a topic and modeling ϕz. In the case of LDA we choose for each document a probability
distribution θz according to a Dirichlet distribution (prior) parametrized by a hyper-parameter
�α. Similarly, for a given topic, the distribution of terms are chosen according to a Dirichlet
distribution parametrized by the hyper-parameter �β. Figure 4.2 summarizes LDA as a
graphical model.
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Topic 40 Topic 159 Topic 160 Topic 167 Topic 200

nerve -2.7 amino -3.1 current -3.8 neurons -3.8 differences -3.5

spinal -3.0 acid -3.4 potential -4.0 synaptic -3.9 two -3.9

cord -3.3 peptide -3.5 Ca2+ -4.0 glutamate -4.0 patterns -3.9

nerves -4.1 peptides -3.6 membrane -4.2 receptors -4.1 pattern -4.1

peripheral -4.2 acids -3.9 calcium -4.4 receptor -4.1 types -4.3

sensory -4.3 activity -4.3 mV -4.4 GABA -4.2 each -4.3

motor -4.4 residues -4.3 currents -4.5 NMDA -4.3 distribution -4.4

injury -4.4 protease -4.4 mM -4.6 hippocampal -4.3 similar -4.5

dorsal -4.6 protein -4.5 action -4.6 neuronal -4.3 three -4.6

axons -4.7 enzyme -4.6 K+ -4.6 acid -4.6 found -4.6
Tab. 4.1: The 10 most frequent terms for the most probable topics in the abstract PMID

128 [Son+75], along with their importance (log p(w|z)). The first significant
topic (40) consists of terms like nerve, spinal and cord that accurately captures the
methods of this article. Topic 167 is about neuromodulation and contains several
neurotransmitters (glutamate, GABA, NMDA) and terms related to this theme.

Training an LDA model on a corpus means to estimate ϕz for all topics giving rise to a model
trainingword-by-topics matrix Φ such as to maximize the likelihood of the entire model. Although

the models being mathematically relatively simple, it is a major challenge to accurately
estimate its parameters, since many involved quantities, typically marginal probabilities,
are intractable to compute exactly, thus approximations have to be made. There exist two
basic approaches how to estimate parameters for this type of models. One is based on Gibbs
sampling, which is in the realm of Monte Carlo methods. The other approach known as
Variational Bayes is a formulation of the training as optimization problem. It is also possible
to estimate the hyper-parameters from the training corpus, which is implemented by a few
implementations considered. An additional challenge is that, due to the huge targeted
amount of data to be processed, implementations of estimation procedures need to be highly
optimized in order to scale.

We now conduct a more detailed evaluation of the PubMed abstract with PMID 128 [Son+75] topic model
examplefrom Figure 4.1. The LDA model was trained on all PubMed abstracts with 200 topics and

500 iterations of Gibbs sampling2. As can be seen in Figure 4.3 top, this abstract studies the
inhibitory post-synaptic effect of several neuromodulators in the frog spinal cord. Figure 4.3
bottom shows the preprocessed document, annotated with the most probable topic number
for each word as well as the original abstract. Figure 4.4 shows the inferred distribution of
topics, where 5 distinct peaks are apparent3. The first peak corresponds to topic 40, whose
most frequent terms are nerve, spinal and cord. This topic accurately captures the fact that
experiments in this article were performed on the spinal cord. Topic 167 has the highest
probability, and its most frequent terms are “neurons”, “synaptic” and “glutamate”. Table 4.1
gives the most frequent terms for the 5 most common topics inferred for this document.
As one can see, the LDA model was able to capture the underlying semantic themes of the
abstract.

2Training took 2 days and 10h with 10 threads on a single machine.
3A high topic probability means this topic is predominant in that document.
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The actions of glycine, GABA, alpha-alanine, beta-alanine and taurine were studied by
intracellular recordings from lumbar motoneurons of the isolated spinal cord of the
frog. All amino acids tested produced a reduction in the amplitude of postsynaptic
potentials, a blockade of the antidromic action potential and an increase of membrane
conductance. Furthermore, membrane polarizations occurred, which were always
in the same direction as the IPSP. All these effects indicate a postsynaptic inhibitory
action of these amino acids. When the relative strength of different amino acids was
compared, taurine had the strongest inhibitory potency, followed by beta-alanine, alpha-
alanine, GABA and glycine. Topically applied strychnine and picrotoxin induced different
changes of post-synaptic potentials, indicating that distinct inhibitory systems might
be influenced by these two convulsants. Interactions with amino acids showed that
picrotoxin seletively diminished the postsymaptic actions of GABA, while strychnine
reduced the effects of taurine, glycine, alpha- and beta-alanine. But differences in the
susceptibility of these amino acid actions to strychnine could be detected: the action
of taurine was more sensitively blocked by strychnine compared with glycine, alpha-
and beta-alanine. With regard to these results the importance of taurine and GABA as
transmitters of postsynaptic inhibition on motoneurons in the spinal cord of the frog is
discussed.

actions167 glycine167 beta-alanine167 taurine167 studied160 intracellular160
recordings167 lumbar40 motoneurons40 isolated160 spinal40 cord40 frog160
amino159 acids159 tested167 produced160 reduction152 amplitude160 postsynaptic167
potentials160 blockade167 antidromic81 action160 potential160 increase167 membrane160
conductance160 furthermore159 membrane160 polarizations160 occurred160 always200
direction160 effects167 indicate167 postsynaptic167 inhibitory167 action160 amino159
acids159 relative200 strength167 amino159 acids159 was200 compared200 taurine167
strongest200 inhibitory167 potency159 followed160 beta-alanine167 glycine167 topically40
applied160 strychnine167 picrotoxin167 induced167 changes152 post-synaptic167
potentials160 indicating167 distinct200 inhibitory167 systems167 might167 be200
influenced200 two200 convulsants167 interactions167 amino159 acids159 showed200
picrotoxin167 diminished167 actions167 strychnine167 reduced167 effects167 taurine167
glycine167 alpha-159 beta-alanine167 differences200 susceptibility167 amino159 acid159
actions167 strychnine167 be200 detected159 action160 taurine167 was200 sensitively200
blocked167 strychnine167 compared200 glycine167 alpha-159 beta-alanine167 regard200
results167 importance200 taurine167 transmitters167 postsynaptic167 inhibition167
motoneurons40 spinal40 cord40 frog160 discussed200

Fig. 4.3: Top: Original abstract of PubMed abstract with PMID 128 [Son+75] whose title
is "Inhibitory postsynaptic actions of taurine, GABA and other amino acids on
motoneurons of the isolated frog spinal cord". Bottom: Pre-processed abstract
annotated with the most likely topic number for each term.
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Fig. 4.4: Inferred topic distribution for abstract PMID 128 [Son+75]. The 5 most significant
topics (probability larger than 0.05) are 40, 159, 160, 167 and 200. Topic 167
has the highest probability and its most frequent terms are neurons, synaptic and
glutamate. See Table 4.1 for the most frequent terms of theses topics.
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4.1.2 Evaluated LDA Libraries
Several existing implementations of LDA were evaluated. Supplementary table 4.2 shows a
summary of the seven LDA implementations considered. From this list, DCA, Mallet, PLDA
and Vowpal Wabbit were selected and thoroughly tested. Different types of benchmarks wereevaluation

criteria performed, attempting to answer the following questions:

1. Accuracy: Do the implementations compute models of comparable quality with the
same input data? In this first set, we fixed the hyper-parameters (since not all tested
implementations support hyper-parameter estimation) and ran every software for
a sufficiently long time, i.e. until the estimated likelihood printed by the software
converges.

2. Quality: How well can each implementation do in in principle using the given training
data? This time, we allowed for optimization of hyper-parameters and other options
specific to each implementation to enhance the quality.

3. Efficiency: How fast do the implementations compute the models? We assess the
approximate computing time needed until the model has converged.

4. Scalability: What are the speed-ups, if we add more processors?

The evaluation was run on a set of approximately 100,000 PubMed abstracts (with 100evaluation

topics), preprocessed as described in section 3.1.3. We performed 10-fold cross-validation
and calculated the held-out likelihood using the Mallet implementation4. The final score
used is the median. If not stated otherwise, the tests were run on a cluster5 with a single
thread and a sufficient amount of RAM. After each termination of the training of a fold, we
estimated the likelihood on the held-out part. We ran each configuration sufficiently long
to have converged. Figure 4.5 summarizes the estimated likelihoods for each configuration
tested on the PubMed corpus. We now summarize general observations for the selected
implementations, also considering experiments on large corpora such as the complete
PubMed abstracts corpus as well as on a subset of the PubMed Neuroscience full-text
corpus (see Section 3.1 for corpus statistics). The evaluated implementations were the
followings:

• DCA (Discrete Component Analysis) [Bun09a] was selected for evaluation since itDCA

is implemented in C along with some support for multi-threading and therefore
promised to be efficient. Also, it is the only software implementing an unbiased
estimation method for the held-out likelihood [Bun09c]. DCA was the most mature
implementation considered as well as the most efficient in terms of resource usage.
Especially the memory handling of DCA is extremely optimized and efficient.

• Mallet [@McC02] is a popular software package in the NLP and machine learningMallet

community not only used for topic modeling but also for training classifiers and
taggers. Mallet supports multi-threaded training of topic models and promised to be a
valuable candidate. However, memory problems were discovered during evaluation
with large corpora (with an order of magnitude of 109 tokens), as input data and
intermediate results cannot be split in block and saved on disk during training.

• We also evaluated PLDA [Wan+09a] as it was the only true parallel implementationPLDA

of Gibbs sampling. However, PLDA has not been optimized for handling large models

4For a complete discussion about likelihood estimation of held-out data, see Chapter 5.2. of [Zim13].
5Intel Xeon X5690 2x6 cores @ 3.47GHz per node, 22GB of maximum usable RAM per node, operated

by a Red Hat Linux 6.3
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and seems to be more of a proof of concept for a parallel implementation of Gibbs
sampling. Additionally, it performed poorly in terms of held-out likelihood (see Figure
4.5).

• Vowpal Wabbit [@Hof] was selected because of its implementation of an onlineVowpal
Wabbit algorithm to train LDA models [Hof+10]. An online deployment has the advantage

that if new documents arrive, they can directly be included into the model and it
is not needed to retrain an entire model. The LDA training in Vowpal Wabbit is a
re-implementation in C++ of the original Online LDA python scripts [Hof+10]. As
can be deduced from the likelihood scores in Figure 4.5 the LDA implementation in
Vowpal Wabbit performs systematically worse in terms of held-out likelihood, the
source of this remaining unknown.

• Implementations based on the MapReduce paradigm were also considered, i.e. Hadoop-MapReduce
implementa-
tions

based implementations. An implementation is Mr. LDA (Map Reduce LDA). Preliminary
tests on a small corpus6 showed that very large overhead is generated and training a
topic model took significantly longer than other implementations. Similarly, Hadoop
LDA [@Had] did not perform satisfactory. An experiment was run on PubMed ab-
stracts with 100 topics. It took 29 hours to complete 200 iterations of Gibbs sampling
on 12 machines which have 2 physical cores and 7.5 GB of RAM, which uses com-
puting resources in order of magnitudes larger than other implementations. The two
above implementations failed to deliver sufficient performance and evaluation was
not carried on.

4.1.3 Large scale training on full-text PubMed Neuroscience
Corpus

An LDA model was trained on the PubMed neuroscience full-text corpus (see Section 3.1.4).issues with
full-text
corpus

Difficulties were experienced as the learning scores printed by DCA behaved erratically and
did not display the expected smooth convergence curve (Figure 4.6). A first hypothesis is
that the features extracted from the full-texts are not specific enough to find clear topics.
If we look at topics as co-occurrences of terms, then this means, that the relevant co-
occurrences are getting lost in the noise of general English, i.e. most of the terms occur in
all the documents and only relatively few terms appear in a subset of documents only. This
implies that training is quickly finished and the learning score fluctuates around some value.
However, this does not explain the strong and in some case very irregular fluctuations of the
learning score as in Figure 4.6 right. Another hypothesis is an implementation error in the
DCA option necessary to split data-structures created during training into blocks when using
a very large corpus. An experiment on the PubMed abstracts corpus, where we explicitly
activated that option did not reveal any problems7.

On the other hand, training on the PubMed abstracts corpus works relatively well, i.e. thesuccess with
abstracts
corpus

learning scores converge smoothly. This is due to the fact that abstracts are some sort of
manual “feature selection” of the entire document where key terms are densely grouped
together and are much less "polluted" by general terms.

620 Newsgroups corpus, containing 20’000 newsgroups messages chosen from 20 different news-
groups.

7However, this does not completely rule out the possibility of a bug in the software.
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Fig. 4.5: Comparisons of held-out likelihoods (lower is better) on a subset of 100K abstracts
from PubMed. This experiment assesses the accuracy of each implementation by
evaluating model quality, given the same input data. Likelihoods were estimated
using 10-fold cross-validation. The vertical bar represent a 95% confidence interval
for the median. DCA and Mallet have similar performances but DCA seems to
be slightly better. PLDA and Vowpal Wabbit (VW) behave worse as they do not
optimize the hyper-parameters. Strikingly, Vowpal Wabbit performs even worse
compared to PLDA with the same hyper-parameters.
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Fig. 4.6: Training convergence plots on PubMed abstracts (left) versus PubMed Neuro-
science full-text corpus (right). Training LDA on the full-text corpus does not
display the expected smooth convergence curve. Potential explanations are imple-
mentation errors or the fact that that features extracted from the full-texts are not
specific enough to find clear topics.
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This hypothesis could be tested by applying a refined preprocessing and thus improving the
quality of the raw texts. For example, bibliographies, citations and perhaps also tables could
be removed (see Section 3.1.2). However, it is not clear whether this would fundamentally
change the results as many of the artifacts such as citations would get removed anyways by
some form of frequency filtering. A simpler and probably more effective way to improve the
LDA models would be to massively expand the stop word list with most frequent terms in the
topic representing general terms. Many terms occurring in all documents are removed and
terms with more discriminating power remain this way. Another approach could be to only
extract chemical components and biological entities such as proteins, genes and neurotrans-
mitters. Also there, a few entities appear in many of the documents, however, many entities
should be very specific to some concept, i.e. the co-occurrence of a few key terms should be
sufficient to characterize a research subject. Finally, only parts of a publication could be con-
sidered, such as abstracts, discussion sections and conclusions. This way, many less features
are selected from a document, which leads to faster training.

Following the above experiments, it was decided not to further attempt the training of topic
models on the full-text corpus and focus instead on exploiting the results from topic models
trained on all PubMed abstract. With over 2 billion words, the PubMed abstracts corpus is
by itself a substantial body of literature.

4.1.4 Correlation with Medical Subject Headings
(MeSH)
Medical Subject Headings MeSH is a comprehensive medical vocabulary managed by the
United States National Library of Medicine. It consists of descriptors arranged in a hier-
archical structure and is primarily used for indexing journal articles and books in the life
sciences. As any descriptor has a list of similar terms, it can also serve as a thesaurus to
facilitate information retrieval. The MeSH vocabulary is continually revised and updated by
the Medical Subject Headings Section staff from the Library of Medicine. We offer a short
introduction to the MeSH structure and its use in the PubMed database in the appendix
(Section 6.1).

In this section, we apply standard topic modeling to a corpus tightly related to neuroscience.
We show that even such a small corpus (100,000 documents) can be used to train a topic
model and deliver good results. We subsequently leverage the MeSH descriptors assigned to
PubMed abstracts to calculate a correlation measure between topics and MeSH descriptors
with promising results.

The generated topic model and correlation matrix could be used for various practical tasks;applications

we enlist some of them:

• Descriptor prediction for a document d could be performed by building a ranking
system using p(m|d).

• Prediction of major descriptors for a document d with a given set of descriptors M(d)
could be done in a similar fashion.

• New relations within the MeSH hierarchy could be retrieved using information mea-
sures such as the symmetric KL divergence between descriptors.

Some of these applications were researched by [New+09] on a smaller corpus.
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Correlation

The probability of cooccurrence of a MeSH descriptor and a topic on the corpus is given by

p(m, z) =
∑

d∈C
p(m, z|d)p(d)

where d is a document, C is the corpus, z is a topic and m is a MeSH descriptor. We
define p(m|d) = 1 when descriptor m is present in document d and 0 otherwise. Under the
assumption that z ⊥⊥ m | d and that p(d) = 1

|C| we obtain:

p(m, z) = 1
|C|

∑

d∈D(m)

p(z|d) (4.1)

where D(m) is the set of documents where m is present. We use this probability to generate a
so-called correlation matrix between topics and MeSH descriptors.8

Results

The corpus used in this section is composed of 100,000 PubMed abstracts related to Neuro-
science; every article has at least one MeSH descriptor under the category “Nervous System”.
The corpus was preprocessed using bluima (see Section 3.2).

