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Abstract
This thesis focuses on the development of robust control solutions for linear time-invariant

(LTI) interconnected systems affected by polytopic-type uncertainty. The main issues in-

volved in the control of such systems, e.g. sensor and actuator placement problem, control

configuration selection, and robust fixed-structure control design are included.

The problem of fixed-structure control is intrinsically non-convex and hence computationally

intractable. Nevertheless, the problem has attracted considerable attention due to the great

importance of fixed-structure controllers in practice. In this thesis, necessary and sufficient

conditions for fixed-structure H∞ control of polytopic systems with a single uncertain parame-

ter in terms of a finite number of bilinear matrix inequalities (BMIs) are developed. Increasing

the number of uncertain parameters leads to sufficient BMI conditions, where the number of

decision variables grows polynomially. Convex approximations of robust fixed-order and fixed-

structure controller design which rely on the concept of strictly positive realness (SPRness)

of transfer functions in state space setting are presented. Such approximations are based on

the use of slack matrices whose duty is to decouple the product of unknown matrices. Several

algorithms for determination and update of the slack matrices are given.

It is shown that the problem of sensor and actuator placement in the polytopic interconnected

systems can be formulated as an optimization problem by minimizing cardinality of some

pattern matrices, while satisfying a guaranteed level of H∞ performance. The control configu-

ration design is achieved by solving a convex optimization problem whose solution delivers

a trade-off curve that starts with a centralized controller and ends with a decentralized or a

distributed controller.

The proposed approaches are applied to inverter-interfaced microgrids which consist of

distributed generation (DG) units. To this end, two important control problems associated with

the microgrids are considered: (i) Current control of grid-connected voltage-source converters

with L/LC L-type filters and (ii) Voltage control of islanded microgrids. The proposed control

strategies are able to independently regulate the direct and quadrature (dq) components

of the converter currents and voltages at the point of common couplings (PCCs) in a fully

decoupled manner and provide satisfactory dynamic responses. The important problem of

plug-and-play (PnP) capability of DGs in the microgrids is also studied. It is shown that an

inverter-interfaced microgrid consisting of multi DGs under plug-and-play functionality can

be cast as a system with polytopic-type uncertainty. By virtue of this novel description and

use of the results from theory of robust control, the stability of the microgrid system under

PnP operation of DGs is preserved. Extensive case studies, based on time-domain simulations
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in MATLAB/SimPowerSystems Toolbox, are carried out to evaluate the performance of the

proposed controllers under various test scenarios, e.g., load change, voltage and current

tracking. Real-time hardware-in-the-loop case studies, using RT-LAB real-time platform

of OPAL-RT Technologies, are also conducted to validate the performance of the designed

controllers and demonstrate their insensitivity to hardware implementation issues, e.g., noise

and PWM non-idealities. The simulation and experimental results demonstrate satisfactory

performance of the designed controllers.

Key words: Fixed-structure control, fixed-order controller design, polytopic uncertainty, con-

vex optimization, decentralized and distributed control, control structure design, inverter-

interfaced microgrids.
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Résumé
Cette thèse porte sur le développement de méthodes de commande robuste pour des systèmes

linéaires interconnectés sujets à une incertitude polytopique. Les principaux problèmes qui

existent pour le contrôle dans ces systèmes sont inclus, tels que le problème de positionnement

des capteurs et actionneurs, la sélection de la configuration des contrôleurs et la synthèse

robuste de structure fixe.

Le problème de la synthèse robuste de structure fixe est non-convexe et donc difficile à

résoudre en pratique. Néanmoins, ce problème a attiré une grande attention à cause de l’im-

portance de contrôleur à structure fixe dans la pratique. Cette thèse développe des conditions

nécessaires et suffisantes pour le contrôle H∞ à structure fixe applicable à des systèmes polyto-

piques avec un seul paramètre incertain sous forme d’un nombre fini d’inégalités matricielles

bilinéaires (BMI). Augmenter le nombre de paramètres incertains conduit à des conditions

suffisantes sous forme des BMIs où le nombre de variable croît de façon polynomiale. On

présente aussi des approximations convexes des régulateurs robustes d’ordre fixe et de la

synthèse de régulateurs de structure fixe basée sur le concept de positivité réelle stricte (SPR-

ness) des fonctions de transfert dans l’espace d’état. De telles approximations sont basées

sur des matrices de relaxation qui découplent le produit des matrices inconnues. Plusieurs

algorithmes pour le calcul et la mise à jour des matrices de relaxation sont présentés.

Il est démontré que le problème du positionnement de capteurs et d’actionneurs dans les

systèmes polytopiques interconnectés peut être formulé comme un problème d’optimisation

dont l’objectif est la minimisation de la cardinalité de certaines matrices sous des contraintes

de performance H∞. La conception de la configuration du régulateur est réalisée par la

résolution d’un problème convexe dont la solution produit une courbe de compromis qui

commence avec un régulateur centralisé et finit par un régulateur distribué ou décentralisé.

Les approaches proposées sont appliquées sur des micro-réseaux avec unités de génération

distribuées (DG). On aborde deux problèmes importants de régulation associés au micro-

réseaux : (i) la régulation de courant de convertisseurs en source de tension avec des filtres

L/LC L (ii) la régulation de tension pour des micro-réseaux îlotés. Les stratégies de contrôle

proposées permettent de réguler les composantes directes et de quadratures (dq) des tensions

et courants du convertisseur au point de couplage commun (PCC) d’une façon complète-

ment découplée et donnent une performance dynamique satisfaisante. On étudie aussi le

problème du plug-and-play (PnP) d’unités de génération distribuées dans la micro-réseau.

On montre qu’une micro-réseau consitant d’unités de génération distribuées sous des fonc-

tionnalités de plug-and-play peut être modélisée comme un système sous des incertitudes
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de type polytopique. En vertu de cette nouvelle description et de résultats de commande

robuste, la stabilité de la micro-réseau en opération PnP est préservée. Des études de cas

en MATLAB/SimPowerSystems sont présentées pour évaluer la performance des régulateurs

proposés dans différents cas, tels que des variations de la charge, de la tension et du courant.

Des études de cas avec hardware-in-the-loop en temps réel (RT-LAB OPAL-RT Technologies)

sont aussi analysées pour évaluer la performance des méthodes proposées et leur sensibilité

au bruit et aux défauts des PWM. Les simulations et résultats expérimentaux montrent une

performance satisfaisante des régulateurs synthétisés.

Mots-clés : Régulation à structure fixe, régulation à ordre fixe, incertitude polytopique, optimi-

sation convexe, régulation distribuée et décentralisée, synthèse de structures de régulation,

micro-réseaux.
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1 Introduction

1.1 Research Context

1.1.1 Fixed-structure Control of Uncertain Systems

Classical controller design methods usually lead to full-order controllers which have same

order as that of a generalized plant, i.e. plant plus frequency weighting functions [1]. The

implementation of such controllers result in high cost in terms of both memory and processing

power, difficult commissioning, and potential problems in maintenance [2]. Low-, fixed-order

controllers are always preferred, particularly in many practical applications with limited

available memory and computational power, such as embedded control systems for space

and aeronautics industries [3, 4].

The classical control techniques cannot also cope with fixed-structure controllers in which

some structural constraints are imposed on the controllers. Constraints on the control struc-

ture are mainly rooted in different sources. The first source comes from the well-known Inter-

nal Model Principle (IMP) [5] which states that for tracking and disturbance rejection, the dy-

namics of persistently exciting references and/or disturbances must be replicated in the struc-

ture of the controller. Furthermore, the well-known proportional-integral (PI)/proportional-

integral-derivative (PID) controllers, widely used in industrial control systems, inherently

have a fixed structure. Finally, the last main source results from a need for decentralized or

distributed control of large-scale interconnected systems due to cost, reliability issues, and

limitations on communication links among local controllers. All these reasons highlight the

paramount importance of fixed-structure control design.

The problem of fixed-order and fixed-structure control still remains as an open issue. In fact,

the non-convexity of the set of all fixed-order and fixed-structure stabilizing controllers for a

given plant is the major root of difficulty in solving such a problem [4, 6]. Furthermore, if the

problem is formulated in the space of the controller parameters, it becomes nonsmooth [4].

Nevertheless, due to the great importance of fixed-structure controllers in practice, several

approaches for fixed-structure control design have been developed which are briefly reviewed
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in the next section.

Fixed-structure control design becomes more complicated for the systems affected by uncer-

tainties. The main sources of model uncertainties usually arise from unmodeled dynamics,

parameter uncertainty, and neglected nonlinearities [7]. In the case of uncertain systems, the

fixed-structure controller must be able to guarantee stability and performance specification

of the whole family of models in the uncertainty domain.

This dissertation centres around the development of new fixed-structure controller design

strategies for linear time-invariant (LTI) systems subject to unmodeled dynamics and parame-

ter uncertainty. More specifically, it focuses on the following main objectives:

• Development of robust fixed-order and fixed-structure control techniques

• Control structure design of LTI interconnected systems with parameter uncertainty

• Application to inverter-interfaced microgrids consisting of distributed generation (DG)

units

It is assumed that the LTI systems with uncertain parameters belongs to a polytope which is

the convex hull of parameters of a set of models called as the vertices of the polytope. The

polytopic-type uncertainty is one of the most general ways to present the physical parameter

uncertainty without any conservatism. In fact, this type of uncertainty can cover interval,

linear parameter, and multi-model uncertainties.

1.1.2 Inverter-interfaced Microgrids

Nowadays the growth of electricity demand, the critical shortages of fossil fuels, and global

warming caused by greenhouse-gas-effect have negatively impacted on conventional power

systems. The problems have been tackled alternatively through an efficacious integration and

coordination of distributed generation (DG) units among which, in terms of their potential for

energy generation, renewable energy sources such as photovoltaics (PV), wind power, and

hydropower are the most important ones.

Reliable integration of DGs into power systems can be achieved by means of microgrids which

are small electrical networks heterogeneously composed of DGs, loads, and energy storage

systems [8]. Renewable energy sources are normally interfaced to the microgrids through

power electronic converters acting as voltage sources [9].

Microgrids normally operate in grid-connected mode where they are connected to the main

grid at Point of Common Coupling (PCC). Under this connection scheme, the voltage and

frequency of the microgrids are predominantly determined by the main grid while the mi-

crogrid control system accurately shares active and reactive power among DGs and controls

the power exchange between the microgrid and the main grid. Due to intentional (sched-

uled)/unintentional reasons, the microgrids can experience islanding conditions where they
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are disconnected from the main grid [10]. In this case, due to a power mismatch between the

DGs and the loads, voltage and frequency of the loads deviate from their rated values and the

islanded microgrid eventually becomes unstable. This operation mode of the microgrids is

more challenging than the grid-connected mode because accurate load sharing mechanisms

are required to balance the power mismatch [8]. Therefore, upon the islanding condition,

a new microgrid control strategy must come into service in order to provide voltage and

frequency stability as well as a proper power sharing among DGs [11].

In spite of the potential benefits that the use of DGs may bring, their increasing penetration

challenges an appropriate control strategy to ensure stable and reliable operation of micro-

grids in both grid-connected and islanded modes and smooth transition between them [12].

The main challenges arise from basic differences existing between the physical characteristics

of the conventional electrical generators and the inverter-interfaced microgrids [13]. Con-

ventional power networks feature a large fraction of generation from traditional synchronous

generators that present large rotational inertia and play a key role in maintaining frequency

and voltage stability. Given current and future trends in the cost and regulation of distributed

photovoltaic systems, the future power network will feature deep penetration of inverter-

interfaced microgrids (see, e.g., the SunShot Initiative by the Department of Energy (DOE) in

the USA1). While larger renewable penetration is desirable, current power-electronic inverters

behave as low-inertia devices and are not designed to contribute to grid-wise stability.

The application part of this dissertation aims to develop new control strategies for stable and

efficient operation of microgrids in both grid-connected and islanded operation modes. A

brief summary of the most relevant existing works organized by research topic is provided in

the following section.

1.2 State of the Art

1.2.1 Current State of the Research in Fixed-structure Control

Fixed-structure control design is a theoretically challenging issue in control theory and it

has attracted considerable attention due to its great importance in practice. However, so far,

there has been no exact solution to this prominent problem and only rough approaches are

available to approximately solve such a problem. The fact is that the problem is intrinsically

non-convex; furthermore, it becomes nonsmooth in the case of problem formulation in the

space of the controller parameters [4].

The easiest and most straightforward technique for low-order controller design is plant and/or

controller order reduction using well-known methods, e.g. balanced model reduction [1].

However, plant or controller order reduction techniques do not always guarantee that the

closed-loop performance is preserved. Moreover, the order reduction approaches are not able

1http://energy.gov/eere/sunshot/sunshot-initiative
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to impose any structural constraints on the controller. Therefore, the challenging problem is

to directly design a fixed-structure controller.

The only existing survey of fixed-order control/static output feedback has been conducted

in [14]. Nevertheless, the past two decades have witnessed much theoretical progress on

fixed-order controller design which has not been covered in that survey. A large amount of

research has been carried out on the development of fixed-order control via linear matrix

inequalities (LMIs) that among them one can mention: cone complementarity linearization

method [15], (directional) alternating projection algorithm [16, 17], min/max algorithm [18],

path-following approach [19], dual iteration method [20], XY-centring algorithm [21], penalty

function method [22], log-det heuristic approach [23], sequential linear programming matrix

method [24], augmented Lagrangian approach [25, 26], and concave minimization approach

[27, 28]. A branch and bound (BB) algorithm for solving a general class of bilinear matrix

inequality (BMI) problems with application to fixed-structure control has been developed in

[29]. However, the BB approach is computationally high, particularly when the number of the

controller parameters increase. Although the proposed approaches cope with the fixed-order

control design, they cannot handle structural constraints imposed on the controller beyond

its order.

In addition to the LMI-based approaches, there exist nonsmooth non-convex optimization-

based fixed-structure control strategies, see, e.g. [30–36] which focus on solving the following

optimization problem:

min
K

g (K )

subject to g (K ) ≤β
(1.1)

where g (K ) is a function of the closed-loop system matrices, e.g. spectral abscissa or an

H∞ norm, and the scalar β is given. The above optimization problem is nonconvex and

nonsmooth. In fact, the lack of convexity and smoothness of the spectral abscissa and other

similar performance criteria make the above optimization problem difficult to solve [37].

The following software and recent MATLAB functions, available in Robust Control Toolbox,

can cope with the above nonsmooth nonconvex optimization problem.

• HIFOO (H∞-H2 Fixed Order Optimization) [31–34]

HIFOO is a public-domain MATLAB package for static output feedback and fixed-order

stabilizing control design in state space setting with several performance objectives, e.g.

H∞, H2, multiobjective optimization, simultaneous stabilization, spectral abscissa, and

complex stability radius optimization. HIFOO relies on quasi-Newton updating and

gradient sampling algorithm in [37, 38].

• MATLAB commands: hinfstruct, looptune, systune [30, 35, 36, 39]

The MATLAB command hinfstruct, available in the Robust Control Toolbox since R2010b,
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addresses the problem of fixed-structure and fixed-order H∞ control synthesis in both

state space and transfer function framework. looptune tunes fixed-structure and fixed-

order feedback loops while satisfying the common engineering requirements including

performance bandwidth, setpoint tracking, roll-off, multiloop gain, and phase margins

[40]. The MATLAB routine systune deals with the fixed-structure and fixed-order control

synthesis with time-domain, frequency domain, open-loop shape, stability margin, and

closed-loop poles requirements [40]. systune can also handle multiple requirements as

well as multiple models.

The main properties of HIFOO, hinfstruct, looptune, and systune are that:

1) They are purely optimization-based, i.e. the fixed-order/fixed-structure control design

problem is formulated as a solution to a nonsoomth noncomvex optimization.

2) As compared to the Lyapunov-based methods, they are quite fast in terms of execution time

due to the absence of the Lyapunov matrix and the slack variables.

3) The existing nonsmooth nonconvex techniques cannot deal with the problem of fixed-

order/fixed-structure control of systems with parameter uncertainty.

The fixed-structure controller design problem becomes more complicated for systems subject

to polytopic uncertainty. In this case, the main objective is to design a fixed-structure controller

which guarantees robust stability as well as robust performance of the whole family of models

in the polytopic uncertainty domain. To solve this kind of problem, several LMI-based methods

have emerged in the literature, e.g. the methods of [3,41–45] in polynomial framework and the

methods of [46–58] in state space framework. The polynomial-based approaches are based on

the use of a central polynomial whose duty is to convexify the nonconvex problem of fixed-

structure control and develop some inner convex approximations of that problem. In the state

space approaches, which inherently introduce the Lyapunov matrix, some slack variables are

used as a tool to decouple the product of the closed-loop matrices and the Lyapunov matrix

leading to a sequence of sufficient LMI conditions. The main drawback of the fixed-structure

control approaches in the polynomial setting is that they are just limited to single-input

single-output (SISO) systems and cannot be employed for multi-input multi-output (MIMO)

systems.

The main issue of the state space approaches lies in their conservativeness, which is reflected

by the structure of the Lyapunov matrix. According to the structure of the Lyapunov matrix,

the fixed-structure control approaches in the state space setting can be categorized in four

classes: (i) QS-based methods, e.g. [46, 51], which provide the robust stability (performance)

of the closed-loop system by means of a parameter-independent Lyapunov matrix. (ii) LPD-

based methods, e.g. [53, 58], in which the robust stability (performance) is guaranteed via

a linearly parameter-dependent (LPD) Lyapunov matrix. (iii) PPD-based methods, e.g. [57],

which guarantee the robust stability and robust performance via a polynomially parameter-

dependent Lyapunov (PPD) matrix. (iv) HPPD-based approaches, e.g. [56], in which the robust
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stability (performance) is assessed by means of the existence of a homogeneous polynomially

parameter-dependent (HPPD) Lyapunov matrix.

In the fixed-structure control approaches, the first assumption is that the control structure is

given a priori. However, the problem of controller structure selection has a great importance,

especially in large scale interconnected systems. In interconnected systems with a large num-

ber of inputs and outputs, the constraints on the controller structure are associated with some

reasons: cost, reliability issues, inaccessibility of the states, and limitations on communication

links and information exchange among the subsystems and/or the subcontrollers.

First, it is not cost-effective to use all possible sensors and actuators in large-scale systems,

e.g. power grids [59], target-tracking [60], transportation networks [61], and buildings [62].

This leads to the problem of sensor and actuator placement in which a minimal set of sensors

and actuators is chosen, provided that stability and a satisfactory level of performance of the

system is guaranteed. The performance of a system not only depends on the control law but

also it is considerably affected by the number of sensors and actuators and their positioning.

The exact solution for the problem of sensor and actuator placement is to evaluate the overall

system performance for all possible choices of sensors and actuators. However, this approach

is not practical for the large values of sensors and actuators since it leads to a numerically

intractable combinatorial cost. Therefore, several approximate solutions have been developed,

e.g. [59–65]. Recently, some approaches based on convex optimization have been proposed,

e.g. [65–67]. Although the literature on sensor and actuator selection is quite vast, the proposed

methods do not consider the problem in the case of uncertainty in the system parameters. In

this case, the question arises is that how to place a minimal number of sensors and actuators

such that a good performance for the whole set of uncertain parameters is guaranteed?

Next, the interconnected systems need an appropriate design of control configuration which

entails a minimal amount of information exchange and communication links among the

subsystems and the local controllers. Under a fully decentralized control scheme, a set of non-

interacting local controllers is designed for each subsystem and there is no communication

links between different local controllers and different subsystems [68]. In spite of many

advantages of the decentralized controllers, they may not provide the desired performance

or even stability for the interconnected systems. Therefore, to avoid the stability problems

associated with the decentralized control approaches, a distributed control strategy is used.

In the distributed control methods, there exist several communication links between the local

controllers and the subsystems according to the control configuration. Most of available

distributed control approaches assume that the control configuration is given a priori [69].

However, it is possible that the assumed control structure is not the best one which can be

taken into consideration. Moreover, it is generally difficult to select the configuration of the

controller in advance. Therefore, the question arises is that in an interconnected system, what

is the best control configuration, in terms of the connections between the local controllers

and the subsystems, to provide a trade-off between the given control objectives? This problem

has been recently addressed by some researchers in [70–75] through the design of sparse
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static output/state feedback controllers where the gain between the subsystems’ inputs and

outputs/states is sparsified. Despite considerable efforts over the past few years, the problem

is still open in the case of parameter uncertainties in the interconnected systems.

Finally, decentralized/distributed state feedback controllers are not always adequate control

strategies for practical large-scale interconnected systems [76]. The state variables of certain

subsystems are not often available for control purposes. In such a case, it is necessary to apply

output feedback controllers, particularly low-order/static output feedback control due to the

ease of practical implementation and computational issues.

1.2.2 Current State of the Research in Microgrid Control Systems

Grid-connected Voltage-Source Converters

In the grid-connected operating mode of microgrids, the utility grid provides the regulated

frequency and voltage for the local loads at PCCs. In this case, each DG regulates its active and

reactive power exchange based on current control techniques.

Voltage-source converters (VSCs) are commonly interfaced to the grid by means of a pure L

or an LC L filter in order to attenuate switching high-frequency harmonics caused by pulse

width modulation (PWM) VSCs. The LC L filters are frequently used in VSCs due to their

cost-effectiveness in terms of size and weight of the filters and the efficient attenuation of the

switching harmonics [77]. However, the LC L filters increase the complexity of the dynamics of

the DG interface system. Moreover, due to the high resonant peak of the LC L filters, incorpo-

rating the LC L filters into VSCs necessitates modifying the conventional proportional integral

(PI) in stationary domain or proportional resonant (PR) current controllers in synchronous

reference domain. To overcome this issue, various current control approaches have been

proposed for grid-tied VSCs in the literature, which can be categorized into two major classes:

passive damping [78] and active damping approaches [77, 79–88].

A common strategy in the passive damping methods is to use resistors in series with the

capacitor in the filters. Although this strategy is simple and reliable, the damping resistors

weaken the high-frequency harmonic attenuation property of the LC L filters and creates

power losses [89].

In the active damping methods, the current control structure is modified such that the grid-

connected VSC is stabilized. Active damping-based controllers are generally designed either

in stationary reference frame (abc-frame)[79, 82, 83, 88, 90] or in rotating reference frame (dq-

reference frame) [84, 87, 91–93]. Although the stationary reference frame does not include the

coupling terms, it has some drawbacks, e.g. its sensitivity to the grid frequency changes [80,94],

complicated controller design, etc. Therefore, the dq-based controllers are generally more

preferred than the abc-frame ones [80]. Nevertheless, the rotating reference frame brings the

coupling terms into system equations [77]. The coupling components can be easily cancelled
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in the L-type filters [91, 92]; however, in the case of the LC L filters such terms are complicated

to handle.

Depending on the availability of the sensors and/or signals and from the economic and

practical points of view, the active damping approaches can be classified into two main

classes: (i) multi-loop and state feedback controllers[79, 82, 84, 88] and (ii) dynamic output

feedback controllers (filter-based methods) [81, 85–87]. In the first group, there exist two or

three control loops instead of a single current loop whereas in the second category, only one

current control loop is adopted. Therefore, multiloop and state feedback controllers need

more sensors leading to an increase in the overall cost of the system and a decrease in the

system reliability.

Generally, in the context of current control of the grid-tied VSCs, there are several areas

which can still benefit from further research: (1) robust stability and robust performance

specifications against the parameter uncertainty in the grid inductance and (2) decoupling of

the direct (d) and quadrature (q) components of current axes.

Islanded Microgrids

In order to standardize the operation and functionalities of microgrids, a hierarchical control

strategy has been recently developed in [95]. It mainly consists of three levels with separate

time-scales named as primary, secondary, and tertiary control. The first one is intended

to stabilize the voltage and frequency of the microgrids and to facilitate an accurate power

sharing. The second level compensates for the deviations in the voltage and frequency in

the steady-state and provides global controllability of the microgrids [96]. The last level is

related to the optimal operation in both islanded and grid-connected modes and the power

flow control in the grid-connected mode [97].

A control strategy ubiquitously used for the primary control of microgrids is droop control

which relies on the principle of power balance of a classical synchronous generator in con-

ventional power networks (see, e.g., [9, 95, 98–106]). In the power systems based on rotating

generators, frequency (rotor speed) is dependent on active power balance, i.e. the frequency

is dropped when the demanded active power increases [107]. The idea of the so-called “droop”

controllers has been developed by Chandorkar et al [108]. From a control point of view, droop

control is a decentralized proportional controller maintaining the voltage and frequency stabil-

ity of the microgrids [13]. The main advantage of droop-based control is the elimination of the

communication links among droop controllers enabling the plug-and-play (PnP) operation in

the microgrids.

In the droop control of an inverter-based microgrid with dominantly inductive lines, i.e. power

lines with small R/X ratios, the active power is strongly influenced by the frequency (“ω−P”

droop characteristic), while the reactive power is affected by the voltage deviations (“V −Q”

droop characteristic) [13]. The active power-frequency and reactive power-voltage droop
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controllers of the i th inverter are implemented as follows [13]:

ωi =ω∗ −KPi (Pi −P∗
i )

Vi =V ∗
i −KQi (Qi −Q∗

i )
(1.2)

where ω∗ is the desired (nominal) frequency, V ∗
i is the desired (nominal) voltage amplitude,

Pi and Qi respectively are the active and reactive power injection at inverter i , and P∗
i and Q∗

i

are the nominal active and reactive power injection of inverter i , respectively. The controller

gains KPi > 0 and KQi > 0 are droop coefficients.

In low-voltage applications with predominantly resistive lines, the “ω−Q” and “V −P” droop

characteristics are employed [109, 110]. However, in the case of resistive-inductive line condi-

tions and in the presence of conductances, the classical droop control laws cannot achieve

an efficient power sharing due to the coupled active and reactive power characteristics of the

power systems [111]. Although a large amount of research in the area of droop control has

focused on the microgrids with pure inductive and/or pure resistive line impedances, only

two main approaches have addressed the realistic case of complex line impedances in the

droop-based control. The first approach given in [112] decouples the voltage and frequency

droop controls through an orthogonal linear rotational transformation which depends on

the line reactance-to-resistance ratios. The second approach presented in [113] is based on

the concept of virtual impedance loop which improves the decoupling of active and reactive

power. The first approach is sensitive to the nature of the line impedance and restricted to

networks with constant resistance-to-reactance ratios, whereas in the second strategy the large

virtual impedance causes the output voltage of the inverter to drop severely [114]. Therefore,

the development of a novel control strategy for the case of complex and general line conditions

is still a challenging problem.

Droop-controlled inverter-interfaced microgrids have recently been under some rigorous

nonlinear analyses. The first stability analysis of “ω−P” droop-controlled inverter-interfaced

microgrids with parallel topologies has been provided by Simpson-Porco et al in [115]. They

have shown that a microgrid system under “ω−P” droop control can be described as a Ku-

ramoto model of phase-coupled oscillators, which have extensively been studied. Then, by

applying the results of theory of coupled oscillators, a necessary and sufficient condition for

frequency synchronization and a proportional active power sharing has been proposed [115].

The results addressed in [115] are devoted to acyclic network topologies; in consequence,

they are not applicable to meshed microgrids with cycles. In [13], a nonlinear stability analy-

sis of “ω−P” droop-controlled inverter-interfaced microgrids with meshed topologies has

been provided. They have proposed sufficient conditions on the droop coefficients and set-

points to guarantee the frequency stability and a desired active power sharing in droop-based

microgrids with general structures.

An issue that has not been addressed in these recent works is a rigorous nonlinear analysis

of “V −Q” droop-controlled microgrids. The existing voltage droop control approaches do,

9
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in general, not guarantee a desired reactive power sharing [116]. However, this problem is

difficult and still an open problem because as opposed to frequency, voltage is not fixed along

the microgrid. Another important issue which has not been fully studied yet in the technical

literature is a rigorous transient stability analysis of the droop-controlled inverter-interfaced

microgrids due to load changes, nonlinear loads, faults, transition from the grid-connected to

the islanded mode, and vice versa.

The primary droop control methods lead to an inherent trade-off between power sharing and

voltage and frequency regulation. While obtaining a successful power sharing among DGs, the

voltage and frequency deviate from their nominal values [99, 104, 108]. In this case, secondary

control is employed to compensate the voltage and frequency deviations in the steady state.

Conventional secondary controllers exploit a centralized architecture which is unreliable in

case of a single point of failure [11]. Moreover, due to the distributed nature of microgrids, any

kind of centralized control strategies is almost impossible [117]. For these reasons, recently

several advanced distributed control strategies merging the primary and secondary levels

have been developed, e.g. [12, 96, 117–120]. The proposed methods are based on continuous

time averaging with all-to-all or nearest-neighbour communication. A review of the most

existing distributed secondary control approaches for the microgrids can be found in [11].

Tertiary control layer that considers the economical concerns in the optimal operation of

the microgrids can be formulated as an optimization problem by minimizing an economic

dispatch problem subject to nonlinear constraints caused by AC injections [121]. In [117, 121],

it has been shown that the optimization problem in the tertiary level can be minimized via

droop control.

In addition to the droop-based control strategies in the primary level of the hierarchy, non-

droop-based approaches for voltage and frequency control of the islanded microgrids have

been also developed, e.g. [122–131]. The proposed methods regulate the voltage of a single-

DG [122–124, 127, 128] and/or a multi-DG microgrid [126, 129–131]. In these methods, the

frequency of each DG unit is controlled through an internal oscillator in an open-loop manner

with ω0 = 2π f0, where f0 is nominal system frequency. All oscillators are synchronized by a

common time reference signal according to a global positioning system (GPS) [129].

Although extensive research has been carried out on the development of non-droop-based

control of micorgrids, there still exist several challenges to be addressed: (1) robustness to

parametric uncertainties, (2) a need for advanced control design strategies with decentralized

structure, (3) plug-and-play (PnP) functionality, and (4) low-complex voltage controllers.

1.3 Research Objectives

The main objectives of this dissertation are twofold: one mainly focuses on the development

of LMI-based fixed-structure control approaches satisfying several performance specifications

and second, the applications of the proposed control strategies to the inverter-interfaced
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microgrids.

The first objective is stated as follows: Given an uncertain plant, denoted by G , and a fixed-

structure controller K , find an appropriate setting for the controller (the controller parameters

and/or the control structure) such that the closed-loop system, denoted by
[
G ,K

]
, satisfies

the following performance specification:

φ
([

G ,K
])<μ (1.3)

where φ is a control performance criterion such as spectral abscissa (decay rate), H2, and H∞
performance. The mentioned problem is formulated as follows:

min
μ,K

μ

subject to φ
([

G ,K
])<μ

(1.4)

To solve the above optimization problem, the following issues should be determined:

• Uncertain plant G

Among all kind of structured and unstructured uncertainties, this dissertation focuses

on polytopic-type uncertainty due to its simplicity, generality, and easy handling, mainly

in the context of the Lyapunov-based methods. To this end, consider a linear time-

invariant (LTI) plant subject to the polytopic uncertainty as follows:

G(λ) =
[

Ag (λ) Bg (λ)

Cg (λ) Dg (λ)

]

=
q∑

i=1
λi

[
Agi Bgi

Cgi Dgi

] (1.5)

where λ= [λ1, . . . ,λq ] is in the following unit simplex Λq :

Λq =
{
λ1, . . . ,λq

∣∣∣∣∣
q∑

i=1
λi = 1, λi ≥ 0

}
(1.6)

q is the number of vertices of the polytopic system and
(

Agi ,Bgi ,Cgi ,Dgi

)
is the i -th

vertex of the polytopic system. It should be noted that the dissertation can also take the

unmodeled dynamics into account.

• Fixed-structure controller K

The controllers are limited to LTI systems subject to some constraints on their struc-

ture. The constraints include a fixed order (e.g. low-order controllers and static output

feedback) and a given fixed structure (e.g. PIDs, lead-lag compensators, decentral-

ized/distributed controllers, etc.).
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• Performance specification φ

A fundamental requirement of the closed-loop system
[
G(λ),K

]
is robust stability for

all family of systems in G(λ), λ ∈Λq . Additional performance specifications can also

be considered; for instance, disturbance rejection, spectral abscissa, time-domain

specifications, and H∞ performance.

• Appropriate algorithms/tools

The fixed-structure controller design which ensures the robust stability of the closed-

loop system
[
G ,K

]
while satisfying the robust performance specifications is an im-

portant issue in the robust control theory and has attracted a remarkable attention.

However, the problem even in a nominal case, i.e. systems without uncertainty, is a

nonconvex and nonsmooth optimization problem [4]. To deal with these difficulties,

inner convex approximations of fixed-structure control problems are developed in this

dissertation. The main feature of the proposed convex optimization-based approaches

in this dissertation is that they rely on the concept of strictly positive realness (SPRness)

of some transfer functions [132].

The second part of the dissertation is dedicated to the control of inverter-interfaced micro-

grids addressing various challenges associated with robustness to parametric uncertainty

and load variations, low complexity of the controller, plug-and-play operation of DGs, and

mixed line microgrids with resistive-inductive line conditions. To achieve these objectives,

innovative high-performance MIMO robust (decentralized) fixed-structure control strategies

are developed based on an LTI model of a microgrid in a synchronous reference frame (dq-

frame). The proposed control techniques are able to overcome the limitations of existing

droop-based controllers which are only appropriate for microgrids with dominantly induc-

tive and/or resistive power lines. Furthermore, opposed to most non-droop-based control

methods, e.g. [122–131], the present approaches guarantee the robust stability and robust

performance against the load parameter changes. Moreover, the proposed controller is robust

to PnP functionality of DGs; therefore, the plug-in and/or plug-out operation of DGs do not

affect the stability of the microgrid system. Simulation studies in MATLAB/SimPowerSystems

toolbox and experimental results using real-time hardware-in-the-loop (HIL) environment

demonstrate the effectiveness of the designed controllers.

1.4 Contributions

The salient contributions of this dissertation are as follows:

• It derives necessary and sufficient conditions in terms of bilinear matrix inequalities

(BMIs) for fixed-structure H∞ control of continuous-time LTI polytopic systems with

two vertices by means of polynomially parameter-dependent Lyapunov matrices. The

conditions are built upon the celebrated (D,G) scaling [133–135]. The extension of the

results to a polytope with more than two vertices leads to only sufficient conditions.
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• It presents a linear matrix inequality (LMI) framework to design fixed-structure sta-

bilizing (H∞) controllers for linear time-invariant systems subject to polytpoic uncer-

tainty. The framework relies on the strictly positive realness (SPRness) of a transfer

function depending on two slack matrices. The slack matrices are determined by a set

of fixed-structure controllers designed for each vertex or all vertices of the polytope.

Continuous-time and discrete-time controller design are treated in a completely unique

manner.

• It proposes necessary and sufficient conditions for fixed-order controller design of

LTI continuous-time and discrete-time polytopic systems via homogeneous polyno-

mially parameter-dependent Lyapunov matrices. The proposed method is based on

the concept of SPRness of a transfer function depending on a parameter-dependent

gain. To convert the problem to a set of LMI conditions, the parameter-dependent gain

is determined a priori by means of a parameter-dependent state feedback controller.

It is theoretically and numerically demonstrated that the proposed approach allows

fixed-order stabilizing (H∞) controller synthesis which potentially use less decision

variables than some existing approaches, e.g. [46, 49, 54, 56].

• It develops a convex optimization-based technique for sensor and actuator placement in

LTI polytopic systems. The proposed approach is successfully applied to the challenging

problem of phasor measurement unit (PMU) placements in IEEE 14-bus test system.

• It addresses the fixed-structure control design of LTI interconnected systems affected by

polytopic uncertainty. Different from the existing approaches, where the structure of

the controller is fixed a priori, the control structure and the controller parameters are

simultaneously designed through the minimization of a weighted 	1 norm of a pattern

matrix subject to a guaranteed level of H∞ performance.

The dissertation also

• proposes a robust fixed-structure decentralized/distributed H∞ voltage controller for

islanded inverter-interfaced microgrids consisting of DGs under load parameter uncer-

tainty.

• presents a decentralized voltage control scheme for islanded inverter-interfaced micro-

grids with general structure enabling the plug-and-play functionality of DGs.

• develops a current controller for grid-connected voltage-source converter with L/LC L

filter ensuring robust stability and robust H∞ performance to grid inductance parameter

uncertainty.
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1.5 Dissertation Layout

The dissertation breaks into two main parts: The significant portion, Chapter 2-Chapter5, are

devoted to fixed-order and fixed-structure control of LTI polytopic systems. The remaining

chapters focus on the control of inverter-interfaced microgrids. In the following, we briefly

outline the contents of each chapter.

Fixed-structure Control Strategy

Chapter 2: Fixed-structure Control: A BMI Problem

Chapter 2 deals with the problem of fixed-structure controller synthesis of LTI polytopic

systems ensuring the H∞ performance of the closed-loop system via polynomially parameter-

dependent (PPD) Lyapunov matrices. In the case of a polytopic system with two vertices, the

celebrated (D,G) scaling [133–135] enables us to derive necessary and sufficient conditions

in terms of bilinear matrix inequalities (BMIs) in a nonconservative way. However, for the

case of a polytope with more than two vertices, only sufficient conditions are developed. The

set of BMI conditions are solved using existing developed approaches. The efficacy of the

proposed BMI-based approach is illustrated by means of numerical comparisons with existing

fixed-order controller design approaches.

Chapter 3: Fixed-structure Control of Systems with Polytopic Uncertainty via LPD Lya-

punov Matrices

Chapter 3 presents how a fixed-structure control design of linear time-invariant (LTI) polytopic

systems can be formulated as a convex optimization problem. To this end, inner convex

approximations of fixed-structure stabilizing (H∞) controllers are introduced. The proposed

approaches rely on the concept of strictly positive realness (SPRness) of a transfer function

depending on two slack matrices via linearly parameter-dependent (LPD) Lyapunov matrices.

The slack matrices are determined and iteratively updated through a convex optimization

problem and a set of initial fixed-structure controllers designed for each vertex of the polytope.

The performance of the proposed LMI-based approaches are evaluated in detail through

several numerical examples.

Chapter 4: Fixed-order Controller Synthesis of Systems with Polytopic Uncertainty via

HPPD Lyapunov Matrices

Chapter 4 is concerned with the design of static output feedback stabilizing (H∞) controllers

for uncertain linear time-invariant (LTI) systems. The time-invariant uncertainty is in the form

of a polytopic and affects all the system matrices. Although we mainly focus on the problem

of static output feedback (SOF) controller design, it is not restrictive because a dynamic

output-feedback controller can be reformulated as SOF for an augmented plant. Necessary
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and sufficient conditions based upon the SPRness of a transfer function depending on a

parameter-dependent gain are developed. To convert the problem to a convex optimization,

the parameter-dependent gain is determined a priori by means of a parameter-dependent

state feedback controller. The robust stability and robust H∞ performance of the closed-loop

polytopic systems are ensured via homogeneous polynomially parameter-dependent (HPPD)

Lyapunov matrices.

Chapter 5: Control Structure Design for LTI Interconnected Systems subject to Polytopic

Uncertainty

Chapter 5 copes with two important issues of LTI interconnected systems affected by polytopic

uncertainty: sensor and actuator placement and control configuration design. To this end,

the control problems are formulated as non-convex optimization problems by minimizing

the cardinality of some pattern matrices, while satisfying a guaranteed level of H∞ perfor-

mance. For the resulting combinatorial optimization problem, computationally tractable

convex relaxations are provided. More specifically, using the convex inner approximation

of H∞ controller synthesis in Chapter 3 and a weighted 	1 norm relaxation, several iterative

algorithms are proposed. The main characteristic of the proposed approaches is that the

control structure and the control parameters are simultaneously designed. Simulation results

confirm the effectiveness of the proposed approaches in this chapter.

Applications to Control of Inverter-interfaced Microgrids

Chapter 6: Grid-connected Voltage-Source Converters

In Chapter 6, an LMI-based method for robust decoupled dq current control, in the discrete-

time domain, of a grid-connected voltage-source converter with L/LC L filters under the

grid inductance uncertainty is presented. In fact, the robustness of the controller to the

grid inductance uncertainties and the decoupling of dq current axes are two key features

considered in this approach. The desired performance specifications including fast speed,

small overshoot, high closed-loop bandwidth as well as dq-axes decoupling are formulated in

terms of some H∞ criteria. The MIMO controller is obtained through a solution of a convex

optimization problem developed in Chapter 3. The controller guarantees the robust stability

and the robust performance for all values of the grid inductance assumed to be in a given

interval. The controller provides a high bandwidth; moreover, it is associated with an integral

action to track all step reference current signals with zero steady state error. The simulation

studies are conducted in SimPowerSystem environment of MATLAB under several case studies,

e.g. dq reference current signal tracking and robustness to the grid inductance. The simulation

results demonstrate the effectiveness of the designed current controller.

15



Chapter 1. Introduction

Chapter 7: Islanded Inverter-interfaced Microgrids

Chapter 7 investigates the autonomous (islanded) operation of inverter-interfaced microgrids

under load parameter uncertainty. The control objective is to regulate the voltage of DGs at

point of common couplings (PCCs) to achieve a prespecified load sharing among the DGs. To

this end, a power management system (PMS) specifies voltage set points of each DG according

to a classical power flow. The set points are sent to local robust decentralized controllers

which are designed, in dq-frame, using the developed approach in Chapter 5, based on an LTI

mathematical model of the microgrid system with polytopic-type uncertainty. To control the

frequency of the microgrid, DGs are equipped with internal oscillators, synchronized based

on a time-reference signal received from a global positioning system (GPS). Analysis of the

microgrid dynamics, simulations case studies in MATLAB, and experimental results based

on hardware-in-the-loop (HIL) test platform demonstrate the desired performance of the

proposed control strategy.

Chapter 8: Voltage Control of Islanded Microgrids with General Topology

Chapter 8 considers the challenging problem of plug-and-play (PnP) functionality of DGs

in an inverter-interfaced microgrid. To this end, a decentralized voltage controller for the

islanded inverter-interfaced microgrids with general topology is designed. The proposed

control scheme relies on Quasi-Stationary Line (QSL) approximate model of microgrid and

the concept of neutral interactions. The main feature of the proposed controller is that it is

robust to PnP functionality of DGs; therefore, the plug in and/or plug out operation of DGs do

not have any impact on the stability of the microgrid system. The controller performance in

terms of voltage tracking, microgrid topology change, and plug-and-play capability features is

successfully verified through simulations case studies of a microgrid system consisting of 11

DGs.

Chapter 9: Conclusions and Future Directions

This chapter summarizes the work, draws some general conclusions, and discusses the possi-

ble future directions.
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2 Fixed-structure Control: A BMI Prob-
lem

2.1 Introduction

This chapter addresses the problem of fixed-structure control of continuous-time linear

time-invariant systems affected by polytopic uncertainty by means of polynomially parameter-

dependent Lyapunov matrices. We show that such a problem is equivalent to feasibility of

infinite number of bilinear matrix inequality (BMI) conditions. However, the celebrated (D,G)

scaling [133–135] enables us to derive necessary and sufficient conditions in terms of finite

number of BMIs in a nonconservative way in the case of a polytopic system with two vertices.

For a polytope with more than two vertices, only sufficient BMI conditions are developed.

Various comparisons with existing fixed-order controller design approaches illustrate the

potential of the proposed framework of necessary and sufficient BMIs.

The organization of this chapter is as follows: Section 2.2 and Section 2.3 respectively present

problem statement for systems without and with polytopic-type uncertainty. Sections 2.4 and

2.5 are devoted to main results. Simulation examples are given in Section 2.6. The chapter

ends with concluding remarks in Section 2.7.

The notation used in this chapter is standard. In particular, In and 0n×1 are the n ×n identity

matrix and the zero vector of dimension n, respectively. The symbols ⊗, �, and A(i : j , :)

denote the Kronecker product, the symmetric blocks, and the extraction of the i th through

the j th row of matrix A, respectively. The symbol He
{

A
}

is a notation for A+ AT .
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2.2 Fixed-structure Control

2.2.1 System Dynamics

Consider a continuous-time linear time-invariant (LTI) system described by the following

state space equations:

ẋg (t ) = Ag xg (t )+Bg u(t )+Bw w(t )

z(t ) =Cz xg (t )+Dzuu(t )

y(t ) =Cg xg (t )

(2.1)

where xg ∈ Rn , u ∈ Rni , w ∈ Rr , y ∈ Rno , and z ∈ Rs are the state, the control input, the

exogenous input, the measured output, and the controlled output, respectively. The state

space matrices Ag , Bg , Bw , Cz , Dzu , and Cg are of appropriate dimensions.

2.2.2 Control Structure

The main objective is to design a fixed-structure output feedback controller K (s) of order m

(0 ≤ m < n) with the following state space representation:

ẋc (t ) = Ac xc (t )+Bc y(t )

u(t ) =Cc xc (t )+Dc y(t )
(2.2)

where Ac ∈Rm×m , Bc ∈Rm×no , Cc ∈Rni×m , and Dc ∈Rni×no .

2.2.3 Closed-loop System

The closed-loop system Hzw , transfer function from w to z, is obtained by augmenting the

states of the system xg ∈Rn and the states of the controller xc ∈Rm , yielding

ẋ(t ) = Ax(t )+B w(t )

z(t ) =C x(t )
(2.3)

where x(t ) =
[

xT
g (t ) xT

c (t )
]T

and

A =
[

Ag +Bg DcCg Bg Cc

BcCg Ac

]
, B =

[
Bw

0

]

C =
[

Cz +DzuDcCg DzuCc

] (2.4)

The fixed-structure dynamic output feedback controller K (s) stabilizes the system if and only

if there exists a Lyapunov matrix P > 0 such that the following Lyapunov inequality is satisfied:
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AT P +PA < 0 (2.5)

The main difficulty associated with fixed-structure controller design is that the stability con-

dition in (2.5) is not convex in unknown parameters. In fact, the inequality given in (2.5) is

a BMI problem which is generally NP-hard [136]. The well-known BMI solvers such as the

commercial software package PENBMI [137, 138] and the free open-source MATLAB toolbox

PENLAB [139] locally solve optimization problems with BMI and LMI constraints. However,

the BMI solvers most often fail to provide a solution for the Lyapunov inequality in (2.5).

Moreover, the choice of an initial guess is very crucial in these solvers. In the next section,we

show that the problem of fixed-structure control of polytopic systems leads to infinite number

of BMI conditions.

2.3 Fixed-structure Control of Systems with Polytopic Uncertainty:

A Parameter-dependent BMI

Consider a continuous-time LTI polytopic system with q = 2l vertices described by:

ẋg (t ) = Ag (λ)xg (t )+Bg (λ)u(t )+Bw (λ)w(t )

z(t ) =Cz (λ)xg (t )+Dzu(λ)u(t )

y(t ) =Cg (λ)xg (t )

(2.6)

where xg ∈ Rn , u ∈ Rni , w ∈ Rr , y ∈ Rno , and z ∈ Rs are the state, the control input, the

exogenous input, the measured output, and the controlled output, respectively. The uncertain

matrices belong to a polytopic domain given by:

Ω1 =
{(

Ag (λ),Bg (λ),Cg (λ),Bw (λ),Cz (λ),Dzu(λ)
)

=
q∑

i=1
λi

(
Agi ,Bgi ,Cgi ,Bwi ,Czi ,Dzui

)} (2.7)

where λ= [
λ1, . . . ,λq

]
is in the following unit simplex Λq :

Λq =
{
λ1, . . . ,λq

∣∣∣∣∣
q∑

i=1
λi = 1, λi ≥ 0

}
, (2.8)

q is the number of vertices of the polytopic system and the matrices Agi , Bgi , Cgi , Bwi , Czi , and

Dzui build the i -th vertex of the polytope. To keep the linear dependency of the closed-loop

matrices on the vector λ, only one of matrices Bg or Cg can have the polytopic uncertainty. In

what follows, we assume that Bg belongs to the polytopic uncertainty domain Ω1.

The polytopic model in (2.6) can be equivalently converted into an affine parameter-dependent
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system as follows:

ẋg (t ) = A′
g (θ)xg (t )+B ′

g (θ)u(t )+B ′
w (θ)w(t )

z(t ) =C ′
z (θ)xg (t )+D ′

zu(θ)u(t )

y(t ) =C ′
g xg (t )

(2.9)

where the matrices A′
g (θ), B ′

g (θ), C ′
g , B ′

w (θ), C ′
z (θ), and D ′

zu(θ) belong to the following uncer-

tainty domain:

A′
g (θ) = A′

g0
+

l∑
i=1

θi A′
gi

, B ′
g (θ) = B ′

g0
+

l∑
i=1

θi B ′
gi

B ′
w (θ) = B ′

w0
+

l∑
i=1

θi B ′
wi

, C ′
g =Cg

C ′
z (θ) =C ′

z0
+

l∑
i=1

θi C ′
zi

, D ′
zu(θ) = D ′

zu0
+

l∑
i=1

θi D ′
zui

(2.10)

where θi ∈ [−1,1]; i = 1, . . . , l .

The problem addressed in this chapter is the design of a robust fixed-structure controller K (s)

with the state space representation given in (2.2). The closed-loop system Hzw (θ) is described

as follows:

ẋ(t ) = A(θ)x(t )+B(θ)w(t )

z(t ) =C (θ)x(t )
(2.11)

where x(t ) =
[

xT
g (t ) xT

c (t )
]T

and

A(θ) =
[

A′
g (θ)+B ′

g (θ)DcC ′
g B ′

g (θ)Cc

BcC ′
g Ac

]
, B(θ) =

[
B ′

w (θ)

0

]

C (θ) =
[

C ′
z (θ)+D ′

zu(θ)DcC ′
g D ′

zu(θ)Cc

] (2.12)

The triplet
(

A(θ),B(θ),C (θ)
)

belongs to the following domain:

A(θ) = A0 +
l∑

i=1
θi Ai

B(θ) = B0 +
l∑

i=1
θi Bi

C (θ) =C0 +
l∑

i=1
θi Ci

(2.13)
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where θi ∈ [−1,1] and

A0 =
[

A′
g0
+B ′

g0
DcC ′

g B ′
g0

Cc

BcC ′
g Ac

]
, B0 =

[
B ′

w0

0

]
, C0 =

[
C ′

z0
+D ′

zu0
DcC ′

g D ′
zu0

Cc

]

Ai =
[

A′
gi
+B ′

gi
DcC ′

g B ′
gi

Cc

0 0

]
, Bi =

[
B ′

wi

0

]
, Ci =

[
C ′

zi
+D ′

zui
DcC ′

g D ′
zui

Cc

](2.14)

for i = 1, . . . , l .

The closed-loop system in (2.11) is stable via a positive polynomially parameter-dependent

Lyapunov matrix of degree N (P (θ)) if and only if the following constraint is satisfied:

AT (θ)P (θ)+P (θ)A(θ) < 0 (2.15)

for all θi ∈ [−1,1]. The above conditions are an infinite set of BMIs with respect to unknown

controller matrices appearing in the closed-loop matrix A(θ) and the Lyapunov matrix P (θ).

To convert the BMI conditions depending on an uncertain parameter, being hence a feasibility

problem of infinite dimension, to finite-dimensional BMIs, we use (D,G) scaling [133–135]

and multi-parameter (D,G) scaling approach [140, 141].

Theorem 1.
(
(D,G) Scaling [135]

)
Let Φ ∈Rn(k+1)×n(k+1). Then, the following matrix inequality

(
θ[k] ⊗ In

)T
Φ
(
θ[k] ⊗ In

)< 0 (2.16)

where θ[k] =
[

1 θ θ2 · · · θk
]T

, holds for all θ ∈ [−1,1] if and only if there exist a positive-

definite matrix D ∈Rnk×nk and a real skew-symmetric matrix G ∈Rnk×nk such that

Φ+Δn
k (D,G) < 0 (2.17)

where Δn
k (D,G) ∈Rn(k+1)×n(k+1) is defined as follows:

Δn
k (D,G) =

[
Ī n

k
Ĩ n

k

]T [
D G

GT −D

][
Ī n

k
Ĩ n

k

]
; k 
= 0 (2.18)

where

Ī n
k =

[
Ik 0k×1

]
⊗ In

Ĩ n
k =

[
0k×1 Ik

]
⊗ In

(2.19)

and Δn
0 (D,G) = 0. The inequality in (2.17) is an LMI with respect to the matrices Φ, D, and G.

Theorem 2.
(
Multi-parameter (D,G) Scaling [140]

)
Consider a symmetric matrixΦ ∈Rn(l+1)×n(l+1).
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Then, the following matrix inequality holds

(
θ[l ] ⊗ In

)T
Φ
(
θ[l ] ⊗ In

)< 0 (2.20)

where θ[l ] =
[

1 θ1 θ2 · · · θl

]T
and θi ∈

[−1,1
]
, if there exist positive definite matrices

D1,D2, . . . ,Dl and skew-symmetric matrices Gi , j ,
(
i = 0, . . . , l − 1, j = 1, . . . , l

)
of appropriate

dimensions such that

Φ+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D G0,1 · · · · · · G0,l

GT
0,1 −D1 G1,2 · · · G1,l
...

...
... · · · ...

GT
0,l−1 GT

1,l−1 · · · · · · Gl−1,l

GT
0,l GT

1,l · · · GT
l−1,l −Dl

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (2.21)

where D =
l∑

i=1
Di .

2.4 Fixed-structure Control of Affine Single Parameter-dependent

Systems

In this section, necessary and sufficient conditions for the existence of a fixed-structure

H∞ controller for affine single parameter-dependent systems via polynomially parameter-

dependent Lyapunov matrices are presented. The main idea behind of these conditions is the

(D,G) scaling approach used to convert the parameter-dependent BMI condition in (2.15) to

the feasibility problem of a set of inequalities independent on θ.

2.4.1 Fixed-structure H∞ Controller Design via Linearly Parameter-dependent
Lyapunov Matrices

In this part, the problem of fixed-structure H∞ controller design of affine single parameter-

dependent systems via linearly parameter-dependent Lyapunov matrices is proposed and the

results are given in the following theorem:

Theorem 3. There exists a fixed-structure controller that stabilizes the affine single parameter-

dependent systems in (2.9)-(2.10) with l = 1 and ensures ‖Hzw (θ)‖∞ < γ with a linearly

parameter-dependent Lyapunov matrix P (θ) = P0 +θP1 if and only if there exist symmetric

matrices P0 and P1, a positive-definite matrix D > 0, and a real skew-symmetric matrix G of

appropriate dimensions such that

P0 +P1 > 0

P0 −P1 > 0
(2.22)
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[
W1,1 +Δn+m

2 (D,G) Y T
1,1

Y1,1 −γI

]
< 0 (2.23)

where

W1,1 = He

⎧⎪⎨
⎪⎩
⎡
⎢⎣ P0

P1

0

⎤
⎥⎦[

A0 A1 0
]⎫⎪⎬
⎪⎭ (2.24)

Y1,1 =
[

B T
0 P0 B T

1 P0 +B T
0 P1 B T

1 P1

C0 C1 0

]
(2.25)

and Δn+m
2 (D,G) is given in (2.18) with k = 2.

Proof. First, the inequalities given in (2.22) imply that the Lyapunov matrix P (θ) = P0 +θP1 is

positive definite. Then, applying the Schur complement lemma on (2.23) leads to the following

inequality:

W1,1 +γ−1Y T
1,1Y1,1 +Δn+m

2 (D,G) < 0 (2.26)

According to the (D,G) scaling, the above inequality is equivalent to

⎡
⎢⎣ In+m

θIn+m

θ2In+m

⎤
⎥⎦

T

Φ∞

⎡
⎢⎣ In+m

θIn+m

θ2In+m

⎤
⎥⎦< 0 (2.27)

where

Φ∞ =He

⎧⎪⎨
⎪⎩
⎡
⎢⎣ P0

P1

0

⎤
⎥⎦[

A0 A1 0
]⎫⎪⎬
⎪⎭+γ−1

⎡
⎢⎣ C T

0

C T
1

0

⎤
⎥⎦[

C0 C1 0
]

+γ−1

⎡
⎢⎣ P0B0

P0B1 +P1B0

P1B1

⎤
⎥⎦
⎡
⎢⎣ P0B0

P0B1 +P1B0

P1B1

⎤
⎥⎦

T (2.28)

The inequality in (2.27) can be rewritten as follows:

AT (θ)P (θ)+P (θ)A(θ)+γ−1C T (θ)C (θ)+γ−1P (θ)B(θ)B T (θ)P (θ) < 0 (2.29)

Therefore, ‖Hzw (θ)‖∞ < γ and the proof is complete.
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2.4.2 Extension to Polynomially Parameter-dependent Lyapunov Matrices

In this subsection, we are interested in the extension of the previous results to polynomially

parameter-dependent Lyapunov matrices of degree N , i.e. PN (θ) =∑N
i=0θ

i Pi . The results are

summarized in the following theorem. As the degree of the polynomial P (θ) increases, the

results converge to the optimal ones [142]. Finally, necessary and sufficient conditions for the

existence of a fixed-structure H∞ controller for an affine single parameter-dependent system

are derived.

Theorem 4. For an affine single parameter-dependent system described by (2.9)-(2.10) with

l = 1, there exists a fixed-structure controller which guarantees the robust stability and ro-

bust performance ‖Hzw (θ)‖∞ < γ via a polynomially parameter-dependent Lyapunov matrix

PN (θ) =∑N
i=0θ

i Pi if and only if there exist symmetric matrices Pi for i = 0,1, . . . , N , positive

definite matrices D and L, and real skew-symmetric matrices G and K such that

−1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2P0 P1 · · · P j−1 P j

P1 0 · · · 0 P j+1
...

...
...

. . .
...

P j−1 0 · · · 0 P2 j−1

P j P j+1 · · · P2 j−1 2P2 j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+Δn+m

j (L,K ) < 0 (2.30)

[
W1,N +Δn+m

N+1 (D,G) Y T
1,N

Y1,N −γI

]
< 0 (2.31)

where Δn+m
N+1 (D,G) is defined in (2.18) with k = N +1 and

j =

⎧⎪⎨
⎪⎩

N
2 if N is even

N+1
2 if N is odd

(2.32)

W1,N = He

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P0

P1
...

PN

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
[

A0 A1 0 · · · 0
]
⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.33)

Y1,N =
[

B T
0 P0 B T

1 P0 +B T
0 P1 B T

1 P1 +B T
0 P2 . . . B T

1 PN−1 +B T
0 PN B T

1 PN

C0 C1 0 . . . 0 0

]
(2.34)

Note that if N is an odd number, 2 j = N +1, therefore, P2 j in (2.30) is replaced with 0.
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Proof. The inequality given in (2.30) directly expresses the positivity of matrix PN (θ) based on

the (D,G) scaling approach in two cases where N is either even or odd. The rest of the poof is

similar to that of Theorem 3.

Remark. The proposed conditions in Theorem 3 and Theorem 4 are necessary and sufficient

for fixed-structure H∞ controller design of polytopic systems with two vertices via linearly

and polynomially parameter-dependent Lyapunov matrices of order N , respectively. The

conditions are expressed by an optimization problem subject to two sets of BMI and LMI

constraints. To solve the optimization problems involving BMI constraints, several local and

global approaches have been developed in the literature, e.g. [137, 143–145].