We generated a correlation matrix using all descriptors and all topics (see Figure 4.7). Rows correlation
matrix(MeSH descriptors) and columns (topics) on the correlation matrix are reordered so as to

reveal hidden structure in the data9. We choose to maximize the values on the diagonal of
the matrix to set the first columns and rows. Once these are fixed, we continue maximizing
the diagonal to set the remaining rows.

We can observe a clear line in the matrix diagonal indicating that several topic-descriptor
pairs are highly correlated. Certain general topics have a high correlation with the majority
of descriptors; this fact is illustrated in the matrices by dark vertical lines. Likewise, general
descriptors such as “Brain” relate to a big proportion of topics, which is shown in our
matrices by dark horizontal lines. A closer look reveals that the 10 most frequent MeSH
terms in the corpus are indeed relatively unspecific: “Humans”, “male”, “female”, “animals”,
“adult”, “middle aged”, “aged”, “rats”, “child”, “adolescent”. In most cases, these terms
characterize experimental test subjects or animal models. They do not provide additional
information about the content of a publication other than test subjects and are thus not very
discriminating.

Less than half of all MeSH descriptors appear in our corpus (11,641 out of 27,149) and
only 9,000 descriptors appear in at least 2 documents. Figure 4.8 shows the number of
descriptors appearing in different number of documents (plotted from 1-100 document
appearances). These results come from the fact that our corpus is relatively small and
focused on Neuroscience. Thus, some MeSH descriptors are less likely to appear in the
selected documents.

To verify that our results are semantically valid we perform a qualitative analysis similar to
that performed when validating a topic model: we show for selected MeSH descriptors a

8The term correlation is used throughout this section to refer to p(m, z) unless stated otherwise.
9This reordering is a research problem in itself generally referred as seriation or sequencing.
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Fig. 4.7: Correlation matrices for the four different descriptor and topics combinations used
to calculate p(m, z) on the 100K corpus. Reordered as to maximize the diagonal
values and cropped to match twice the number of topics (400)
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Fig. 4.8: Frequency of appearances of MeSH descriptors in 100K corpus. Each bar represents
the number of descriptors that appear in x documents (in x axis).

Topic 144 0.163 Topic 79 0.134 Topic 126 0.051 Topic 119 0.034 Topic 51 0.033

disease 0.070 abeta 0.047 study 0.038 role 0.032 study 0.019

’s 0.052 amyloid 0.042 result 0.023 function 0.022 brain 0.016

ad 0.045 ad 0.041 effect 0.021 mechanism 0.021 review 0.015

alzheimer 0.040 alzheimer 0.037 show 0.019 system 0.020 research 0.011

tau 0.032 disease 0.036 suggest 0.018 pathway 0.015 human 0.011

dementia 0.025 ’s 0.034 human 0.015 play 0.014 model 0.011

patient 0.018 plaque 0.021 change 0.014 neuronal 0.013 recent 0.010

alpha-synuclein 0.013 protein 0.020 present 0.014 involve 0.012 provide 0.010

body 0.012 peptide 0.020 increase 0.011 important 0.012 development 0.009

brain 0.011 app 0.019 previous 0.011 regulate 0.011 clinical 0.009

Tab. 4.3: Five highest related topics for descriptor “Alzheimer Disease” ordered by p(z|m)
(bold). For each topic the list of the ten most probable words along with p(w|z) is
presented.

list of topics to which it relates (ordered by p(z|m)) and the information for each topic. In
Table 4.3 we present results for the 10th most frequent descriptor in our corpus (appearing in
1,849 documents): “Alzheimer Disease”. We see that the two highest correlated topics show
a clear conceptual link to Alzheimer disease. The other three topics could be considered
general topics (given our corpus) but are not completely unrelated to Alzheimer disease and
have lower probabilities p(z|m) compared to the first two.

In general, common descriptors and topics have higher correlation values when compared
with less common descriptors and topics, which does not imply that we will consistently
produce bad results when dealing with common descriptors. In fact, as long as the topic
model generates only a small number of general topics and all descriptors appear relatively
often in the corpus, results will be positive. Nonetheless, we will not be able to completely
remove this effect given that our corpus contains common descriptors and our model
produces general topics.

Table 4.4 presents the results for the 5, 000th most frequent descriptor in our corpus (ap-
pearing in 7 documents): “Neuropilin-1”, a protein involved in vessel formation and axonal
guidance. As expected descriptors become more specific as their frequency declines but even
though “Neuropilin-1” only appears in seven documents it should still offer good results.
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Topic 10 0.357 Topic 30 0.077 Topic 3 0.074 Topic 38 0.059 Topic 119 0.049

axon 0.046 expression 0.027 endothelial 0.067 nerve 0.092 role 0.032

growth 0.030 neural 0.023 vascular 0.046 regeneration 0.031 function 0.022

neurite 0.028 gene 0.021 vessel 0.031 axon 0.029 mechanism 0.021

outgrowth 0.019 development 0.019 cell 0.029 injury 0.023 system 0.020

adhesion 0.017 embryo 0.016 vegf 0.023 axonal 0.020 pathway 0.015

cone 0.016 cell 0.012 capillary 0.019 peripheral 0.017 play 0.014

molecule 0.016 express 0.011 brain 0.019 sciatic 0.017 neuronal 0.013

cell 0.015 early 0.009 cerebral 0.018 schwann 0.014 involve 0.012

guidance 0.014 zebrafish 0.009 blood 0.018 lesion 0.013 important 0.012

axonal 0.012 develop 0.008 factor 0.016 fiber 0.011 regulate 0.011

Tab. 4.4: Five highest related topics for descriptor “Neuropilin-1” ordered by p(z|m) (bold).
For each topic the list of the ten most probable words along with p(w|z) is
presented.

Topic 10 and 3 directly relate to the two primary functions of Neuropilin-1: axonal guidance
and vascular formation. The other three topics are more general topics but still relate
indirectly to the descriptor. These are particularly good results given the small sample of
documents and the specificity of the concept. Assuming that results for a given descriptor im-
prove with its number of appearances in the corpus we could infer that even with this small
corpus we have generated at least 5,000 good correlations.

As a whole, these results are encouraging and show a clear semantic correlation between
topics and descriptors, which is remarkable given that we did not perform any special tuning
on the corpus or the model.

4.1.5 Semantic profiles of Blue Brain Project
researchers
Topic modeling was applied to the article library of several neuroscientists at BBP. Articles
were voluntarily collected from their personal computers. The first goal was to create
semantic profiles of researchers through the articles they read. Another goal was to be able
to compare semantic profiles between researchers. A third goal was to create a semantic
recommendation engine for newly published paper.

Two topic models were trained on two different corpora. The first was trained on all PubMed
abstracts, while the second was trained on a subset of abstracts related to neuroscience.
The first topic model was trained on all 21,034,484 PubMed abstracts using DCA with 200
topics, hyperparameters optimization and by removing words with a frequency below 100 or
belonging to a stop word list of 524 common English words. Training took approximately one
day on a workstation (1000 iterations of Gibbs sampling).

Figure 4.9 shows the aggregated topic distribution among BBP researchers. Topics with
high probability are detailed in Table 4.5. Probability distributions among researcher is very
consistent, demonstrating that topic modeling is able capture the high-level semantics of a
collections of documents.

The second topic model was trained on 1,030,546 PubMed abstracts related to neuroscience
with same parameters and preprocessing as the first model. Compared to the first corpus,
it is much smaller and more focused on the subject of neuroscience. This results in topic
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Fig. 4.9: Topic distribution of selected BBP researchers on a topic model trained on all
PubMed abstracts. Consistency of topics between researchers is very high, a
demonstration that topic modeling can capture the high-level semantics of a
collections of documents. papers refs contains all cited references from a large
article submitted by BBP researchers. These references are also very much aligned
with the topic distributions from the other researchers. See Table 4.5 for the topics
descriptions.
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Fig. 4.10: Topic distribution of selected BBP researchers on a topic model trained on PubMed
abstracts related to neuroscience. Note that in Figure 4.9, topic probabilities are
concentrated on a small set of topics, whereas here topic probabilities are more
distributed on a larger number of topics. This reflects the fact that the corpus is
more focused on a specifc subject (neurosciences). See Table 4.6 for the topics
descriptions.
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Tab. 4.5: The 10 most frequent terms for the 6 most probable topics among BBP researchers.
Terms are sorted by decreasing importance (log p(w|z)). Topic model were trained
on all PubMed abstracts. One can observe that the topics capture high-level
neuroscience concepts. For instance, topic 9 is focused on membrane potential
(ion channels, millivolts, action potential, ...).

topic 9 topic 34 topic 69 topic 103 topic 166

current neurons model stimulation system

channel cell data activity process

potential neuronal analysis response mechanisms

membrane immunoreac. method neurons conditions

mv brain based electrical development

k+ glial parameters evoked functional

conductance astrocytes results recorded factors

cells layer approach motor state

action synaptic experimental stimuli function

voltage olfactory time reflex result

that are more specific to neuroscience. Figure 4.10 shows the aggregated topic distribution
among BBP researchers. While in Figure 4.9 topic probabilities were concentrated on a small
set of topics, in this figure topics probabilities are more distributed among all topics. This
results in a more heterogeneous topic distribution between researchers, but also within each
researcher’s topic distribution.

Aggregated topics from a researcher’s reading list can accurately describe that researcher’s
focus of interest. For example, Dan is a lecturer at EPFL on the subject of synaptic plas-
ticity and its most probable topic (186) contain the most frequent words synaptic and
plasticity.

62 Chapter 4 Experiments and Stories



Tab. 4.6: The 10 most frequent terms for the 12 most probable topics among BBP re-
searchers. Topic model trained on selecte PubMed abstracts related to neuro-
science (unlike Table 4.5, where the topic model was trained on all PubMed
abstracts). Terms are sorted by decreasing importance (log p(w|z)). One can
observe that topics are much more specific than in Table 4.5.

topic 2 topic 6 topic 7 topic 25 topic 30 topic 33

model hormone inhibitory dendritic understanding current

experimental estrogen inhibition layer recent channel

data steroid excitatory dendrite mechanism potential

predict estradiol synaptic spine development inactivation

base testosterone transmission axon molecular block

prediction progesterone interneuron cell review conductance

simulation level gabaergic neuron provide potassium

topic 105 topic 144 topic 148 topic 170 topic 180 topic 186

method network potential cortical activity synaptic

data neural action area firing plasticity

algorithm information membrane cortex unit long-term

approach input slice visual discharge potentiation

propose circuit recording subcortical spike change

set functional depolarization neocortex burst induction

image processing amplitude region spontaneous mechanism
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4.2 braiNER: Large-scale extraction of brain
connectivity from the neuroscientific
literature10

In the last decades, thousands of experiments on brain region connectivity have been
published in scientific journals. However, these have not been systematically normalized and
registered in a central repository of brain region connectivity. Instead, these experimental
results are published in natural language, scattered among individual scientific publications.
This lack of normalization and centralization hinders the large-scale integration of brain
connectivity results. Thus, researchers resort to manual searches on PubMed that are very
time consuming.

In this section, we present text-mining models to extract and aggregate brain connectivity
results from 13.2 million PubMed abstracts and 630,216 full-text publications related to
neuroscience. The brain regions are identified with three different named entity recognizers
and then normalized against two atlases: the Allen Brain Atlas (ABA) and the atlas from
the Brain Architecture Management System (BAMS). We then use three different extractors
to assess inter-region connectivity. Named entity recognizers and connectivity extractors
are evaluated against a manually annotated corpus. The complete in-litero extraction
models are also evaluated against in-vivo connectivity data from ABA with an estimated
precision of 78%. The resulting database contains over 4 million brain region mentions,
and over 100,000 (ABA) and 122,000 (BAMS) potential brain region connections. This
database drastically accelerates connectivity literature review, by providing a centralized
repository of connectivity data to neuroscientists. The resulting models are publicly available
at github.com/BlueBrain/bluima

Brain Connectivity data integration

Brain connectivity data consists of information about one brain region projecting nerve fibers
to another region and forming synaptic connections. Additional metadata includes for exam-
ple connection strength, animal species and experimental methods.

Brain connectivity data can be integrated from different sources. For the mouse brain, one
central source is the Allen Mouse Brain Connectivity Atlas (AMBCA, [Oh+14]). As of today,
the Allen Institute has published 1772 standardized connectivity experiments tracking axonal
projections in the adult mouse brain by two-photon imaging of fluorescently labeled neurons.
Experimental results have been normalized to a coordinate-based reference space and are
freely available to researchers via a publicly accessible API11. The AMBCA is a very valuable
source of connectivity data because of the consistency of the experimental methods, the
standardized brain region naming, the availability of the data and the overall high level of
quality of the data.

A second central source of connectivity data comes from curated databases of the published
literature. For the rat brain, the most important is the Brain Architecture Management System
(BAMS, [BS08]). Neuroscientists from the BAMS project have manually curated over 600

10A version of this chapter has been published as [Ric+15].
11connectivity.brain-map.org/
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Tab. 4.7: Example of sentences exhibiting connectivity statements between brain regions.
Abbreviations have been manually added.

Sample sentence Connectivity statement,
comment

The nucleus accumbens (AC) receives projections from both the
substantia nigra (SN) and the ventral tegmental area (VTA) (Dworkin,
1988).

(SN, VTA) → AC

Substantial numbers of tyrosine hydroxylase-immunoreactive cells
in the dorsal raphe nucleus (DR) were found to project to the
nucleus accumbens (AC) (Stratford and Wirtshafter, 1990).

DR → AC

The dentate gyrus (DG) is, of course, not only an input link between
the entorhinal cortex (Ent) and the hippocampus proper (CAs), but also
a major site of projection from the hippocampus (CA), as are the
amygdala (Amg), entorhinal cortex (Ent), and septum (Spt) (Izquierdo
and Medina 1997).

CAs → DG → Ent,
(CA, Amg, Ent, Spt) →
DG
Complex, long range rela-
tionships

This latter nucleus (N?), which projects to the striatum (CP), receives
inputs from motor cortex (MO) as well as the basal ganglia (BG), and
is situated to integrate these and then provide feedback to the
basal ganglia (BG) (Strutz 1987).

MO → N? → CP, BG ↔
N?
Anaphora: "latter nucleus
(N?)" was defined in pre-
vious sentence

In this review, we summarize a classic injury model, lesioning of the
perforant path, which removes the main extrahippocampal input to the
dentate gyrus (Perederiy and Westbrook 2013).

Injury model, not normal
conditions

The most commonly proposed mechanism is that the
periaqueductal gray of the midbrain (PAG) or the cerebral cortex (Cx)
have descending influences to the spinal cord (SpC) to modulate pain
transmission at the spinal cord (SpC) level (Andersen 1986).

PAG → SpC, Cx → SpC
"proposed" implies an hy-
pothesis, not a finding

scientific articles. They analyzed each article (including tables, images and supplementary
materials) and assessed the quality of the experiment. Finally, they normalized brain region
mentions to the BAMS ontology, and recorded the connectivity data into a database (incl.
directionality and strength).

One other major source of connectivity data is the analysis of neuroscientific articles. This
is commonly performed by manual search on databases like PubMed or Google Scholar.
The search, curation and integration of these articles might be a manageable task for a
researcher focused on one or a few brain regions, but it does not scale for whole-brain
models. Furthermore, manual search for brain region connections has several disadvantages.
First, the naming of brain regions is diverse [Boh+09b], making it difficult to search for
brain region names. There is no single nomenclature that accommodates all the uses and
expectations. For each animal model, several nomenclatures are available to name brain
regions. These nomenclatures all have different objectives and perspectives. For example, the
rat atlas from [PW06] is preferred for stereotactic surgery orientation whereas the rat atlas
from [Swa04] is preferred for finer anatomy classification. Moreover these nomenclatures
rely on different detection methods (e.g. Nissl staining, immunostaining, functional magnetic
resonance imaging, diffusion tensor imaging) that result in different sizes and shapes of brain
regions. Typically, a researcher will select the most appropriate nomenclature, depending on
which area she focuses on.
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Another disadvantage of manual search is its low recall12. It is likely to miss a significant
part of the brain regions because it lacks synonym expansion13. For example, exact search
for "Basolateral amygdala nucleus" (17 results on PubMed) will neither return results from
the synonym "Basolateral nucleus of the amygdala" (297 results) nor from the Latin name
"Nucleus amygdalae basolateralis" (8 results). Another reason for low recall is the lack
of abbreviation expansion. For example, when searching for "Ventral tegmental area", the
abbreviated form "VTA" will not be retrieved. A random sample corpus of 179 full-text
articles from the Journal of Comparative Neurology contained on average 91.6 brain regions
mentions and 29.7 abbreviations of brain regions per article. This represents a maximal
possible 32% increase in recall when performing abbreviation expansion14. Additionally, for
a significant number of articles in PubMed, only the abstract is indexed and searchable, not
the full article body. On the above-mentioned corpus, the abstracts contained on average
2.8 brain region mentions. This represents a possible 32-fold increase in recall when using
full-text instead of abstracts.

In terms of precision15, a manual search will return all brain regions that co-occur within
the same document. Most of these co-occurrences do not necessarily represent true neu-
rophysiological connections, but simply that two brain region are mentioned in the same
document. At the abstract level, [Fre+12] found that only 2.2% of the co-occurrences
represent true connections. At the sentence level, the proportion raises to only 13.3%. Thus,
the precision of manual search is expected to be quite low, meaning that researchers will
waste time in manually post-processing the search result and probably discard most retrieved
co-occurrences.

Information Extraction

The IE process is divided in two phases: named entity recognition (NER) and relation
extraction (see Fig. 4.11). Named entity recognition is performed by three different models:
BAMS and ABA (lexical-based), and BraiNER (machine learning-based). Once named entities
have been identified, we normalize them, so that e.g. both "diencephalon" and "interbrain"
resolve to the same entity. Normalization can be performed by automatically or manually
attaching synonyms to lexical-based NER, or by performing morpho-syntactic transformations
on the brain regions extracted by a NER. For example, [FP12] used transformation to remove
prefixes that specify hemispheres ("Contralateral inferior olivary" is transformed into "Inferior
olivary"), or to remove neuroanatomical direction specifiers ("Caudal cuneate nucleus" is
transformed into "Cuneate nucleus").

The second and last IE step involves relationship extraction. It aims at classifying co-
occurrences between two brain region entities and predicting whether they represent neuro-
physiological connections16. Models for relationship extraction include rule-based and super-
vised machine learning approaches. Relationship extraction between two biomedical entities

12Recall is the ratio of the number of relevant records retrieved to the total number of relevant records.
13There is actually a synonym expansion mechanism in the PubMed search engine. However, it is

mostly limited to molecular entities, not brain regions.
14Note however that an article containing an abbreviated brain region might still be returned by

a manual search, since abbreviations are almost always explicitly defined in an article, so the
expected increase is smaller.

15Precision is the fraction of retrieved records that are relevant.
16It is worth noting that IE only predicts whether the author reports a connection between two brain

region, not whether the connection actually exists, which is out of the scope of such an IE system.
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Fig. 4.11: Overview of datasets, methods, and models. Three named entity recognizers
(NER) identify and normalize brain region mentions: BAMS and ABA (lexical-
based), and BraiNER (machine learning-based). Three different extractors predict
the connectivity probability of brain region co-occurrences: Filters takes a top-
down filtering approach, Kernel is a machine learning-based classifier, and Rules
consists of hand-written extraction rules. Connectivity results are presented in a
searchable web interface. In the future, feedback from the interface can be used
to retrain the NERs and extractors for continuous model improvement.

is a current research topic, applied to problems like protein-protein interaction [Kra+11]
or pathway curation [Oht+13]. The difficulty of the task resides in the complexity of the
relation between two or more brain regions (see Table 4.7). [Fre+12] developed and evalu-
ated several models to extract brain region connectivity. Their simple co-occurrence based
methods yielded high recall but low precision, whereas the advanced machine learning mod-
els recalled 70.1% of the sentence-level connectivity statements at 50.3% precision. More
complex models based on dependency parsing were successfully evaluated by [Fre+12], but
discarded because of their high computational cost.

Our work builds on top of French et al. (2009, 2012 and 2012) and extends it in several
aspects: ensemble of three different extractors and application to a large corpus of over 8
billion words.

4.2.1 Methods

To build a database of brain region connectivity data from the literature, two steps are
required. First, named entity recognizers17 (NER) identify brain region mentions in text
and normalize them to a standard brain region ontology. Second, extractors are devel-
oped to determine whether two brain region co-occurrence mentions are semantically
connected. Finally, the connectivity results are stored in a database to be accessible by
researchers.
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Tab. 4.8: Named entity recognizers for brain regions.

NER Name Description Brain Regions Terms

ABA lexicon from Allen Brain Atlas Institute 1,197 1,197

ABA-SYN ABA + automated synonyms enrichment from other lexica 1,197 3,882

BAMS lexicon from Brain Architecture Management System (BAMS),
version Swanson 2004

832 832

BAMS-SYN BAMS + automated synonyms enrichment from other lexica 832 2,705

BraiNER machine learning-based NER (linear chain conditional random
field)

(∞) (∞)

Brain Region Named Entity Recognizers

Three different NERs have been developed to identify and normalize brain region mentions
(Table 4.8). The first lexical NER18 (ABA) consists of all 1197 entities from the Allen Mouse
Brain Atlas19. As discussed in section 4.2, the atlas is designed to structure and organize brain
regions within the Allen Brain Institute and not as a lexical resource for IE. Thus, the ABA
NER contains no synonyms. To retrieve more relevant data (and improve recall), a second
NER (ABA-SYN) is automatically augmented with corresponding synonyms found in several
lexica of rodent brain region: BAMS [BS08], [Hof+00], Neuronames [BD03], [PW06],
[Swa04] (see Section 2.1 for a detailed description of the different lexica). For example
for the ABA entity "Pontine gray", the Neuronames lexicon also contains several synonyms
(e.g. "Nuclei pontis"), that are added back to the corresponding ABA entry. This results in
a 3-fold increase in recall between ABA and ABA-SYN. To further improve recall, ABA-SYN is
manually augmented with brain region mentions appearing frequently in scientific articles,
but not included in ABA-SYN. Additionally, abbreviation expansion is performed on the input
text using a machine learning-based model (hidden Markov model, [MAC12]). The same
procedure for ABA is applied to the BAMS ontology20

The third brain region NER, BraiNER, extends the work from [Fre+09] and relies on a
supervised machine learning model (linear chain conditional random field [@McC02]. The
model is trained on WhiteText21, a manually annotated corpus of brain region mentions
composed of 1,377 PubMed abstracts from the Journal of Comparative Neurology, containing
18,242 brain region mentions. Inter-annotator agreement was evaluated by [Fre+09] by
two curators for a subset of the documents, and reached 90.7% and 96.7% for strict and
lenient matching respectively.

The model features from [Fre+09] are primarily derived from existing neuroanatomical
lexica. These include for example lexical features such as the presence of directionality words
like dorsal or ventral, or morphological features like the word length or whether it contains
only lowercase letters, numbers or special characters. BraiNER uses the following additional
features: the presence of species information in the document (identified using the Linnaeus

17See Section 2.3 for a thorough description of named entity recognition.
18Lexical matching is performed using UIMA ConceptMapper, with order-dependant lookup, longest

contiguous match, and a stemmer that removes ending s of words longer than 3 characters.
19Allen Reference Atlas - version 2 (2011), Mouse Brain Atlas Ontology
20[Swa04]
21www.chibi.ubc.ca/WhiteText
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NER [Ger+10]), and the presence of a measure entity (e.g. a measure like 10mm or 10(-7)
molar). Indeed, a qualitative analysis of the performance of BraiNER on full-text articles
revealed that measures were often incorrectly labeled as brain regions (false positives).
Furthermore, several other features are developed to improve robustness on full-text articles,
motivated by the large amount of false positives when analyzing full-text articles, in particular
when processing bibliographical information or tables.

Connectivity Extractors

Connectivity extractors are binary classifiers. They take as input a sentence containing
at least two brain region mentions (as identified by the above NERs) and take a decision
whether the sentence enunciates a connection between these two brain regions. The models
developed here focus on extracting connections with high precision. They are limited to
brain regions that are co-located within the same sentence (no anaphora resolution), and do
not extract the directionality of the connection.

Three different approaches are developed to classify connectivity statements (Figure 4.11).
1) FILTER considers all possible co-occurrences of brain regions, and subsequently applies
filters to remove unlikely ones. More precisely, it starts with all permutations of brain regions
within a sentence, and then keeps only nearest neighbors, that is: only co-occurrences that
are located closest to each other. After that, co-occurrences in sentences longer than 500
characters are removed, since longer sentences are unlikely to be meaningful sentences.
Similarly, sentences containing more than 7 brain regions are removed, since they are too
complex to extract. These filters were developed based on our experience with full-text
articles that can contain very long sentences or lists of brain regions. Finally, only sentences
containing one of the following trigger character sequences are retained: afferent, efferent,
project, connecti, pathway, inputs. 2) KERNEL relies on a supervised classifier (shallow linguis-
tic kernel [Giu+06], identical to [Fre+12]) that requires only shallow parsing information
such as word occurrences and part-of-speech tags. 3) RULES consists of 9 rules of the kind
“projection from the regionA (of the regionB) to the regionC and the regionD”. Here, the strategy
is to identify characteristic sentence constructs, and thus achieve a very high precision
at the cost of recall. Rules are manually crafted using the Apache UIMA Ruta scripting
language [Klu+14b; Klu+09]. The Ruta language enables a rapid and iterative development
of lexical rules (see Section 3.3).

4.2.2 Evaluation
We begin by quantitatively evaluating the performance of the brain region NERs and
connectivity extractors against annotated corpora. We then build a database by apply-
ing these models on three different corpora. We describe the database and conclude by
performing a qualitative evaluation of the database against the connectivity data from
ABA.

NERs Evaluation

All five NERs described in table 4.8 are evaluated against WhiteText [Fre+09] (see Table 4.9).
Two types of evaluations are performed: exact comparison (meaning that the span of a
proposed brain region must exactly match a manually annotated brain region) and lenient
comparison (meaning that the span of an identified brain region may be equal or smaller than
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Tab. 4.9: Performance comparison of brain region NER models against the WhiteText corpus
(partially matching spans). For machine learning-based NERs ([Fre+09] and
BraiNER), average values over 8-fold cross validation with splits at document
level and 5 repetitions, including std. deviation in parenthesis where appropriate.

Model Exact comparison Lenient comparison

Precision Recall F-score Precision Recall F-score

ABA lexicon 58.4% 11.1% 18.6% 89.9% 16.9% 28.5%

ABA-SYN lexicon 58.4% 21.9% 31.9% 92.1% 34.2% 49.9%

BAMS lexicon 61.1% 11.0% 18.6% 90.7% 16.2% 27.5%

BAMS-SYN lexicon 61.3% 17.5% 27.2% 89.8% 25.5% 39.7%

WhiteText [Fre+09] 81.3% 76.1% 78.6% 91.6% 85.7% 88.6%

BraiNER-W 83.6% 76.4% 79.8% 87.1% 77.8% 82.1%

(WhiteText features) (3.3) (4.6) (3.9) (3.6) (7.4) (5.8)

BraiNER 84.6% 78.8% 81.6% 88.4% 81.0% 84.6%

(additional features) (1.3) (1.2) (0.9) (1.0) (1.8) (1.3)

a manually annotated brain region). When performing exact comparison, lexical-based NERs
score low on both precision and recall. For both NERs enriched with synonyms (ABA-SYN
and BAMS-SYN), recall is significantly higher (21.9% and 17.5% respectively). Using lenient
comparison, lexical-based NERs score much higher on precision (between 89.8% and 92.1%).
However, recall is low, even with synonyms (between 16.2% and 34.2%). One reason why
lexical-based NERs do not achieve perfect precision is that they wrongly label implicit brain
regions (e.g. they will label "midbrain" in "midbrain ventral tegmental area" or "midbrain
lateral tegmental field"). Another reason is that they sometimes label brain regions that
are more specific (e.g. "brachium of the superior colliculus" was labeled, whereas the
gold-standard only includes "superior colliculus").

For machine learning NERs, we first reproduce the results from [Fre+09], using the same
model and features22. This model is denoted BraiNER-W and its performance is slightly
higher than the results reported by [Fre+09] for exact comparison (83.6% precision against
81.3% and 76.4% recall against 76.1%). This can be explained by the differences in pre-
processing (tokenization, part-of-speech, abbreviation expansion). For lenient comparison,
results from BraiNER-F are slightly worse, probably because we use a stricter lenient com-
parison criterion. Finally, we evaluate BraiNER, that includes additional model features.
Performance is slightly higher than BraiNER-W (e.g. F-score 81.6% against 79.8% in strict
comparison and 84.6% against 82.1% in lenient comparison). However, differences are
not statistically significant. Nevertheless, qualitatively we found that the performance of
BraiNER is higher when analyzing full-text articles.

Compared to lexical-based NERs, both machine learning-based NERs score slightly higher
on precision, but have a much higher recall (more than twice as much). However, the low
recall of lexical-based NERs is still acceptable for our purpose, since we apply theses NERs
on very large corpora and focus on precision.

22github.com/leonfrench/public/
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Connectivity Extractors Evaluation

The connectivity extractors are evaluated on the WhiteText connectivity corpus from [Fre+12],
that goes beyond the original WhiteText corpus and contains 3,097 manually annotated con-
nectivity relations across 989 abstracts and 4,338 sentences from the Journal of Comparative
Neurology. Inter-annotator agreement reaches a precision and recall of 93.9% and 91.9%,
respectively (partially matching spans, two curators). In this evaluation, the locations of the
brain region entities in the text are provided, so we are only concerned with the evaluation
of the extractors.

Table 4.10 presents the evaluation results. The baseline connectivity extractor returns all
permutations of two brain regions within a sentence, and has a perfect recall of 100%
but a very low precision of 9%23. Subsequently, 4 filters are applied and evaluated. The
first two (filter if sentence is longer than 500 characters or contains more than 7 brain
regions) do not significantly improve precision on the evaluation corpus, but they proved
very effective when dealing with full-text articles. The next filter requires certain trigger
words (like project) to be present in the sentence and improves the precision to 15%. The
last filter (keeping only nearest neighbors co-occurrences) improves the baseline preci-
sion (9%) threefold to 28%. When combining all filters (FILTERS), almost half of the
extracted connections are correct (45% precision). However, only 31% of the connections
are recalled.

For the machine learning model (KERNEL), 10-fold cross-validation with splits at document
level is performed, resulting in a precision of 60%. Recall (68%) is significantly higher than
with FILTERS. Finally, RULES (manually created rules) yields the highest precision, at the
cost of a very low recall. Still, this performance is quite remarkable, considering its simplicity
(only 9 rules).

Ensemble of extractors are also considered to improve precision. For example, the connec-
tions returned by all three extractors have a highest precision of 82% at only 7% recall. For
connections returned by FILTERS or KERNEL, together with RULES, the performance is 80%
precision at 11% recall.

Database

The models presented in this section are applied to two large corpora of biomedical literature
(see Section 3.1). The resulting brain connectivity statements are stored in a database, and
an interface is created to navigate and make the results accessible to neuroscientists (see
Fig. 4.11).

Connections are extracted using bluima (see Section 3.2. The processing is distributed on
a cluster and the extraction results are aggregated in a database. The resulting database
contains several million brain region mentions (see Table 4.11). In the PubMed abstracts,
42, 50 and 189 thousand connection pairs are extracted for ABA, BAMS and BraiNER,
respectively. For the full-text neuroscience corpus, 62, 72 and 279 thousand connection pairs
are extracted for ABA, BAMS and BraiNER, respectively. Comparatively, [Fre+15] extracted
68,957 connections between 88,088 brain region mentions.

23Note that [Fre+12] estimated that over a forth of all connectivity relations are formed with regions
spanning different sentences. Extracting connections that span sentences was not considered and
the evaluation is performed without accounting for the relations spanning sentences.
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Tab. 4.10: Evaluation of extraction models against the WhiteText corpus.

Extractor Prec. Recall F-score

all co-occurrences (all permutations) 9% 100% 16%

filter sentence >500 characters 10% 93% 18%

filter sentence with >7 brain regions 11% 80% 19%

keep if contain trigger words 15% 53% 23%

keep nearest neighbour co-occurrence 28% 51% 36%

all filters (FILTERS) 45% 31% 37%

shallow linguistic kernel (KERNEL) 60% 68% 64%

Ruta rules (RULES) 72% 12% 21%

FILTERS and KERNEL 66% 19% 29%

FILTERS and RULES 80% 7% 13%

KERNEL and RULES 81% 10% 18%

FILTERS and KERNEL and RULES 82% 7% 12%

(FILTERS or KERNEL) and RULES 80% 11% 19%

Fig. 4.12: Overlap between extractors. Venn diagram depicting the number of extracted
connections for the three extractors, on PubMed and full-text corpora using the
ABA-SYN NER. As one can see, while there is some overlap among the connections
extracted by the three different extractors, there is also a significant amount of
connections that were extracted from a single extractor (no overlap).
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Tab. 4.11: Statistics of the corpora used, extracted brain regions and connections using all
three extractors (FILTERS or KERNEL or RULES). The number of documents and
words refers to non-empty documents after pre-processing (see Section 3.1.4 for
detailed information about the corpora). Two generic terms from BAMS “brain”
and “nerve”) are omitted.