2.5 Fixed-structure Control of Affine Multi Parameter-dependent

Systems

In the previous section, necessary and sufficient conditions for fixed-structure H∞ output

feedback controller design of affine single parameter-dependent systems in terms of LMIs

and BMIs have been developed. The results can be extended to the robust fixed-structure

controller synthesis of affine multi parameter-dependent systems according to the multi

parameter (D,G) scaling approach.

Theorem 5. The fixed-structure controller given in (2.2) stabilizes the affine multi parameter-

dependent systems in (2.9)-(2.10) and ensures ‖Hzw (θ)‖∞ < γ via a linearly parameter-dependent

Lyapunov matrix P (θ) = P0 +∑l
i=1θi Pi if there exist symmetric matrices Pi (i = 0,1, . . . , l ),

positive-definite matrices Di (i = 1, . . . , l ), and real skew-symmetric matrices Gi , j (i = 0,1, . . . , l −
1, j = i +1, . . . , l ) of appropriate dimensions such that

P0 ±P1 ±·· ·±Pl > 0 (2.35)

[
Wl ,1 +Δ(D,G) Y T

l ,1

Yl ,1 −γI

]
< 0 (2.36)

where

Wl ,1 = He

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

P0

P1
...

Pl

⎤
⎥⎥⎥⎥⎦
[

A0 A1 · · · Al

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.37)

Yl ,1 =
[

B T
0 P0 B T

1 P0 +B T
0 P1 · · · B T

l Pl

C0 C1 · · · Cl

]
(2.38)
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Δ(D,G) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D G0,1 · · · · · · G0,l

GT
0,1 −D1 G1,2 · · · G1,l
...

...
... · · · ...

GT
0,l−1 GT

1,l−1 · · · · · · Gl−1,l

GT
0,l GT

1,l · · · GT
l−1,l −Dl

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.39)

where D =∑l
i=1 Di .

Proof. The set of inequalities in (2.35) indicates that P (θ) = P0 +∑l
i=1θi Pi > 0. The following

inequality results from applying the Schur complement lemma to (2.36):

Wl ,1 +γ−1Y T
l ,1Yl ,1 +Δ(D,G) < 0 (2.40)

The remains of the proof are straightforward thanks to the multi-parameter (D,G) scaling

presented in Theorem 2.

2.6 Simulation Results

To demonstrate the effectiveness of the proposed BMI-based conditions for fixed-structure

H∞ control, they are applied to two numerical examples and compared with existing fixed-

order controller design methods. The BMI constraints are implemented and solved in MATLAB

using the available software packages, e.g. YALMIP [146] and PENBMI [137].

Example 1. Consider a continuous-time polytopic system with two vertices given in [57]. The

system can be easily converted to an affine single parameter-dependent system in (2.9) with

l = 1, where

A′
g (θ) =

⎡
⎢⎣ −1.346 34.065 179.82

0.2424 −1.135 −21.69

0 0 −30

⎤
⎥⎦+θ

⎡
⎢⎣ 0.356 −16.65 −83.67

0.0223 0.2834 10.3

0 0 0

⎤
⎥⎦

B ′
g =

⎡
⎢⎣ −91.435

0

30

⎤
⎥⎦+θ

⎡
⎢⎣ −6.345

0

0

⎤
⎥⎦ , B ′

w =

⎡
⎢⎣ 0

1

1

⎤
⎥⎦

C ′
g =

[
1 0 0

0 1 0

]
, C ′

z =

⎡
⎢⎣ 1 0 0

0 1 0

0 0 1

⎤
⎥⎦

D ′
zu =

[
0 0 0

]

(2.41)
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Table 2.1: Upper bound of ‖Hzw (θ)‖∞ in Example 1

Method γ K
[47] 9.7315

[
0.5558 5.0823

]
[48] (Theorem 4) 6.8028

[
0.0536 0.6384

]
[57] (Theorem 13) 2.3267

[
0.4474 4.1860

]
[147] 1.7947

[
77.1587 608.8698

]
Proposed method with N = 1 1.6602

[
130.3463 939.3718

]
Proposed method with N = 2 1.6446

[
0.1702e3 1.2234e3

]

where θ ∈ [−1,1].

The objective here is to design a static output feedback H∞ controller with polynomially

parameter-dependent Lyapunov matrices. To this end, an optimization problem, which is

the minimization of γ subject to the LMI and BMI constraints respectively given in (2.30) and

(2.31), is considered. The problem is solved by PENBMI (version 2.1) [137] with an initial

controller Kc0 =
[
0 0

]
after 138 iterations in the case of N = 1 and after 66 iterations in the

case of N = 2. Resulting static output feedback controllers are given in Table 2.1. The CPU

times for both cases N = 1 and N = 2 are 14.20s and 16.27s, respectively, on a 3.4 GHz Intel

Core i7 with Mac OS X. It should be noted that PENBMI fails to provide any solution for the

case of N ≥ 3.

The results are compared with the LMI-based methods in [47, 48, 57, 147]. It can be ob-

served from Table 2.1 that the proposed BMI-based method in this chapter with polynomially

parameter-dependent Lyapunov matrices of order two leads to the best results among the

others.

Example 2. Consider the model of a two-mass-spring system in [147]. The system can be

represented by:

A′
g (θ) =

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

−a0 a0 0 0

a0 −a0 0 0

⎤
⎥⎥⎥⎥⎦+θ

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

−a1 a1 0 0

a1 −a1 0 0

⎤
⎥⎥⎥⎥⎦

B ′
g =

⎡
⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎦ , B ′

w =

⎡
⎢⎢⎢⎢⎣

0

0

−0.75

0.75

⎤
⎥⎥⎥⎥⎦ , D ′

zu = 0

C ′
g =

[
0 1 0 0

]
, C ′

z =
[

1 −1 0 0
]

(2.42)

where θ ∈ [−1,1], a0 = kl+ku
2 , a1 = kl−ku

2 , kl = 1.15, and ku = 2.

The goal is the design of a second-order H∞ controller. To this end, an optimization problem,
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which is the minimization of γ subject to the LMI and BMI constraints in (2.30)-(2.31), is

solved.

To solve the optimization problem, the local optimization-based method in [145] is used. In

this way, the BMI constraint in (2.31) is reformulated as a difference of two positive semidef-

inite convex mappings. Then, the concave part is linearized at each iteration and a convex

subproblem involving a set of LMIs is obtained. Finally, the resultant LMI-based optimization

problem is solved using YALMIP [146] as the interface and MOSEK1 as the solver. The termina-

tion criteria are the same as ones mentioned in [145]. The maximum iteration number is set

to hmax = 100 and ρi = 0.001 for i = 1,2, . . . , N +2. The final second-order controllers for both

case N = 1 and N = 2 are respectively given by:

K1 =
[

Ac1 Bc1

Cc1 Dc1

]
(2.43)

where

Ac1 =
[

−3.4963 −2.8297

2.1438 0.3006

]
, Bc1 =

[
5.7701

−0.6.3582

]

Cc1 =
[
−5.2792 −4.2469

]
, Dc1 = 8.6595

(2.44)

K2 =
[

Ac2 Bc2

Cc2 Dc2

]
(2.45)

where

Ac2 =
[

−3.6053 −2.8822

2.2776 0.4338

]
, Bc2 =

[
5.8797

−0.9089

]

Cc2 =
[
−5.4472 −4.3289

]
, Dc2 = 8.8309

(2.46)

It should be mentioned that the resulting controller with N = 1 (K1) is used as an initial guess

for the case N = 2.

The results of the proposed method and HIFOO [31] are reported in Table 2.2, where both

methods are initialized by the same controller K [0] designed in [147]. Note that the best results

of HIFOO during three sequences with 30 iterations have been mentioned in Table 2.2.

Since HIFOO does not guarantee the stability conditions and H∞ performance for the whole

polytope, the upper bound of ‖Hzw (θ)‖∞, obtained by HIFOO, is not determined in Table 2.2.

It is observed that the proposed method in this chapter with N = 2 leads to the better results

1Available online in http://www.mosek.com
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Table 2.2: Upper bound of ‖Hzw (θ)‖∞ in Example 2

Method ‖Hzw (θ)‖∞ ‖Hzw (−1)‖∞ ‖Hzw (1)‖∞ Iteration
Time (s)

Number
HIFOO — 0.747 0.748 30 403.85

Proposed method
0.761 0.753 0.652 81 86.17

with N = 1
Proposed method

0.747 0.741 0.604 7 10.8
with N = 2

than HIFOO’s. Furthermore, HIFOO needs considerable computational time to find a con-

troller. However, the linearized convex-concave decomposition approach needs a feasible

initial condition which is not easy to find.

2.7 Conclusion

In this chapter, the problem of fixed-structure H∞ controller synthesis of continuous-time

LTI polytopic systems by means of polynomially parameter-dependent Lyapunov matrices

is considered. Particular emphasis is laid upon the polytopic systems with two vertices in

which necessary and sufficient conditions for the existence of a fixed-structure H∞ controller

in terms of BMIs and LMIs are derived. The fundamental idea of this approach is based on the

use of the (D,G) scaling which can convert inequality conditions depending on an uncertain

parameter to a finite set of inequalities. The extension of the results to the robust fixed-

structure controller synthesis of the polytopic systems with more than two vertices via linearly

(polynomialy) parameter-dependent Lyapunov matrices leads to only sufficient conditions.

The BMI conditions can be solved using available BMI solvers and existing approaches in the

literature. However, the BMI solvers most often fail to provide a solution for the BMI problems.

Moreover, the choice of an initial guess for most existing methods is very crucial and affects

the feasibility of the BMI problem. In Chapter 3 and Chapter 4, we propose another set of

BMIs for fixed-structure control of polytopic systems which relies on the concept of strictly

positive realness (SPRness) of transfer functions and use of slack matrices. To solve the BMI

conditions, several heuristic approaches for the design of the slack variables are developed.
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3 Fixed-structure Control of Systems
with Polytopic Uncertainty via LPD
Lyapunov Matrices
3.1 Introduction

This chapter aims to develop a fixed-structure control strategy for linear time-invariant dy-

namical systems subject to polytopic uncertainty. The proposed approach is based on the

use of slack matrices which convexify the problem of fixed-structure controller design by

decoupling unknown matrices. The problem is formulated as a convex optimization problem

with a set of LMI constraints. Although the presented design approach can apply to any kind

of structured controllers, the main focus is on fixed-order control. The effectiveness of the

proposed control techniques is illustrated using several simulation examples.

The organization of this chapter is as follows: Problem formulation and preliminaries are

respectively given in Section 3.2 and Section 3.3. A new parameterization of fixed-structure

stabilizing controllers is presented in Section 3.4. Two algorithms for fixed-structure stabilizing

controller design are developed in Section 3.5. Section 3.6 is devoted to fixed-structure H∞
control synthesis. The case of polytopic uncertainty in all state space matrices is considered

in Section 3.7. Numerical examples are provided in Section 3.8. Section 3.9 concludes the

chapter.

Throughout this chapter, matrices I and 0 are the identity matrix and the zero matrix of

appropriate dimensions, respectively. The symbols T and � denote the matrix transpose and

symmetric blocks, respectively. The symbol He
{

A
}

is a notation for A + AT . For symmetric

matrices, P > 0 (P < 0) indicates the positive-definiteness (the negative-definiteness).
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3.2 Problem Formulation

3.2.1 System Dynamics

Consider a linear time-invariant (LTI) dynamical system described by:

δ[xg (t )] = Ag xg (t )+Bg u(t )

y(t ) =Cg xg (t )
(3.1)

where xg ∈ Rn is the state, u ∈ Rni in the input, and y ∈ Rno is the output of the system.

Symbolδ[·] presents the derivative term for continuous-time
(
δ[xg (t )] = ẋg (t )

)
and the forward

operator for discrete-time systems
(
δ[xg (t )] = xg (t +1)

)
. The state space matrices Ag , Bg , and

Cg are of appropriate dimensions. It is assumed that the matrices Ag and Bg belong to the

following polytopic uncertainty domain:

Ω2 =
{(

Ag (λ),Bg (λ)
)= q∑

i=1
λi

(
Agi ,Bgi

)}
; λ ∈Λq (3.2)

where
(

Agi ,Bgi ,Cg ,0
)

is the i -th vertex of the polytope. To keep the linear dependence of

the closed-loop matrices on the vector λ, we assume that Bg belongs to the polytopic-type

uncertainty domain Ω2 and Cg does not contain any uncertainty.

3.2.2 Control Structure

The problem addressed in this chapter is to present a set of LMI conditions for fixed-structure

controller design of the polytopic system in (3.1) and (3.2). The controller K is given by:

δ[xc (t )] = Ac xc (t )+Bc y(t )

u(t ) =Cc xc (t )+Dc y(t )
(3.3)

where Ac ∈ Rm×m , Bc ∈ Rm×no , Cc ∈ Rni×m , and Dc ∈ Rni×no . The controller K can be also

described as follows:

K =
[

Ac Bc

Cc Dc

]
(3.4)

It is assumed that specific structural constraints on the controller matrices can be set by

designers to reflect some control design requirements/objectives. The constraints can be in

the form of:

• Static output feedback (m = 0)

• Fixed-, low-order dynamic output feedback (m < n)

• Strictly proper controller (Dc = 0)
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• PID control, e.g. the state space realization of a continuous-time SISO PID controller is

given by [4]:

K (s) = KP +KI
1

s
+KD

s

1+τs

=

⎡
⎢⎣ 0 0 KI

0 − 1
τ − 1

τ2 KD

1 1 KP + 1
τKD

⎤
⎥⎦ (3.5)

• Decentralized control with block diagonal controller structure

• Distributed control with non-block diagonal/overlapping controller structure

As an example, consider an interconnected system consisting of two subsystems with following

state space realization:

Ag =
[

Ag11 Ag12

Ag21 Ag22

]
, Bg = diag

(
Bg1 ,Bg1

)
, Cg = diag

(
Cg1 ,Cg2

)
(3.6)

There exists one sub-controller for each subsystem. It is assumed that the sub-controller

1 has access to the measurements of its own subsystem as well as the measurement of the

subsystem 2 while the sub-controller 2 uses only the measurements of the subsystem 2. In

this case, the controller structure is expressed as follows:

Ac =
[

Ac11 0

0 Ac22

]
, Bc =

[
Bc11 Bc12

0 Bc22

]

Cc =
[

Cc11 0

0 Cc22

]
, Dc =

[
Dc11 Dc12

0 Dc22

] (3.7)

Other specific structural constraints, such as fixed-order, on each sub-controller can be also

imposed. The design problem is then to find the parameters of the structured controller, i.e

the state space matrices
(

Ac ,Bc ,Cc ,Dc
)
, so that the resulting closed-loop system meets the

design requirements.

3.2.3 Closed-loop State Matrix

The interconnection of the controller K defined by (3.3) and the polytopic system in (3.1)-(3.2)

leads to the following closed-loop state matrix A(λ):

A(λ) =
[

Ag (λ)+Bg (λ)DcCg Bg (λ)Cc

BcCg Ac

]
(3.8)
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where

A(λ) =
q∑

i=1
λi Ai ; λi ∈Λq (3.9)

and

Ai =
[

Agi +Bgi DcCg Bgi Cc

BcCg Ac

]
(3.10)

The closed-loop state matrix A(λ) is robustly stable if all its eigenvalues are located inside the

unit circle for all λ ∈Λq (discrete-time case)/if all its eigenvalues have strictly negative real

part for all λ ∈Λq (continuous-time case).

3.3 Preliminaries

This section provides the basic lemmas which are used throughout this chapter.

Lemma 1.
(
Kalman-Yakubovich-Popov (KYP) Lemma [148]

)
A square transfer function H =[

A B

C D

]
is strictly positive real (SPR) if and only if there exists a Lyapunov matrix P > 0 such

that

For continuous-time systems:[
AT P +PA PB −C T

B T P −C −D −DT

]
< 0 (3.11)

For discrete-time systems:[
AT PA−P AT PB −C T

B T PA−C B T PB −D −DT

]
< 0 (3.12)

Lemma 2. The following statements are equivalent:

1. A square continuous-time transfer function H(s) =
[

A B

C I

]
is SPR with a Lyapunov

matrix P > 0.

2. H−1(s) =
[

A−BC B

−C I

]
is SPR with a Lyapunov matrix P > 0.

Proof. According to the KYP lemma, Statement 1 is equivalent to the existence of a Lyapunov
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matrix P = P T > 0 such that[
AT P +PA PB −C T

B T P −C −2I

]
< 0 (3.13)

Using the Schur complement lemma [149], the above inequality can be written as follows:

AT P +PA+ 1

2
(PB −C T )(B T P −C ) < 0 (3.14)

This inequality can be rearranged to

(A−BC )T P +P (A−BC )+ 1

2
(PB +C T )(B T P +C ) < 0 (3.15)

which is equivalent to[
(A−BC )T P +P (A−BC ) PB +C T

B T P +C −2I

]
< 0 (3.16)

Therefore, Statement 2 follows.

Lemma 3. An SPR discrete-time transfer function H(z) =
[

A B

C I

]
and its inverse H−1(z) =[

A−BC B

−C I

]
satisfy the KYP lemma with a common Lyapunov matrix P > 0.

Proof. The SPRness of H(z) is equivalent to the existence of a Lyapunov matrix P > 0 such

that [
AT PA−P AT PB −C T

B T PA−C B T PB −2I

]
< 0 (3.17)

Pre- and post-multiplication of (3.17) by U T
1 and U1

U1 =
[

I 0

−C I

]
(3.18)

lead to the following inequality:[
(A−BC )T P (A−BC )−P (A−BC )T PB +C T

B T P (A−BC )+C B T PB −2I

]
< 0 (3.19)

which is equivalent to the SPRness of H−1(z) with the Lyapunov matrix P > 0.
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3.4 New Parameterization of Fixed-structure Stabilizing Controllers

3.4.1 Main Idea of the Proposed Approach

In [42] and [150], the basic idea for the synthesis of a fixed-structure controller for a SISO

polytopic system with a rational transfer function representation is given as follows: Suppose

that ci (s) for i = 1, . . . , q is the closed-loop characteristic polynomials at the i -th vertex, then

the polytopic system is stable if ci (s)/d(s) for i = 1, . . . , q is an SPR transfer function where

d(s) is a given stable polynomial called the central polynomial. The choice of the central

polynomial is very crucial and affects the control performance as well as the conservatism of

the approach.

In this chapter, the idea of SPR transfer functions in the state space framework is used to find

a convex set of fixed-structure controllers for systems affected by polytopic-type uncertainty.

The idea relies on the concept of SPRness of transfer functions, the KYP lemma, Lemma 2, and

Lemma 3.

3.4.2 A Convex Set of Fixed-structure Stabilizing Controllers

The following theorems propose a new convex parameterization of fixed-structure stabilizing

controllers for both continuous-time and discrete-time polytopic systems given in (3.1) and

(3.2).

Theorem 6. (Continuous-time Case) Suppose that a stable matrix M and a non-singular

matrix T are given. Then, the fixed-structure controller defined in (3.3) stabilizes the continuous-

time polytopic system in (3.1) and (3.2) if there exist Lyapunov matrices Pi > 0 such that[
M T Pi +Pi M Pi −M T + (T −1 Ai T )T

Pi −M +T −1 Ai T −2I

]
< 0; i = 1, . . . , q (3.20)

where Ai is the closed-loop state matrix of the i -th vertex given in (3.10).

Proof. By convex combination of (3.20) for all vertices, one can obtain:[
M T P (λ)+P (λ)M P (λ)−M T + (T −1 A(λ)T )T

P (λ)−M +T −1 A(λ)T −2I

]
< 0 (3.21)

where A(λ) =∑q
i=1λi Ai , P (λ) =∑q

i=1λi Pi , and λ ∈Λq . According to the KYP lemma, the above

inequality indicates that the following transfer function is SPR with the Lyapunov matrix P (λ):

H(s) =
[

M I

M −T −1 A(λ)T I

]
(3.22)

As a consequence of Lemma 2, the following transfer function is also SPR with the same
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Lyapunov matrix:

H−1(s) =
[

T −1 A(λ)T I

−M +T −1 A(λ)T I

]
(3.23)

and therefore[
(T −1 A(λ)T )T P (λ)+P (λ)(T −1 A(λ)T ) P (λ)+M T − (T −1 A(λ)T )T

P (λ)+M −T −1 A(λ)T −2I

]
< 0 (3.24)

By the multiplication of the above inequality on the right by diag
(
T −1,T −1

)
and on the left by

diag
(
T −T ,T −T

)
, the following inequality is obtained:

[
AT (λ)PT (λ)+PT (λ)A(λ) PT (λ)+M T

T − AT (λ)X

PT (λ)+MT −X A(λ) −2X

]
< 0 (3.25)

where

PT (λ) = T −T P (λ)T −1, MT = T −T MT −1, X = T −T T −1 (3.26)

The application of the Schur complement lemma to (3.25) leads to

AT (λ)PT (λ)+PT (λ)A(λ) < 0 (3.27)

for λ ∈Λq . As a result, the closed-loop state matrix of the polytopic system A(λ) is stable with

a linearly parameter-dependent Lyapunov matrix PT (λ).

Theorem 7. (Discrete-time Case) Suppose that a stable matrix M and a non-singular matrix

T are given. Then, the fixed-structure controller in (3.3) stabilizes the discrete-time polytopic

system in (3.1) and (3.2) if there exist Lyapunov matrices Pi > 0 such that[
M T Pi M −Pi M T Pi −M T + (T −1 Ai T )T

Pi M −M +T −1 Ai T Pi −2I

]
< 0; i = 1, . . . , q (3.28)

where Ai is the closed-loop state matrix of the i -th vertex given in (3.10).

Proof. Similar to the proof of Theorem 6.

The convex sets of fixed-structure stabilizing controllers presented in Theorem 6 and Theorem

7 are inner convex approximations to the non-convex set of all fixed-structure stabilizing

controllers for the polytopic systems.
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Remarks.

1. Inequalities given in (3.20) and (3.28) are LMIs in terms of the controller matrices(
Ac ,Bc ,Cc ,Dc

)
and symmetric positive-definite matrices Pi , i = 1, . . . , q .

2. According to Lemma 2 and Lemma 3, it can be readily shown that the inequalities given

in (3.20) and (3.28) are respectively equivalent to the following sets of inequalities:[
AT

i PTi +PTi Ai PTi − AT
i X +M T

T

PTi −X Ai +MT −2X

]
< 0; i = 1, . . . , q (3.29)

and [
AT

i PTi Ai −PTi AT
i PTi − AT

i X +M T
T

PTi Ai −X Ai +MT PTi −2X

]
< 0; i = 1, . . . , q (3.30)

where PTi = T −T Pi T −1 and MT and X are defined in (3.26).

3. The use of the slack matrices M and T enables us to decouple the Lyapunov matrices

and the controller parameters appearing in the closed-loop matrices. Taking advantage

of this property, a fixed-structure controller can be designed via linearly parameter-

dependent Lyapunov matrices and without employing a common Lyapunov matrix

for all vertices. However, the use of linearly parameter-dependent Lyapunov matrices

instead of (homogeneous) polynomially parameter-dependent ones is one of the main

sources of conservatism in the proposed approach.

3.5 Algorithms for Fixed-structure Stabilizing Controller Design

The slack matrices M and T play a crucial role in the proposed approach to fixed-structure

controller design. In fact, an appropriate choice of these matrices affect the quality and the

conservatism of the proposed fixed-structure control technique. However, yet, there exists no

strict manner in which the slack matrices can be assigned. To tackle this issue, two heuristic

algorithms for the fixed-structure control design are presented.

3.5.1 Algorithm I: “Fixed-structure stabilizing controller design”

Algorithm I is based on the use of a set of initial fixed-structure stabilizing controllers designed

for each vertex/all vertices of the polytopic system. The initial controller(s) may be computed

through some of the existing fixed-structure controller design approaches in MATLAB such

as hinfstruct1 [30] and systune [36]. In the case of fixed-order controller design, the initial

controllers may be designed using balanced controller order reduction of a full-order controller

1Available in the Robust Control Toolbox since R2010b
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[1], the convex relaxation of a rank constraint in the classical full-order controller design [16],

and MATLAB toolboxes, e.g. HIFOO [31, 32, 34] and FDRC [151].

Suppose that Āi is the closed-loop state matrix of the i -th vertex with its corresponding

controller. Then, the slack matrices M and T can be chosen as follows:

T = (
chol (X )

)−1

M = T T MT T
(3.31)

where chol denotes Cholesky factorization and (MT , X ) are a solution to the following LMI

conditions:

For continuous-time systems:[
ĀT

i PTi +PTi Āi PTi − ĀT
i X +M T

T

PTi −X Āi +MT −2X

]
< 0; i = 1, . . . , q (3.32)

For discrete-time systems:[
ĀT

i PTi Āi −PTi ĀT
i PTi − ĀT

i X +M T
T

PTi Āi −X Āi +MT PTi −2X

]
< 0; i = 1, . . . , q (3.33)

If the above LMIs become feasible, M and T can be used in the set of LMI conditions given

in (3.20)/(3.28) to design a fixed-structure stabilizing controller. In the case of infeasibility of

either (3.32)/(3.33) or (3.20)/(3.28), different initial controllers or Algorithm II can be applied.

3.5.2 Algorithm II: “Stretching algorithm”

Algorithm II relies on the fixed-structure controller design for a nominal system defined as

follows:

Agnom = 1

q

q∑
i=1

Agi Bgnom = 1

q

q∑
i=1

Bgi Cgnom =Cg (3.34)

where (Agi ,Bgi ,Cg ,0) is the state space realization of the i -th vertex of the polytopic system.

Suppose that K [0] is an initial fixed-structure controller for the nominal system. The next step

is to obtain the slack matrices MT and X using (3.32) for continuous-time systems and (3.33)

for discrete-time systems. Note that for a single stabilizable system, feasibility of (3.32)/(3.33)

or equivalently (3.20)/(3.28) is always guaranteed, as Ā is a stable closed-loop state matrix.

A new polytope with following vertices is built in the iteration j of an iterative algorithm as
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explained in the following.

A[ j ]
gi

=α[ j ] Agi +
1−α[ j ]

q −1

q∑
k = 1

k 
= i

Agk , B [ j ]
gi

=α[ j ]Bgi +
1−α[ j ]

q −1

q∑
k = 1

k 
= i

Bgk

C [ j ]
gi

=Cg

(3.35)

for i = 1, . . . , q , where α[ j ]
( 1

q ≤α[ j−1] ≤α[ j ] ≤ 1
)

is a scaling factor for the original polytope in

(3.1) and (3.2). Note that α[ j ] = 1
q and α[ j ] = 1 reflect that the nominal model and the original

polytope are covered, respectively. Moreover, it can be easily shown that the new polytopic

system in the iteration j encompasses the old one (for α[ j−1]).

The objective is to create a polytopic system with maximum scaling factor α
( 1

q ≤ α ≤ 1
)

in which the closed-loop state matrix A(λ) for all λ ∈ Λq remains stable. In the following,

a procedure to design a fixed-structure stabilizing controller with the maximum polytopic

uncertainty domain is presented. The procedure is generally divided into two parts. In the first

part, the slack matrices and the maximum value of α are computed using the LMI conditions

given in (3.32)/(3.33) and according to the stabilizing controller from the previous iteration. In

the second part, a new fixed-structure controller is designed using (3.20)/(3.28).

The iterative procedure can be summarized with the following steps. To ease the presentation,

the inequalities in (3.20)/(3.28) and (3.32)/(3.33) are respectively defined as follows:

H i
1

(
Pi ,K

∣∣M ,T
)< 0 (3.36)

H i
2

(
PTi , MT , X ,α

∣∣K )< 0 (3.37)

for i = 1, . . . , q . The sign
∣∣ in the arguments of H i

1 and H i
2 separates the decision variables and

the known parameters in the LMI conditions. Therefore, the set of LMIs in (3.36) is used to

design a fixed-structure controller K = (
Ac ,Bc ,Cc ,Dc

)
for a given pair of (M ,T ). In the same

way, the LMI conditions in (3.37) are employed to find MT , X , and α for a given controller K .

Step 1 (Initialization): Choose α[0] = 1
q and set j = 1 and a small tolerance for ε> 0. Design

an initial fixed-structure stabilizing controller for the nominal model in (3.34) (K [0]).

Step 2: Compute M [ j ]
T and X [ j ] from the following optimization problem:

α[ j ] = max
PTi ,M [ j ]

T ,X [ j ],α
α

subject to H i
2

(
PTi , M [ j ]

T , X [ j ],α
∣∣K [ j−1])< 0; i = 1, . . . , q

(3.38)

Then, obtain the slack matrices M [ j ] and T [ j ] using (3.31).

Step 3: According to the current value α[ j ], a new polytope with the vertices given in (3.35) is
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built, i.e.
(

A[ j ]
gi

,B [ j ]
gi

,C [ j ]
gi

,0
)
.

Step 4: Solve the following set of LMIs to obtain a fixed-structure stabilizing controller K [ j ] for

the new polytope corresponding to α[ j ]:

H i
1

(
Pi ,K [ j ]

∣∣M [ j ],T [ j ],α[ j ])< 0; i = 1, . . . , q (3.39)

Step 5 (Termination): If either Δα = α[ j ] −α[ j−1] < ε or α[ j ] = 1, stop. Otherwise use the

obtained controller in Step 4 as an initial controller and go to Step 2 with j ←− j +1.

Remark. The iterative algorithm leads to monotonic non-decreasing convergence of the

scaling parameter α.