Corpus Corpus statistics Brain Regions Connectivity statements

Documents Words ABA BAMS BraiNER ABA BAMS BraiNER

all PubMed
abstracts

13,293,649 2.1 × 109 1,705,549 1,918,561 1,992,747 41,965 50,331 188,994

full-text neu-
roscience ar-
ticles

630,216 6.1 × 109 2,327,586 2,514,523 2,751,952 62,095 72,602 279,100

Figure 4.12 highlights the overlap of the results from all three extractors. For example,
31,736 connections are extracted uniquely by KERNEL, whereas all three extractors return
3,846 connections. Thus, each extractor contributes to extracting a different set of brain
region connections, with a different performance. This will turn out to be useful to dis-
play connectivity data: the connections that are returned by all three extractors have a
higher estimated precision and ought to be displayed at the top of the list of proposed
results.

The database is accessible through a web service, with a simple web front end. It allows
neuroscientists to search for a given region and display all other connected regions. It also
allows to provide a feedback on the results for future model improvements. Normalization
and standardization of brain region entities identified by BraiNER can be manually performed
by the user (no morpho-syntactic transformation).

Database Evaluation against AMBCA

Results extracted from the literature (LIT) are evaluated against connectivity data from
the Allen Mouse Brain Connectivity Atlas (AMBCA). AMBCA data was aggregated in the
following way: for each experiments, the normalized projection volume in both hemisphere
is retained; injection areas are filtered out if they do not represent at least 5% of the total
volume; connectivity data is aggregated over all experiments, and only the highest density
value is retained for each injection-projection pair. Nevertheless, we present an evaluation
of our results against 1379 mouse brain connectivity experiments from AMBCA24. The
AMBCA validation corpus consists of the normalized connectivity data from 469 in-vivo
experiments25. Regions were filtered by two criteria (bigger than 50 voxels and containing
enough data for the signal to be well linearly separable), (e.g. at the boundary between two
regions there are only two injections but which are perfectly on top of each other such that the
separate contributions of the two regions cannot be well separated). resulting in 213 selected
regions (out of a total of 1,204 regions in the complete ontology). Thus, AMBCA consists of a
square matrix of 213 brain regions, whose values represent normalized ipsilateral connection
strengths (integral of the segmented area in the target region, normalized to the injection

24Retrieved using ABA’s public API http://www.brain-map.org/api/index.html; stand as of Feb
2014

25See [Oh+14], supplementary Table 3 for the underlying data.
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volume). 16,954 brain region pairs are reported as connected (37%), and 28,415 as not
connected.

The evaluation of LIT against AMBCA proved to be quite complex. First, it is not possible to
determine which articles are missing in LIT (that is: articles that should have been retrieved
by LIT but were missed). Therefore, it is not possible to correctly evaluate the recall of LIT.
Second, AMBCA contains 213 regions, whereas LIT contains 451 regions, thus 238 regions
from LIT cannot be evaluated and were removed from the evaluation. Third, many ABA brain
regions never occur in the literature (mainly because they are very specific, like "Anterior
cingulate area, dorsal part, layer 2/3"). In fact, half of the ABA regions (603 out of 1,204)
are never found in the literature by the ABA lexical NERs. Forth, AMBCA uses one single
and systematic experimental method, whereas many different methods and experimental
settings are reported in scientific reports from AMBCA, making the comparison problematic.
Fifth, it is important to highlight that the frequency of a brain region connection reported in
scientific articles does not necessarily reflect the physiological intensity of a connection; the
former reflecting the popularity of a region.

Despite all these limitations, the evaluation is highly relevant, as it allows to compare our
models with experimental data. Figure 4.14 illustrates the evaluation results. 904 brain
region pairs are correctly predicted (present in LIT and connected in AMBCA) and 261
brain region pairs are incorrectly predicted (present in LIT but not connected according
to AMBCA), resulting in a 78% precision, which is an impressively good result regarding
the five previously mentioned limitations of this evaluation. In comparison, the precision
of co-mentioned brain region mentions (two brain regions within the same sentence, with-
out any filtering) is 67%. By thresholding co-mentions to those predicted at least four
times, precision reaches 72%, suggesting that frequent co-mentions can successfully predict
connectivity.

The 6784 brain region pairs present in LIT but not in AMBCA (represented as the blue square
with white background in Figure 4.14) are valuable connections that might complement
experimental datasets like AMBCA26. Furthermore, when using another NER like BrainNER,
even more brain regions (not present in AMBCA) would be retrieved, resulting in an even
larger size of LIT.

Figure 4.13 shows the in-vivo connectivity matrix from AMBCA (left), the symmetrised
matrix from AMBCA (middle, required, to compare against the NLP models that do not
extract directionality), and the in-litero connectivity matrix extracted from the literature (LIT,
right). The LIT matrix is much sparser than AMBCA, as was previously noted. However, both
matrices exhibit a similar structure. To evaluate this similarity, the precision between LIT
and AMBCA (symmetrised) matrices are compared against 1000 random matrices created
by shuffling the brain region names in the same way for rows and columns. That ensures
symmetry with the same node degree distribution and density. LIT is significantly closer to
AMBCA than the random matrices (p < 0.01).

No significant difference in precision can be observed between the connections originating
from abstracts and the ones from full-text papers. Similarly, no significant difference in
distance can be observed between abstracts and full-text papers. We also evaluate the depth
of the extracted connections, measured as the mean number of parents (higher structures) in

26However, it is impossible to quantitatively evaluate these brain regions, because of the lack of
objective reference.
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AMBCA Pos
n=16,954

AMBCA Neg
n=28,415

LIT
n=7,949

LIT FP
n=261

LIT TP
n=904

Fig. 4.14: Evaluation against AMBCA. AMBCA contains 16,954 distinct connected brain
region pairs (AMBCA Pos) and 28,415 unconnected pairs (AMBCA Neg). Connec-
tivity data extracted from the literature contains 7,949 distinct connected brain
region pairs (LIT), of which 904 are connected in AMBCA (LIT TP), and 261 are
not connected in AMBCA (LIT TN).

the ABA ontology. Connections from AMBCA have a mean depth of 6.21, whereas connections
extracted from the literature have a depth of 5.08.

4.2.3 Connectivity Database
A database of connectivity statements created with the above models is publicly accessible
through a simple and intuitive web application. This application provides a matrix of
brain regions co-occurences displaying the top N regions for which the most connection
mentions was found (see Fig 4.15). All matrix values are linked to the corresponding
detailed list of sentences from neuroscientific articles. For example, Suppl. Fig. 4.17
displays the extracted sentences between the Allen Brain Atlas regions "Periaqueductal gray"
and "Nucleus accumbens". Each sentence is itself linked to PubMed so that the user can
go back to the original article. Additionally, the user has the ability to provide feedback
by either validating the sentence or rejecting it. Finally, it is possible to search for one
particular brain regions of interest, and then list all the other brain regions potentially
connected to it (for which connectivity events have been found in the literature), see Fig.
4.16. The web application also exposes a REST API to interact with the extracted connectivity
programmatically.
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Fig. 4.15: Brain regions co-occurrences matrix displaying the top 20 regions for
which the most connection mentions was found. Matrix values repre-
sent the number of connectivity events, normalized by the confidence that
each event has been extracted correctly (precision). All matrix values
are linked to the corresponding detailed list of article sentences (see Fig-
ure 4.17). The corresponding url for that figure is http://connectivity-
brainer.rhcloud.com/static/br/matrix.html?db=20140226_aba&size=20
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Fig. 4.16: Listing of brain regions potentially connected to Nucleus accumbens, for
which connectivity events have been found in the literature. The score
represents the number of connectivity events, normalized by the confi-
dence that each event has been extracted correctly (precision). All re-
gions are linked to the corresponding detailed list of article sentences (see
Figure 4.17). The corresponding url for that figure is http://connectivity-
brainer.rhcloud.com/static/br/region.html?br=56&db=20140226_aba.
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Fig. 4.17: Detailed list of sentences from neuroscientific articles, in this case between
"Periaqueductal gray" and "Nucleus accumbens" (list truncated for readability).
Each sentence is linked to the original article on PubMed. Additionally, the
user has the ability to provide feedback: clicking on the red icon (thumbs
down) will remove that sentence, and log it into the database. Similarly,
clicking on the green icon (thumbs up) will confirm that sentence and log it
in the database. The corresponding url for that figure is http://connectivity-
brainer.rhcloud.com/static/br/details.html?br1=795&br2=56&db=20140226_aba.
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4.2.4 Experiments: Automatic Target Validation for
Tractography27

In this section, we propose to assess the previously-described text-mining (TM) models to
automatically suggest targets from the neuroscientific literature for tractography studies.
Target identification for tractography studies requires solid anatomical knowledge validated
by an extensive literature review (LIT) across species for each seed structure to be studied.
Manual LIT to identify targets for a given seed region is tedious and potentially subjective.
Therefore, complementary approaches would be useful. We propose to use TM models
to automatically suggest potential targets from the neuroscientific literature, so that they
can be used for anatomical connection studies and more specifically for tractography. We
applied TM models to three structures: two well studied structures, since validated deep
brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the
nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed
a systematic review of the literature to document the projections of the three selected
structures and compared it with the targets proposed by TM models, both in rat and
primate (including human). We ran probabilistic tractography on the nucleus accumbens
and compared the output with the results of the TM models and LIT. Overall, TM models
could find three times as many targets as two man-weeks of curation could. The overall
efficiency of the TM against LIT in our study was 98% recall (at 36% precision), meaning
that over all the targets for the three selected seeds, only one target has been missed by TM.
We demonstrate that connectivity for a structure of interest can be extracted from a very
large amount of publications and abstracts. We believe this tool will be useful in helping
the neuroscience community to facilitate connectivity studies of particular brain regions.
The TM tools used for the study are part of the HBP Neuroinformatics Platform, publicly
available at http://connectivity-brainer.rhcloud.com/.

Introduction

Determining the wiring diagram of the human brain is one of the greatest challenges in
neurosciences [Spo11]. In initiatives such as the Human Connectome Project (HCP)28,
tractography occupies a key place in establishing the structural basis of the human con-
nectome. Diffusion tensor imaging (DTI) has been introduced to document and measure
in vivo anatomical connectivity between regions [JJB11]. DTI offers an overall view of
brain anatomy, including the pattern and degree of connectivity between different re-
gions, raising immediate hypothesis for brain function and for clinical applications such
as deep brain stimulation (DBS). In combination with other technologies, DTI represents
a powerful tool providing further insight on the networks influenced by neuromodula-
tion [Bar+10] and consequently a better understanding of the mechanism of action and
effects of DBS.

It is essential to have a thorough previous knowledge of the connections between the regions
under investigation in order to validate the relevant fibers depicted via tractography, to
pinpoint misses and for the choice of the method to be used. Target identification is a further
crucial step for guided tractography from a seed region, to estimate the probability of their
interconnection. Target identification requires solid anatomical knowledge documented by

27A version of this section has been published as [Vas+15] (co-authorship).
28http://www.humanconnectome.org
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an extensive LIT across species for each seed structure to be studied. Existing literature in
human is often conflicting and limited. Furthermore, experiments studying connectivity
between individual brain regions are not reported in a normalized, structured and centralized
repository, but published in plain text, scattered among individual scientific publications (see
Section 4.2). Consequently, manual LIT to identify targets for a given seed region is tedious
and potentially subjective. Therefore, complementary approaches would be very useful
for the neuroscience community. We use the above-describe TM models to automatically
generate potential targets from the neuroscientific literature, so that they can be used for
anatomical connection studies and more specifically for tractography studies. To illustrate
and evaluate the models, we applied TM models to three structures: two well studied
structures, since validated DBS targets for movement disorders, the internal globus pallidus
(GPi) and the subthalamic nucleus (STN) and, the nucleus accumbens (NAcc), exploratory
target for treating psychiatric disorders. We performed a systematic LIT to document the
projections of the three selected structures and compared it with the structures proposed
by TM models, both in rat and primate (including human). To assess the results of the TM
models, a comparison has been made between the two methods for the well-described GPi
and STN. Finally, we ran probabilistic tractography on the NAcc and compared the output
with the results of the TM models and LIT. The objective here is to document/support the
validity of the TM models approach in helping to identify the targets to be explored for a
given seed structure in (probabilistic) tractography projects.

Relevant publications were obtained using the PubMed database and references from the
consulted articles. The PubMed database was manually searched for articles describing
connections of the three nuclei, globus pallidus internus, subthalamic nucleus and nucleus
accumbens. MeSH headings used were “globus pallidus”, “entopeduncular nucleus” (cor-
responding to the medial segment of the globus pallidus in rats), “subthalamic nucleus”
and “nucleus accumbens”. We further searched for the following terms: “globus pallidus
internus”, “pallidum internum”, “internal globus pallidus”, “globus pallidus pars interna”
and “medial globus pallidus”. We combined them with the following MeSH headings for
the studied species: “rats”, “primates” and “human” and with the following key words:
“connections”, “projections”, “afferents” and “efferents”. Only articles written in English
were reviewed. We used Terminologia Anatomica as reference for official nomenclature of
the studied regions and structures.

Detailed description of the methods used for guided probabilistic tractography of NAcc can
be found in [Vas+15].

Evaluation

The manual literature review (LIT) has been performed by two neuroscientists29 and took
approximately 5 working days for the three regions. The summary of the systematic review
is presented in Table 4.12.

We compared and analyzed the results between TM and LIT for the three structures. Table
4.13 lists potential targets for the GPi and STN, as provided by the TM models. The potential
targets are ranked by their decreasing score, the score representing the rounded number
of connection mentions, normalized by the confidence30 that each connection has been

29Dr. Laura Cif and Dr. Jocelyne Bloch
30 Confidence (precision) has been evaluated for each extractor.
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Tab. 4.12: Summary of the manual literature review. This review has been performed by
two neuroscientists and took approximately 5 working days for the three regions.
A detailed description of the three seed structures and their connections can be
found in [Vas+15].

Afferents Efferents

Globus Pallidus internus

Subthalamic nucleus Thalamus

Substantia nigra pars compacta Lateral habenula

Ventral tegmental area Substantia nigra

Neostriatum Pedunculopontine nucleus

Cerebral cortex (rat)

Neostriatum

Subthalamic nucleus

Primary motor cortex Globus Pallidus internus

Supplementary motor area Globus Pallidus externus

Frontal eye field Substantia nigra pars compacta

Somatosensory cortex Substantia nigra pars reticulata

Anterior cingulate Ventral thalamic nuclei ipsilaterally

Globus Pallidus externus Parafascicularis thalamic nucleus contralaterally (rat)

Substantia nigra pars compacta Substantia innominata

Ventral tegmental area Ventral pallidum

Dorsal raphe nucleus Pedunculopontine nucleus

Pedunculopontine nucleus Ipsilateral cortex (rat)

Centro-median/parafascicularis complex Neostriatum (rat)

Spinal cord (rat)

Nucleus Accumbens

Orbitofrontal cortex Ventral pallidum

Anterior cingulate Substantia nigra pars compacta

Subgenual cortex Substantia nigra pars reticulata

Pregenual cortex Ventral tegmental area

Hippocampus Hippocampus

Parahippocampal cortex Caudate

Amygdala Putamen

Substantia nigra pars compacta Medio-dorsal thalamus

Ventral tegmental area Cingulate gyrus

Substantia innominata (rat)

Lateral preoptic area (rat)

Lateral hypothalamic area (rat)
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extracted correctly. Therefore, a high score means that many articles have been found. We
stress the fact that the frequency of a brain region connection reported in the scientific
literature does not necessarily reflect the physiological intensity of a connection; the former
reflecting the interest for the region.

For the GPi, all LIT targets have been correctly suggested by the TM algorithm using ABAGPi

lexicon, except for one, ventral tegmental area (VTA). However, VTA is correctly proposed
while searching using ABA or braiNER for “Pallidum” or “Pallidum, ventral region” instead
of globus pallidus, internal segment. TM proposes more targets for the GPi than LIT,
including connections with hypothalamus (3 publications), cerebellar nuclei (2), midbrain
(2), parafascicular nucleus (2) and lateral preoptic area (2). The majority of the suggested
targets includes or belongs to targets resulted from LIT: midbrain includes SN; parafascicular
nucleus relates to thalamus. However some of the targets proposed by TM were not found
by LIT. Analyzing one such abstract suggested by TM, globus pallidus connexion to the
hypothalamus, the parafascicular nucleus and the lateral preoptic area are explicitly reported.
TM found confirmatory sentences for the previously mentioned connections: « On the other
hand, the dense substance P-positive woolly-fiber plexus filling the internal pallidal segment
(entopeduncular nucleus) expands medialward into the lateral hypothalamic region. »
or « The entopeduncular nucleus invades the hypothalamus also with a loose plexus of
enkephalin-positive woolly fibers » (Haber and Nauta, 1983). For connexions with the
cerebellar nuclei, TM suggests papers that were not found by LIT, but these papers do not
contain evidence of a connection. For illustration, we found three sentences that do not
contain evidence of a connection with the cerebellar nuclei and all of them concern the
cat. One example is « Seventy seven thalamic neurons in the VA-VL nuclear complex of the
cat which projected to the anterior sigmoid gyrus (ASG) were studied extracellularly, and
their responses to stimulation of both the cerebellar nuclei (CN) and the entopeduncular
nucleus (ENT) were examined. » (Jinnai et al., 1987). This sentence is an example of a
coordinating conjunction (e.g. « Region A and Region B were examined. »). It was suggested
by the simplest TM model that is not capable of filtering out coordinating conjunctions (even
though they very rarely represent a connection).

For the STN, all the LIT targets have been found by TM, except for specific subdivisions of aSTN

given, such as ipsilateral ventral thalamic nuclei, ventral pallidum or the anterior cingulate.
However, less specific regions (thalamus, pallidum) are correctly proposed. In addition, when
using the machine learning NER, the connection between STN and the ventral pallidum,
anterior cingulate and ventral lateral thalamus are found31.

For NAcc, Table 4.14 (left) lists brain regions for which connections have been foundNAcc

in the literature based on the ABAlex named entity recognizer. Additionally, Table 4.14
(right) also includes results from BraiNER (machine learning named entity recognizer).
As discussed in Chapter 4.2.1, BraiNER is not constrained on a list of brain regions (like
ABAlex) and is able to identify complex brain region names, even if they are not present in
a lexicon. However, the regions returned by BraiNER have to be manually identified and
curated32.

31As shown in: http://connectivity-brainer.rhcloud.com/static/br/region.html?db=20140522_brainer&br=1922
32As shown in http://connectivity-brainer.rhcloud.com/

static/br/region.html?db=20140522_brainer&br=912
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Tab. 4.13: Brain regions for which connections have been found in the literature for the
globus pallidus, internal segment and the subthalamic nucleus using text-mining
models. All the results including suggested articles, nucleus and scores can be
found in http://connectivity-brainer.rhcloud.com.

Subthalamic Nucleus Globus Pallidus internus

Region Score Region Score

Globus pallidus, external segment 105 Caudoputamen 143

Caudoputamen 74 Globus pallidus, external segment 117

Cerebral cortex 43 Pallidum 23

Pallidum 34 Substantia nigra, reticular part 21

Pedunculopontine nucleus 16 Subthalamic nucleus 20

Thalamus 16 Lateral habenula 12

Globus pallidus, internal segment 15 Thalamus 10

Primary motor area 11 internal capsule 7

Somatomotor areas 9 Cerebral cortex 4

Substantia nigra, reticular part 9 Hypothalamus 3

Parafascicular nucleus 7 Substantia nigra, compact part 3

Zona incerta 5 Pedunculopontine nucleus 2

Substantia nigra, compact part 5 Cerebellar nuclei 2

Ventral tegmental area 3 Midbrain 2

Midbrain 2 Parafascicular nucleus 2

Lateral hypothalamic area 2 Lateral preoptic area 2

Hypothalamus 2 Cerebellum 1

Brain stem 2 Reticular nucleus of the th. 1

Pons 1 internal medullary lamina of the thalamus 1

internal medullary lamina of the th. 1 Striatum-like amygdalar nuclei 1

Red nucleus 1 Zona incerta 1

striatonigral pathway 1 stria medullaris 1

Isocortex 1 Fields of Forel 1

Dentate nucleus 1 Magnocellular nucleus 1

Substantia innominata 1 Central lateral nucleus of the th. 1

Bed nuclei of the stria terminalis 1 Claustrum 1

Islands of Calleja 1 Substantia innominata 1

Dorsal nucleus raphe 1 Brain stem 1

Cerebral nuclei 1 nigrostriatal tract 1

Olfactory tubercle 1 Interbrain 1

Auditory areas 1 optic tract 1

Ammon’s horn 1
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Tab. 4.14: Regions with highest scores for which connections have been found in the
literature for the nucleus accumbens based on ABA and braiNER. Only regions
with a score larger than 1 are displayed. The complete results are openly
published and searchable at http://connectivity-brainer.rhcloud.com.

Nucleus Accumbens

ABA braiNER

Region Score Region Score Region Score

Ventral tegmental area 454 ventral tegmental area 238 amygdaloid nuclei 4

Caudoputamen 412 striatum 95 dentate gyrus 3

Cerebral cortex 295 prefrontal cortex 68 ventral pallidal 3

Striatum-like amygdalar nuclei 175 amygdala 54 cortical regions 3

Hippocampal region 122 medial prefrontal cortex 52 putamen 3

Ammon’s horn 93 hippocampus 47 medial striatum 3

Hippocampal formation 70 hippocampal 41 telencephalon 3

Pallidum 61 basolateral amygdala 40 basolateral nucleus 3

Midbrain 53 caudate-putamen 39 basolateral nucleus of the amygdala 3

Subiculum 38 cortical 35 globus pallidus 3

Thalamus 28 mesolimbic 31 smith ad 3

Hypothalamus 28 hippocampal formation 29 limbic areas 3

Periaqueductal gray 23 ventral pallidum 26 caudatoputamen 3

Olfactory tubercle 22 ventral striatum 20 bla 3

Basolateral amygdalar nucleus 19 caudate putamen 16 prelimbic cortex 3

fimbria 18 thalamus 14 neocortex 2

Nucleus raphe pontis 18 neostriatum 13 ventral hippocampal 2

Entorhinal area 18 septum 13 substantia nigra pars compacta 2

Dorsal nucleus raphe 13 caudate nucleus 13 ventromedial striatum 2

Globus pallidus, external segment 12 mesencephalic 13 limbic system 2

medial forebrain bundle 11 amygdaloid 12 cingulate 2

Paraventricular nucleus of the thalamus 11 limbic 12 dorsomedial prefrontal cortex 2

Lateral preoptic area 9 dorsal raphe nucleus 11 nucleus raphe magnus 2

Nucleus of the solitary tract 8 paraventricular of the thalamus 11 anterior olfactory nucleus 2

stria terminalis 8 corpus striatum 11 ventral pallidus 2

Substantia innominata 7 forebrain 10 ventromedialmesencephalic tegmentum 2

Locus ceruleus 6 neocortical 9 anterior striatum 2

Orbital area 6 caudate 9 dorsomedial striatum 2

Interpeduncular nucleus 5 substantia nigra 9 accessory olfactory bulb 2

internal capsule 4 periaqueductal gray 9 bed nucleus of the stria terminalis 2

Infralimbic area 4 frontal cortex 8 paraventricular nucleus 2

Ventral posteromedial nucleus of the th. 4 subicular 8 anterior limbic cortex 2

Substantia nigra, compact part 4 anterior cingulate cortex 7 thalamic paraventricular nucleus 2

Prelimbic area 4 thalamic 7 tegmenti pedunculopontinus pars comp. 2

Lateral hypothalamic area 3 striatal 7 mesencephalic ventromedial tegmental 2

Nucleus raphe magnus 3 median raphe nucleus 7 ventral pallidal area 2

Median eminence 3 dorsal striatum 7 arcuate nucleus 2

Cerebellum 2 ventral subiculum 7 medial substantia nigra pars reticulata 2

Medial preoptic area 2 basal ganglia 6 striatal caudate putamen 2

Pedunculopontine nucleus 2 ventral tegmental 6 substantia innominata 2

Paraventricular hypothalamic nucleus 2 mesoaccumbens 6 lateral septum 2

fasciculus retroflexus 2 fimbria 6 ventral striatal 2

Arcuate hypothalamic nucleus 2 a10 6 anterolateral hypothalamus 2

Midbrain reticular nucleus, retrorubral area 2 subiculum 6 vta 2

Isocortex 2 paraventricular nucleus of the th. 5 rostral substantia innominata 2

Dorsomedial nucleus of the hypothalamus 2 ventral hippocampus 5 caudoputamen 2

Brain stem 2 lateral preoptic area 5 basolateral amygdaloid nucleus 2

Bed nuclei of the stria terminalis 2 limbic structures 5 lateral hypothalamic area 2

Substantia nigra, reticular part 2 olfactory tubercle 5 ventral tegmentum 2

Parafascicular nucleus 2 medial frontal cortex 5 limbic forebrain 2

Main olfactory bulb 2 ventral mesencephalic tegmentum 5 locus coeruleus 2

lateral hypothalamus 5 anterior cingulate 2

midbrain 5 nucleus accumbens septi 2

accumbens 4 hypothalamus 2

entorhinal cortex 4 parafascicular nuclei 2

subpallidal areas 4 spinal 2

orbitofrontal cortex 4 medial caudate-putamen 2

ventral mesencephalon 4 medial substantia nigra 2

prefrontal 4 thalamic nuclei 2

cortex 4 mesolimbic dopaminergic pathway 2

nucleus tractus solitarii 4 paraventricular nucleus of the hypoth. 2

basal forebrain 4 neocortical fields 2
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Tab. 4.15: Number of publications and percentage for which connections have been found
for the 3 nuclei by species using text-mining.

NAcc STN GPi

Species Publications Percent Publications Percent Publications Percent

Rattus 1572 45.0 198 29.7 260 41.8

Mus 133 3.8 14 2.1 10 1.6

Homo Sapiens 83 2.3 34 5.1 13 2.0

Simiiformes 23 0.6 12 1.8 2 0.3

Chordata 72 2.0 12 1.8 15 2.4

Felidae 36 1.0 21 3.1 54 8.6

Canis 17 0.4 3 0.4 20 3.2

None 1550 44.4 372 55.8 247 39.7

Tab. 4.16: Overall performance of TM against LIT, in terms of number of publications.

found by LIT proposed by TM missed by TM precision recall

Gpi 10 32 0 0.31 1.00

STN 23 31 1 0.76 0.95

Nacc 21 85 0 0.24 1.00

Overall 54 148 1 0.36 0.98

All the LIT targets, except the subgenual and pregenual cortex, have been found by the TM
with the exact terminology. The two exceptions are explained by the fact that they are
subdivisions of the anterior cingulate that figures as target.

Overall, TM has a precision of 36%, meaning that it proposed three times as many targets as overall TM
performancecould be identified with LIT. Such a low precision is acceptable for the task at hand, since the

priority is to suggest all targets (high recall), even if that requires manual curation of search
results (since precision is only 36%) The overall recall of TM against LIT in our study was
98%, meaning that over all the targets for the three selected seeds, only one target have been
missed by TM (Frontal eye field for the STN) (Table 4.15).

Species differentiation

Table 4.15 lists the number of publications found by text mining, ordered by species. Species
were identified using Linnaeus, a machine-learning model to identify species in biomedical
text and resolve it to the NCBI taxonomy [Ger+10]. One interesting observation is the
difference between the number of studies on NAcc in rat and in primates, demonstrating the
little available information on NAcc connectivity coming from studies in primates including
human.

Probabilistic tractography

The targets for NAcc found during LIT and TM were used to perform tractography. We
selected one human subject to illustrate the DTI results. Figure 4.18 shows the strength of
connectivity of NAcc to its targets by depicting the number of voxels within the NAcc that
has a probability superior to 1% to be connected to a specific target. Cortical targets such
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Fig. 4.18: Number of voxels within the nucleus accumbens that have a probability of more
than 1% to be connected to a specific target in one subject (healthy control, right
handed male, age 42). Left nucleus accumbens (in blue) has a total of 712 voxels
and the right nucleus accumbens (in red) has a total of 559 voxels.
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as the anterior and subcalosal cingulate, medial and lateral orbitofrontal cortex, ventrolateral
prefrontal cortex, insula, gyrus rectus, olfactory cortex all exhibited connection to NAcc.
Conversely, hippocampus and amygdala exhibited a lower probability of connection to NAcc
than expected. Hypothalamus and thalamus and basal ganglia including caudate, putamen
and pallidum as well as STN exhibited a strong probability of connexion. In agreement
with previous knowledge, midbrain dopaminergic structures, SN and VTA exhibited high
probability of connections with NAcc.

4.2.5 Discussion

Text mining models

We demonstrate that an exploitable brain region connectivity database can be extracted from
a very large amount of scientific articles. Our models extract large amounts of connectivity
data from unstructured text and compare favourably against in-vivo connectivity data. They
provide a helpful tool for neuroscientists to facilitate the search and aggregation of brain
connectivity data.

Our work builds on top of French et al. (2009, 2012 and 2012) and extends it in several
aspects: Our connectivity extraction model uses a combination of three different extractors,
including a novel rule-based extractor that achieves state-of-the-art precision. Models
were applied to a comprehensive corpus of over 8 Billion words, consisting of all available
PubMed abstracts and a very large number of full-text articles related to neuroscience.
New model features and extraction filters were added to improve robustness on full-text
extraction. Connectivity results are presented to neuroscientists in a interface to rapidly
search, aggregate and evaluate connectivity results.

We highlight the fact that the presented text-mining models are not meant to replace manual
and individual evaluation of the connectivity between two brain regions. The objective
is to speed-up this evaluation and complement in-vivo or manually curated connectivity
data. We assume that the extracted connectivity data will be reviewed and validated
before being included in further analysis or models. Manual review is also mandatory since
connection extractors have a very limited capacity to differentiate between hypothesized
or contradictory connections, connections referred from another article, or connections
supported by experimental data. Therefore, the efficient representation of connectivity data
is important, so that domain experts can rapidly evaluate it.

A drawback of manual search (as it is most commonly performed for literature search) is
the inability to provide feedback on search results. More that 3 million manual searches
are performed daily on the PubMed web site33. Yet, a manual search performed by a
researcher will neither improve future searches nor contribute to the building and curation
of a structured knowledge base. In contrast, our database interface allows researcher to rate
search results (collaborative filtering). Once enough feedback data is collected, the models
can be retrained to achieve even higher performance.

The present study highlights the differences in complexity and performance between machine
learning and rule-based approaches. The former delivers superior performance but requires
a significantly more complex setup, in particular in terms of knowledge required (model and

33www.nlm.nih.gov/services/pubmed_searches.html
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feature selection) and time for corpus annotation and model training. On the other hand,
rule-based approaches are much simpler and require less time to develop. They are also
less tightly bound to the domain they are applied to. For example, the FILTERS extractor
(sect. 4.2.2) could be applied to relationship extraction between other entities (like neurons
or proteins) without significant modification. However, the performance of rule-based ap-
proaches is significantly lower, especially in terms of recall.

Automatic target validation for tractography

In the previous section (4.2.4), we proposed to assess text-mining (TM) models to automati-
cally suggest targets from the neuroscientific literature for tractography studies. Although
current tractography methods have limitations, the ability to localize fiber bundles is of great
help to understand connections and structural organization of the human brain. Anatomical
knowledge can be used to impose constraint in the tract reconstruction, thereby effectively
reducing the likelihood of the occurrence of erroneous results. Even if this approach is
applied to anatomically well-documented tracts , it is essential to validate probabilistic results
and in particular in DBS, to explore a specific seed by studying patterns of connectivity,
sub-parcellation and confirmation of functional zones [Bar+10]. Brain structures like the
nucleus accumbens (NAcc), are less documented in human. We believe that TM approaches
can help neuroscientist to use the provided information to identify targets for tractography
and document them in human.

Two well-established DBS targets for movement disorders have been studied (GPi and STN)
and, NAcc, an exploratory DBS target for psychiatric disorders. The output of the TM method
was compared with the output of a manual, systematic review of the literature (LIT) and
the output of the probabilistic tractography using NAcc as seed structure. The concordance
with data from manual search is significant and robust. The overall performance of the TM
algorithm against LIT in our study was 98% recall, meaning that almost all regions found
with LIT were also proposed by TM. In particular, when compared with the systematic search
of the literature, for the “Globus pallidus, internal segment”, all LIT targets but one (VTA)
have been correctly suggested when using the restricted ABA lexicon. This missing target
could be recovered when using the machine learning named entity recognizer (BraiNER).
For the STN, all the targets identified by LIT have been found with TM, except for subsequent
divisions of a given target, identified (again) when using braiNER. For NAcc, all the targets,
except for the subdivisions of the anterior cingulate cortex have been identified. Overall and
as expected, TM returns and proposes more targets than LIT, but also provides indication for
the plausibility of a given connection between two regions. As an example, the connection
between GPi and the Caudoputamen has a score of 143, making the connection highly
probable. In contrast, only one single article has been found for the connection between GPi
and Ammon’s horn (Hippocampus).