3.6 Fixed-structure H∞ Controller Synthesis

3.6.1 Problem Statement

Consider an LTI dynamical system described by the following minimal state space realization:

δ[xg (t )] = Ag xg (t )+Bg u(t )+Bw w(t )

z(t ) =Cz xg (t )+Dzuu(t )+Dzw w(t )

y(t ) =Cg xg (t )+Dw w(t )

(3.40)

where xg ∈ Rn , u ∈ Rni , w ∈ Rr , y ∈ Rno , and z ∈ Rs are the state, the control input, the

exogenous input, the measured output, and the controlled output, respectively. The state

space matrices are of appropriate dimensions. It is assumed that the polytopic uncertainty

affects the state space matrices Ag , Bg , Bw , Cz , Dzu , and Dzw , i.e.

Ω3 =
{(

Ag (λ),Bg (λ),Bw (λ),Cz (λ),Dzu(λ),Dzw (λ)
)

=
q∑

i=1
λi

(
Agi ,Bgi ,Bwi ,Czi ,Dzui ,Dzw i

)} (3.41)

where λ ∈Λq and
(

Agi ,Bgi ,Cg ,Bwi ,Czi ,Dzui ,Dzw i ,Dw
)

is the i -th vertex of the polytope. To

keep the linear dependence of the closed-loop matrices upon the vectorλ, either pair
(
Bg ,Dzu

)
or

(
Cg ,Dw

)
belongs to the polytopic uncertainty domain Ω3. In what follows, matrices Cg and

Dw are assumed to be independent of the uncertain parameter λ.

The state space representation of the closed-loop system Hzw (λ), transfer function from w(t )

to z(t ), with the dynamic output feedback controller in (3.3) is as follows:

δ[x(t )] = A(λ)x(t )+B(λ)w(t )

z(t ) =C (λ)x(t )+D(λ)w(t )
(3.42)
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where x(t ) = [
xT

g (t ) xT
c (t )

]T and

A(λ) =
[

Ag (λ)+Bg (λ)DcCg Bg (λ)Cc

BcCg Ac

]
, B(λ) =

[
Bw (λ)+Bg (λ)Dc Dw

Bc Dw

]

C (λ) = [
Cz (λ)+Dzu(λ)DcCg Dzu(λ)Cc

]
, D(λ) = Dzw (λ)+Dzu(λ)Dc Dw

(3.43)

The vertices of the closed-loop polytopic system Hzw (λ) are given as follows:

Hzw i =
[

Ai Bi

Ci Di

]
; i = 1, . . . , q (3.44)

where

Ai =
[

Agi +Bgi DcCg Bgi Cc

BcCg Ac

]
, Bi =

[
Bw +Bgi Dc Dw

Bc Dw

]

Ci =
[
Czi +Dzui DcCg Dzui Cc

]
, Di = Dzw i +Dzui Dc Dw

(3.45)

The fixed-structure H∞ control synthesis problem to be addressed in this section is stated as

follows:

Problem 1. (Fixed-structure H∞ control)

Design a fixed-structure output-feedback controller with dynamic equations given in (3.3) such

that ‖Hzw (λ)‖∞ is minimized, i.e.

min μ

subject to ‖Hzw (λ)‖2
∞ <μ, ∀λ ∈Λq

(3.46)

3.6.2 Inner Convex Approximation of Fixed-structure H∞ Controllers

The following lemma determines the H∞ norm of the transfer function Hzw (λ).

Lemma 4. (Bounded Real Lemma) Consider Hzw (λ) = (
A(λ),B(λ),C (λ),D(λ)

)
. Then, ‖Hzw (λ)‖2∞ <

μ if and only if there exists a symmetric matrix P (λ) > 0 such that

For continuous-time systems [148]:

⎡
⎢⎣ A(λ)T P (λ)+P (λ)A(λ) P (λ)B(λ) C T (λ)

B T (λ)P (λ) −I DT (λ)

C (λ) D(λ) −μI

⎤
⎥⎦< 0, λ ∈Λq (3.47)
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For discrete-time systems [152]:

⎡
⎢⎣ A(λ)T P (λ)A(λ)−P (λ) A(λ)T P (λ)B(λ) C T (λ)

B T (λ)P (λ)A(λ) −μI +B T (λ)P (λ)B(λ) DT (λ)

C (λ) D(λ) −I

⎤
⎥⎦< 0, λ ∈Λq (3.48)

The above parameter-dependent inequalities contain the products of the Lyapunov matrix

P (λ) and the controller parameters appearing in the closed-loop matrices A(λ), B(λ), C (λ),

and D(λ). In the following, an LMI representation for fixed-structure H∞ controller synthesis

of LTI systems with polytopic uncertainty is given. The results are based on the use of slack

matrices which are able to decouple the product of unknown matrices.

Theorem 8. (Continuous-time Case) Suppose that a stable matrix M and a nonsingular slack

matrix T are given. Then, the fixed-structure controller in (3.3) stabilizes the polytopic system

in (3.40) and (3.41) and ensures the performance criterion ‖Hzw (λ)‖2∞ <μ for all λ ∈Λq if there

exist symmetric matrices Pi > 0 such that⎡
⎢⎢⎢⎢⎣

M T Pi +Pi M Pi −M T + (T −1 Ai T )T 0 T T C T
i

Pi −M +T −1 Ai T −2I T −1Bi 0

0 (T −1Bi )T −I DT
i

Ci T 0 Di −μI

⎤
⎥⎥⎥⎥⎦< 0; i = 1,2, . . . , q (3.49)

Proof. Convex combination of (3.49) for all vertices leads to the following inequality:⎡
⎢⎢⎢⎢⎣

M T P (λ)+P (λ)M P (λ)−M T + (T −1 A(λ)T )T 0 T T C T (λ)

P (λ)−M +T −1 A(λ)T −2I T −1B(λ) 0

0 (T −1B(λ))T −I DT (λ)

C (λ)T 0 D(λ) −μI

⎤
⎥⎥⎥⎥⎦< 0 (3.50)

where λ ∈ Λq , P (λ) = ∑q
i=1λi Pi , and the closed-loop matrices

(
A(λ),B(λ),C (λ),D(λ)

)
are

given in (3.43). Then, the multiplication of the above inequality on the right by U2(λ)

U2(λ) =

⎡
⎢⎢⎢⎢⎣

I 0 0

P (λ) 0 0

0 I 0

0 0 I

⎤
⎥⎥⎥⎥⎦ (3.51)

and on the left by U T
2 (λ) leads to the following inequality:

⎡
⎢⎣ P (λ)(T −1 A(λ)T )+ (T −1 A(λ)T )T P (λ) T −1B(λ)P (λ) T T C T (λ)

(T −1B(λ))T P (λ) −I DT (λ)

C (λ)T D(λ) −μI

⎤
⎥⎦< 0 (3.52)
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According to the bounded real lemma [148], the above inequality indicates that ‖Hzw (λ)‖2∞ <
μ.

Theorem 9. (Discrete-time Case) Suppose that a stable matrix M and a nonsingular slack

matrix T are given. Then, the fixed-order controller of (3.3) guarantees the robust stability and

the robust performance ‖Hzw (λ)‖2∞ <μ of the closed-loop system given in (3.42)-(3.45) if there

exist Lyapunov matrices Pi > 0 such that

⎡
⎢⎢⎢⎢⎣

−M T Pi M +Pi M T Pi −M T + (T −1 Ai T )T 0 T T C T
i

Pi M −M +T −1 Ai T −Pi +2I T −1Bi 0

0 (T −1Bi )T I DT
i

Ci T 0 Di μI

⎤
⎥⎥⎥⎥⎦> 0; i = 1,2, . . . , q

(3.53)

Proof. By convex combination of (3.53) for all vertices, the following inequality is obtained:

⎡
⎢⎢⎢⎢⎣

−M T P (λ)M +P (λ) M T P (λ)−M T + (T −1 A(λ)T )T 0 T T C T (λ)

P (λ)M −M +T −1 A(λ)T −P (λ)+2I T −1B(λ) 0

0 (T −1B(λ))T I DT (λ)

C (λ)T 0 D(λ) μI

⎤
⎥⎥⎥⎥⎦> 0

(3.54)

where λ ∈Λq , P (λ) =∑q
i=1λi Pi , and

(
A(λ),B(λ),C (λ),D(λ)

)
are given in (3.43). Then, pre- and

post-multiplication of (3.54) with matrix U3(λ) and U T
3 (λ), respectively,

U3(λ) =
[

T −T T −T M T − AT (λ)T −T 0 −μ−1C T (λ)

0 B T (λ)T −T −I μ−1DT (λ)

]
(3.55)

yield

[
P (λ)− (T−1 A(λ)T )T P (λ)(T−1 A(λ)T )− (C (λ)T )T (C (λ)T ) �

(T−1B(λ))T P (λ)(T−1 A(λ)T )+D(λ)T (C (λ)T ) μI − (T−1B(λ))T P (λ)(T−1B(λ))−DT (λ)D(λ)

]
> 0

(3.56)

which is equivalent to (3.48) using the Schur complement lemma. Therefore, the closed-loop

performance ‖Hzw (λ)‖2∞ <μ is guaranteed.

Similar to the fixed-structure stabilizing control design, in order to choose the slack matrices M

and T , matrix inequalities equivalent to (3.49) and (3.53) in which M , T , and P are decoupled

are presented.
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Lemma 5. The following set of inequalities is equivalent to (3.49):⎡
⎢⎢⎢⎢⎣

AT
i PTi +PTi Ai PTi +M T

T − AT
i X −M T

T Bi + AT
i X Bi C T

i

PTi +MT −X Ai −2X X Bi 0

−B T
i MT +B T

i X Ai B T
i X −I DT

i

Ci 0 Di −μI

⎤
⎥⎥⎥⎥⎦< 0; i = 1, . . . , q (3.57)

where PTi = T −T Pi T −1 and MT and X are defined in (3.26).

Proof. The inequalities given in (3.57) are obtained by the multiplication of (3.49) on the left

by U4 and on the right by U T
4 .

U4 =

⎡
⎢⎢⎢⎢⎣

T −T −T −T M T + AT
i T −T 0 0

0 T −T 0 0

0 0 I 0

0 0 0 I

⎤
⎥⎥⎥⎥⎦ (3.58)

Lemma 6. The following set of inequalities is equivalent to (3.53):⎡
⎢⎢⎢⎢⎣

−AT
i PTi Ai +PTi AT

i PTi +M T
T − AT

i X M T
T Bi − AT

i X Bi C T
i

PTi Ai +MT −X Ai −PTi +2X X Bi 0

Bi
T MT −B T

i X Ai B T
i X I DT

i

Ci 0 Di μI

⎤
⎥⎥⎥⎥⎦> 0; i = 1, . . . , q (3.59)

where PTi = T −T Pi T −1 and MT and X are defined in (3.26).

Proof. Multiply the inequalities given in (3.53) on the left and on the right by the following

matrix U5 and U T
5 , respectively.

U5 =

⎡
⎢⎢⎢⎢⎣

T −T T −T M T − AT
i T −T 0 0

0 T −T 0 0

0 0 I 0

0 0 0 I

⎤
⎥⎥⎥⎥⎦ (3.60)

In the following, a systematic algorithm for the problem of the fixed-structure H∞ controller

design of LTI polytopic systems is given.
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3.6.3 Algorithm III: “Fixed-structure H∞ controller design”

To ease the presentation, the inequalities in (3.49)/(3.53) and (3.57)/(3.59) are respectively

defined as follows:

F i
1

(
Pi ,K ,μ

∣∣M ,T
)< 0 (3.61)

F i
2

(
PT i , MT , X ,μ

∣∣K )< 0 (3.62)

for i = 1, . . . , q . The sign
∣∣ in the arguments of F i

1 and F i
2 separates the decision variables and

the known parameters in the LMI conditions. The set of LMIs in (3.61) is used to design a

fixed-structure H∞ controller K = (
Ac ,Bc ,Cc ,Dc

)
for a given pair of (M ,T ) whereas the LMI

conditions in (3.62) are employed to find MT and X for a given controller K .

Step 1 (Initialization): Design an initial fixed-structure (H∞) controller for each vertex of the

polytopic system
(
K [0]

i ; i = 1, . . . , q
)
. Put the iteration number j = 1 and choose the maximum

number of iterations hmax and a small tolerance for ε> 0.

Step 2: Compute M [ j ]
T and X [ j ] from the following optimization problem:

μ
[ j ]
2 = min

PTi ,M [ j ]
T ,X [ j ],μ

μ

subject to F i
2

(
PTi , M [ j ]

T , X [ j ],μ
∣∣K [ j−1]

i

)< 0;

i = 1, . . . , q

(3.63)

Then, obtain the slack matrices M [ j ] and T [ j ] using (3.31) and according to the current values

of M [ j ]
T and X [ j ].

Step 3: Solve the following convex optimization problem to obtain a fixed-structure H∞
controller K [ j ]:

μ
[ j ]
1 = min

Pi ,K [ j ],μ
μ

subject to F i
1

(
Pi ,K [ j ],μ

∣∣M [ j ],T [ j ])< 0;

i = 1, . . . , q

(3.64)

Step 4 (Termination): If either μ[ j−1]
1 −μ

[ j ]
1 < ε or even maximum number of iterations hmax

reaches, stop. Otherwise use the obtained controller in Step 3 as an initial controller
(
K [ j ]

i =
K [ j ]; i = 1, . . . , q

)
and go to Step 2 with j ←− j +1.

It can be easily proven that the above iterative algorithm leads to monotonic convergence of

the upper bound on the H∞ norm. The proof is based on the fact that (3.61) and (3.62) are

equivalent inequalities. Therefore, for j > 1, K [ j−1] and μ
[ j ]
2 are always feasible solutions to the

optimization problem in Step 3 which guarantees that μ[ j ]
1 ≤μ

[ j ]
2 . On the other hand, M [ j ]

T , X [ j ]

and μ
[ j ]
1 are always solutions to the optimization problem in Step 2 at iteration j +1. Thus,
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μ
[ j+1]
2 ≤μ

[ j ]
1 . As a result, μ[ j+1]

1 ≤μ
[ j ]
1 which shows that the upper bound μ1 is not increasing

and monotonically converges to a suboptimal solution.

3.7 Fixed-structure Controller Design in the Case of Polytopic Un-

certainty in All State Space Matrices

Consider the LTI dynamical system described by (3.40) where the polytopic uncertainty affects

all the state space matrices, i.e.

Ω4 =
{(

Ag (λ),Bg (λ),Bw (λ),Cg (λ),Cz (λ),Dzu(λ),Dzw (λ),Dw (λ)
)

=
q∑

i=1
λi

(
Agi ,Bgi ,Bwi ,Cgi ,Czi ,Dzui ,Dzw i ,Dwi

)} (3.65)

where λ ∈Λq and
(

Agi ,Bgi ,Cgi ,Bwi ,Czi ,Dzui ,Dzw i ,Dwi

)
is the i -th vertex of the polytope.

In the case of polytopic uncertainty in all state space matrices, the proposed conditions in Sec-

tion 3.4 and Section 3.6 cannot guarantee the stability and the H∞ performance specification

of the closed-loop systems due to the product of Bgi Dc and Cgi , Bgi Dc and Dwi , Dzui Dc and

Cgi , and Dzui Dc and Dwi . In this section, new LMI-based conditions for fixed-structure con-

troller synthesis of polytopic systems in which the uncertainty affects all the system matrices

are developed. The results rely on the use of slack matrices which are able to decouple the

product of unknown matrices as well as the state space matrices.

Theorem 10. (Continuous-time Case) Suppose that two slack matrices M and X are given.
Then, the fixed-structure controller of (3.3) stabilizes the given LTI continuous-time polytopic
system in (3.40) and (3.65) and ensures the robust performance ‖Hzw (λ)‖2∞ <μ for all λ ∈Λq if
there exist matrix L and symmetric matrices Pi > 0 such that⎡

⎢⎢⎢⎢⎢⎢⎣

M Āgi + ĀT
gi

M T Pi −M + ĀT
gi

X MB̄wi C̄ T
zi

MB̄gi K

� −X −X T X T B̄wi 0 X T B̄gi K

� � −Ir D̄T
zwi

0

� � � −μIs D̄zui K

� � � � 0

⎤
⎥⎥⎥⎥⎥⎥⎦+He

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

C̄ T
gi

0

D̄T
wi

0

−Im+no

⎤
⎥⎥⎥⎥⎥⎥⎦L

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

< 0

(3.66)

for i = 1, . . . , q, where

K =
[

Ac Bc

Cc Dc

]
(3.67)
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and

Āgi =
[

Agi 0

0 0m

]
, B̄gi =

[
0 Bgi

Im 0

]
, B̄wi =

[
Bwi

0

]

C̄gi =
[

0 Im

Cgi 0

]
, C̄zi =

[
Czi 0

]
, D̄zui =

[
0 Dzui

]

D̄zw i = Dzw i , D̄wi =
[

0

Dwi

]
(3.68)

Proof. By convex combination of (3.66) for all vertices, the following inequality is obtained.

⎡
⎢⎢⎢⎢⎢⎢⎣

M Āg (λ)+ ĀT
g (λ)MT P (λ)−M + ĀT

g (λ)X MB̄w (λ) C̄ T
z (λ) MB̄g (λ)K

� −X −X T X T B̄w (λ) 0 X T B̄g (λ)K

� � −Ir D̄T
zw (λ) 0

� � � −μIs D̄zu (λ)K

� � � � 0

⎤
⎥⎥⎥⎥⎥⎥⎦+He

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

C̄ T
g (λ)

0

D̄T
w (λ)

0

−Im+no

⎤
⎥⎥⎥⎥⎥⎥⎦L

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

< 0

(3.69)

where λ ∈Λq , P (λ) =∑q
i=1λi Pi and

{(
Āg (λ), B̄g (λ),C̄g (λ), B̄w (λ),C̄z (λ),D̄zu(λ),D̄zw (λ),D̄w (λ)

)
=

q∑
i=1

λi
(

Āgi , B̄gi ,C̄gi , B̄wi ,C̄zi ,D̄zui ,D̄zw i ,D̄wi

)}
; λi ∈Λq (3.70)

Pre-multiplication and post-multiplication of inequality (3.69) by V (λ) =
[

I2(m+n)+r+s Z T (λ)
]

,

where

Z (λ) =
[

C̄g (λ) 0 D̄w (λ) 0
]

(3.71)

lead to the following inequality:

V (λ)

⎡
⎢⎢⎢⎢⎢⎢⎣

M Āg (λ)+ ĀT
g (λ)MT P (λ)−M + ĀT

g (λ)X MB̄w (λ) C̄ T
z (λ) MB̄g (λ)K

� −X −X T X T B̄w (λ) 0 X T B̄g (λ)K

� � −Ir D̄T
zw (λ) 0

� � � −μIs D̄zu (λ)K

� � � � 0

⎤
⎥⎥⎥⎥⎥⎥⎦V T (λ) < 0 (3.72)

Note that

V (λ)He

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

C̄ T
g (λ)

0

D̄T
w (λ)

0

−Im+no

⎤
⎥⎥⎥⎥⎥⎥⎦L

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

V T (λ) = 0 (3.73)
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Inequality (3.72) can be rewritten as follows:

⎡
⎢⎢⎢⎣

M Āg (λ)+ ĀT
g (λ)M T P (λ)−M + ĀT

g (λ)X MB̄w (λ) C̄ T
z (λ)

� −X −X T X T B̄w (λ) 0

� � −Ir D̄T
zw (λ)

� � � −μIs

⎤
⎥⎥⎥⎦

+He

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

MB̄g (λ)K

X T B̄g (λ)K

0

D̄zu(λ)K

⎤
⎥⎥⎥⎦Z (λ)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭< 0 (3.74)

By multiplying the inequality (3.74) by U6(λ) on the left

U6(λ) =

⎡
⎢⎣ I ĀT

g (λ)+C̄ T
g (λ)K T B̄ T

g (λ) 0 0

0 B̄ T
w (λ)+ D̄T

w (λ)K T B̄ T
g (λ) I 0

0 0 0 I

⎤
⎥⎦ (3.75)

and U T
6 (λ) on the right, the inequality (3.47) is obtained with linearly parameter-dependent

Lyapunov matrix P (λ). Thus, the proof is complete.

Theorem 11. (Discrete-time Case) Suppose that two slack matrices M and X are given. Then,
the fixed-structure H∞ controller of (3.3) stabilizes the given LTI discrete-time polytopic system
in (3.40) and (3.65) and provides the robust performance ‖Hzw (λ)‖2∞ <μ for all λ ∈Λq if there
exist matrix L and symmetric matrices Pi > 0 such that⎡

⎢⎢⎢⎢⎢⎢⎣

Pi − ĀT
gi

M T −M Āgi −M + ĀT
gi

X −MB̄wi C̄ T
zi

−MB̄gi K

� X +X T +Pi X T B̄wi 0 X T B̄gi K

� � Ir D̄T
zwi

0

� � � μIs D̄zui K

� � � � 0

⎤
⎥⎥⎥⎥⎥⎥⎦+He

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

C̄ T
gi

0

D̄T
wi

0

−Im+no

⎤
⎥⎥⎥⎥⎥⎥⎦L

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

> 0

(3.76)

for i = 1, . . . , q, where K and
(

Āgi , B̄gi ,C̄gi ,C̄zi ,D̄zui ,D̄zw i ,D̄wi

)
are respectively given in (3.67)

and (3.68).
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Proof. Convex combination of the set of conditions in (3.76) leads to the following inequality:

⎡
⎢⎢⎢⎢⎢⎢⎣

P (λ)− ĀT
g (λ)M T −M Āg (λ) −M + Āg (λ)T X −MB̄w (λ) C̄ T

z (λ) −MB̄g (λ)K

� X +X T +P (λ) X T B̄w (λ) 0 X T B̄g (λ)K

� � Ir D̄T
zw (λ) 0

� � � μIs D̄zu(λ)K

� � � � 0

⎤
⎥⎥⎥⎥⎥⎥⎦

+He

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

C̄ T
g (λ)

0

D̄T
w (λ)

0

−Im+no

⎤
⎥⎥⎥⎥⎥⎥⎦L

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

> 0 (3.77)

where λ ∈ Λq , P (λ) = ∑q
i=1λi Pi and

(
Āg (λ), B̄g (λ),C̄g (λ),C̄z (λ),D̄zu(λ),D̄zw (λ),D̄w (λ)

)
are

given in (3.70). Multiply the above parameter-dependent LMI by
[

I2(m+n)+r+s Z T (λ)
]

on the left, Z is given in (3.71), and its transpose on the right. Then, by multiplication of the

resulting inequality by U7(λ) on the left

U7(λ) =
[

I −ĀT
g (λ)−C̄ T

g (λ)K T B̄ T
g (λ) 0 −μ(C̄z (λ)+ D̄zu(λ)K C̄g (λ))T

0 B̄ T
w (λ)+ D̄T

w (λ)K T B̄ T
g (λ) −I −μ(D̄zw (λ)+ D̄zu(λ)K D̄w (λ))T

]
(3.78)

and by U T
7 (λ) on the right and finally applying the Schur complement lemma, (3.48) is ob-

tained.

Remarks.

1. The inequalities given in (3.66) and (3.76) are LMIs in terms of K , L, μ, and Pi , i = 1, . . . , q .

2. The slack matrix L decouples the product of B̄gi K and C̄gi , B̄gi K and D̄wi , D̄zui K and

D̄wi , as well as D̄zui K and C̄gi . In the case that the polytopic uncertainty appears in

neither pair
(
B̄gi ,D̄zui

)
nor

(
C̄gi ,D̄wi

)
, the slack matrix L can be easily removed and

in consequence, the conservatism caused by the use of a unique slack matrix L for all

vertices is eliminated.

3. Theorem 10 and Theorem 11 can be adapted to cope with fixed-structure stabilizing

controllers by excluding the third and forth rows and columns in (3.66) and (3.76).

4. Theorem 10 and Theorem 11 can be used for fixed-structure H∞ controller design of

LTI system with polytopic uncertainty given in (3.40) and (3.65). To this end, similar

to Algorithm III in Subsection 3.6.3, the slack matrices M and X can be chosen and
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Figure 3.1: Evolution of the scaling factor α versus the iteration numbers in Example 1

iteratively updated according to a set of initial fixed-structure controllers, i.e.

min
M ,X ,L,μ,Pi

μ

s.t. (3.66)
∣∣
Ki

(
(3.76)

∣∣
Ki

)
Pi = P T

i > 0; i = 1, . . . , q

(3.79)

3.8 Numerical Examples

In this section, three simulation examples are provided in order to demonstrate the effective-

ness of the proposed methods in this chapter. The convex optimisation problems are solved

by YALMIP [146] as the interface and SDPT3 [153]/SeDuMi [154] as the solver.

Example 1 (Fixed-order stabilizing control). Consider the state space model of the linearized

vertical-plane dynamics of an aircraft (AC1 benchmark problem in [155]) given by:

Ag =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 ρ1 0 −1

0 −0.0538 −0.1712 0 0.0705

0 0 0 1 0

0 0.0485 0 −0.8556 −1.013

0 −0.2909 0 ρ2 −ρ3

⎤
⎥⎥⎥⎥⎥⎥⎦ , Bg =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0

−0.12 1 0

0 0 0

ρ4 0 −1.665

ρ5 0 −0.0732

⎤
⎥⎥⎥⎥⎥⎥⎦

Cg =

⎡
⎢⎣ 1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

⎤
⎥⎦

(3.80)
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where ρ1 = 1.132, ρ2 = 1.0532, ρ3 = 0.6859, ρ4 = 4.419, and ρ5 = 1.575. We assume that all five

parameters ρ1, ρ2, ρ3, ρ4, and ρ5 contain the uncertainty up to ±60% of their nominal values.

A first-order output feedback controller is sought to stabilize the resulting polytopic system

with q = 25 vertices in a five-dimensional space.

According to Algorithm II in Subsection 3.5.2, a first-order output feedback stabilizing con-

troller is designed using hinfstruct for the nominal system defined in (3.34) as follows:

Ac =−100.6193, Bc =
[

7.9859 8.7991 8.8372
]

Cc =

⎡
⎢⎣ 9.8927

9.6167

10.1794

⎤
⎥⎦ , Dc =

⎡
⎢⎣ −0.0280 −0.7255 −0.3759

0.4738 −6.7940 1.7955

1.6036 −1.9755 2.1200

⎤
⎥⎦ (3.81)

This controller can be used as an initial controller for the iterative algorithm in which the

scaling parameter α is maximized. Finally, after 21 iterations, α is increased up to 1. The

evolution of α versus iterations is shown in Figure 3.1. The final stabilizing controller after 21

iterations is given by:

Ac =−183.4386, Bc =
[

8.1305 14.6246 1.2300×103
]

Cc =

⎡
⎢⎣ 12.7043

−56.2052

−3.3766

⎤
⎥⎦ , Dc =

⎡
⎢⎣ −0.0302 −0.9143 −84.1476

0.6063 −2.0523 431.3461

1.6314 −0.9903 45.6236

⎤
⎥⎦ (3.82)

Example 2 (Fixed-order H∞ control). Consider the following state space model of a discrete-

time system in [43] given by:

Ag =

⎡
⎢⎣ 0 0 −r1

1 0 −r2

0 1 −r3

⎤
⎥⎦ , Bg =

⎡
⎢⎣ r4

1

0

⎤
⎥⎦ , Cg =

[
0 0 1

]

Cz =
[

0 0 1
]

, Dzu = 0, Dzw = 1, Dw = 1

(3.83)

with r1 =−0.1, r2 = 0.5, r3 =−1.2, and r4 = 0.2. It is assumed that the parameters r1, r2, r3, and

r4 contain uncertainty up to ±20% of their nominal values, resulting in an unstable polytope

with 24 = 16 vertices in a four-dimensional space. The objective is to design a second-order

H∞ controller such that the performance criterion ‖Hzw (λ)‖∞ is minimized

According to Algorithm III in Subsection 3.6.3, at the first step, sixteen initial second-order

controllers are designed using FDRC Toolbox [151] for each vertex of the polytope. Then,

the initial controllers are utilized to determine the slack matrices M and T using the convex

optimization problem given in (3.63). Finally, the iterative algorithm converges to the following
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3.8. Numerical Examples

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

iteration

H
in

f n
or

m

Figure 3.2: Evolution of the upper bound of the H∞ norm versus the iteration number in
Example 2

Table 3.1: Upper bound of ‖Hzw (λ)‖∞ for different approaches in Example 2

Approach
[3] [156] [44]

Results of Theorem 9
d1(z) d2(z) d1(z) d2(z) d1(z) d2(z)

γ=

μ 2.25 1.95 2.25 1.95 1.75 1.75 1.64

controller with μ= 1.64282 after 15 iterations:

Ac =
[

−0.8942 0.0555

1.0025 −0.1035

]
, Bc =

[
1.6979

−0.0006

]

Cc =
[
−0.4733 0.1292

]
, Dc = 0.5409

(3.84)

Figure 3.2 shows the monotonic decreasing of the upper bound of ‖Hzw (λ)‖∞ versus the

iteration number. Since the state space realization of the system is in the canonical form,

the polynomial-based approaches in the literature (e.g. [3, 44, 156]) which rely on the idea

of SPRness are employed for the comparison purpose. The results of these approaches for

two different central polynomials d1(z) and d2(z) have been reported in [44]. The results are

summarised in Table 3.1. The results show that the proposed approach in this chapter obtains

the best results among the others.

Example 3 (Fixed-order distributed H∞ control). Consider a network of three intercon-

nected second-order discrete-time subsystems given in [74] with following state space matri-
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ces:

Ag =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 0.1 a13 0 −0.3 0

0.1 0.1 0 0 −0.3 0.2

0.3 0.1 0.6 0.1 0 0

0.2 0.5 0.1 a44 0 0

0 0 −0.2 0 0.4 0

0 0 0.4 −0.1 0.2 0.3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bg = diag

([
−0.5

0.5

]
,

[
0.2

0.4

]
,

[
0.5

0.3

])

Bw = diag

([
−0.2

1.0

]
,

[
0.4

−0.2

]
,

[
0

0.2

])

Cg = diag
([

1 1
]

,
[

1 1
]

,
[

1 1
])

Cz = diag
([

1.3 0.4
]

,
[

0 −2
]

,
[
−0.5 0

])
Dzu = diag

(−0.3,0.1,0.5
)
, Dzw = diag

(
0.1,0.5,0

)
Dw = diag

(−0.3,0,0.5
)

(3.85)

It is assumed that the parameters a11, a13, and a44 are not precisely known, but they belong

to the intervals 0 ≤ a11 ≤ 0.4, −1 ≤ a13 ≤ 1, and 0 ≤ a44 ≤ 0.8. The objective of this example is

to design a distributed H∞ control with the following structure for the polytope with q = 8

vertices:

Ac = diag
(

Ac1 , Ac2 , Ac3

)
, Bc = diag

(
Bc1 ,Bc2 ,Bc3

)

Cc = diag
(
Cc1 ,Cc2 ,Cc3

)
, Dc =

⎡
⎢⎣ Dc11 0 0

Dc21 Dc22 Dc23

0 0 Dc33

⎤
⎥⎦ (3.86)

where the order of Ac1 , Ac2 , and Ac3 is fixed to one.

According to Algorithm III in Subsection 3.6.3 together with hinfstruct for initial fixed-structure

controller design, the following fixed-structure controller is obtained after 20 iterations:

Ac = diag
(
0.2145,−0.5230,0.2098

)
, Bc = diag

(
0.1262,−0.1614,0.8826

)

Cc = diag
(
0.8455,1.0642,−0.6998

)
, Dc =

⎡
⎢⎣ 1.0214 0 0

−1.4114 −0.4180 −0.4620

0 0 −0.4103

⎤
⎥⎦ (3.87)

The results versus the iteration number are depicted in Figure 3.3, which indicates that the

upper bound of the infinity norm monotonically decreases. The obtained controller achieves

‖Hzw‖∞ < 1.0133, which is 22% smaller than the results of [157] in which an H∞ control
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Figure 3.3: Evolution of the upper bound of the infinity norm versus the iteration number in
Example 3

with the same structure given in (3.86) has been designed for the system in (3.85) without

uncertainty.

3.9 Conclusion

This chapter presents LMI-based approaches to fixed-structure control of continuous-time

and discrete-time LTI systems subject to polytopic uncertainty. The proposed approaches

rely on the concept of strictly positive realness (SPRness) of transfer functions depending on

several slack matrices. The slack matrices are utilized as a key tool to convexify the stability

conditions as well as the H∞ performance specifications. They are determined through a

convex optimization problem and a set of initial fixed-structure controllers designed for each

vertex of the polytopic system. To design fixed-structure stabilizing (H∞) controllers for

the polytopic systems, several systematic iterative algorithms are developed. Moreover, it is

shown that the proposed approaches monotonically converge to a suboptimal solution by

iterative update on the slack matrices according to the controller in the previous iteration. The

simulation examples from the literature demonstrate the efficiency of the proposed methods.

In the next chapter, a slack variable-based approach for the problem of fixed-order control of

polytopic systems is developed. Similar to the proposed approach in this chapter, it is based

on the SPRness of a transfer function in which the slack matrices are designed using a state

feedback controller.
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4 Fixed-order Controller Synthesis of
Systems with Polytopic Uncertainty
via HPPD Lyapunov Matrices
4.1 Introduction

This chapter addresses the problem of fixed-order controller design of linear time-invariant

polytopic systems via homogeneous polynomially parameter-dependent Lyapunov matrices.

The proposed approach relies upon the concept of Strictly Positive Realness (SPRness) of a

transfer function depending on a parameter-dependent gain. Continuous-time and discrete-

time controller design are treated in a unified fashion. It is theoretically and numerically

demonstrated that the proposed approach allows fixed-order stabilizing (H∞) controller syn-

thesis and uses less decision variables than some existing LMI-based approaches. Numerical

examples show the efficacy of the proposed conditions compared with existing fixed-order

control strategies.

The organization of this chapter is as follows. The problem formulation is given in Section 4.2.

Section 4.3 presents necessary and sufficient parameter-dependent conditions for fixed-order

stabilizing control. The relation between the proposed conditions and the existing methods

is given in Section 4.4. Fixed-order H∞ controller design strategy is proposed in Section 4.5.

Section 4.6 is devoted to simulation results. Section 4.7 concludes the chapter.

The notation used throughout the paper is standard. In particular, Z+ is the set of nonnegative

integers.
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4.2 Problem Formulation

4.2.1 System Dynamics

Consider a linear time-invariant (LTI) system subject to polytopic uncertainty given by:

δ[xg (t )] = Ag (λ)xg (t )+Bg (λ)u(t )+Bw (λ)w(t )

z(t ) =Cz (λ)xg (t )+Dzu(λ)u(t )+Dzw (λ)w(t )

y(t ) =Cg (λ)xg (t )

(4.1)

where xg ∈ Rn , u ∈ Rni , w ∈ Rr , y ∈ Rno , and z ∈ Rs are the state, the control input, the

exogenous input, the measured output, and the controlled output, respectively. The uncertain

matrices Ag (λ), Bg (λ), Bw (λ), Cz (λ), Cg (λ), Dzu(λ), and Dzw (λ) belong to the following set:

Ω5 =
{(

Ag (λ),Bg (λ),Bw (λ),Cz (λ),Cg (λ),Dzu(λ),Dzw (λ)
)

=
q∑

i=1
λi

(
Agi ,Bgi ,Bwi ,Czi ,Cgi ,Dzui ,Dzw i

)}
; λ ∈Λq

(4.2)

where the matrices Agi , Bgi , Bwi , Czi , Cgi , Dzui , and Dzw i build the i -th vertex of the polytope.

4.2.2 Controller Dynamics

The main objective of this chapter is to design a robust fixed-order controller of order m

(0 ≤ m < n) with dynamical equations given in (3.3) that stabilizes the polytopic system of

(4.1)-(4.2) and meets various closed-loop performance specifications.

The problem of dynamic output-feedback controller synthesis can be equivalently trans-

formed to static output feedback by introducing an augmented plant as follows [15]:

δ[x̄g (t )] = Āg (λ)x̄g (t )+ B̄g (λ)u(t )+ B̄w (λ)w(t )

z(t ) = C̄z (λ)x̄g (t )+ D̄zu(λ)u(t )+ D̄zw (λ)w(t )

y(t ) = C̄g (λ)x̄g (t )

(4.3)

where

Āg (λ) =
[

Ag (λ) 0

0 0m

]
, B̄g (λ) =

[
0 Bg (λ)

Im 0

]

B̄w (λ=
[

Bw (λ)

0

]
, C̄g (λ) =

[
0 Im

Cg (λ) 0

]

C̄z (λ) =
[

Cz (λ) 0
]

, D̄zu(λ) =
[

0 Dzu(λ)
]

D̄zw (λ) = Dzw (λ)

(4.4)
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4.2.3 Closed-loop System Dynamics

The closed-loop system Hzw (λ), transfer function from w(t ) to z(t ), is described as follows:

δ[x(t )] = A(λ)x(t )+B(λ)w(t )

z(t ) =C (λ)x(t )+D(λ)w(t )
(4.5)

where x(t ) =
[

xT
g (t ) xT

c (t )
]T

and

A(λ) = Āg (λ)+ B̄g (λ)K C̄g (λ), B(λ) = B̄w (λ)

C (λ) = C̄z (λ)+ D̄zu(λ)K C̄g (λ), D(λ) = D̄zw (λ)
(4.6)

where

K =
[

Ac Bc

Cc Dc

]
(4.7)

4.3 Fixed-order Stabilizing Controller Design

The following theorems present necessary and sufficient conditions for the existence of a

stabilizing static output feedback controller for the augmented polytopic systems described

by (4.3) and (4.4).

Theorem 12. (Continuous-time Case) There exists a static output feedback controller K which

stabilizes the augmented continuous-time polytopic system in (4.3) and (4.4) if and only if there

exist a parameter-dependent gain Ks(λ), a Lyapunov matrix P (λ) > 0, and two matrices X and

L such that[
M T (λ)P (λ)+P (λ)M(λ) P (λ)B̄g (λ)−N T (λ)

B̄ T
g (λ)P (λ)−N (λ) −X −X T

]
< 0 (4.8)

for all λ ∈Λq , where

M(λ) = Āg (λ)+ B̄g (λ)Ks(λ)

N (λ) = X Ks(λ)−LC̄g (λ)
(4.9)

Moreover, the controller gain is presented as K = X −1L.

Proof. Sufficiency: Based on the KYP lemma, inequality (4.8) indicates that the following

transfer function is SPR with Lyapunov matrix P (λ):

H(s) =
[

M(λ) B̄g (λ)

X (Ks(λ)−K C̄g (λ)) X

]
(4.10)
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According to Lemma 1, the SPRness of H(s) implies that H−1(s) with the following realization

is also SPR with the same Lyapunov matrix P (λ).

H−1(s) =
[

A(λ) −B̄g (λ)X −1

Ks(λ)−K C̄g (λ) X −1

]
(4.11)

The SPRness of H−1(s) with P (λ) leads to the stability of the closed-loop state matrix A(λ) with

the parameter-dependent Lyapunov matrix P (λ) > 0.

Necessity: Assume that K stabilizes the closed loop polytopic system in (4.5)-(4.6). Let’s choose

X = I
(
X +X T > 0

)
, L = K , and Ks(λ) = K C̄g (λ). Then, the following transfer function is SPR;

accordingly, (4.8) is satisfied.

H(s) =
[

M(λ) B̄g (λ)

0 I

]

= 0× (sI −M(λ))−1 × B̄g (λ)+ I

= I

(4.12)

Thus, this completes the proof.

Theorem 13. (Discrete-time Case) There exists a static output feedback controller K which

stabilizes the augmented discrete-time polytopic system in (4.3) and (4.4) if and only if there

exist a parameter-dependent gain Ks(λ), a Lyapunov matrix P (λ) > 0, and two matrices X and

L such that[
M T (λ)P (λ)M(λ)−P (λ) M T (λ)P (λ)B̄g (λ)−N T (λ)

B̄ T
g (λ)P (λ)M(λ)−N (λ) B̄ T

g (λ)P (λ)B̄g (λ)−X −X T

]
< 0 (4.13)

for all λ ∈ Λq , where M(λ) and N (λ) are defined in (4.9). Moreover, the controller gain is

presented as K = X −1L.

Proof. Similar to the proof of Theorem 12.

4.4 Relation between Theorem 12/Theorem 13 and the Existing Meth-

ods

In this section, the relation between the proposed stabilizing static output feedback control

approach in Theorem 12/Theorem 13 and the methods in [46, 49, 54, 56] is given. In particular,

we show that the proposed approaches in [46, 49, 54, 56] can be interpreted as relying on the

concept of the SPRness of a transfer function where A-matrix is fixed by a gain matrix.

Lemma 7. Suppose that Ks is a state feedback controller for the continuous-time augmented

system described by (4.3) and (4.4). Then, the following statements are equivalent:
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(a) The static output feedback K stabilizes the augmented plant in (4.3) and (4.4).

(b) There exist two matrices X and L such that the following transfer function is SPR:

H(s) =
[

Āg + B̄g Ks B̄g

X Ks −LC̄g X

]
(4.14)

(c) There exist a Lyapunov matrix P > 0 and matrices X and L such that[
(Āg + B̄g Ks)T P +P (Āg + B̄g Ks) PB̄g − (X Ks −LC̄g )T

B̄ T
g P − (X Ks −LC̄g ) −X −X T

]
< 0 (4.15)

(d) There exist a Lyapunov matrix P > 0 and matrices F , V , X , and L such that the following

inequality holds [56]:

⎡
⎢⎣ (Āg + B̄g Ks)T F T +F (Āg + B̄g Ks) � �

P −F T +V (Āg + B̄g Ks) −V −V T �

B̄ T
g F T +LC̄g −X Ks B̄ T

g V T −X −X T

⎤
⎥⎦< 0 (4.16)

(e) There exist a Lyapunov matrix P > 0 and two matrices X and L such that the following

inequality is satisfied [46].[
ĀT

g P +P Āg �

B̄g P 0

]
+He

{[
K T

s

−I

][
LC̄g −X

]}
< 0 (4.17)

Moreover, the static output feedback controller is presented as K = X −1L.

Proof. The statements (a), (b), and (c) directly result from the KYP lemma and Theorem 12.
Therefore, it is enough to show that (4.16) is equivalent to (4.15). Post-multiplying (4.16) by Q1

and pre-multiplying by QT
1 , the inequalities given in (4.15) is obtained.

Q1 =

⎡
⎢⎣ I 0

Āg + B̄g Ks B̄g

0 I

⎤
⎥⎦ (4.18)

To prove the statement (e), the inequality given in (4.15) is obtained by pre- and post-multiplication

of (4.17) by the following matrix:

Q2 =
[

I K T
s

0 I

]
(4.19)

Thus, the proof is complete.

Lemma 8. Suppose that Ks is a state feedback controller for the discrete-time augmented system

described by (4.3) and (4.4). Then, the following statements are equivalent:
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(a) The static output feedback K stabilizes the augmented plant in (4.3) and (4.4).

(b) There exist two matrices X and L such that the following transfer function is SPR:

H(z) =
[

Āg + B̄g Ks B̄g

X Ks −LC̄g X

]
(4.20)

(c) There exist a Lyapunov matrix P > 0 and matrices X and L such that[
(Āg + B̄g Ks)T P (Āg + B̄g Ks)−P (Āg + B̄g Ks)T PB̄g − (X Ks −LC̄g )T

B̄ T
g P (Āg + B̄g Ks)− (X Ks −LC̄g ) B̄ T

g PB̄g −X −X T

]
< 0 (4.21)

(d) There exist a Lyapunov matrix P > 0 and matrices F , X , and L such that [54]:

⎡
⎢⎣ −P � �

F T (Āg + B̄g Ks) P −F −F T �

LC̄g −X T Ks B̄ T
g F −X −X T

⎤
⎥⎦< 0 (4.22)

(e) There exist a Lyapunov matrix P > 0 and matrices F1, F2, F3, F4, X , and L such that [49]:

⎡
⎢⎢⎢⎢⎣

F1(Āg + B̄g Ks)+ (Āg + B̄g Ks)T F T
1 −P � � �

F2(Āg + B̄g Ks) −P � �

F3(Āg + B̄g Ks)+ B̄ T
g F T

1 +LC̄g −X Ks B̄ T
g F T

2 F3B̄ T
g F T

3 − (X +X T ) �

F4(Āg + B̄g Ks)−F T
1 P −F T

2 F4B̄g −F T
3 −F4 −F T

4

⎤
⎥⎥⎥⎥⎦< 0

(4.23)

Moreover, the static output feedback controller is presented as K = X −1L.

Proof. The statements (a), (b), and (c) are the direct results of the KYP lemma and Theorem

13. To show (4.22) and (4.21) are equivalent, post-multiply (4.22) by Q1 given in (4.18) and

pre-multiply it by QT
1 .

The equivalence between the inequalities in (4.21) and (4.23) is obtained by multiplication of
(4.23) on the right by Q3 and on the left by QT

3

Q3 =

⎡
⎢⎢⎢⎣

I 0 0

0 I 0

0 0 I

Āg + B̄g Ks 0 B̄g

⎤
⎥⎥⎥⎦ (4.24)

leading to the following inequality:

⎡
⎢⎣ −P � �

P (Āg + B̄g Ks) −P �

LC̄g −X Ks B̄ T
g P −X −X T

⎤
⎥⎦< 0 (4.25)
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Then, by pre- and post-multiplication of (4.25) by the following matrix, the inequality given in

(4.21) is derived.

Q4 =
[

I (Āg + B̄g Ks)T 0

0 B̄g I

]
(4.26)

Thus, the proof is complete.

As a result, the slack matrices
(
F,V

)
in (4.16), F in (4.22), and

(
F1,F2,F3,F4

)
in (4.23) can be

eliminated without conservatism. In fact, these matrices do not affect the final static output

feedback controller; however, elimination of them leads to less computation time.

4.5 Fixed-order H∞ Controller Design

Theorem 14. (Continuous-time Case) There exists a static output feedback controller K which

stabilizes the augmented continuous-time LTI polytopic system in (4.3)-(4.4) and satisfies

‖Hzw (λ)‖2∞ < μ, for all λ ∈Λq , if and only if there exist a parameter-dependent gain Ks(λ), a

Lyapunov matrix P (λ) > 0, and two slack matrices X and L such that⎡
⎢⎢⎢⎢⎣

M T (λ)P (λ)+P (λ)M(λ) � � �

B̄ T
g (λ)P (λ)−N (λ) −X −X T � �

B̄ T
w (λ)P (λ) 0 −μI �

C̄z (λ)+ D̄zu(λ)Ks(λ) D̄zu(λ) D̄zw (λ) −I

⎤
⎥⎥⎥⎥⎦< 0 (4.27)

where M(λ) and N (λ) are defined in (4.9). Moreover, the controller gain is presented as K =
X −1L.

Proof. Sufficiency: By applying the Schur complement lemma to (4.27), the following inequal-

ity is obtained:

⎡
⎢⎣ M T (λ)P (λ)+P (λ)M(λ) � �

B̄ T
g (λ)P (λ)−N (λ) −X −X T �

B̄ T
w (λ)P (λ) 0 −μI

⎤
⎥⎦+Δ< 0 (4.28)

where

Δ=

⎡
⎢⎣ (C̄z (λ)+ D̄zu(λ)Ks(λ))T

D̄T
zu(λ)

D̄T
zw (λ)

⎤
⎥⎦[

C̄z (λ)+ D̄zu(λ)Ks(λ) D̄zu(λ) D̄zw (λ)
]

(4.29)
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By multiplying the inequality in (4.28) on the left by Q5(λ)

Q5(λ) =
[

I C̄ T
g (λ)K T −K T

s (λ) 0

0 0 I

]
(4.30)

and on the right by QT
5 (λ), the following inequality is obtained:

[
AT (λ)P (λ)+P (λ)A(λ) �

B T (λ)P (λ) −μI

]
+
[

C T (λ)

DT (λ)

][
C (λ) D(λ)

]
< 0 (4.31)

which is equivalent to the following inequality by application of the Schur complement lemma:

Qc (λ) =

⎡
⎢⎣ AT (λ)P (λ)+P (λ)A(λ) � �

B T (λ)P (λ) −μI �

C (λ) D(λ) −I

⎤
⎥⎦< 0 (4.32)

Therefore, the static output feedback K stabilizes the closed-loop polytopic system in (4.5)-

(4.6) and ensures that ‖Hzw (λ)‖2∞ <μ, for all λ ∈Λq .

Necessity: Assume that K is an H∞ controller for the augmented polytopic system in (4.3)

and (4.4) which guarantees ‖Hzw (λ)‖2∞ <μ, for all λ ∈Λq . Therefore, based on the bounded

real lemma, there always exists a Lyapunov matrix P (λ) > 0 such that the inequality (4.32) is

satisfied, i.e. Qc (λ) < 0. Let’s choose Ks(λ) = K C̄g (λ) and X such that

X +X T >0

X +X T >−
[

B̄ T
g (λ)P (λ)−N (λ) 0 D̄T

zu(λ)
]

Q−1
c (λ)

⎡
⎢⎣ P (λ)B̄g (λ)−N T (λ)

0

D̄zu(λ)

⎤
⎥⎦ (4.33)

Then, set L = X K . Applying the Schur complement lemma to (4.33), the following inequality is

obtained:⎡
⎢⎢⎢⎢⎣

AT (λ)P (λ)+P (λ)A(λ) � � �

B̄ T
g (λ)P (λ)−N (λ) −X −X T � �

B̄ T
w (λ)P (λ) 0 −μI �

C (λ) D̄zu(λ) D̄zw (λ) −I

⎤
⎥⎥⎥⎥⎦< 0 (4.34)

Since Ks(λ) = K C̄g (λ), we have:

N (λ) = 0, M(λ) = A(λ), C (λ) = C̄z (λ)+ D̄zu(λ)Ks(λ)

Therefore, the parameter-dependent inequality given in (4.27) holds.
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Theorem 15. (Discrete-time Case) There exists a static output feedback controller K which

stabilizes the augmented discrete-time LTI polytopic system in (4.3)-(4.4) and guarantees

‖Hzw (λ)‖2∞ < μ, for all λ ∈Λq , if and only if there exist a parameter-dependent gain Ks(λ), a

Lyapunov matrix P (λ) > 0, and two slack matrices X and L such that

⎡
⎢⎢⎢⎢⎣

M T (λ)P (λ)M(λ)−P (λ) � � �

B̄ T
g (λ)P (λ)M(λ)−N (λ) B̄ T

g (λ)P (λ)B̄g (λ)−X −X T � �

B̄ T
w (λ)P (λ)M(λ) B̄ T

w (λ)P (λ)B̄g (λ) −μI + B̄ T
w (λ)P (λ)B̄w (λ) �

C̄z (λ)+ D̄zu(λ)Ks(λ) D̄zu(λ) D̄zw (λ) −I

⎤
⎥⎥⎥⎥⎦< 0

(4.35)

where M(λ) and N (λ) are defined in (4.9). Moreover, the controller gain is presented as K =
X −1L.

Proof. Similar to the proof of Theorem 14.

Remarks.

1. If the parameter-dependent gain Ks(λ) is given a priori and P (λ) is considered as a

homogeneous polynomial w.r.t. λ, the parameter dependent conditions in Theorem

12-Theorem 15 can be handled by a sequence of LMI relaxations. Parameter-dependent

LMIs with parameters in the unit simplex always have homogenous polynomially

parameter-dependent solutions of sufficiently high degree [158]. Moreover, they can be

solved with no conservatism by a set of LMI relaxations.

2. A homogeneous polynomially parameter-dependent Lyapunov matrix P (λ) of order dp

is defined as follows [158]:

P (λ) = ∑
k∈K (dP )

λ
k1
1 · · ·λkq

q Pk , k = k1k2 · · ·kq (4.36)

where λ
k1
1 . . .λ

kq
q , λi ∈Λq , ki ∈Z+, i = 1, . . . q are the monomials, and Pk ∈R(n+m)×(n+m),

k ∈ K (dP ) are matrix-valued coefficients. K (dP ) is obtained as all possible combinations

of nonnegative integers ki , i = 1, . . . , q such that k1 +k2 +·· ·+kq = dp .

4.5.1 Parameter-dependent Gain Ks(λ)

An appropriate choice of the parameter-dependent gain Ks(λ) can affect the quality of the

proposed fixed-order control strategy. Matrix Ks(λ) must stabilize M(λ) defined in (4.9), i.e.

the eigenvalues of M(λ) are located inside the unit circle for all λ ∈Λq (discrete-time case) or

they have strictly negative real part (continuous-time case). In this subsection, two approaches

for the design of Ks(λ) are given.
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Method 1: Matrix Ks(λ) can be determined using a parameter-dependent state feedback

controller for the augmented polytopic system in (4.3) and (4.4). The parameter-dependent

state feedback controllers are designed through the following theorems.

Theorem 16. (Continuous-time Case) The parameter-dependent state feedback controller
Ks(λ) stabilizes the augmented polytopic systems in (4.3)-(4.4) and guarantees the desired
performance ‖Hzw (λ)‖2∞ < μ, for all λ ∈Λq , if and only if there exist a parameter-dependent
Lyapunov matrix P (λ) > 0, matrices F (λ), Z (λ), and a positive scalar δ> 0 such that

⎡
⎢⎢⎢⎣

Āg (λ)F (λ)+F T (λ)ĀT
g (λ)+ B̄g (λ)Z (λ)+Z T (λ)B̄ T

g (λ) � � �

P (λ)−F (λ)+δ(F T (λ)ĀT
g (λ)+Z T (λ)B̄ T

g (λ)) −δ(F (λ)+F T (λ)) � �

C̄w (λ)F (λ)+ D̄zu(λ)Z (λ) δ(C̄w (λ)F (λ)+ D̄zu(λ)Z (λ)) −μI �

B̄ T
w (λ) 0 D̄zw −I

⎤
⎥⎥⎥⎦< 0

(4.37)

for all λ ∈ Λq . Moreover, the parameter-dependent state feedback is presented as Ks(λ) =
Z (λ)F−1(λ).

Proof. Sufficiency: Multiply (4.37) by Q6 on the left and QT
6 on the right.

Q6 =

⎡
⎢⎣ I A1(λ) 0 0

0 C1(λ) I 0

0 0 0 I

⎤
⎥⎦ (4.38)

where

A1(λ) = Āg (λ)+ B̄g (λ)Z (λ)F−1(λ), B1(λ) = B̄w (λ)

C1(λ) = C̄w (λ)+ D̄zu(λ)Z (λ)F−1(λ), D1(λ) = D̄zw (λ)
(4.39)

Necessity: Assume that there exists a parameter-dependent state feedback controller Ks(λ)

which ensures ‖Hzw (λ)‖2∞ <μ, for all λ ∈Λq . Therefore, according to the bounded real lemma,

there exists a Lyapunov matrix P (λ) > 0 such that

⎡
⎢⎣ A1(λ)P (λ)+P (λ)AT

1 (λ) � �

C1(λ)P (λ) −μI �

B T
1 (λ) DT

1 (λ) −I

⎤
⎥⎦< 0 (4.40)

Then, we consider F (λ) = P (λ) and Z (λ) = Ks(λ)P (λ). Moreover, there always exists a scalar

δ> 0 such that⎡
⎢⎣ A1(λ)P (λ)+P (λ)AT

1 (λ) � �

C1(λ)P (λ) −μI �

B T
1 (λ) DT

1 (λ) −I

⎤
⎥⎦

+δ

⎡
⎢⎣ A1(λ)F (λ)

C1(λ)F (λ)

0

⎤
⎥⎦ (F (λ)+F T (λ))−1

[
F T (λ)AT

1 (λ) F T (λ)C T
1 (λ) 0

]
< 0

(4.41)
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Applying the Schur complement lemma on (4.41) and considering F (λ) = P (λ), the inequality

given in (4.37) holds. Thus, the proof is complete.

Theorem 17. (Discrete-time Case) The parameter-dependent state feedback controller Ks(λ)

stabilizes the augmented polytopic systems in (4.3)-(4.4) and guarantees ‖Hzw (λ)‖2∞ <μ, for all

λ ∈Λq , if and only if there exist a parameter-dependent Lyapunov matrix P (λ) > 0, matrices

F (λ), Z (λ), and a positive scalar δ> 0 such that⎡
⎢⎢⎢⎢⎣

P (λ) � � �

F T (λ)ĀT
g (λ)+Z T (λ)B̄ T

g (λ) F (λ)+F T (λ)−P (λ) � �

0 C̄w (λ)F (λ)+ D̄zu(λ)Z (λ) I �

B̄ T
w (λ) 0 D̄zw (λ) μI

⎤
⎥⎥⎥⎥⎦> 0 (4.42)

for all λ ∈ Λq . Moreover, the parameter-dependent state feedback is presented as Ks(λ) =
Z (λ)F−1(λ).

Proof. Sufficiency: Multiply the inequality given in (4.42) by Q7 on the left and QT
7 on the right.

Q7 =
[

I −A1(λ) 0 −μB1(λ)

0 C1(λ) −I μD1(λ)

]
(4.43)

where A1(λ), B1(λ), C1(λ), and D1(λ) are defined in (4.39).

Necessity: We assume that there exists a parameter dependent state feedback controller Ks(λ)

guaranteeing ‖Hzw (λ)‖2∞ < μ, for all λ ∈ Λq . Therefore, based on the application of the

bounded real lemma, there always exists a Lyapunov matrix P (λ) > 0 such that

⎡
⎢⎣ P (λ)− A1(λ)P (λ)AT

1 (λ) � �

C1(λ)P (λ)AT
1 (λ) −C1(λ)P (λ)C T

1 (λ)+ I �

B T
1 (λ) D1(λ) μI

⎤
⎥⎦> 0 (4.44)

The above inequality is equivalent to:⎡
⎢⎢⎢⎢⎣

P (λ) � � �

P (λ)AT
1 (λ) P (λ) � �

0 C1(λ)P (λ) I �

B T
1 (λ) 0 D1(λ) μI

⎤
⎥⎥⎥⎥⎦> 0 (4.45)

In fact, by applying the Schur complement on the (2,2) submatrix of the above inequality,

inequality of (4.44) results. By considering F (λ) = P (λ) and Z (λ) = Ks(λ)P (λ), the inequality

given in (4.42) is obtained. Thus, the proof is complete.
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Method 2: Parameter-dependent gain matrix Ks(λ) can be obtained by a set of parameter-

dependent output feedback controllers K (λ) =
[

Ac (λ) Bc (λ)

Cc (λ) Dc (λ)

]
, provided that matrix Āg (λ)+

B̄g (λ)K (λ)C̄g (λ) is stable. In this case, Ks(λ) = K (λ)C̄g (λ).

Remarks.

1. Theorem 16 and Theorem 17 can be used for the design of stabilizing parameter-

dependent state feedback controllers for the augmented system in (4.3) and (4.4) by

removing the third and forth rows and columns of (4.37)/(4.42).