The key advantage of TM is the ability to screen millions of documents and billion of words
in a matter of hours. This way, the complete available biomedical literature can be processed
and analyzed. Another advantage is the possibility to search within results, and order them
according to relevance. It is also possible to provide feedback to the models and subsequently
retrain them with that additional data in order to improve results. However, TM has several
shortcomings and manual post-processing of results is mandatory. For example, complex
sentences are tedious to analyze and often yield incorrect or empty results. In fact, one
has to keep in mind that the estimated precision of the proposed target regions by TM
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is 36%. TM is not yet able to extract the directionality of the connection, nor metadata
like neurotransmitter type or if the connection is inhibitory or excitatory. Additionally,
TM lacks the ability to clearly differentiate between facts and hypothesis and is not yet
able to trace the source of a connectivity statement (e.g. when an articles cites another
reference).

When compared to the TM models, the manual, systematic search of the literature has the
major advantage to select and interpret data in the light of the known anatomy, resulting
in a deep and thorough analysis of the available literature. Researchers are able to filter,
synthesize and aggregate very disparate and complex information into a consistent knowl-
edge base. They are capable of interpreting every connectivity statement, of replacing it in
its specific context (including experimental setting, field of expertize of the authors), and
therefore of judging the exact pertinence of a connectivity statement. This detailed manual
analysis comes at the cost of scaling, meaning that only a fraction of the published data will
be considered.

Obviously, both approaches have compelling advantages. However, we found that the
winning strategy is to combine and leverage the strength of both approaches. Indeed: TM
can be deployed as a first step to screen and aggregate the scientific literature, capable of
ingesting millions of documents. Thereafter comes the time for a manual and meticulous
analysis and verification of the suggested connectivity statements, with the possibility to
drill down to the original source (published article). The manual effort can be directed on
intelligent tasks like validating and searching proposed connectivity statement, instead of
their painstakingly identification from within millions of publications. Using this dual strategy
(TM prior to LIT), it took less that two hours to have proposed a set of 25 potential targets
for NAcc. In comparison, it took approximately a week for a user trained in neuroanatomy
to conduct the isolated literature review of NAcc as presented in Section4.2.4. Therefore, the
connectivity database significantly accelerates the manual search of metascale brain region
connectivity, by providing a centralized repository of connectivity data for neuroscientists.
Another advantage of this dual approach is the possibility for neuroscientist to collectively
curate a knowledge base and therefore improve it.

Regarding the distinction of connectivity statements from different species: as demonstrated
by the review for the NAcc, the majority of the available data comes from rodent studies.
There is a striking need to disentangle human data from non-human primate data. Frequently,
information reported in humans is inferred from animal studies without further notice. As
provided by the results section, there is no sharp correspondence for the nomina between
species for a given structure (e.g., globus pallidus, internal segment) rendering inferences
from specie to another highly risky. Furthermore, the pattern of connectivity for a given
structure may differ between species [Boh+09a]. Whether significant connections are
reported between NAcc, hippocampus and amygdala through the available literature as
identified via manual search and suggested by TM, the strength of connections between the
aforementioned structures as output of the probabilistic tractography in healthy controls is
not confirmatory of this result. However, there are many examples of fibre pathways that
are reported in dissection and tracer studies that are lacking in diffusion tensor tractography
studies, highlighting the importance of the selected tractography technique, its limitations
and the potential role of the TM in validating connectivity information and support further
investigations.
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In the current study, we focused on the target identification using TM for tractography studies.
Specific TM improvements are also required to improve tractography applications. For
example, TM could be integrated in a 3D atlas to enhance the visualization and exploration
of projections extracted from the literature, and to better evaluate topology, and speed up
evaluation of results.

In conclusion, we demonstrate that connectivity for a structure of interest can be ex-
tracted from a very large amount of publications and abstracts. We believe this kind
of approach will be useful in helping neuroscience community to facilitate connectivity
studies of particular brain regions. The TM tools used for the present study are indeed
part of the HBP Neuroinformatics Platform and are freely available for the neuroscience
community.
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4.3 neuroNER: finding neuron types and subtypes by
identifying their properties34

Since the earliest investigations by Santiago Ramòn y Cajal, neuroscientists have partitioned lack of
consistent
terminologies
for neurons

brain cells into types and subtypes according to their constituent features, including their
morphology, electrophysiology, and molecular profiles (to name a few). However, neuroscien-
tists regularly disagree on how neuron types should be described [MA13; DeF+13; Asc+08].
Thus the lack of consistent terminologies or nomenclatures for describing neuron types
makes cross-lab study of neuron types immensely difficult.

In this section, we present a general approach for identifying and normalizing mentions compositional
approach for
analyzing
neurons

of specific neuron types from the biomedical literature. Our method relies on identifying
and analyzing each of the domain features used to annotate a specific neuron mention,
like the morphological term “basket” or brain region “hippocampus”. For example, a
“pyramidal cell”, is a neuron with a “pyramidal”-like morphology, whereas a “CA1 pyramidal
cell” is a neuron with a pyramidal shape that has its soma in the pyramidal cell layer
of hippocampal region CA1. By decoupling a neuron mention’s identity into its specific
compositional features, our method can identify specific neuron types even if they are not
explicitly listed within a predefined neuron type lexicon, like NeuroLex [LM13] or the Cell
Ontology [Bar+05].

We apply our method to two corpora of 13,293,649 PubMed abstracts and 630,216 full-text results

articles (see Section 3.1.4 for details about the corpora used). Our methods rely on Sherlok
for information extraction and Elasticsearch for full-text search and analysis (see Section 3.3).
We found over 500,000 unique neuron type mentions (see Table 4.18 below). A detailed
analysis of these results is ongoing, including assessing whether neuron types with similar
features in terms of their morphology, protein expression, or electrophysiological properties
exist in different brain regions. To demonstrate the utility of our approach, we also apply
our method towards cross-comparing the NeuroLex and Human Brain Project (BBP) cell
type ontologies. The resulting code and models, including evaluation, is publicly available at
http://github.com/renaud/neuroNER.

4.3.1 Introduction
The majority of what is known about the vast array of diverse neuron types is present
in the neuroscience literature. For example, since the time of Cajal, neurons have been
studied, defined, and partitioned into various types and subtypes along a number of dimen-
sions, including their cellular location and morphology, electrophysiology, molecular profile,
connectivity, and functional responses (among others).

However, systematically accessing and utilizing this immense set of knowledge about neuron
types is made difficult by the inconsistent conventions and nomenclatures about report- inconsistent

conventionsing information and data about neurons. Moreover, scientists regularly disagree on how

34This section results from a fruitful collaboration with Dr. Shreejoy Tripathy from the Centre for
High-Throughput Biology at the University of British Columbia. It has been accepted as a conference
abstract to the 2015 International Conference on Brain Informatics and Health, London. It will be
further developed into a full-length paper following the thesis defense.
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neuron types should be described, or what constitutes an adequate definition of a neu-
ron type [MA13; DeF+13; Asc+08]. Thus, unlike domains like chemistry or genetics,
where the objects of study, molecules and genetic loci, are clearly delineated and are
referenceable using unique identifiers, the study of neuron types is inherently more nebu-
lous.

While there has been recent work by neuroscience domain experts to enumerate the completecomplete
listing of
neuron types

listing of neuron types (e.g., NeuroLex [LM13], BIRNLex [Bug+08], Cell Ontology [Bar+05]
and Subcellular Neuroanatomy Ontology [Lar+07]), these listings are not completely com-
prehensive. Perhaps more critically, it is unclear whether such approaches capture the
lexical and semantic richness of how neuroscientists refer to neuronal data in the scientific
papers they publish. Moreover, for the value of a centralized listing of neuron types to be
realized, neuroscientists and journal publishers must commit to using such a classification
scheme when referring to their neuronal data, for example, through the use of unique
unambiguous names or machine-readable identifiers. In the absence of such a formal classifi-
cation scheme, downstream efforts by neuroscientists to normalize specific neuron instances
to a neuron ontology or lexicon (e.g., ModelDB [Hin+04], Hippocampome [Ham+13],
NeuroElectro [Tri+14]) inherently loses specificity. More problematically, such ambiguity
in how neuron types are referred to makes it incredibly difficult to compare results on
neuron function across labs, leading to needless replication of efforts and overall slowing of
progress.

In contrast to this “top-down” approach for referring to data on neuron types, in this
section we explore an alternative scheme for identifying and normalizing mentions of
neuron types. Specifically, our idea is to think of neuron identity as compositional, or thatcompositional

approach neuron types are defined through conjunctions of modifying statements that span various
domains, like morphology, electrophysiology or neurotransmitter released. For example,
a “Neostriatum cholinergic cell”, is a neuron that expresses “acetylcholine” and is located
in the “Neostriatum”. Such a neuron is semantically equivalent to “cholinergic neurons in
the neostriatum” (see Table 4.19.). Similarly, “nest basket cell” is a subtype of a “basket”
cell that further displays a “nest” morphology. These basic examples illustrate that neuron
types can be naturally referred to at varying levels of resolution, given the specific modes of
investigation of the author.

Thus, by decoupling a neuron’s identity into its defining components, our hypothesis is that itdefining
components may be possible to automatically identify each of these component features separately, and

recognize a specific neuron type that an author is referring to, even if such a neuron type
may not exist in a corresponding predefined lexicon. For example, the exact example of a
“insulin-expressing CA1 pyramidal cell” does not currently exist in a corresponding ontology,
but its meaning can be naturally expressed as a “Hippocampus CA1 pyramidal cell”35 that
further expresses the protein insulin.

A useful analogy for the compositional hypothesis is similar to that of the condensed (or semi-
structural) chemical formulas. Such a scheme allows the decomposition of chemical formula
of gamma-aminobutyric acid (i.e., GABA) into its constituents: NH2CH2CH2CH2COOH,
or, a 4-carbon chain (i.e., butane) with an amino group at carbon position 1 and a
carboxylic acid group at carbon position 4 (i.e., gamma). Similarly, a neuron mention
like “Layer 2/3 pyramidal cell” can be decomposed into its constituents: layer: 2/3,

35Neurolex: http://neurolex.org/wiki/Category:Hippocampus_CA1_pyramidal_cell
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Fig. 4.19: The compositional hypothesis for neuron mentions. Our idea is to think of neuron
identity as compositional, or that neuron types are conjunctions of modifying
statements spanning various domains, like morphology or electrophysiology. In
the first example, a “Neostriatum cholinergic cell” can be analyzed as a neuron
expressing “acetylcholine” and located in the “Neostriatum”. Such a neuron is
semantically equivalent to “cholinergic neurons in the neostriatum”.
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morphology:pyramidal. As another example, the mention thalamic Calb1-expressing neu-
rons can be decomposed into two properties: one related to the location of the neuron in
the brain (in the thalamus) and the other regarding the genes expressed (Calb1, the gene
for Calbindin). This decomposition allows comparing neurons at a more semantic level, e.g.comparing

neurons at
the semantic
level

the mention “calbindin D-28k-positive neurons in the reticular nucleus of the thalamus” is
equivalent to the previous example, since calbindin D-28k refers to the protein coded by the
gene Calb1 and the reticular nucleus of the thalamus is a subregion of the thalamus. This kind
of decomposition and normalization is essential for seamlessly comparing neuron mentions
across laboratories and studies.

Our approach draws much from previous efforts, namely, the Petilla nomenclature conventionPetilla
nomenclature and later efforts by the Neuron Registry Task Force [Asc+08; Ham+12], where various

aspects of neuron function were enumerated and a semi-standardized terminology was
proposed to describe various aspects of cortical interneuron function. Our specific con-
tribution to these earlier efforts made by neuron type experts is the explicit codification
of the rules they proposed, as well as their large-scale application to the neuroscience
literature.

Related to our efforts is Virk, an active learning system trained on identifying articles
potentially contains information about neurons [Amb+13]. More specifically, it extracts
(neuron type, relation, value) tuples (e.g., “CA1 pyramidal cell”, “located in”, “CA1 stratum
oriens”). In contrast to neuroNER, Virk is a classifier that takes a decision on whether an
article potentially contains information about neurons or not. It does not yet facilitate
the localization of the information within the paper, nor does it perform the information
extraction itself.

Applications

The following applications for neuroNER are envisioned:

• Locating instances of neuron subtypes in the literature (and in particular, rarely studied
neuron subtypes). This would help prioritize articles for curation and incorporation to
a structured database like NeuroMorpho [PA13] or NeuroElectro [Tri+14].

• Assisting authors submitting an article by automatically suggesting specific neuron
types from a structured list to use as article keywords. This use case has been discussed
with Elsevier.

• Allowing researchers to search through tagged neuron corpora. For example, given a
query protein, like somatostatin, researchers can find all literature mentions where
that protein has been found to be expressed in a neuron.

• Extract co-mentions of proteins and subcellular compartments (e.g., “synapsin is
localized in CA1 pyramidal cell distal dendrite synapses”).

• Extract co-mentions of neuron types and electrophysiological measurements.
• Applying an algorithmic tool for highlighting neuron mentions found in text can help a

domain expert curate the neuron type to a specific instance from a predefined neuron
lexicon.

• Count which neuron types are the most studied or least studied.
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Category Examples

brain region CA1, pedunculus cerebri, cortical

species rat, mouse, human, bovine

size large, medium, narrow, giant

developmental stage foetal, embryonic, post natal day 2

electrophysiology depolarized, burst, fast-spiking

brain function olfactory, primary motor, presynaptic

neuron morphology bipolar, candelabrum, tufted, early bifurcating

neurotransmitter glycinergic, dopaminergic, GABAergic

protein and genes calbindin, mGluR1, Cck, NPY-expressing

Tab. 4.17: The 9 major categories of neuron properties.

4.3.2 Methods

Initial development

The first development iteration of neuroNER took approximately one week and consisted
in structuring the specialized domain of neuron mentions. For this, an exploratory corpus
of 5000 random sentences from the Journal of Neuroscience containing the term “neuron”
or “cell” was created. It was used to structure the different neuron properties into 9 classes
(see Table 4.17). Then, existing resources for each of the neuron properties were collected.
For example, the Uniprot protein ontology [Con+08] was used to find proteins, together
with a flat list of proteins and abbreviations frequently found in neuroscientific publications.
An initial project was created in Sherlok and all initial resources were registered. A set of
simple rules was created to match examples of neuron mentions acquired in the exploratory
corpus.

In a second iteration, the system was applied on a larger corpus consisting of 100,000
abstracts that contained the MeSH term neuroscience selected at random. These results could
be easily visualized and were analyzed for missing properties. In particular, adverbs and
adjectives relative to brain regions were included, for example “hippocampal”, “spinal” and
“cortical”.

Identifying Neuron Properties

The identification of neuron mentions in text is triggered by a short list of lexical variants
of the words “neuron” and “cell”. This list of trigger words is further augmented with
specific cell type names like “astrocyte” or “microglia”. Once a trigger word is identified,
the algorithm searches for potential neuron properties that are located before and after the
trigger word.

For each domain, extensive dictionaries of terms were manually created. For example, the
dictionary for “neurotransmitter” contains an entry for the term “acetylcholine”. That entry
also contains two lexical variants (“cholinergic”, “acetylcholinergic”) and the abbreviation
“ACh”.

Many neuroner lexical resources evolved from simple flat lists of words related to a given evolution of
lexical
resources
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property, into structured OBO ontologies. For example, electrophysiological properties
were at first identified with one single, large regular expression aiming at extracting the
largest number of mentions. In subsequent developments, all possible electrophysiological
properties were stored in a flat text file. Eventually, that list was refactored into two different
OBO ontologies, one for electrophysiological trigger words like “spiking” or “bursting”,
and one for electrophysiological properties like “fast” or “low threshold”. In many of the
feature domains, we could find no suitable existing ontology, thus we chose to propose novel
ontology terms and identifiers using “HBP” and the domain like “morphology” or “layer” as
the namespace.

Similarly, the identification of proteins was initially performed using diverse lists of proteinsidentification
of proteins from existing ontologies and taxonomies. These resources were subsequently curated and

condensed into an OBO ontology of approximately two thousand neuroscience-relevant genes
and proteins, drawing from term lists internal to BBP or from projects like Hippocampome,
which have enumerated listings of commonly used marker genes and proteins. To further
expand these lists, we used synonym lists from NCBI and UniProt, using NCBI gene IDs
as unique identifiers for each gene or protein. Here, we chose to employ a dictionary-
based strategy for identifying genes and proteins as opposed to a machine learning NER
approach because in initial tests, the machine learning NERs, like BANNER [LG+08]
displayed too low precision in initial tests. However, in later iterations we are considering
the application of a dual strategy where first, properties are identified with a manually-
constructed dictionary containing high-frequency terms, and second, a machine-learning
NER identifies less-frequent properties.