2. It should be mentioned that the set of LMI constraints from parameter-dependent LMIs

in Theorem 12-Theorem 17 with parameters in the unit simplex can be constructed using

ROLMIP (Robust LMI Parser)[159]. ROLMIP is a computational MATLAB package which

provides an interface for the users to construct a finite set of LMIs from parameter-

dependent LMIs with parameters in the unit simplex according to Pólya relaxation

hierarchy [159] .

4.5.2 Algorithm I: “Fixed-order controller design procedure”

The robust fixed-order H∞ controller design procedure includes the following steps:

Step 1: Choose the order of controller (m) and construct the augmented system in (4.3) and

(4.4).

Step 2: Set the iteration number j = 1 and choose the maximum number of iterations hmax

and a small tolerance for ε> 0.

Step 3: Design the parameter-dependent gain K [1]
s (λ) for the augmented system using either

Method 1 or Method 2.

Step 4: Update matrix M(λ):

M(λ) = Āg (λ)+ B̄g (λ)K [ j ]
s (λ) (4.46)

Step 5: Choose the degree of the homogenous Lyapunov matrix P (λ) in (4.27) (for continuous-

time case) or in (4.35) (for discrete-time case) and solve the convex optimization problem

proposed in Theorem 14 or Theorem 15 by constructing the LMI constraints in (4.27) or (4.35)

(using e.g. ROLMIP) to obtain the static output feedback controller K [ j ].

Step 6: Ifμ[ j−1]−μ[ j ] > ε and j < hmax , update the parameter-dependent gain Ks(λ), K [ j+1]
s (λ) =

K [ j ]C̄g (λ), and go to Step 4 with j ←− j +1, else stop.

Theorem 18. The iterative algorithm leads to monotonic convergence of the upper bound on

the H∞ norm.
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Proof. The proof stems from the fact that if controller K [ j−1] is an H∞ controller guarantee-

ing ‖Hzw (λ)‖2∞ < μ[ j−1], there always exist X [ j−1], L[ j−1], and K [ j−1]
s (λ) = K [ j−1]C̄g (λ) such

that (4.27)/(4.35) is satisfied. Now, suppose that we fix K [ j ]
s (λ) = K [ j−1]C̄g (λ) and a new con-

troller K [ j ] is sought. Since
(
K [ j−1],μ[ j−1]

)
is a feasible solution to the optimization problem

in (4.27)/(4.35), it is guaranteed that μ[ j ] ≤ μ[ j−1]. Therefore, the upper bound of the H∞
norm in the proposed iterative algorithm is not increasing and monotonically converges to a

suboptimal solution.

4.6 Simulation Examples

In this section, several examples from the literature are given to evaluate the effectiveness of

the proposed approaches in this chapter. A comparison with the recent existing methods in

the literature is made. It should be noted that in all tables, the set
{
dZ ,dF ,dPs f ,dP

}
respectively

denotes the degrees of the homogeneous polynomials Z (λ), F (λ), P (λ) in Theorem 16 and

Theorem 17, and the degree of homogeneous polynomially parameter-dependent Lyapunov

matrix P (λ) in Theorem 12-Theorem 151.

To solve the LMI problems in MATLAB, YALMIP [146] as the interface and SeDuMi [154] and

MOSEK as the solvers are used.

Example 1. Consider a third-order continuous-time polytopic system, borrowed from [57],

with the following vertices:

Ag1 =

⎡
⎢⎣ −1 4 0

0 0 1

a 6 −1

⎤
⎥⎦ , Ag2 =

⎡
⎢⎣ −1 1 0

0 −5 1

10 1 −1

⎤
⎥⎦

Bg1 =

⎡
⎢⎣ 0

0

1

⎤
⎥⎦ , Bg2 =

⎡
⎢⎣ 0

0

1

⎤
⎥⎦

Cg1 =
[

1 1 0

0 1 0

]
, Cg2 =

[
1 1 0

0 0 0

]
(4.47)

The main objective is to design a stabilizing static output feedback controller which leads to

the larger interval of parameter a. Therefore, the system can be modeled as a polytope with

three vertices, i.e. Ag1

∣∣
a=ami n

, Ag1

∣∣
a=amax

, and Ag2 . The minimum and maximum values of a

can be determined by a bisection algorithm. The results of Theorem 12 are compared with

ones of [56, 57, 160, 161] in Table 4.1. The proposed methods in Theorem 12 and [56] are both

initialized with the same parameter-dependent state feedback Ks(λ).

As it has been reported in [57], since matrix Cg (λ) is not full row rank, the approaches of

[160, 161] are not applicable. Results given in Table 4.1 indicate that the proposed methods in

1The degree of the other slack variables of [56] is considered equal to one.
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Table 4.1: Maximum Interval of Parameter a in Example 1

Method
{
dZ ,dF ,dPs f ,dP

}
a

Theorem 12
{
1,0,1,1

} [−17.8 122.2
]

[56]
{
1,0,1,1

} [−17.8 122.2
]

[57]
{−,−,−,1

} [
3.6 82.2

]
[160] — Non-applicable
[161] — Non-applicable

Table 4.2: Upper bound of ‖Hzw (λ)‖∞ in Example 2

Method Iterations γ=

μ K

[47] 1 9.73
[
0.56 5.08

]
[48] 1 6.80

[
0.054 0.64

]
[57] 1 2.33

[
0.45 4.19

]
[147] 5 1.79

[
77.16 608.87

]
[162] 30 1.66

[
130.35 939.37

]
Theorem 14 5 1.78

[
9.36 69.57

]

this chapter and [56] lead to the best results among the others.

Example 2. Consider the following continuous-time polytopic system with two vertices in

[57]:

Ag1 =

⎡
⎢⎣ −0.9896 17.41 96.15

0.2648 −0.8512 −11.39

0 0 −30

⎤
⎥⎦ , Ag2 =

⎡
⎢⎣ −1.702 50.72 263.5

0.2201 −1.418 −31.99

0 0 −30

⎤
⎥⎦

Bg1 =

⎡
⎢⎣ −97.78

0

30

⎤
⎥⎦ , Bg2 =

⎡
⎢⎣ −85.09

0

30

⎤
⎥⎦ , Bw =

⎡
⎢⎣ 0

1

1

⎤
⎥⎦

Cg =
[

1 0 0

0 1 0

]
, Cw =

⎡
⎢⎣ 1 0 0

0 1 0

0 0 1

⎤
⎥⎦ , Dzu =

⎡
⎢⎣ 0

0

0

⎤
⎥⎦

(4.48)

The objective here is to design a static output feedback H∞ controller with linearly parameter-

dependent Lyapunov matrices. To this end, an optimization problem, which is the mini-

mization of μ subject to a sequence of LMI constraints is solved. Resulting static output

feedback initialized by a parameter-dependent state feedback controller with dZ = 1, dF = 0,

and dPs f = 2 is given in Table 4.2. The results are compared with the LMI-based methods in

[47, 48, 57, 147] and the BMI-based method in [162]. For all cases, the degree of Lyapunov ma-

trix P is one. As it is observed from Table 4.2, the proposed approach in this chapter provides

the best results among the other LMI-based methods.

72



4.6. Simulation Examples

Table 4.3: Parameters of four operating points in Example 3

Operating points 1 2 3 4
Mach number 0.5 0.9 0.85 1.5

Altitude(ft) 5000 35000 5000 35000

a11 -0.9896 -0.6607 -1.0702 -0.5162
a12 17.41 18.11 50.72 29.96
a13 96.15 84.34 263.5 178.9
a21 0.2648 0.08201 0.2201 -0.6896
a22 -0.8512 -0.6587 -1.418 -1.225
a23 -11.39 -10.81 -31.99 -30.38
b1 -97.78 -272.2 -85.09 -175.6

Example 3. As the third example, consider the modified version of the pitch control of F4E,

given in [53], described by the following state space matrices:

Ag =

⎡
⎢⎢⎢⎢⎣

a11 a12 a13 b1

a21 a22 a23 0

0 0 −30 30

0 0 0 −104

⎤
⎥⎥⎥⎥⎦ , Bg =

⎡
⎢⎢⎢⎢⎣

0

0

0

104

⎤
⎥⎥⎥⎥⎦ , Cg =

[
c 0 0 0

0 c 0 0

]

Bw =

⎡
⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎦ , Cw =

⎡
⎢⎣ 1 0 0 0

0 1 0 0

0 0 1 0

⎤
⎥⎦ , Dzu =

⎡
⎢⎣ 0

0

1

⎤
⎥⎦

(4.49)

where 0.5 ≤ c ≤ 1 and parameters ai j , i = 1,2; j = 1,2,3, and b1 for four operating points are

given in Table 4.3.

The uncertainty of the system in (4.49) is in the form of a polytope with q = 8 vertices. The

proposed approach in [53] as well as the full-order controller design method of [51] are

employed for the comparison purposes. It should be noted since the main assumption of [57]

is that C T
w Dzu = 0, it cannot be applied to Example 3.

Theorem 15 is initialized by two different parameter-dependent gain Ks(λ). In the first case,

initial parameter-dependent state feedback controllers are designed using Theorem 17 with

dZ = 0, dF = 0, and dPs f = 1. In the second case, Ks(λ) = K m
0 Cg (λ) is considered, where K m

0 is

a simultaneously stabilizing controller of order m designed by HIFOO [31]. The results of both

cases are then summarized in Table 4.4.

Theorem 15 initialized by the parameter-dependent state feedback Ks(λ) resulted from Theo-
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Table 4.4: Upper bound of ‖Hzw (λ)‖∞ in Example 3

Initialization Theorem 17 HIFOO
controller order m = 0 m = 1 m = 0 m = 1

degree of P (dP ) 1 1 1 2
Iterations 4 2 30 30
γ=


μ 3.0780 3.1026 3.3378 2.2818

rem 17 leads to the following reduced-order H∞ controllers:

K m=0 =
[

1.9407 12.3911
]

K m=1 =
[

−4.3979 0 0

0 2.2321 14.3543

]
(4.50)

For the second case, the following HIFOO controllers are used to initialize Ks(λ):

K m=0
0 =

[
0.0958 0.7670

]
K m=1

0 =
[

−1.1754 0.2729 −1.8780

0.6998 0.3876 0.24434

]
(4.51)

Theorem 15 initialized by Ks(λ) obtained by HIFOO controllers in (4.51) leads to the following
reduced-order H∞ controllers:

K m=0 =
[

0.0965 0.8012
]

K m=1 =
[

−1.8044 0.1048 −3.1589

0.9039 0.3921 3.1998

]
(4.52)

As mentioned in [56], the proposed approach of [53] leads to the lowest H∞ upper bound

37.20 for m = 0,1 and the full-order control design method in [51] does not find any feasible

solution.

4.7 Conclusion

This chapter deals with the problem of fixed-order H∞ controller design of LTI continuous-

time and discrete-time polytopic systems. Necessary and sufficient conditions based on

the concept of strictly positive realness (SPRness) of a transfer function depending on a

parameter-dependent gain are developed. To convert the problem to a set of LMI conditions,

the parameter-dependent gain is determined a priori by means of a parameter-dependent

state feedback controller. The robust stability and robust H∞ performance of the closed-loop

polytopic systems are ensured via homogeneous polynomially parameter-dependent Lya-

punov matrices. Simulation results and comparison with recent existing methods demonstrate
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the effectiveness of the proposed approach.

In the next chapter, the problem of fixed-structure H∞ control of LTI interconnected systems

subject to polytopic-type uncertainty is considered. The problem is formulated as an opti-

mization problem which is the minimization of the cardinality of a pattern matrix subject

to an H∞ performance constraint. Due to intrinsical non-convexity of the problem, a con-

vex optimization-based design procedure for the control structure design and the controller

synthesis is proposed in Chapter 5.
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5 Control Structure Design for LTI
Interconnected Systems subject to
Polytopic Uncertainty
5.1 Introduction

Control of interconnected systems has attracted considerable attention in recent years due

to their numerous applications such as power systems, urban traffic control systems, water

distribution, digital communication networks, etc. Most available strategies for the control

of interconnected systems assume that a control structure is specified a priori. However,

it is not generally easy to determine an appropriate structure for the controller in advance,

especially in the control of large-scale interconnected systems. Furthermore, it is possible

that the assumed control structure is not the best one which can be taken into consideration.

In general, the control structure design is an important step toward the control of complex

systems. The problem of control structure selection consists of the following tasks [69]:

1. Controlled input selection (actuator placement problem)

2. Selection of outputs (sensor placement problem)

3. Control configuration selection (a structure interconnecting the measurements and the

control inputs)

4. Control type selection (control law specification, e.g. PID, fixed-order controller, etc.)

The problem of actuator/sensor placement is to choose a minimal set of actuators/sensors (k)

from a possible set of g actuators/sensors provided that a good performance of the system

is obtained. The problem has been attracted remarkable attention due to its application in

large-scale systems, e.g. power grids [59], target-tracking [60], transportation networks [61],

and buildings [62]. Number of actuators/sensors as well as actuator/sensor locations affect

the performance of the system. The objective is to minimize the number of expensive sen-

sors/actuators while the best possible performance for a given number of sensors/actuators

is achieved. The exact solution for the problem of actuator/sensor placement is to evaluate

the system performance for all g !
k !(g−k)! possible choices of actuators/sensors. However, this

approach is not practical for the large values of k and g .
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The problem of the control configuration design refers to the restrictions imposed on the

overall controller by its decomposition into a set of local controllers with their communication

links [69]. In this case, the question usually arises is that what is the best control configuration,

in terms of the connections between the subsystems and their local controllers, to satisfy given

control objectives?

The main objective of this chapter is to describe the main issues involved in control structure

design and to develop some convex optimization-based approaches to fixed-structure control

of polytopic interconnected systems. Different from the existing approaches, where the control

structure is fixed a priori, the structure of the controller is part of the optimization problems.

As a result, the control structure and the control parameters are simultaneously designed.

The organization of the chapter is as follows: A convex optimization-based solution to the

problem of sensor and actuator placement in LTI polytopic systems is presented in Section

5.2. Convex set of fixed-structure decentralized/distributed control of polytopic systems with

guaranteed H∞ performance is provided in Section 5.3. Section 5.4 concludes the chapter.

5.2 Sensor and Actuator Placement

5.2.1 Problem Formulation

Consider a linear time-invariant dynamical system subject to polytopic uncertainty described

by

δ[xg (t )] = Ag (λ)xg (t )+Bg (λ)u(t )+Bw (λ)w(t )

z(t ) =Cz (λ)xg (t )+Dzu(λ)u(t )+Dzw (λ)w(t )

y(t ) =Cg (λ)xg (t )+Dw (λ)w(t )

(5.1)

where xg ∈ Rn , u ∈ Rni , w ∈ Rr , y ∈ Rno , and z ∈ Rs are the state, the control input, the

exogenous input, the measured output, and the controlled output, respectively. The uncertain

state space matrices belong to the following set:

Ω6 =
{(

Ag (λ),Bg (λ),Bw (λ),Cg (λ),Cz (λ),Dzu(λ),Dzw (λ),Dw (λ)
)

=
q∑

i=1
λi

(
Agi ,Bgi ,Bwi ,Cgi ,Czi ,Dzui ,Dzw i ,Dwi

)} (5.2)

where λ ∈Λq and
(

Agi ,Bgi ,Cgi ,Bwi ,Czi ,Dzui ,Dzw i ,Dwi

)
is the i -th vertex of the polytope. The

main objective is to minimize the number of actuators/sensors while ensuring the robust sta-

bility and a satisfactory robust H∞ performance of the closed-loop system with the following

dynamic output-feedback controller:

δ[xc (t )] = Ac xc (t )+Bc y(t )

u(t ) =Cc xc (t )+Dc y(t )
(5.3)
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where Ac ∈Rm×m , Bc ∈Rm×no , Cc ∈Rni×m , and Dc ∈Rni×no .

The basic idea of the problem of sensor placement relies on the fact that the i th sensor is

not employed in the dynamic output feedback controller if the i th column of the matrix[
Bc

Dc

]
has only zero entries. In other words, the number of sensors can be minimized by

minimizing the number of nonzero columns of matrix

[
Bc

Dc

]
. In the same manner, the

number of actuators can be minimized by minimizing the number of nonzero rows of the

matrix
[

Cc Dc

]
.

To minimize the number of the non-zero columns of

[
Bc

Dc

]
and non-zero rows of

[
Cc Dc

]
,

the following pattern matrices are respectively defined:

Z1 =
[

card

([
Bc (:,1)

Dc (:,1)

])
. . . card

([
Bc (:,no)

Dc (:,no)

]) ]
(5.4)

Z2 =
[

card
([

Cc (1, :) Dc (1, :)
])

. . . card
([

Cc (ni , :) Dc (ni , :)
]) ]

(5.5)

where car d(·) is the cardinality operator defined as the number of non-zero elements of

(·). Note that Bc (:, i ), Dc (:, i ), Cc ( j , :), and Dc ( j , :) respectively present the i -th column of the

matrices Bc and Dc and the j -th row of Cc and Dc . It is obvious that the i -th element of Z1

(z1i ) is equal to zero if and only if

[
Bc (:, i )

Dc (:, i )

]
= 0 or equivalently, the i -th sensor is not used.

In a similar way, the j -th actuator is not utlized in the controller if and only if the j -th element

of Z2 is equal to zero. Therefore, to find a minimum number of the sensors (actuators), matrix

Z1 (Z2) should be as sparse as possible. The sparsity of Z1 and Z2 are presented by their

cardinality.

The sensor and actuator placement problems to be addressed in this chapter are stated as

follows:

Problem 2. (Sensor placement)

Given a linear dynamical system subject to polytopic uncertainty, determine a set of sensors and

design a fixed-structure dynamic output feedback controller such that

1. Closed-loop system is robustly stable.

2. A trade-off between the performance ‖Hzw (λ)‖2∞ < μ and the number of sensors is ob-

tained.
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The aforementioned conditions can be formulated as the following optimization problem:

min
K

μ+α1 ×car d
(
Z1

)
subject to ‖Hzw (λ)‖2

∞ <μ
(5.6)

where α1 determines a trade-off between two objectives. A larger α1 leads to a sparser Z1

whereas α1 = 0 renders the fixed-structure H∞ controller design problem.

Problem 3. (Actuator placement)

Given an LTI polytopic system, select a set of actuators and design a fixed-structure dynamic

output feedback controller such that

1. Closed-loop system is robustly stable.

2. A trade-off between the performance ‖Hzw (λ)‖2∞ < μ and the number of actuators is

obtained.

The aforementioned conditions can be formulated as the following optimization problem:

min
K

μ+α2 ×car d
(
Z2

)
subject to ‖Hzw (λ)‖2

∞ <μ
(5.7)

where α2 determines a trade-off between two objectives.

The above-mentioned problems are non-convex due to the noncovexity of the cardinality op-

erator and the non-convex fixed-structure H∞ dynamic output feedback controller synthesis

problem. In the next section, a convex relaxation of the cardinality is presented.

5.2.2 Sensor and Actuator Placement via Convex Optimization

The non-convex cardinality minimization can be relaxed via the convex weighted 	1 norm as

follows [163]:

J1 =‖W1 ∗Z1‖1

=
no∑

i=1
w1i

∥∥∥∥∥
[

Bc (:, i )

Dc (:, i )

]∥∥∥∥∥
1

(5.8)

J2 =‖W2 ∗Z2‖1

=
ni∑

i=1
w2i

∥∥∥∥[ Cc (i , :) Dc (i , :)
]T

∥∥∥∥
1

(5.9)
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where w1i and w2i respectively are the i th entry of the weighting vectors W1 and W2. If

w1i and w2i are respectively chosen to be inversely proportional to Fi =
∥∥∥∥
[

Bc (:, i )

Dc (:, i )

]∥∥∥∥
1

and

Hi =
∥∥∥[ Cc (i , :) Dc (i , :)

]T
∥∥∥

1
, i.e.

w1i =
{

1/Fi , if Fi 
= 0

∞, if Fi = 0

w2i =
{

1/Hi , if Hi 
= 0

∞, if Hi = 0

(5.10)

then the weighted 	1 norm and the cardinality operator coincide. However, since the weights

depend on the unknown controller parameters, the above strategy cannot be implemented.

In [163], an iterative algorithm for choosing the vectors W1 =
[
w1i

]
and W2 =

[
w2i

]
has been

developed.

An inner convex approximation of fixed-structure H∞ controllers is presented in Chapter 3.

Therefore, the problem of sensor and actuator placement of linear time-invariant polytopic

systems can be respectively solved by the following convex optimization problems:

min
Ac ,Bc ,Cc ,Dc ,μ,(L),Pi

μ+α1

no∑
j=1

w1 j

∥∥∥∥∥
[

Bc (:, j )

Dc (:, j )

]∥∥∥∥∥
1

s.t. (3.66)/(3.76)

Pi = P T
i > 0; i = 1, . . . , q

(5.11)

min
Ac ,Bc ,Cc ,Dc ,μ,(L),Pi

μ+α2

ni∑
j=1

w2 j

∥∥∥∥[ Cc ( j , :) Dc ( j , :)
]T

∥∥∥∥
1

s.t. (3.66)/(3.76)

Pi = P T
i > 0; i = 1, . . . , q

(5.12)

Remark. In the case of polytopic uncertainty only in the state space matrices Ag , Bg , Bw , Cz ,

Dzu , and Dzw , the slack matrix L can be removed and the set of inequalities in (3.66)/(3.76) is

replaced with (3.49)/(3.53).

In the following, a systematic iterative algorithm for the problem of sensor and actuator

placement is given.

5.2.3 Algorithm I: “Sensor and actuator placement in LTI polytopic systems”

The algorithm for sensor and actuator placement in linear dynamical systems subject to

polytopic-type uncertainty described by (5.1)-(5.2) is summarized with the following steps:
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Step 1: Design some initial controllers for each vertex of the polytope
(
Ki

[0]
)
. Put the iteration

number h = 1, w [1]
1 j

= 1; j = 1, . . . ,no , and w [1]
2 j

= 1; j = 1, . . . ,ni . choose a small tolerance for

ε1 > 0 and ε2 > 0, and maximum number of iteration hmax .

Step 2: For given K [h−1]
i , solve the convex optimization problem given in (3.79) and determine

M [h] and X [h].

Step 3: Solve the following convex optimization problem to obtain a fixed-structure H∞
controller K [h] which simultaneously minimize the number of sensors and actuators.

min
Ac ,Bc ,Cc ,Dc ,μ,(L),Pi

μ+α1

no∑
j=1

w [h]
1 j

∥∥∥∥∥
[

Bc (:, j )

Dc (:, j )

]∥∥∥∥∥
1

+α2

ni∑
j=1

w [h]
2 j

∥∥∥∥[ Cc ( j , :) Dc ( j , :)
]T

∥∥∥∥
1

s.t. (3.66)/(3.76)

Pi = P T
i > 0; i = 1, . . . , q

(5.13)

Step 4: Update F [h]
j =

∥∥∥∥
[

B [h]
c (:, j )

D [h]
c (:, j )

]∥∥∥∥
1

and H [h]
j =

∥∥∥[ C [h]
c ( j , :) D [h]

c ( j , :)
]T

∥∥∥
1

according to the

current controller K [h].

Step 5: Update the weighting vectors W [h+1]
1 and W [h+1]

2 as follows:

w [h+1]
1 j

= 1

F [h]
j +ε1

; j = 1, . . . ,no

w [h+1]
2 j

= 1

H [h]
j +ε2

; j = 1, . . . ,ni

(5.14)

Step 6: Terminate the algorithm if it converges or if maximum number of iterations hmax

reaches. Otherwise, use the obtained controller in Step 3 as an initial controller
(
K [h]

i ←
K [h]; i = 1, . . . , q

)
and go to Step 2 with h ← h +1.

Remark. Algorithm I can be used for the problem of sensor placement if we consider α2 = 0

in the cost function given in (5.13). In the similar way, we can apply Algorithm I to place the

actuators if α1 = 0 is set in (5.13).

5.2.4 Simulation Examples

In this section, the effectiveness of the proposed algorithm is evaluated through some simula-

tion examples. The LMI-based optimization problems are solved by YALMIP [146] and SDPT3

[153]/SeDuMi [154] as the interface and the solvers, respectively.

Example 1 (PMU placement in IEEE 14-bus test system). In this example, the problem of

phasor measurement units (PMUs) placement in IEEE 14-bus test system shown in Figure 5.1
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Figure 5.1: IEEE 14-bus test system

is considered.

The IEEE 14-bus system consists of 14 buses with 2 generators and 3 synchronous compen-

sators. The synchronous compensators in the grid are replaced with some generators resulting

in five buses with generators and nine load buses. The phase dynamics of the grid can be

modeled using electromechanical swing equations [107] as follows:

Ji θ̈+Di θ̇ = Pi −
ng∑

i=1, j 
=i

Ei E j

Xi j
si n(θi −θ j ) (5.15)

where Ji is the moment of inertia of the generator, Di is the damping coefficient, Ei is the

q-axis voltage at node i , Pi is the power injection at node i , and Xi j = X j i is the reactance

of the line between node i and j . Then, the nonlinear swing equations are linearized by

first-order Taylor approximation method around the operating points θ∗i . Finally, the system

is described by the following state space representation:

ẋg (t ) = Ag xg (t )+Bg u(t )+Bw w(t )

y(t ) =Cg xg (t )
(5.16)

where xg contains the phase angle θi ; i = 1, . . . ,14 and the phase velocity (frequency) θ̇ j ;

j = 1,2,3,6,8. The inputs and outputs of the system are P j ; j = 1,2,3,6,8 and θi ; i = 1, . . . ,14,

respectively. Moreover, the disturbance signal w is a sudden change in the mechanical power

or in the load demand. More details about the state space matrices and the parameters of the
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Figure 5.2: Number of PMUs versus iteration number in Example 1

system can be found in [164] and [65].

We assume that there exists a group of N generators at bus 1 and 2. In this case, to model

the dynamical behaviour of each bus, the aggregated swing equation can be applied. In the

aggregated swing equation, the moment of inertia Ji in (5.15) is replaced with the aggregated

inertia of N generators [165]. In conventional power systems, the assumption is that the

(aggregated) inertia is fixed. However, nowadays with the high depth of penetration of dis-

tributed generation (DG) units, e.g. wind turbines and photovoltaics (PV), in power grids, this

assumption is not valid. In fact, wind and PV units significantly decrease the inertia of the

system. A case study on German power system shows that the aggregated inertia is changing

from its nominal value, in the case of conventional generators, to half of the nominal value

when wind turbines and photovoltaics are deployed [165]. Therefore, the moment of inertia J1

and J2 are not precisely known and it is reasonable to assume that they are uncertain up to

50% of their nominal values leading to a polytope with q = 22 vertices.

The objective is to place the minimum number of PMUs, which measure the phase angles

at certain buses, such that the effect of the disturbance on the outputs is minimized. To

this end, PMUs should be placed on the buses which provide a satisfactory H∞ closed-loop

performance with a static output feedback controller.

The parameters ε1 = 10−5, α1 = 1, and α2 = 0 are set. Using Algorithm I in Subsection 5.2.3

and after 150 iterations, minimum g = 8 PMUs in the buses 1,2,3,4,9,12,13, and 14 are placed.

Figure 5.2 depicts the number of PMUs versus the iteration number. The worst case upper

bound of ‖Hzw (λ)‖∞ versus the number of PMUs is shown in Figure 5.3. The obtained results

indicate that as the number of PMUs decreases, the upper bound of ‖Hzw (λ)‖∞ increases. It
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Figure 5.3: Worst case upper bound of ‖Hzw (λ)‖∞ versus the number of PMUs

should be mentioned that the proposed algorithm could not find any subsets of less than 8

PMUs for hmax = 150 iterations.

Example 2. Consider a discrete-time interconnected system of five SISO subsystems, bor-
rowed from [70], with the following state space matrices:

Ag =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.30 −0.29 0 0 −0.24 0.21 −0.16 0.03 0 0

−0.29 0.32 0 0 −0.18 0 −0.28 −0.32 0 0

0 0 0.50 0.04 0 0 0 0 0 0

0 0 0.18 0.59 0 0 0 0 0 0

0 0 −0.08 −0.51 0.36 −0.10 0 0 −0.28 0.15

0 0 −0.13 0.04 −0.24 0.69 0 0 −0.29 −0.20

−0.38 −0.20 0 0 0.47 0.07 −0.10 0.11 0 0

0.06 −0.34 0 0 −0.01 −0.22 −0.09 0.18 0 0

0 0 0.04 −0.01 0 0 a1 −0.01 a2 0.15

0 0 0.03 0.13 0 0 0.05 0.34 0.15 0.25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bg = diag

([
−0.2

−1

]
,

[
0

−0.8

]
,

[
0

−0.4

]
,

[
1.9

1.6

]
,

[
−0.4

b1

])

Bw = diag

([
−0.5

0

]
,

[
0

0.8

]
,

[
0

1.3

]
,

[
−1.1

0

]
,

[
−0.6

−1

])

Cg = diag
([

1.8 0
]

,
[

0 −0.2
]

,
[

−1.5 0
]

,
[

−0.3 0
]

,
[

0 0.2
])

Cz = diag
([

1.3 0.4
]

,
[

0 −2
]

,
[

−0.5 0
]

,
[

−1.3 −0.2
]

,
[

0 0.2
])

Dzu = 0, Dzw = 0, Dw = 0

(5.17)

where 0.378 ≤ a1 ≤ 0.702, −0.182 ≤ a2 ≤−0.098, and −0.52 ≤ b1 ≤−0.28. The objective of this example
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Figure 5.4: Number of sensors and actuators versus iteration number in Example 2

Table 5.1: Upper bound of ‖Hzw (λ)‖∞ for different number of sensors and actuators in Exam-
ple 2

γ=

μ 1.6234 1.9534 1.9966 2.002

No. of sensors 5 4 3 3
No. of actuators 5 4 4 3

Performance gap 0 % 20.32 % 22.99 % 23.32 %

is to design a static output feedback H∞ controller for the polytope of eight vertices with the minimum

number of sensors and actuators.

In Algorithm I in Subsection 5.2.3, the parameters ε = 10−5, α1 = 0.5, α2 = 0.5, and hmax = 30 are

considered. Figure 5.4 shows the number of sensors and actuators versus the iteration numbers. As it

can be observed from this figure, the minimum number of sensors and actuators is 3. The upper bound

of ‖Hzw (λ)‖∞ (γ) for different number of sensors and actuators is shown in Table 5.1. By decreasing

the number of sensors and actuators, the upper bound of ‖Hzw (λ)‖∞ is increasing. Table 5.1 shows

the H∞ performance gap of 20.32% and 23.32% for the case of g = 4 and g = 3 sensors and actuators

compared to the best performance obtained for k = 5 sensors.

5.3 Control Configuration Design

This section is devoted to the problem of control configuration design for a given interconnected

system subject to polytopic-type uncertainty. We assume that the measurements and the control

inputs are determined a priori.
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5.3.1 Problem Formulation

System Dynamics

Consider a linear time-invariant interconnected system consisting of N subsystems described by the

following state space equations:

δ[x j
g (t )] = A j j

g x j
g (t )+

N∑
k=1(k 
= j )

A j k
g xk

g (t )+
N∑

k=1
B j k

w wk (t )+B j
g u j (t )

z j (t ) =
N∑

k=1
C j k

z xk
g (t )+

N∑
k=1

D j k
zw wk (t )+D j

zuu j (t )

y j (t ) =C j
g x j

g (t )+
N∑

k=1
D j k

w wk (t ); j = 1, . . . , N

(5.18)

where x j
g ∈Rn , u j ∈Rni , w j ∈Rr , y j ∈Rno , and z j ∈Rs are the state, the control input, the exogenous

input, the measured output, and the controlled output of the j -th subsystem, respectively. Symbol

δ[·] presents the derivative term for continuous-time
(
δ[x(t)] = ẋ(t)

)
and the forward operator for

discrete-time systems
(
δ[x(t)] = x(t +1)

)
. The state space matrices A j j

g , A j k
g , B j

g , C j
g , B j k

w , C j k
z , D j

zu ,

D j k
zw , and D j k

w are of appropriate dimensions. Matrix A j k
g = 0 if and only if there is no interaction

between the subsystems j and k. It is assumed that the state space matrices belong to a polytopic

uncertainty region as follows:

Ω7 =
{(

A j k
g (λ),B j

g (λ),B j k
w (λ),C j

g (λ),C j k
z (λ),D j

zu(λ),D j k
zw (λ),D j k

w (λ)
)

=
q∑

i=1
λi

(
A j k

gi
,B j

gi
,B j k

wi
,C j

gi
,C j k

zi
,D j

zui
,D j k

zwi
,D j k

wi

)}
, j ,k = 1, . . . , N

(5.19)

where λ ∈Λq defined in (2.8) and
(

A j k
gi

,B j
gi

,B j k
wi

,C j
gi

,C j k
zi

,D j
zui

,D j k
zw i

,D j k
wi

)
is the i -th vertex of

the subsystem j .

The whole network of N subsystems is presented by the following equations:

δ[xg (t )] = Ag (λ)xg (t )+Bg (λ)u(t )+Bw (λ)w(t )

z(t ) =Cz (λ)xg (t )+Dzu(λ)u(t )+Dzw (λ)w(t )

y(t ) =Cg (λ)xg (t )+Dw (λ)w(t )

(5.20)

where

xg (t ) = [
x1

g
T

, . . . , xN
g

T ]T ,

u(t ) = [
u1T

, . . . ,uN T ]T , w(t ) = [
w1T

, . . . , w N T ]T

y(t ) = [
y1T

, . . . , y N T ]T , z(t ) = [
z1T

, . . . , zN T ]T

(5.21)
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and the state space matrices are given as follows:

Ag (λ) =

⎡
⎢⎢⎣

A11
g (λ) . . . A1N

g (λ)
...

. . .
...

AN 1
g (λ) . . . AN N

g (λ)

⎤
⎥⎥⎦ , Bw (λ) =

⎡
⎢⎢⎣

B 11
w (λ) . . . B 1N

w (λ)
...

. . .
...

B N 1
w (λ) . . . B N N

w (λ)

⎤
⎥⎥⎦

Cz (λ) =

⎡
⎢⎢⎣

C 11
z (λ) . . . C 1N

z (λ)
...

. . .
...

C N 1
z (λ) . . . C N N

z (λ)

⎤
⎥⎥⎦ , Dzw (λ) =

⎡
⎢⎢⎣

D11
zw (λ) . . . D1N

zw (λ)
...

. . .
...

DN 1
zw (λ) . . . DN N

zw (λ)

⎤
⎥⎥⎦

Dw (λ) =

⎡
⎢⎢⎣

D11
w (λ) . . . D1N

w (λ)
...

. . .
...

DN 1
w (λ) . . . DN N

w (λ)

⎤
⎥⎥⎦

(5.22)

and

Bg (λ) = diag
(
B 1

g (λ), . . . ,B N
g (λ)

)
Cg (λ) = diag

(
C 1

g (λ), . . . ,C N
g (λ)

)
Dzu(λ) = diag

(
D1

zu(λ), . . . ,DN
zu(λ)

) (5.23)

Dynamic Output Feedback Controllers

It is assumed that there is one local controller corresponding to each subsystem described by:

δ[x j
c (t )] =

N∑
k=1

A j k
c xk

c (t )+
N∑

k=1
B j k

c yk (t )

u j (t ) =
N∑

k=1
C j k

c xk
c (t )+

N∑
k=1

D j k
c yk (t ); j = 1, . . . , N

(5.24)

where x j
c ∈Rm is the state vector of the j -th local controller. The controller matrices A j k

c , B j k
c ,

C j k
c , and D j k

c are of appropriate dimensions. According to this structure, each local controller

uses the outputs of its own subsystem and other subsystems as well as the states of other local

controllers (centralized control strategy). The centralized controller K with this structure is

given by:

δ[xc (t )] = Ac xc (t )+Bc y(t )

u(t ) =Cc xc (t )+Dc y(t )
(5.25)

where

xc (t ) = [
x1

c
T

, . . . , xN
c

T ]T (5.26)
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Ac =

⎡
⎢⎢⎣

A11
c . . . A1N

c
...

. . .
...

AN 1
c . . . AN N

c

⎤
⎥⎥⎦ , Bc =

⎡
⎢⎢⎣

B 11
c . . . B 1N

c
...

. . .
...

B N 1
c . . . B N N

c

⎤
⎥⎥⎦

Cc =

⎡
⎢⎢⎣

C 11
c . . . C 1N

c
...

. . .
...

C N 1
c . . . C N N

c

⎤
⎥⎥⎦ , Dc =

⎡
⎢⎢⎣

D11
c . . . D1N

c
...

. . .
...

DN 1
c . . . DN N

c

⎤
⎥⎥⎦

(5.27)

To select an appropriate control configuration, it is important to determine whether there

exists any link between the local controller j and the subsystem k as well as the local controller

h. In other words, the outputs of the subsystem k do not contribute to the construction of

the control inputs j if and only if both B j k
c = 0 and D j k

c = 0. Moreover, the states of the local

controllers h are not employed in the construction of x j
c (t ) and u j (t ) if and only if both A j h

c = 0

and C j h
c = 0.

The main objective is to design a controller such that each local controller uses a minimum

amount of information exchange between the subsystems and the local controllers. In order

to design such controller, the following pattern matrix Z (K ) = [
z j k

]
is defined:

Z (K ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

card

([
A11

c B 11
c

C 11
c D11

c

])
. . . card

([
A1N

c B 1N
c

C 1N
c D1N

c

])
...

. . .
...

card

([
AN 1

c B N 1
c

C N 1
c DN 1

c

])
. . . card

([
AN N

c B N N
c

C N N
c DN N

c

])

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.28)

Element z j k of Z (K ) represents the communication links between the local controller j and

the subsystem and the local controller k. The number of the non-zero elements of Z (K ) is

equal to the number of the communication links of the controller. Note that z j k = 0 if and only

if

[
A j k

c B j k
c

C j k
c D j k

c

]
= 0, i.e. there exists no link between the local controller j and the subsystem

k with its corresponding controller. The control configuration is represented by a binary

information flow matrix I (K ) = [
I j k

]
determined as follows:

I j k = sgn
(
z j k

)
(5.29)

where sgn is the signum function. When all entries of matrix I (K ) are equal to 1, the corre-

sponding controller is centralized and when I (K ) is diagonal, the corresponding controller

is decentralized. Any case between the centralized and decentralized control strategy is a

distributed controller.

To find a controller configuration with minimum communication links between the subsys-
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tems and the local controllers, the cardinality of Z (K ) should be minimized. The problem

of fixed-structure decentralized/distributed control of LTI interconnected systems subject to

polytopic uncertainty described by (5.18)-(5.19) is summarized as:

Problem 4. (Control Configuration Design in Interconnected Systems)

Given a linear dynamical interconnected system consists of N subsystems subject to polytopic

uncertainty, design a fixed-structure dynamic output feedback controller K such that

1. The cardinality of Z (K ) is minimized (Control Configuration Selection).

2. Closed-loop system is robustly stable and performance criterion ‖Hzw (λ)‖2∞ <μ is guar-

anteed (Controller Parameter Design).

The aforementioned conditions can be formulated as the following non convex optimization

problem:

min
K

μ+α×car d
(
Z (K )

)
subject to ‖Hzw (λ)‖2

∞ <μ
(5.30)

where α determines a trade-off between the sparsity of the controller and the H∞ performance

criterion.

5.3.2 An LMI-based Approach to Control Configuration Selection

To reduce the amount of information exchange between the subsystems and the local con-

trollers in an interconnected system, matrix Z (K ) in (5.28) should be sparse. The sparsity

requirements are expressed in terms of the cardinality which is non-convex. The non-convex

cardinality minimization can be relaxed by the convex one-norm (	1) minimization [163]. In

fact, one-norm is the convex envelope of the cardinality [166].

To have a better approximation of the cardinality, the weighted 	1 norm is used [163]. There-

fore, the objective function in (5.30) can be written as:

J =μ+α‖W ∗Z (K )‖1 (5.31)

where W = [w j k ] is the matrix of weights. The cost function J is written as follows:

J =μ+α
N∑

j=1

N∑
k=1

w j k
∥∥k j k

∥∥
1 (5.32)

where k j k =
[

A j k
c B j k

c

C j k
c D j k

c

]
and w j k ≥ 0 is the j k-th entry of W which is inversely proportional
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to
∥∥k j k

∥∥
1, i.e.

w j k = 1

ε+∥∥k j k
∥∥

1

(5.33)

where ε is a small positive number used to ensure that the weights are well-defined when∥∥k j k
∥∥

1 = 0. In this case, for almost zero-valued k j k , a very high weight is assigned. Since the

weights depend on the unknown local controllers, the above weight matrix design strategy

cannot be implemented. In [163], an iterative algorithm for choosing the weights has been

given.

A convex set of fixed-structure controllers based on the use of slack matrices has been given in

Chapter 3. Therefore, the problem of fixed-structure decentralized/distributed H∞ control of

LTI interconnected systems subject to polytopic uncertainty can be solved by the following

convex optimization problem:

min
Ac ,Bc ,Cc ,Dc ,Pi ,μ

μ+α‖W ∗Z (K )‖1

s.t. (3.66)/(3.76)

Pi > 0; i = 1, . . . , q

(5.34)

where α determines a trade-off between the number of communication links in the distributed

controller and the H∞ performance criterion. In the following, a systematic algorithm for the

problem of fixed-structure decentralized/distributed H∞ controller design of LTI polytopic

systems is given.

5.3.3 Algorithm II: “Fixed-structure decentralized/distributed H∞ controller de-
sign”

In this subsection, an iterative LMI-based algorithm for the problem of fixed-structure sparse

H∞ controller design of LTI interconnected system affected by polytopic uncertainty in (5.18)-

(5.19) is presented. The iterative procedure can be summarized by the following steps:

Step 1 (Initialization): Design some initial controllers for each vertex of the polytope
(
K [0]

i

)
.

Put the iteration number h = 1, a small tolerance for ε> 0, maximum iteration number hmax ,

and w [1]
j k = 1, j ,k = 1, ..., N . Determine α based on the desired H∞ performance and the

sparsity of the controller.

Step 2: Solve the convex optimization problem given in (3.79) for a given controller and

determine M [h] and X [h].

Step 3: Solve the convex optimization problem given in (5.34) to obtain a sparse fixed-structure

H∞ controller K [h].

Step 4: Find
∥∥k j k

∥∥[h]
1 for j ,k = 1, . . . , N based on the current controller K [h].
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Step 5: Update the j k-th elements of the weighting matrix W [h+1]:

w [h+1]
j k =

⎧⎪⎪⎨
⎪⎪⎩

1

‖k j k‖[h]
1 +ε , j 
= k

0, j = k

(5.35)

for j ,k = 1, ..., N .

Step 6: Terminate on convergence or when maximum number of iterations hmax reaches.

Otherwise, use the obtained controller in Step 3 as an initial controller
(
K [h+1]

i ← K [h]; i =
1, . . . , q

)
and go to Step 2 with h ← h +1.

Step 7 (Polishing): Design a fixed-structure H∞ controller by solving the optimization prob-

lem in (5.34), where α= 0 is considered.

5.3.4 Simulation Examples

Example 3 (Fixed-order distributed control). Consider a network of three interconnected

second-order subsystems subject to polytopic uncertainty given in (3.85). The objective of this

example is to design a first-order sparse H∞ controller. To this end, according to Algorithm

II in Subsection 5.3.3 with the parameters ε= 10−5 and α= 0.5, at the first step, eight initial

first-order centralized controllers are designed by using the command hinfstruct in MATLAB

for each vertex of the polytope. The initial controllers are transformed to discrete-time ones

by using the bilinear (Tustin) approximation with the sampling time Ts = 0.1s. Then, these

controllers are utilized to obtain the slack matrices M and T using LMIs in (3.63). The next

step is to determine the sparse controller by solving the convex optimization problem in

(5.34). These steps are iteratively repeated and finally after hmax = 60 iterations, some control

structures are obtained. The computational time is about 187s, on a 3.4 GHz Intel Core i7 with

Mac OS X. Figure 5.5 shows the number of communication links versus the iteration numbers.

For each obtained control structure, an H∞ controller is iteratively designed where the struc-

ture of the controller is fixed a priori. For instance, in the case of four communication links,

the following distributed H∞ controller with ‖Hzw (λ)‖∞ < 0.9673 is obtained:

Ac =

⎡
⎢⎣ 0.0074 0 0

−0.3107 0.6538 0

0 0 0.1519

⎤
⎥⎦ , Bc =

⎡
⎢⎣ 0.0945 0 0

0.0430 0.0013 0

0 0 0.0662

⎤
⎥⎦

Cc =

⎡
⎢⎣ 2.6502 0 0

−3.8635 0.4953 0

0 0 −3.2312

⎤
⎥⎦ , Dc =

⎡
⎢⎣ 1.2327 0 0

−1.4132 −0.8750 0

0 0 0.4798

⎤
⎥⎦

(5.36)

The above controller guarantees the stability as well as the H∞ performance of the whole poly-

tope. Figure 5.6 shows the upper bound of ‖Hzw (λ)‖∞ versus the number of communication

92



5.3. Control Configuration Design

5 10 15 20 25 30 35 40 45 50 55 60

4

5

6

7

8

9

iteration

N
um

be
r 

of
 c

om
m

un
ic

at
io

n 
lin

ks

Figure 5.5: Candidates for the control structure in Example 3

links. It is observed that by increasing the sparsity of the controller structure, a decrease in

the H∞ performance is achieved. For example, the closed-loop system with a centralized con-

troller (with 9 communication links) has an H∞ upper bound of ‖Hzw (λ)‖∞ < 0.8962 whereas

the distributed controller given in (5.36) with 4 communication links leads to ‖Hzw (λ)‖∞ <
0.9673.

Example 4 (Distributed static output feedback control). Consider the discrete-time inter-

connected polytopic system of five SISO subsystems given in (5.17). The objective is to design

a distributed or decentralized (if possible) static output feedback controller which minimizes

the H∞ norm of the closed-loop system Hzw (λ) for the whole polytope of q = 23 vertices. To

this end, the iterative algorithm given in Subsection 5.3.3 is used. First, ε= 10−5 and α= 0.5

are set. Since a static output feedback is sought, eight static output feedbacks are designed

via hinfstruct as initial controllers for the vertices. After 30 iterations, some candidates for

the control configuration are obtained. Then, ‖Hzw (λ)‖∞ is iteratively minimized using LMI

conditions in (3.53) and subject to the structural constraints determined by the candidates.

The upper bound of ‖Hzw (λ)‖∞ versus the number of communication links is plotted in

Fig. 5.7. It is observed that by decreasing the sparsity of the controller structure, the H∞
performance is improved. For example, the closed-loop system corresponding to a centralized

controller (with 25 communication links) has an H∞ upper bound of ‖Hzw (λ)‖∞ < 1.62

whereas the distributed controller with 8 communication links leads to ‖Hzw (λ)‖∞ < 1.745.

The distributed static output-feedback controller corresponding to 8 communication links is
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Figure 5.6: Upper bound of ‖Hzw (λ)‖∞ versus the number of communication links in Example
3

given as follows:

Dc =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1113 0 0 0.7823 0

0 −3.7119 0 0 0

0.5719 0 0.5807 0 0

0 0 0.2012 −0.0380 0

0 0 0 0 6.3590

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.37)

The sparse controller guarantees the robust stability as well as the H∞ performance of the

whole polytope.

5.4 Conclusion

This chapter centres around addressing two important issues in the control structure design of

LTI interconnected systems subject to polytopic uncertainty: sensor and actuator placement

and control configuration design. The control problems are formulated as optimization prob-

lems by minimizing the cardinality of some pattern matrices, while satisfying a guaranteed

level of H∞ performance. For the resulting combinatorial optimization problem, computa-

tionally tractable convex relaxations are provided. More specifically, using the convex inner

approximation of fixed-structure H∞ control design proposed in Chapter 3 and a weighted

	1 norm relaxation, several iterative algorithms are developed. The main feature of the pro-

posed approaches is that the control structure and the control parameters are simultaneously

designed.
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4

As compared to the existing approaches for control structure design, the proposed LMI-

based strategy is advantageous since (i) the control structure and the control parameters are

simultaneously designed. (ii) the controller structure is designed for a family of models which

belongs to a polytopic-type uncertainty domain (iii) the communication links between the

subsystems and the local controllers as well as the communication among the local controllers

are minimized.
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6 Grid-connected Voltage-Source Con-
verters

6.1 Introduction

This chapter studies the problem of dq-based current control of a grid-connected voltage-

source converter with L/LC L filters under grid inductance uncertainties. The current con-

troller must be able to provide desired performance specifications including current reference

tracking, high closed-loop bandwidth as well as dq-axes decoupling. The control objectives are

encoded into an optimization problem subject to H∞ constraints. The problem is then over-

come and a robust fixed-structure MIMO current controller is designed through the developed

algorithms in Chapter 3.

The controller ensures robust stability and robust performance against grid inductance pa-

rameter uncertainty. In addition, the proposed MIMO controller decouples the d and q

components of the current signal. The simulation studies conducted in MATLAB/SimPow-

erSystems show the effectiveness of the proposed controller in terms of current reference

tracking and robustness to the grid inductance parameter uncertainty.

The organization of this chapter is as follows. The system description is given in Section 6.2.

Section 6.3 presents controller design method. The robust dq-based current controllers are

given in Section 6.4. Section 6.5 is devoted to simulation results. Section 6.6 concludes the

chapter.

6.2 System Description

Consider the configuration of an electronically-interfaced distributed generation (DG) unit in

grid-connected mode, as shown in Fig. 6.1. The DG unit is connected to the grid via a voltage-

source converter (VSC) and an L/LC L-type filter at the point of common coupling (PCC).

In this figure, Phase-Locked Loop (PLL), which is used for the synchronization, estimates

the phase angle θ(t) at the PCC [167]. The abc/d q and d q/abc blocks convert the signals

from stationary reference to the rotating reference frame and vice versa, according to Park’s

99



Chapter 6. Grid-connected Voltage-Source Converters

VSC

PCC

vc,abc

vt,abc

rc Lc
C

Vdc

ig,dqdq Current
Controller

dq/abc

θ(t)

Gating Pulses6

PLL

yref

Lg2

θ(t)
Controller

Utility Grid

rg Lg1

LCL-filter

Vsic,abc ig,abc
vg,abc

uabc
ig,abc

PLL
vg,abc

u abc/dq

Gating Signal
Generator rg Lg1

ig,abc

L-filter

Converter

Figure 6.1: Configuration of a grid-connected voltage-source converter under study and its
dq-based current controller

transformation [107]. The values and definitions of the system parameters are given in Table

6.1.

Remark: It would be better to connect the PLL to a stiff source, i.e. Vs , to avoid disturbances

imposed to PLL input. However, it may need a communication link.

6.2.1 Grid-connected VSC with an L-type Filter

In this subsection, the mathematical model of the three-phase grid-connected VSC system

with an L-type filter in Fig. 6.1 is derived. The dynamics of the system are described as follows:

Lg
dig ,abc

d t
= vt ,abc (t )− rg ig ,abc (t )−Vs(t ) (6.1)

where ig ,abc , vt ,abc , and Vs are the grid current, the VSC terminal voltage, and the grid voltage,

respectively. Lg = Lg1 +Lg2 presents the total inductance.

Assuming that the three-phase system of Fig. 6.1 is balanced, the mathematical model in

abc-frame is first transformed to αβ-frame using xαβ = xa + xbe− j (2π/3) + xc e j (2π/3). Then, it

is transformed to the dq-frame using xd q =

2/3xαβe jθ, where θ is the transformation angle

(phase angle of vg ,abc at the PCC is considered as the reference). The system equations in
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Table 6.1: Parameters of VSC in Fig. 6.1

Lc = 1.5mH Converter-side inductor of the LC L filter
rc = 0.1Ω Series resistance of Lc

Lg1 = 1mH Grid-side inductor of the LC L filter
rg = 0.1Ω Series resistance of Lg1

C = 15μF Capacitance of the LC L filter
Lg1 = 5mH Inductance of the L filter
rg = 0.3Ω Resistance of the L filter

Lg2 ∈
[
Lg2mi n

Lg2max

]
Grid inductance

Vs = 220V Grid voltage (phase-to-phase rms voltage)
Vdc = 440V DC bus voltage
f0 = 60H z System nominal frequency (ω0 = 2π f0)

fs = 10020H z Sampling frequency
fPW M = 5010H z PWM carrier frequency

dq-frame are given as follows:

ẋg (t ) = Ag xg (t )+Bg vt (t )+Bv vs(t )

y(t ) =Cg xg (t )
(6.2)

where xg (t) = [
ig ,d ig ,q

]T is the state, vt (t) = [
vt ,d vt ,q

]T is the input, vs(t) = [
Vsd Vsq

]T

is the disturbance, and y(t) = [
ig ,d ig ,q

]T is the output signals. The dq-subscripts indicate

the dq components of the corresponding signals. The state space matrices are as follows:

Ag =
[ − rg

Lg
ω0

−ω0 − rg

Lg

]
, Bg =

[ 1
Lg

0

0 1
Lg

]

Bv =
[ − 1

Lg
0

0 − 1
Lg

]
, Cg =

[
1 0

0 1

] (6.3)

Due to the abc-dq transformation, coupling terms ω0Lg ig ,q and ω0Lg ig ,d appear between the

direct and quadrature current axes. To remove the cross coupling terms and decouple these

axes, feedback and feedforward controllers are designed such that the coupling terms are

encapsulated in control laws (conventional dq current control)[168].

vt ,d =Vsd −ω0Lg ig ,q +ud

vt ,q =Vsq +ω0Lg ig ,d +uq
(6.4)

where ud and uq are the feedback control signals of the direct and quadrature axes. The

feedback controller is a conventional PI controller with the following structure:

KPI (s) = 1+ sTn

sTi
(6.5)
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The controller time constant Tn is usually chosen qual to the dominant time constant of the

system, i.e. Tn = Lg /rg . The parameter Ti is equal to τ/rg , where τ is normally between 0.5ms

and 5ms [169].

According to (6.4), the use of the feedforward terms theoretically results in fully decoupled

control loops. Nevertheless, in practice due to measurement errors and grid parameter

uncertainties, it is almost impossible to precisely determine the values of ω0, Lg , ig ,d , and ig ,q .

Therefore, exact coupling term cancelation is not possible and a full axis-decoupling cannot

be achieved [170].

To improve the axes decoupling, a modified multivariable-PI controller has been developed in

[170], where the control laws are written as follows:

vt ,d =Vsd −
ω0Tn

sTi

(
ig ,qr e f

− ig ,q
)+ud

vt ,q =Vsq +
ω0Tn

sTi

(
ig ,d r e f

− ig ,d
)+uq

(6.6)

where

ud = 1+ sTn

sTi

(
ig ,d r e f

− ig ,d
)

uq = 1+ sTn

sTi

(
ig ,qr e f

− ig ,q
) (6.7)

ig ,d r e f
and ig ,qr e f

respectively are the direct and quadrature reference current signals. Although

the integral terms in (6.6) reduce the effect of axes coupling, parameter uncertainties in the

system can still degrade an ideal axis-decoupling. For instance, in the case of grid inductance

parameter uncertainty, the feedback and feedforward control terms are fixed and it may result

in a poor operation of the current controllers.

6.2.2 Grid-connected VSC with an LC L-type Filter

Consider the voltage-source converter in Fig. 6.1 connected to the utility grid through an

LC L-type filter. The resonance frequency of the LC L filter is determined as follows:

fr es = 1

2π

√
Lg +Lc

Lc Lg C
(6.8)

The resonance frequency varies depending on the grid inductance values. Inductive grids lead

to a decrease of the resonance frequency.
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The dynamical equations of the system in the abc-frame are as follows:

Lc
dic,abc

d t
=−rc ic,abc (t )− vc,abc (t )+ vt ,abc (t )

C
d vc,abc

d t
= ic,abc (t )− ig ,abc (t )

Lg
dig ,abc

d t
= vc,abc (t )− rg ig ,abc (t )−Vs(t )

(6.9)

where ic,abc , ig ,abc , vc,abc , vt ,abc , and Vs are the converter-side current, the grid-side current,

the voltage of the filter capacitance, the VSC terminal voltage, and the grid voltage, respectively.

The dynamical equations can be described by the following state space representation:

ẋg ,abc (t ) = Ag ,abc xg ,abc (t )+Bg ,abc vt ,abc (t )+Bv,abcVs(t )

yabc (t ) =Cg ,abc xg ,abc (t )
(6.10)

where xg ,abc (t) = [
ic,abc vc,abc ig ,abc

]T and yabc (t) = ig ,abc . The state space matrices are

given by:

Ag ,abc =

⎡
⎢⎢⎣

− rc
Lc

− 1
Lc

0
1
C 0 − 1

C

0 1
Lg

− rg

Lg

⎤
⎥⎥⎦

Bg ,abc =

⎡
⎢⎣

1
Lc

0

0

⎤
⎥⎦ , Bv,abc =

⎡
⎢⎣ 0

0

− 1
Lg

⎤
⎥⎦

Cg ,abc =
[

0 0 1
]

(6.11)

Under balanced conditions, the dynamical equations in abc-frame are transformed to dq-
frame and expressed by (6.2), where the state, input, disturbance, and output signals respec-

tively are xg (t ) = [
ic,d ic,q vc,d vc,q ig ,d ig ,q

]T , vt (t ) = [
vt ,d vt ,q

]T , vs(t ) = [
Vsd Vsq

]T ,

y(t ) = [
ig ,d ig ,q

]T , and

Ag =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− rc
Lc

ω0 − 1
Lc

0 0 0

−ω0 − rc
Lc

0 − 1
Lc

0 0
1
C 0 0 ω0 − 1

C 0

0 1
C −ω0 0 0 − 1

C
0 0 1

Lg
0 − rg

Lg
ω0

0 0 0 1
Lg

−ω0 − rg

Lg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Bg =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Lc

0

0 1
Lc

0 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Bv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0

− 1
Lg

0

0 − 1
Lg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Cg =
[

0 0 0 0 1 0

0 0 0 0 0 1

]
(6.12)
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6.2.3 Grid Parameter Uncertainty

It is assumed that the grid inductance value is not precisely known and it belongs to a given

interval, Lg2 ∈
[
Lg2mi n

Lg2max

]
. Therefore, the state space matrices Ag , Bv , and Bg (in the case

of L-type filter) represent a polytopic uncertainty with q = 2 vertices as follows:

Ag (λ) =λAg1 + (1−λ)Ag2

Bv (λ) =λBv1 + (1−λ)Bv2

Bg (λ) =λBg1 + (1−λ)Bg2

(6.13)

where 0 ≤λ≤ 1. Vetrices Ag1 , Ag2 , Bv1 , Bv2 , and Bg1 , Bg2 are obtained based on the maximum

and the minimum values of the grid inductance Lg2 . For instance, matrices Ag1 and Ag2 for

the system with L-type filter are as follows:

Ag1 =
[ − rg

Lg1+Lg2mi n
ω0

−ω0 − rg

Lg1+Lg2mi n

]

Ag2 =
[ − rg

Lg1+Lg2max
ω0

−ω0 − rg

Lg1+Lg2max

] (6.14)

The state space model given in (6.2) is transformed to the following discrete-time system with

the sampling time Ts = 1
fs

xg (k +1) = Agd (λ)xg (k)+Bgd (λ)vt (k)+Bvd (λ)vs(k)

y(k) =Cgd xg (k)
(6.15)

according to the following approximations, based on the first-order Taylor series, assuming

that the sampling time Ts is small enough.