The “species” domain is identified using Linnaeus [Ger+10], a species NER that uses a
dictionary-based approach and a set of heuristics to resolve ambiguous mentions about
species. The Linnaeus model is able to resolve 97% of all mentions in PubMed Central full-
text documents to unambiguous NCBI taxonomy identifiers.

An area of neuron properties which remains yet to be implemented in the neuroNER is
the domain of neuroanatomical connectivity, including incorporating features like “L2/3-
targeting” or “VTA-projecting”.

Normalization of property values

Normalization of property values is necessary to reduce lexical diversity and allow semantic
matching. At the lexical level, normalization is handled through OBO synonyms or ROBO
regular expressions (see Table 3.12 on page 42). At the semantic level, normalization is
handled through explicitly defined ontological relationships. For example, neurotransmitters
were labeled with their corresponding functional classes (inhibitory/excitatory) whenever
appropriate. In the case of neocortical region, the OBO resource specifies whether a region
is a subregion of another (e.g. “layer 5a” is a “layer 5” and “layer 2/3” is the union of
layer 2 and 3. Similarly, species can be compared with a common ancestor up the NCBI
taxonomy tree. Normalization at the word level could be handled with transformation
rules, as in [FP12]. For example, the phrase “neocortical basket and Martinotti cells” could
be split into two distinct mentions: “neocortical basket cells” and “neocortical Martinotti
cells”. For some property classes like functions or morphologies, no normalization could be
performed.

One important part of normalization is implicit correspondence. These represent implicitimplicit corre-
spondence
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assumption, well understood by any SME, but not explicitly mentioned in the text. Examples
of implicit correspondences include the following facts:

• Parvalbumin (PV) is expressed in GABAergic interneurons,
• PV is expressed in cerebellar Purkinje cells,
• Purkinje cells are only found in the Cerebellum.

These implicit correspondences could be extensively listed and handled during a post-
processing step. Implicit correspondences can also consist of negative facts, e.g. that there
are no Martinotti cells in the midbrain.

Semi-supervised Population of Lexical Resources

To improve neuroNER’s recall, we collected unmatched words frequently occurring near a
neuron mention. For example, during early developments, the neuron mention “cholinergic
parasympathetic neurons” was not fully extracted: “cholinergic” was correctly identified,
but not the region “postganglionic”36. Such a pattern of “missed” properties could be often “missed”

propertiesobserved. Missed properties were aggregated over a scale out on a large corpus. Only 1,
2 and 3 grams were considered. These n-grams were sorted by decreasing frequency in
the corpus, and manually added to the resources by the SME if deemed relevant. This
data-driven, semi-automatic algorithm for lexical resource enrichment was very helpful to
improve neuroNER’s recall. Moreover, it represents an alternative “bottom-up” approach
towards populating ontological resources.

4.3.3 Experiments and Results

Scale Out extraction

The neuroNER algorithm was applied to identify neuron mentions within a large corpus of
13,293,649 PubMed abstracts and 630,216 full-text articles, representing approximately 2
and 6B words, respectively (see Section 3.1.4 for details about corpus statistics). Table 4.18
lists the number of extracted properties. A detailed analysis and interpretation of these results
is forthcoming, but these preliminary results illustrate that brain regions and morphology and
considerably more likely to be used by authors to describe neurons than neurotransmitters,
electrophysiology, or protein expression. This is in contrast to Petilla nomenclature, which
suggests that each of these domains is a more-or-less equivalent way of describing neuron
function.

Figure 4.20 illustrates the number of properties that were extracted per neuron. We observe
that for the PubMed corpus, almost a third of all neuron mentions do not contain any
property (i.e., an isolated instance of “neuron” or “cell”, in the absence of an additional
neuroNER-identified compositional feature term), while over half of all neuron mentions
contain a single property. This relatively low number of properties can be explained by
two primary reasons. First, many articles do not provide or require detailed descriptions of
neurons or cells. Their granularity is above the level of neurons. Second, even for articles
providing detailed descriptions of neurons, these often contain the generic words “neuron”
or “cell” to refer to previously defined cells37. One such example can be found in [PMID

36In other words, one unknown word occurring between two known words
37In linguistics, this frequent phenomenon is known as anaphora. For example, the previous sentence

used the anaphora “this”.
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Tab. 4.18: Extracted properties, grouped by property classes, based on the PubMed abstract
corpus.

Category Extracted properties

brainregion 525,934

function 308,652

morphology 167,513

species 147,259

size 63,983

neurotransmitter 52,834

developmental 52,492

orientation 10,717

protein and genes 9,287

layer 4,583

electrophysiology 2,940

22593736]: “[...] we calculated the mean score for layer 2/3, layer 5, and layer 6 pyramidal
neurons. [...] In most neurons we verified that [...]”. In the first instance, neurons are
described with several layer properties, whereas the subsequent mention is a reference and
thus does not repeat the layer information.

Figure 4.21 shows which combinations of neurons often co-occur in the same mention. For
example, 30,929 neuron mentions contained both brain region and function properties. Some
neuron mention exhibit a very large number of properties, e.g. “CA3 hippocampal and layer
V motor cortical pyramidal neurons in adult male Wistar rats” [PMID 9766395] or “excitatory
and inhibitory stellate cells in layer 4 of ferret visual cortex” [PMID 12631564] or “enkephalin
positive striatopallidal MSNs (medium spiny projection neurons)” [PMID 17934457]. While
these histograms illustrate a convenient way of summarizing the extracted information, we
are currently exploring interactive ways of visualizing and drilling down into this data to
further investigate the relationships contained within.

Evaluation of system recall and precision

To evaluate neuroNER’s precision and recall, an evaluation corpus was created. This corpus
consists of 97 full-text articles closely related to the research at BBP, so as to ensure that
they contain complex forms of neuron mentions. Indeed, Figure 4.20 shows that the
evaluation corpus contains neurons with more properties than the above PubMed corpus.
From that evaluation corpus, 200 sentences containing neuron trigger words were manually
evaluated38. These sentences contained in total 253 neuron properties, of which 207
could be recognized by neuroNER resulting in a 0.82 recall. Two main types of error0.82 recall

occur. In the first case, a property is not (yet) part of neuroNER and cannot be identified
(e.g. “corticopontine”, or “tripolar”). In the second case, no rules yet exist to match
relatively rare patterns. For example, the phrase “interneurons recorded in layers 2/3 and

38The corpus, details about articles selection and preprocessing are available at https://github.com/
renaud/neuroNER/tree/master/input/evaluation_corpus.
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Fig. 4.20: Histogram of property counts.

5” could not be match since no rule of the form {neuron} recorded in {layer} exists
yet.

Only 3 properties were incorrectly extracted, resulting in a 0.98 precision. For example in the 0.98 precision

mention “fast-spiking-cell spike”, the second instance of “spike” is a noun and was incorrectly
extracted. In another case, “changes in morphology and input cell body doubled”, a neuron
mention was extracted while in fact the word “cell” does not represent an explicit neuron
mention. Such errors could be solved by post-processing properties, and ensuring that they
have the correct part-of-speech (e.g. adjectives or adverbs for neuron properties and nouns
for neuron trigger words, like “cell” or “interneuron”).

Evaluation against NeuroLex and BBP cell ontology

As a concrete example of how the neuroNER can be used to facilitate normalization of
neuron type mentions, we used the neuroNER to cross-compare the NeuroLex and BBP
neuron lists39. Given that BBP entities refer to cortical cell types, we appended the brain
region “Neocortex” to each of the BBP cells.

Figure 4.22 illustrates the correspondence between NeuroLex and the BBP cell ontology. The
top example (A) shows the correspondence between HBP’s “Layer II/III Pyramidal Cell” and
NeuroLex’s “Neocortex pyramidal layer 2-3 cell”. Although both forms are lexically different,
they are normalized to the exact same semantic representation. The middle example (B)
illustrates a partial correspondence between HBP’s “Layer V Nest Basket Cell” and NeuroLEX’s
“Neocortex basket cell”, indicating that the former is a subtype, or more specific neuron
instance than the latter. In the bottom example, a complex neuron mention from the
literature [PMID 16369481] is only partially described by the BBP ontology, illustrating the
need for a compositional feature approach.

39We downloaded the listing of vertebrate neuron types using the NeuroLex web portal and obtained
an OBO file provided by Martin Telefont of the BBP cell types
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● 413,178   ● ● ● 4,340  

● 235,506   ● ● ● 2,693  

● 114,251   ● ● ● 2,142  

● 92,990     ● ● ● 1,695  

● 55,786     ● ● ● 1,093  

● 34,736     ● ● ● 729     

● 29,607     ● ● ● 653     

● 7,396       ● ● ● 649     

● 6,876       ● ● ● 522     

● 2,143       ● ● ● 472     

● 1,936       ● ● ● 369     

● ● ● 276     

● ● 30,929     ● ● ● 271     

● ● 25,115     ● ● ● 236     

● ● 19,222     ● ● ● 190     

● ● 10,953     

● ● 10,833     ● ● ● ● 585     

● ● 10,534     ● ● ● ● 393     

● ● 6,275       ● ● ● ● 345     

● ● 4,552       ● ● ● ● 76       

● ● 3,272       ● ● ● ● 64       

● ● 2,499       ● ● ● ● 58       

● ● 2,242       ● ● ● ● 47       

● ● 2,171       ● ● ● ● 43       

● ● 2,001       ● ● ● ● 42       

● ● 1,927       ● ● ● ● 41       

● ● 1,497       ● ● ● ● 31       

● ● 1,276       ● ● ● ● 28       

● ● 1,009       ● ● ● ● 27       

● ● 929          ● ● ● ● 23       

● ● 687          ● ● ● ● 21       

● ● 654          

● ● 635          ● ● ● ● ● 50       

● ● 598          ● ● ● ● ● 28       

● ● 488          ● ● ● ● ● 13       

● ● 452          ● ● ● ● ● 6         

● ● 360          

● ● 267          ● ● ● ● ● ● 5         

● ● 265          ● ● ● ● ● ● 1         
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Fig. 4.21: Evaluation of inter-domain frequencies: how many neuron mentions were found
with the listed combination of domains. Only combinations with a high frequency
are shown. Histogram is in logarithmic scale.
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Fig. 4.22: Schematic of correspondence between NeuroLex and BBP (A and B). C is an
example showing that even BBP cell types are insufficient to fully describe some
of the things in the literature, illustrating the need for a compositional feature
approach.
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Fig. 4.23: Histogram contrasting the number of missing terms per BBP entity when com-
pared to NeuroLex neuron types. The x axis is the number of missing neuroNER
terms per BBP cell type, while the y axis is the frequency. Most BBP cell types are
missing at least 1 property (62%) but usually not more than 2 when compared to
NeuroLex.

The correspondence between NeuroLex and the BBP cell ontology was automatically evalu-
ated, by using neuroNER to find the closest matching NeuroLex term for each BBP cell type
entity. Figure 4.23 presents the number of missing terms per BBP entity when compared to
NeuroLex neuron types. 23% of BBP entities can be fully normalized to NeuroLex, whereas
62% are missing at least 1 property. For most of these cases, the missing property is a layer
term, where the BBP cell types are usually defined explicitly by layer whereas the NeuroLex
cell types generally are not (e.g., “Layer 4 candelabrum cell” in BBP vs. “Neocortical can-
delabrum cell” in NeuroLex.). Additionally, BBP cell types tend to contain more specific
morphology adjective terms, such as “nest” or “thick tufted”.

Overall, comparing the two ontologies indicates that the NeuroLex neuron lexicon tends to
“lump” neuron types whereas the BBP tends to “split”. However, the example in Figure 4.22 B
shows that there are clear instances in the literature where even the BBP cell type ontology
is insufficient to adequately represent an observed neuron instance. In general, this exercise
illustrates that neuron types are defined hierarchically at varying levels of detail, and thus,
that a compositional feature approach is needed for comparing and normalizing such neuron
mentions.

neuroNER Visualization and Search Engine

The corpus, together with the extracted neuron mentions is stored in an Elasticsearch full-
text index and can be easily interactively searched (Figure 4.24). The interface presents a
useful method for quickly searching neuron mentions from the vast literature given an input
query, like “somatostatin” or “layer V thick tufted”.

Conclusions, ongoing improvements and future work

To date, the majority of the work for neuroNER has been in the development of algorithms
for identifying neuron compositional features, including populating terms lists, like for
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Fig. 4.24: Output from neuroNER to automatically identify and normalize neuron type
mentions from the neuroscientific literature. This output is composed of a
random selection of sentences from PubMed abstracts related to neuroscience.
Neuron properties are highlighted based on the category they belong to. The first
line lists all different categories of neuron properties. In the last sentence, the
words “double” and “net” are not yet identified and will be collected as “missing
terms” to semi-automatically enrich the lexical resources (see Section 4.3.2).
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morphological or electrophysiological concepts, and in developing lexical rules for iden-
tifying these terms in text. Given the .82 recall and .98 precision measures based on the
evaluation corpus, we can consider the bulk of efforts in developing the neuroNER tool to be
complete (though of course, further efforts can be taken to improve the recall, as outlined
above).

We have applied the neuroNER towards locating and normalizing neuron mentions from
an unprecedentedly large corpus of abstracts and neuroscience full texts and making these
results easily searchable using a web-based interface. However, significant work remains in
analyzing and summarizing these results and in interpreting their content. For example, by
analyzing the neuroNER results, we should be able to provide estimates for which neurotrans-
mitters, neuron morphologies, proteins, and electrophysiological phenotypes are present in
which brain regions. Such in litero based measures can be validated against other databases,
like gene expression from the Allen Brain Atlas [Lei+07].

As experimental methodology improvements (e.g. single-cell RNA sequencing [Zei+15])
promise to completely redefine neuron classification schemes, we feel that it is essential to
first summarize decades worth of neuron study.
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5Synthesis

„Synergy:
from Greek sunergos, ’working together’
The interaction or cooperation of two or more organizations,
substances or other agents to produce a combined effect
greater than the sum of their separate effects

— Oxford Dictionaries

In this thesis, we introduced natural language processing (NLP) models and systems tocontributions

mine the neuroscientific literature. In particular, we presented integrated NLP models
designed to automatically extract brain region connectivity statements from very large
corpora. We demonstrated the usefulness of these models through evaluations against in-vivo
connectivity data and against manual review of the neuroscientific literature (Section 4.2).
We also presented NLP model to perform automated identification and normalization of
neuron type mentions in the neuroscientific literature. This kind of decomposition and
normalization is essential for cross-laboratory studies, since neuroscience currently lacks
consistent terminologies or nomenclatures for describing neuron types (Section 4.3). During
the development of those two NLP models, we acknowledged the need for novel NLP
approaches to rapidly develop custom text mining solutions. This led to the formalization of
the agile text miningmethodology to improve the communication and collaboration between
subject matter experts and text miners (Section 1.3.3).

This thesis has been dedicated to researching and creating synergies between differentsynergies

fields:

It was conducted in the context of the Human Brain Project, an audacious project with thecontext:
Human Brain
Project

goal to create synergies between high-performance computing and neuroscience. If we
dare an oversimplification we may observe, on one extreme, computer scientists creating
brain-scale neural network simulations. However, their models of neurons and synapses
bear very little resemblance to biological systems. On the other extreme, neuroscientists
are capable of simulating neurons at an incredibly detailed level, but usually only for a
handful number of neurons. The Human Brain Project is set to change this by providing the
necessary computing power to build and simulate multi-level models of brain circuits and
functions.

This doctoral thesis lays at the boundaries between NLP and neuroscience and has beenfields:
NLP &
neuroscience

dedicated to creating useful and living links between these two disciplines. The objective was
neither to develop novel machine learning algorithms nor to discover groundbreaking neuro-
science principles. It was instead to push the state of the art in developing and applying NLP
models and methodologies onto large corpora of neuroscientific literature, in order to extract
knowledge and integrate it into neuroinformatics models.
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At the NLP level, synergies between different methodical approaches were researched. In NLP methods

particular, the interaction between machine learning-based and lexical-based NERs. Also the
combination of supervised and unsupervised methods was studied.

We acknowledged the need for novel NLP methodologies to rapidly develop custom text
mining solutions. This led to the formalization of the agile text mining methodology (Sec- agile text-

miningtion 1.3.2) to create synergies between subject matter experts and text miners through facil-
itated communication and collaboration. Our tool, Sherlok (Section 3.3), supported us in suc-
cessfully developing several agile text mining applications (ATMA).

Future directions of research include further improvements to neuroNER and analytics future
research(Section 4.3). For example, the investigation into specifying 2 pivot properties (e.g. a

morphology, “double bouquet” and a brain region “neocortex”) in order to identifying what
other properties (e.g. electrophisiological or genetic types) can be induced from the literature.
Another line of research could be to infer implicit correspondence from the literature (e.g.
that parvalbumin neurons are implicitly fast-spiking). One more line of research could seek
to confirm (or infirm) in-vivo data (e.g. in [Mar+15], Table 1: to validate that double
bouquet expresses VIP but not NPY).

Further lines of research include the development of additional ATMAs to extract additional
neuroscientific entities and relationships (e.g. synaptic connections, ion channels, and
materials and methods sections, see Figure 1.1 page 4). Through these future applications,
we hope to further refine our agile text mining methodology.
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6Appendix

6.1 Introduction to the MeSH
Structure

Subject headings

Subject headings, main headings or descriptors are the principal components of the MeSH
hierarchy. They are used to index articles from 5,400 of the world’s leading biomedical
journals for the PubMed database [@Nata]. Every descriptor is accompanied by a short
definition, links to related descriptors and a set of synonyms or entry terms. They are
generally updated on an annual basis to reflect changes in vocabulary and additions to
the medical literature. There are 27 149 descriptors in the 2014 MeSH vocabulary, each
one of which has a Unique Identifier assigned to it (starting with D and followed by 6 to 9
digits).

Structure

Descriptors are arranged in a twelve-level hierarchy where the most general terms as “Body
Regions” or “Mental Disorders” appear in higher levels and more specific headings are
found at deeper levels. The first level is composed of sixteen categories represented by a
capital letter: “Anatomy” [A], “Organisms” [B], “Diseases” [C], “Chemicals and Drugs” [D],
etc. Categories serve as an initial division for MeSH descriptors but are not descriptors
themselves.

Each MeSH descriptor appears in at least one place in the hierarchy (sometimes referred
as a “tree”) and may appear in as many additional places as may be appropriate. Every
appearance in the hierarchy is uniquely represented by a tree number. Therefore, each MeSH
descriptor can have various tree numbers.

The MeSH structure can be viewed as a directed acyclic graph with nodes representing a
single MeSH descriptor and directed edges representing the parent-child relation between
descriptors. In this case, each graph node consists of a MeSH descriptor and a set of tree num-
bers, one for each place in the hierarchy where the descriptor appears.

For example, the MeSH descriptor “Body Regions” with Unique ID D001829 has tree number
A01, showing that it is directly under the category Anatomy [A] while MeSH descriptor
“Mouth” with Unique ID D009055 has tree numbers: A01.456.505.631 (Body Regions →
Head → Face → Mouth), A03.556.500 (Digestive System → Gastrointestinal Tract → Mouth)
and A14.549 (Stomatognathic System → Mouth). A graphical representation of the MeSH hi-
erarchy for descriptor “Mouth” can be found at Figure 6.1.1

1The entire tree structure can be browsed online on nlm.nih.gov/mesh/2014/mesh_browser/
MeSHtree.html.
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· · · Gastrointestinal
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A14.549.336

· · · · · ·

Dentition
A03.556.500.379

A14.549.167

· · · · · ·
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· · ·

· · · · · ·
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Fig. 6.1: Partial graph of the MeSH hierarchy for descriptor “Mouth”.

110 Chapter 6 Appendix



Qualifiers

Apart from the descriptors, which form the bulk of the MeSH catalog system, there are 83
topical qualifiers, also known as subheadings, used for indexing and cataloging in conjunction
with descriptors. These subheadings are not required but are used to put emphasis in an
specialization of the given descriptor. Furthermore, each descriptor can only be qualified by
a small set of subheadings. Suitable subheadings for the descriptor “Endocrine Cells” are,
for example, “EN Enzymology” or “ME Metabolism”.

It is worth noting that topical qualifiers have their own Unique Identifier (starting with Q
and follow by 6 to 9 digits) and entry terms but do not belong to the hierarchy, there-
fore they have no tree number attached. As an example, qualifyer “ME Metabolism”
has Unique ID Q000378 and entry terms “catabolysm”, “biodegradation”, among oth-
ers.

MeSH usage in PubMed articles

For the interest of this study we note that almost every article in the PubMed database
has been manually annotated by domain experts with a set of MeSH terms [@Natb].2

Every publication is typically assigned between ten to twelve descriptors [@Natc] and
these data can be easily accessed via the PubMed web interface. Moreover, a subset
of these descriptors is signaled as representing the major focus of the article, these are
called the major descriptors of the article.3 A PubMed article has on average four major
descriptors.4

As an example, article “The effect of mepyramine and 48/80 on the histamine content of
pleural exudates in the rat” (PubMed ID 999393) is paired with the descriptors “Animals”,
“Carrageenan”, “Exudates and Transudates”(m), “Histamine”(m), “Pleura”(m), “Pleurisy”,
among others.

2This denominations is used to loosely refer to MeSH descriptors.
3Some literature uses the term “major topics”. We prefer to use the term “major descriptors” to avoid

any confusion with LDA topics.
4Calculated on a sample of 100 000 articles.
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[Doğ+14] Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong Lu. „NCBI disease corpus:
a resource for disease name recognition and concept normalization“. In: Journal
of biomedical informatics 47 (2014), pp. 1–10 (cit. on p. 16).

[Dru11] G. Druck. „Generalized Expectation Criteria for Lightly Supervised Learning“.
PhD thesis. University of Massachusetts Amherst, 2011 (cit. on p. 22).

[Fel10] C. Fellbaum. „WordNet“. In: Theory and Applications of Ontology: Computer
Applications (2010), 231–243 (cit. on p. 34).

[Fer+10] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, et al. „Building Watson: An
overview of the DeepQA project“. In: AI magazine 31.3 (2010), pp. 59–79
(cit. on pp. 3, 23).

[Fer+13] David A Ferrucci, Anthony Levas, Sugato Bagchi, David Gondek, and Erik T
Mueller. „Watson: beyond jeopardy!“ In: Artif. Intell. 199 (2013), pp. 93–105
(cit. on p. 23).

[FL04] David Ferrucci and Adam Lally. „UIMA: an architectural approach to unstruc-
tured information processing in the corporate research environment“. In: Natu-
ral Language Engineering 10.3-4 (2004), pp. 327–348 (cit. on pp. 23, 33).

[FP12] L. French and P. Pavlidis. „Using text mining to link journal articles to neu-
roanatomical databases“. In: The Journal of Comparative Neurology 520.8
(2012), 1772–1783 (cit. on pp. 66, 67, 88, 97).

[Fre+09] L. French, Suzanne Lane, Lydia Xu, and Paul Pavlidis. „Automated Recognition
of Brain Region Mentions in Neuroscience Literature“. In: Front Neuroinformat-
ics 3 (Sept. 2009) (cit. on pp. 34, 67–70, 88).

[Fre+12] L. French, S. Lane, L. Xu, et al. „Application and evaluation of automated
methods to extract neuroanatomical connectivity statements from free text“. In:
Bioinformatics 28.22 (2012), 2963–2970 (cit. on pp. 20, 66, 67, 69, 71, 88).

[Fre+15] Leon French, Po Liu, Olivia Marais, et al. „Text mining for neuroanatomy using
WhiteText with an updated corpus and a new web application“. In: Frontiers in
Neuroinformatics 9 (2015), p. 13 (cit. on pp. 16, 20, 71).

[FT02] Roy T Fielding and Richard N Taylor. „Principled design of the modern Web
architecture“. In: ACM Transactions on Internet Technology (TOIT) 2.2 (2002),
pp. 115–150 (cit. on pp. 25, 41).

116 References



[GB08] C. Gasperin and T. Briscoe. „Statistical anaphora resolution in biomedical
texts“. In: Proceedings of the 22nd International Conference on Computational
Linguistics-Volume 1. 2008, 257 – 264 (cit. on p. 18).

[Ger+10] M. Gerner, G. Nenadic, and C. Bergman. „Linnaeus: A species name identifi-
cation system for biomedical literature“. In: BMC Bioinformatics 11.1 (2010),
p. 85 (cit. on pp. 20, 35, 69, 86, 97).

[Ger+12] Martin Gerner, Farzaneh Sarafraz, Casey M Bergman, and Goran Nenadic.
„BioContext: an integrated text mining system for large-scale extraction and
contextualization of biomolecular events“. In: Bioinformatics 28.16 (2012),
pp. 2154–2161 (cit. on p. 22).

[Giu+06] C. Giuliano, A. Lavelli, and L. Romano. „Exploiting Shallow Linguistic Informa-
tion for Relation Extraction from Biomedical Literature.“ In: EACL. Vol. 2006.
2006, 98–113 (cit. on p. 69).

[GS04] Thomas L Griffiths and Mark Steyvers. „Finding scientific topics“. In: Proceedings
of the National Academy of Sciences 101.suppl 1 (2004), pp. 5228–5235 (cit. on
p. 47).

[Hah+07] U. Hahn, Ekaterina Buyko, Katrin Tomanek, et al. An Annotation Type System
for a Data-Driven NLP Pipeline. 2007 (cit. on p. 34).

[Hah+08] Udo Hahn, Ekaterina Buyko, Rico Landefeld, et al. „An overview of JCoRe, the
JULIE lab UIMA component repository“. In: Proceedings of the LREC. Vol. 8.
2008, 1–7 (cit. on p. 33).

[Ham+12] David J. Hamilton, Gordon M. Shepherd, Maryann E. Martone, and Giorgio A.
Ascoli. „An ontological approach to describing neurons and their relationships“.
In: Front. Neuroinform. 6 (2012), p. 15 (cit. on p. 95).

[Ham+13] DJ Hamilton, DW Wheeler, C White, et al. „Machine-readable representations
of hippocampal neuron properties to facilitate investigative analytics“. In: Front.
Neuroinform. Conference Abstract: Neuroinformatics 2013. 2013 (cit. on p. 93).

[HD14] Orit Hazzan and Yael Dubinsky. „The Agile Manifesto“. In: Agile Anywhere.
Springer, 2014, pp. 9–14 (cit. on p. 11).

[Hin+04] Michael L Hines, Thomas Morse, Michele Migliore, Nicholas T Carnevale,
and Gordon M Shepherd. „ModelDB: a database to support computational
neuroscience“. In: Journal of computational neuroscience 17.1 (2004), pp. 7–11
(cit. on p. 93).

[Hof+00] P. R. Hof, W. G. Young, F. E. Bloom, P. V. Belichenko, and M. R. Celio. Mouse
Brains. Comparative Cytoarchitectonic Atlas of the C57BL/6 and 129/SV. Elsevier
Science, Amsterdam, 2000 (cit. on pp. 18, 68).

[Hof+10] Matthew D. Hoffman, David M. Blei, and Francis Bach. „Online learning for
latent dirichlet allocation“. In: In NIPS. 2010 (cit. on pp. 52, 53).

[Ima+11] F. T. Imam, S. D. Larson, J. S. Grethe, et al. „NIFSTD and NeuroLex: A Compre-
hensive Neuroscience Ontology Development Based on Multiple Biomedical
Ontologies and Community Involvement“. In: (2011) (cit. on pp. 17, 34).

[Ima+12] Fahim T Imam, Stephen Larson, Jeffery S Grethe, et al. „Development and
use of ontologies inside the neuroscience information framework: a practical
approach“. In: Frontiers in genetics 3 (2012), p. 111 (cit. on p. 17).

References 117



[Jes+11] D. Jessop et al. „OSCAR4: a flexible architecture for chemical text-mining“. In:
Journal of Cheminformatics 3.1 (Oct. 2011), p. 41 (cit. on pp. 20, 35).

[JG10] S. Jonnalagadda and G. Gonzalez. „Sentence simplification aids protein-protein
interaction extraction“. In: (2010) (cit. on p. 21).

[JJB11] Saad Jbabdi and Heidi Johansen-Berg. „Tractography: where do we go from
here?“ In: Brain connectivity 1.3 (2011), pp. 169–183 (cit. on p. 80).

[Kae+14] Suwisa Kaewphan, Kai Hakala, and Filip Ginter. „UTU: Disease Mention Recog-
nition and Normalization with CRFs and Vector Space Representations“. In:
Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval
2014). Association for Computational Linguistics and Dublin City University,
2014, pp. 807–811 (cit. on pp. 3, 20).

[Kan+11a] N. Kang, E. van Mulligen, and J. Kors. „Comparing and combining chunkers of
biomedical text“. In: 44.2 (Apr. 2011), pp. 354 –360 (cit. on p. 19).

[Kan+11b] Yoshinobu Kano, Jari Björne, Filip Ginter, et al. „U-Compare bio-event meta-
service: compatible BioNLP event extraction services“. In: BMC bioinformatics
12.1 (2011), p. 481 (cit. on p. 22).

[KB09] Halil Kilicoglu and Sabine Bergler. „Syntactic dependency based heuristics
for biological event extraction“. In: Proceedings of the Workshop on Current
Trends in Biomedical Natural Language Processing: Shared Task. Association for
Computational Linguistics. 2009, pp. 119–127 (cit. on p. 21).

[Kim+03] J.-D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. „GENIA corpus–a semantically anno-
tated corpus for bio-textmining“. In: Bioinformatics 19 (July 2003), pp. i180–
i182 (cit. on pp. 4, 34).

[Kim+12] Jin-Dong Kim, Ngan Nguyen, Yue Wang, et al. „The genia event and protein
coreference tasks of the BioNLP shared task 2011“. In: BMC bioinformatics
13.Suppl 11 (2012), S1 (cit. on pp. 16, 21).

[Kim+13] Jin-Dong Kim, Yue Wang, and Yamamoto Yasunori. „The genia event extraction
shared task, 2013 edition-overview“. In: Proceedings of the BioNLP Shared Task
2013 Workshop. 2013, pp. 8–15 (cit. on p. 21).

[Klu+09] Peter Kluegl, Martin Atzmueller, and Frank Puppe. „Textmarker: A tool for rule-
based information extraction“. In: Proceedings of the Biennial GSCL Conference.
2009, pp. 233–240 (cit. on pp. 23, 40, 69).

[Klu+14a] P. Kluegl, M. Toepfer, P.-D. Beck, G. Fette, and F. Puppe. „UIMA ruta: Rapid
development of rule-based information extraction applications“. In: Natural
Language Engineering (2014), pp. 1–40 (cit. on pp. 23, 40).

[Klu+14b] P. Kluegl, M. Toepfer, P.-D. Beck, G. Fette, and F. Puppe. „UIMA Ruta: Rapid
development of rule-based information extraction applications“. In: Natural
Language Engineering (2014) (cit. on p. 69).

[Kon+13] Georgios Kontonatsios, Ioannis Korkontzelos, BalaKrishna Kolluru, Paul Thomp-
son, and Sophia Ananiadou. „Deploying and sharing U-Compare workflows as
web services.“ In: J. Biomedical Semantics 4 (2013), p. 7 (cit. on pp. 22, 33).

[Kos10] R. N. Kostoff. „Expanded information retrieval using full-text searching“. In:
Journal of Information Science 36.1 (2010), pp. 104–113 (cit. on p. 26).

118 References



[KP13] Jin-Dong Kim and Sampo Pyysalo. „Bionlp shared task“. In: Encyclopedia of
Systems Biology. Springer, 2013, pp. 138–141 (cit. on p. 4).

[Kra+08] Martin Krallinger, Alexander Morgan, Larry Smith, et al. „Evaluation of text-
mining systems for biology: overview of the Second BioCreative community
challenge“. In: Genome Biology 9.Suppl 2 (2008), S1 (cit. on p. 34).

[Kra+11] M. Krallinger, M Vazquez, F. Leitner, et al. „The Protein-Protein Interaction tasks
of BioCreative III: classification/ranking of articles and linking bio-ontology
concepts to full-text“. In: BMC bioinformatics 12.Suppl 8 (2011), S3 (cit. on
p. 67).

[Kuo+09] C.-J. Kuo et al. „BioAdi: a machine learning approach to identifying abbrevia-
tions and definitions in biological literature“. In: BMC Bioinformatics 10.Suppl
15 (Dec. 2009), S7 (cit. on pp. 18, 32).

[KW12] Jin-Dong Kim and Yue Wang. „PubAnnotation: a persistent and sharable corpus
and annotation repository“. In: Proceedings of the 2012 Workshop on Biomedical
Natural Language Processing. Association for Computational Linguistics. 2012,
pp. 202–205 (cit. on p. 16).

[Lar+07] Stephen D Larson, Lisa L Fong, Amarnath Gupta, et al. „A formal ontology of
subcellular neuroanatomy“. In: Frontiers in neuroinformatics 1 (2007) (cit. on
pp. 17, 93).

[Lea+13] Robert Leaman, Rezarta Islamaj Doğan, and Zhiyong Lu. „DNorm: disease
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