Agd = e Ag Ts ≈ I +Ts Ag

Bgd =
∫Ts

0
e AgτBg dτ≈ TsBg

Bvd =
∫Ts

0
e AgτBv dτ≈ TsBv

Cgd =Cg

(6.16)

It is assumed that there exists one sample delay between the converter voltage command u(k)

and the VSC terminal voltage vt (k), i.e. vt (k) = u(k −1) [84]. Therefore, by considering the

delay, the following augmented model G is derived.

xgaug (k +1) = Agaug (λ)xgaug (k)+Bgaug u(k)+Bvaug (λ)vs(k)

y(k) =Cgaug xgaug (k)
(6.17)
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where xgaug (k) = [
xT

g (k) vT
t (k)

]T and

Agaug (λ) =
[

Agd (λ) Bgd (λ)

0 0

]

Bgaug =
[

0

I

]
, Bvaug (λ) =

[
Bvd (λ)

0

]

Cgaug =
[

Cgd 0
]

(6.18)

6.3 Controller Design Method

In this section, a robust fixed-structure MIMO control strategy for the current controller design

of the grid-connected voltage-source converter in Fig. 6.1 is proposed.

6.3.1 Controller Design Requirements

A current controller for the grid-connected voltage-source converter described by (6.17)-(6.18)

with grid inductance uncertainty is sought to meet the following performance criteria:

• The closed-loop system must be asymptotically stable for all values of Lg2 in the given

interval.

• The closed-loop polytopic system should be able to track all step current reference

signals (yr e f ) with zero steady state error.

• The closed-loop response to step current reference signals should have small rise time

(within about one cycle of f0 = 60 Hz) and overshoot for all values of the grid inductance

within the pre-specified uncertainty interval.

• The closed-loop system should eliminate the impact of the disturbance signal vs .

• The coupling between the d and q output channels should be small.

6.3.2 Structure of the Proposed Current Controllers

To satisfy all the aforementioned criteria, a current controller K with the following structure is

proposed.

xc (k +1) = Ac xc (k)+Bc
(
yr e f (k)− y(k)

)
u(k) =Cc xc (k)+Dc

(
yr e f (k)− y(k)

) (6.19)
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where Ac ∈Rm×m and Bc , Cc , and Dc are of appropriate dimensions. The above controller is a

solution of the following optimization problem:

min
K (z)

α1μ1 +α2μ2

subject to ‖W S(λ)‖2
∞ <μ1

‖T (λ)−Td‖2
∞ <μ2

(6.20)

where S = (
I +GK

)−1, T = GK
(
I +GK

)−1, W , and Td are the sensitivity function, the com-

plementary sensitivity function, the weighting filter, and the desired closed-loop model,

respectively. The positive scalars α1 and α2 characterize the emphasis on the H∞ norm of the

weighted sensitivity transfer function and the model matching problem ‖T (λ)−Td‖∞.

The weighting filter W is responsible to shape the sensitivity function S. In fact, the minimiza-

tion of ‖W S(λ)‖∞ provides the desired performance characteristics of the closed-loop system

while the minimization of ‖T (λ)−Td‖∞ leads to a decoupling between two output channels

for a desired diagonal Td . The signals z1 and z2 are defined as follows:

z1(k) =W
(
yr e f (k)− y(k)

)
z2(k) = y(k)−Td yr e f (k)

(6.21)

A common choice for W [69] and Td in continuous-time case is given as follows:

W (s) =

⎡
⎢⎣

s
Mw

+ω∗
B

s+ω∗
B ε

0

0
s

Mw
+ω∗

B
s+ω∗

B ε

⎤
⎥⎦ (6.22)

Td (s) =
⎡
⎣ ω∗

B
s+ω∗

B
0

0
ω∗

B
s+ω∗

B

⎤
⎦ (6.23)

where ω∗
B is the desired closed-loop bandwidth, ε is the maximum tracking steady state error,

and Mw ≥ 1 is the maximum peak value of the magnitude of S. Weighting filter W and the

model reference Td are discretized using the ZOH method. We assume that the state space

equations of these transfer functions are given by:

xw (k +1) = Aw xw (k)+Bw
(
yr e f (k)− y(k)

)
z1(k) =Cw xw (k)+Dw

(
yr e f (k)− y(k)

) (6.24)

xd (k +1) = Ad xd (k)+Bd yr e f (k)

yr (k) =Cd xd (k)+Dd yr e f (k)
(6.25)

To obtain the state space representation of W S, first the dynamical equations of the plant
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given in (6.17)-(6.18) and the weighting filter W are augmented as follows:

x̂g (k +1) = Âg (λ)x̂g (k)+ B̂g (λ)u(k)+ B̂v (λ)vs(k)+ B̂w w(k)

ŷ(k) = Ĉg x̂g (k)+ D̂w w(k)

z1(k) = Ĉz x̂g (k)+ D̂zw w(k)

(6.26)

where x̂g (k) =
[

xT
gaug

(k) xT
w (k)

]T
, w(k) = yr e f (k), ŷ(k) = yr e f (k)− y(k), and

Âg (λ) =
[

Agaug (λ) 0

−BwCgaug Aw

]

B̂g =
[

Bgaug

0

]
, B̂v (λ) =

[
Bvaug (λ)

0

]
, B̂w =

[
0

Bw

]

Ĉg =
[
−Cgaug 0

]
, D̂w = I

Ĉz =
[
−DwCgaug Cw

]
, D̂zw = Dw

(6.27)

Then, by augmenting the dynamical equations of the augmented plant in (6.26)-(6.27) and the

controller in (6.19), the state space representation of W S is obtained as follows:

x1(k +1) = A1(λ)x1(k)+B1 yr e f (k)

z1(k) =C1x1(k)+D1 yr e f (k)
(6.28)

where x1(k) = [
x̂T

g (k) xT
c (k)

]T and

A1(λ) =
[

Âg (λ)+ B̂g DcĈg B̂g Cc

BcĈg Ac

]
, B1 =

[
B̂g Dc D̂w + B̂w

Bk D̂w

]

C1 =
[

Ĉg 0
]

, D1 = D̂zw

(6.29)

In a similar way, the dynamical equations of the system T −Td are given by:

x2(k +1) = A2(λ)x2(k)+B2 yr e f (k)

z2(k) =C2x2(k)+D2 yr e f (k)
(6.30)

where x2(k) = [
xT

gaug
(k) xT

c (k) xT
d (k)

]T , z2(k) = y(k)− yr (k), and

A2(λ) =

⎡
⎢⎣ Agaug (λ)−Bgaug DcCgaug Bgaug Cc 0

−BcCgaug Ac 0

0 0 Ad

⎤
⎥⎦, B2 =

⎡
⎢⎣ Bgaug Dc

Bc

Bd

⎤
⎥⎦

C2 =
[

Cgaug 0 −Cd

]
, D2 =−Dd

(6.31)
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We assume that specific structural constraints on the controller matrices can be imposed.

These constraints can be in the form of:

• Fixed-order dynamic output feedback

The order of the controller is independent of the plant order and it is fixed a priori.

• Fixed-structure matrix Ac

To track step current reference signals and reject the disturbance signal vs , the controller

K (z) must contain integrators. To this end, matrix Ac must have two poles at z = 1.

• PI control design (for the case of L-filter)

For the case of L-type filter, the objective is to design a simple PI controller to satisfy all

the required criteria.

Remark: The control design method can also consider the impact of high frequency dynamics

due to PWM switching.

6.3.3 Controller Design Method

All the aforementioned control design requirements for grid-connected VSCs with L/LC L-type

filter described by (6.17)-(6.18) can be ensured by the set of LMI-based conditions, given in

Theorem 9 in Chapter 3.

6.4 Robust dq-frame Current Controllers

In order to design a fixed-structure controller for the voltage-source converter of Fig. 6.1 with

an L/LC L-type filter, the weighting filter W and desired closed-loop transfer function Td are

chosen as follows:

W (s) =
[ s

3+1000
s+0.01 0

0
s
3+1000
s+0.01

]
(6.32)

Td (s) =
[

1000
s+1000 0

0 1000
s+1000

]
(6.33)

We also set α1 = 0.2 and α2 = 1 in the optimization problem given in (6.20).

6.4.1 dq-frame Current Controller for the VSC with an L-type Filter

In this part, a dq-based PI current controller for a VSC with an L-type filter with the parameters

given in Table 6.1 is designed. It is assumed that the grid inductance Lg2 belongs to [0,1mH ].
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According to Algorithm III in Subsection 3.6.3, the following H∞ PI controller is obtained after

20 iterations:

Ac =
[

1 0

0 1

]
, Bc =

[
0.506 0.0021

−0.0021 0.5061

]

Cc =
[

0.0602 −0.3999

0.3988 0.0605

]
, Dc =

[
5.2880 −0.1361

0.1425 5.2900

] (6.34)

The designed PI controller guarantees the robust stability and the robust performance criteria

‖W S(λ)‖∞ < 1.1235 and ‖T (λ)−Td‖∞ < 0.1102 for all values of the uncertain parameter

Lg2 ∈
[
0,1mH

]
.

6.4.2 dq-frame Current Controller for the VSC with an LCL-type Filter

The objective is to design a robust dq-based current controller for a VSC with an LC L filter
described by (6.17)-(6.18). We assume that the grid inductance Lg2 belongs to

[
0,0.5mH

]
. Fol-

lowing the control design procedure in Algorithm III and the stretching approach in Algorithm
II respectively given in Subsection 3.6.3 and Subsection 3.5.2, the final H∞ current controller
is obtained after 5 iterations as follows:

Ac =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −0.058 0.046 −0.020 −0.005 −0.011 0.016

0 1 −0.028 0.046 −0.023 −0.150 0.173 −0.088

0 0 0.008 0.493 0.003 0.002 0.0004 −0.002

0 0 0.024 −0.018 0.507 0.0003 0.004 −0.005

0 0 0.036 −0.029 0.012 0.003 0.007 −0.011

0 0 0.003 −0.005 0.002 0.014 0.482 0.009

0 0 0.009 −0.013 0.005 0.035 −0.038 0.519

0 0 0.011 −0.02 0.01 0.062 −0.073 0.037

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.045 −0.001

0.003 4.614

−0.5 0.0002

−1.002 0.001

−2.006 0.0004

−0.0011 −0.5

−0.0014 −1.0005

−0.0017 −2.002

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Cc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.005 0.025

−0.016 0.004

2.204 −0.218

−5.347 0.352

4.254 −0.119

0.197 2.163

−0.337 −5.274

0.124 4.212

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Dc =
[

3.1729 −0.1467

0.1488 3.1662

]

(6.35)

The resulting controller ensures the robust stability as well as the robust performance criteria

‖W S(λ)‖∞ < 1.4532 and ‖T (λ)−Td‖∞ < 1.5068 for the whole range of the uncertain parameter

Lg2 .

Remark. The LMI-based optimization problems are solved using YALMIP [146] and SDPT3
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[153] as the interface and the solver, respectively.

6.5 Performance Evaluation

In this section, the performance of the designed controllers in (6.34) and (6.35) is evaluated by

means of simulation results carried out in MATALB/SimPowerSystems under several scenarios:

1) current tracking and 2) robustness to the grid inductance uncertainty.

In the tracking test scenario, the performance of the proposed controllers in the step dq-

current reference tracking is assessed. The second scenario is conducted to demonstrate the

robustness of the controllers against the interval uncertainty in the grid inductance. In the

simulation case studies, a realistic model of the VSC (nonlinear switching model) is used.

6.5.1 VSC with an L-type Filter

The values of the parameters of the VSC with an L filter in Fig. 6.1 are set according to Table

6.1. We study the dynamical responses of the system for two case: Lg2 = 0 and Lg2 = 1mH . In

both case studies, the d and q components of the current signal are initially set at 0.686 pu and

0.5145 pu, respectively, by the PI controller in (6.34). The d component is stepped up to 0.8575

pu at t = 0.1s. The d component is suddenly stepped down to 0.1715 pu at t = 0.3s. Fig. 6.2

and Fig. 6.3 show the dynamical responses of the system to these changes.

6.5.2 Comparison with Conventional and Multivariable-PI Current Control Meth-
ods

In this subsection, the performance of the proposed robust PI controller for the VSC with an

L-type filter is compared to the conventional [168] and the multivariable-PI current controllers

[170]. To this end, the parameters of the the conventional and the multivariable-PI controller

(Ti , Tn) are properly tuned assuming that Lg2 = 0.

To show the transient behavior of the controllers, two step changes in the direct and quadrature

current axes are applied. The d component of the current signal changes from 0.686 pu to

0.8575 pu at t = 0.1s whereas q component is stepped down to 0.1715 pu at t = 0.3s.

Fig. 6.4 shows the dynamical response of ig ,d q for three PI current controllers to those step

changes in the case of Lg2 = 0. It is observed that the proposed robust PI controller in (6.34)

provides better transient response in terms of rise time and dq-channels decoupling. The

conventional and multivariable-PI controller are slower than the proposed PI controller.

Moreover, the conventional controller is not able to completely decouple the direct and

quadrature axes.

In the second case study, a test scenario similar to the pervious case is carried out to verify the
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Figure 6.2: Dynamical responses of the grid-connected VSC with an L-type filter- Case 1)
Current tracking with Lg2 = 0 (a) d q-components of the the grid current ig ,d q , (b) control
inputs u, (c) real and reactive power components of DG, and (d) instantaneous grid currents
ig ,abc
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Figure 6.3: Dynamical responses of the grid-connected VSC with an L-type filter- Case 1)
Current tracking with Lg2 = 1mH (a) d q-components of the the grid current ig ,d q , (b) control
inputs u, (c) real and reactive power components of DG, and (d) instantaneous grid currents
ig ,abc 111
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Figure 6.4: Transient response of the proposed, conventional, and multivariable-PI controllers
to step changes in the direct and quadrature axis reference current- Case 1) Current tracking
with Lg2 = 0 (a) d-component of the the grid current ig ,d q and (b) q-component of the the
grid current ig ,d q .
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Figure 6.5: Transient response of the proposed, conventional, and multivariable-PI controllers
to step changes in the direct and quadrature axis defence current- Case 1) Current tracking
with Lg2 = 1mH (a) d-component of the the grid current ig ,d q and (b) q-component of the the
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Figure 6.6: Dynamical responses of the grid-connected VSC with an LC L filter- Case 1) Current
tracking with Lg2 = 0 (a) d q-components of the the grid current ig ,d q , (b) control inputs u, (c)
real and reactive power components of DG, and (d) instantaneous grid currents ig ,abc

performance of the controllers in spite of the grid inductance uncertainty. It is assumed that

real value of the grid inductance is Lg2 = 1mH . Dynamical responses of the controllers to the

step changes in ig ,d q are depicted in Fig. 6.5. As it is observed from Fig. 6.5, the convention

and the multivariable-PI controllers are really sensitive to the system parameter uncertainties.

6.5.3 VSC with an LCL-type Filter

1) Current Tracking: The values of the parameters of the system in Fig. 6.1 with an LC L filter

are considered according to Table 6.1. First, we assume that Lg2 = 0. Initially, the d and q

components of the reference current signals are respectively set at 0.686 pu and 0.1715 pu.

Then, the q component of the reference current is stepped up to 0.5145 pu at t = 0.1s. Finally,

there is a step change in d component of the reference current to 0.8575 pu at t = 0.3s. The

dq components of the grid current ig ,d q , the controller signals u, the real and reactive power

components of DG, and the instantaneous grid currents ig ,abc are illustrated in Fig. 6.6.

Next, we consider that the grid inductance value is Lg2 = 0.5mH . The d and q components of
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Figure 6.7: Dynamical responses of the grid-connected VSC with an LC L-type filter- Case
1) Current tracking with Lg2 = 0.5mH (a) d q-components of the the grid current ig ,d q , (b)
control inputs u, (c) real and reactive power components of DG, and (d) instantaneous grid
currents ig ,abc

the reference current signals are initially regulated at 0.6708 pu and 0.4472 pu, respectively.

Then, a step change in the d component of the reference signal from 0.6708 pu to 0.8944 pu is

made at t = 20ms while the reference value of d component is fixed. The dynamical responses

of the system are shown in Fig. 6.7.

2) Sudden Change in Grid Inductance: To evaluate the robustness of the the designed controller

in (6.35) to the grid inductance uncertainty, the grid inductance Lg2 is suddenly changed from

0.5mH to 0 at t = 0.2s. Fig. 6.8 shows the transient behaviour of the system under the grid

inductance uncertainty. The results verify that the designed controller is robust with respect

to the uncertainty in the grid inductance.

Remark. It should be noted that the grid inductance value is uncertain and it does not

change in step; however, the step variations in this parameter leads to the worst-case transient

response of the system. Therefore, it can be a good index for the evaluation of the robustness

of the designed controller to the grid inductance uncertainty.
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Figure 6.8: Dynamical responses of the grid-connected VSC with an LC L-type filter- Case 2)
Sudden change in the grid inductance (a) d q-components of the the grid current ig ,d q , (b)
control inputs u, (c) real and reactive power components of DG, and (d) instantaneous grid
currents ig ,abc

6.6 Conclusion

In this chapter, dq-based current controllers for grid-connected voltage-source converters

(VSC) with L/LC L-type filters under polytopic uncertainty are designed. The uncertainty is

imposed by the grid inductance which is assumed to belong to a given interval. The current

controllers assigned with integrators result from a convex optimization problem developed in

Chapter 3. The proposed controllers guarantee the robust stability and robust performance of

the system against the grid inductance uncertainty.

In summary, as compared to the existing grid-connected VSCs control methods, the proposed

current controllers have the following main advantages:

1. The controllers require to measure only the current signal; therefore, in contrast to

multi-loop control strategies, only one sensor is necessary.

2. The controllers provide dq axes-decoupling between the direct (d) and the quadrature

(q) components of the current signal by means of the minimization of an H∞ norm
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constraint.

3. The MIMO controllers fulfil the requirements of stability, fast rise-time, small overshoot,

attenuated resonance damping, and robustness to a pre-specified range of the grid

inductance.

4. The controller design procedure is straightforward and equally applicable to VSC-based

energy conversion applications.

To verify the performance of the proposed controllers, several case studies are conducted in

MATLAB/SimPowerSystems. The simulation results confirm that the designed controllers are

robust to the grid inductance uncertainty and they are able to track step current reference

current signals with fast rise-time and small overshoot.
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7 Islanded Inverter-interfaced Micro-
grids

7.1 Introduction

This chapter focuses on the development of a robust fixed-structure control strategy for

autonomous inverter-interfaced microgrids consisting of DGs. The special emphasis is given

to decentralized control technique where there is not any communication link and information

exchange among the local controllers of DGs. The control strategy is composed of (i) a power

management system (PMS) which specifies voltage setpoints for each voltage-controlled bus

based on a power flow analysis, (ii) local voltage controllers of DGs which provide tracking

of the voltage setpoints with fast rise time and smooth non-peaking transient responses and

robustness to load parameter uncertainties, and (iii) an open-loop frequency control and

synchronization scheme maintaining system frequency.

The robustness and the decentralized features of the local voltage controllers are important

for a microgrid system because

• centralized controllers are uneconomical due to the complexity and cost of the required

high-bandwidth communication infrastructure, and they are unreliable in case of a

single point of failure. Moreover, due to the distributed nature of microgrids, any kind

of centralized control strategies is almost impossible [117].

• robust controllers are able to overcome the uncertainty issues of the microgrid parame-

ters/structure.

The emphasis of this chapter is on local voltage controllers of DGs which are designed based

on the developed algorithms in Chapter 3 and Chapter 5. To study different performance

aspects of the proposed voltage controllers, they are applied to a single-DG and a three-DG

microgrid and a set of comprehensive simulation case studies in MATLAB and experimental

results validate the desired performance of the proposed controllers.

The organization of Chapter 7 is as follows: Section 7.2 presents the dynamical model of
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an islanded inverter-interfaced multi-DG microgrid. Sections 7.3 is devoted to the islanded

microgrid control system. The dq-frame robust fixed-structure voltage controllers are given in

Section 7.4. Simulation and experimental results are presented in Section 7.5. Chapter 7 ends

with concluding remarks in Section 7.6.

VSC i
Rti Lti

Cti

Vdc ItiVti Vi PCCi

Rij

Lij

PCCj

DG i

DG j

Line ij

Iij

Rli
Ri

LiiLi

VSC j
Rtj Ltj

Ctj

Vdc ItjVtj Vj

Rlj
Rj

LjiLj

Figure 7.1: Configuration of two DGs connected via line i j

7.2 Dynamical Model of Islanded Inverter-interfaced Microgrids

Consider an islanded inverter-interfaced microgrid consisting of N DGs. Each DG is mod-

eled by a DC voltage source, a voltage-source converter (VSC), a series RL filter, a step-up

transformer with transformation ratio k, and a local load modeled by a three-phase parallel

RLC network. For the sake of simplicity, first we consider the configuration of a microgrid

system with two DGs as shown in Fig. 7.1. However, the proposed voltage control method in

this chapter is general and can be applied to the microgrids composed of N DGs with radial

configuration. The system is described by the following dynamical equations in dq-frame:

DG i

⎧⎪⎪⎨
⎪⎪⎩

dVi ,d q

d t + jω0Vi ,d q =− 1
Ri Cti

Vi ,d q + ki
Cti

It i ,d q − 1
Cti

iLi ,d q + 1
Cti

Ii j ,d q
d Iti ,d q

d t + jω0Iti ,d q =− ki
Lti

Vi ,d q − Rti
Lti

It i ,d q + 1
Lti

Vti ,d q
diLi ,d q

d t + jω0iLi ,d q = 1
Li

Vi ,d q − Rli
Li

iLi ,d q

(7.1)
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DG j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dVj ,d q

d t + jω0Vj ,d q =− 1
R j Ct j

Vj ,d q + k j

Ct j
It j ,d q − 1

Ct j
iL j ,d q − 1

Ct j
Ii j ,d q

d It j ,d q

d t + jω0It j ,d q =− k j

Lt j
Vj ,d q − Rt j

Lt j
It j ,d q + 1

Lt j
Vt j ,d q

diL j ,d q

d t + jω0iL j ,d q = 1
L j

Vj ,d q − Rl j

L j
iL j ,d q

(7.2)

Line ij:
d Ii j ,d q

d t + jω0Ii j ,d q =−Ri j

Li j
Ii j ,d q + 1

Li j
Vj ,d q − 1

Li j
Vi ,d q (7.3)

where
(
Vi ,d q ,Vj ,d q

)
,
(
Iti ,d q , It j ,d q

)
,
(
iLi ,d q , iL j ,d q

)
,
(
Vti ,d q ,Vt j ,d q

)
, and Ii j ,d q respectively are

the dq components of the load voltage at PCCs, the current filters, the load inductance currents,

the VSC terminal voltages, and the transmission line current. It should be noted that the dc-

side of VSC is modeled by an ideal voltage source.

The microgrid system in Fig. 7.1 can be presented as a linear time-invariant system by the

following state space equations:

⎡
⎢⎣ ẋi (t )

ẋli j (t )

ẋ j (t )

⎤
⎥⎦=

⎡
⎢⎣ Ai Ali j 0

−Al j ,i j Al ,i j Al j ,i j

0 −Al j i A j

⎤
⎥⎦
⎡
⎢⎣ xi (t )

xli j (t )

x j (t )

⎤
⎥⎦+

⎡
⎢⎣ Bi 0

0 0

0 B j

⎤
⎥⎦
[

ui (t )

u j (t )

]

[
yi (t )

y j (t )

]
=
[

Ci 0 0

0 0 C j

]⎡⎢⎣ xi (t )

xli j (t )

x j (t )

⎤
⎥⎦

(7.4)

where

xi =
[

Vi ,d Vi ,q Iti ,d Iti ,q iLi ,d iLi ,q

]T

x j =
[

Vj ,d Vj ,q It j ,d It j ,q iL j ,d iL j ,q

]T
, xli j =

[
Ii j ,q Ii j ,q

]T

ui =
[

Vti ,d Vti ,q

]T
, u j =

[
Vt j ,d Vt j ,q

]T

yi =
[

Vi ,d Vi ,q

]T
, y j =

[
Vj ,d Vj ,q

]T

(7.5)

and

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Ri Cti

ω0
k

Cti
0 − 1

Cti
0

−ω0 − 1
Ri Cti

0 k
Cti

0 − 1
Cti

− k
Lti

0 −Rti
Lti

ω0 0 0

0 − k
Lti

−ω0 −Rti
Lti

0 0
1

Li
0 0 0 −Rli

Li
ω0

0 1
Li

0 0 −ω0 −Rli
Li

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Al i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Cti

0

0 1
Cti

0 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.6)
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A j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
R j Ct j

ω0
k

Ct j
0 − 1

Ct j
0

−ω0 − 1
R j Ct j

0 k
Ct j

0 − 1
Ct j

− k
Lt j

0 −Rt j

Lt j
ω0 0 0

0 − k
Lt j

−ω0 −Rt j

Lt j
0 0

1
L j

0 0 0 −Rl j

L j
ω0

0 1
L j

0 0 −ω0 −Rl j

L j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Al j i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Ct j

0

0 1
Ct j

0 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.7)

Al ,i j =
⎡
⎣ −Ri j

Li j
ω0

−ω0 −Ri j

Li j

⎤
⎦ , Al j ,i j =

[ 1
Li j

0 0 0 0 0

0 1
Li j

0 0 0 0

]
(7.8)

Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0
1

Lti
0

0 1
Lti

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0
1

Lt j
0

0 1
Lt j

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.9)

Ci =C j =
[

1 0 0 0 0 0

0 1 0 0 0 0

]
(7.10)

7.2.1 Islanded Microgrids with N DGs

The state space model in (7.4) can be extended to the islanded microgrids composed of N DGs

with a radial topology. The overall microgrid system G(s) is described as follows:

ẋg (t ) = Ag xg (t )+Bg u(t )

y(t ) =Cg xg (t )
(7.11)

where

xg =
[

xT
1 xT

l12
xT

2 xT
l23

. . . xT
N

]T

u =
[

uT
1 . . . uT

N

]T

y =
[

yT
1 . . . yT

N

]T

(7.12)
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and the state space matrices are given:

Ag =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 Al12 0 0 0 . . . 0

−Al2,12 Al ,12 Al2,12 0 0 . . . 0

0 −Al21 A2 Al23 0 . . . 0

0 0 −Al3,23 Al ,23 Al3,23 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . AN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bg =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1 0 0 . . . 0

0 0 0 . . . 0

0 B2 0 . . . 0

0 0 0 . . . 0

0 0 B3 . . . 0
...

...
...

. . .
...

0 0 0 . . . BN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Cg =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C1 0 0 0 0 . . . 0

0 0 C2 0 0 . . . 0

0 0 0 0 C3 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . CN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.13)

where Ai , Ali j , Al j ,i j , Al ,i j , Bi , and Ci are define in (7.6)-(7.10) for i , j = 1, . . . , N .

7.2.2 Islanded Microgrids with Polytopic-type Uncertainty

The parametric uncertainty of the microgrid system in Fig. 7.1 arises from the fact that the RLC

load parameters of DG i can vary based on consumers’ demands. For the sake of simplicity,

the following definitions are used.

θ1
i = 1

Ri
, θ2

i = 1

Li
, θ3

i = 1

Cti

It is also assumed that the RLC load parameters are bounded within the maximum and mini-

mum values as Rimi n ≤ Ri ≤ Rimax , Limi n ≤ Li ≤ Limax , and Cimi n ≤Cti ≤Cimax which represents a

cube in which the load parameters are allowed to change. In the general case of N DGs, it is a

hyper-cube with q = 2nθ vertices, where nθ is the number of uncertain load parameters. It can

be shown that the image of this hyper-cube in the space of the elements of matrix Ag is inside

a polytope of q = 2nθ vertices. This polytope covers the whole uncertainty in the RLC load

parameters and is defined as the convex combination of the vertices Al
g , l = 1, . . . , q [148]:

Ag (λ) =
q∑

l=1
λl Al

g , λl ∈Λq (7.14)

whereΛq is defined in (2.8) and vertices Al
g are obtained based on the maximum and minimum

values of the RLC load parameters.
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Figure 7.2: Block diagram of the proposed control strategy

7.3 Islanded Microgrid Control System

Consider a schematic diagram of the microgrid control strategy composed of a power man-

agement system (PMS), local voltage controllers of DGs, and a frequency control scheme in

Fig. 7.2.

7.3.1 Power Management System

A power management strategy is required for reliable and efficient operation of a microgrid

system with multiple DGs, particularly in the islanded mode of operation [171]. The main

function of PMS is to maintain an optimal operating point for the microgrid. PMS assigns the

active and reactive power setpoints for the DGs to (i) properly share the real and reactive power

among the DGs based on a cost function associated with each DG, a market signal [126], power

rate of DGs, etc., (ii) appropriately respond to the microgrid disturbances and major changes

[172], (iii) balance the microgrid power, and (iv) provide the resynchronization of the microgrid

system with the main grid, if required [172]. The setpoints are then transmitted to the local

controllers of the DGs. The local controllers measure the voltage at their corresponding PCC

or the active/reactive output power of their own DG and then enable the voltage tracking

according to the received reference setpoints [129].
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7.3.2 Frequency Control

The frequency of the microgrid system is controlled in open-loop. To this end, each DG

includes an oscillator which generates θ(t ) =∫t
0 ω0dτ, where ω0 = 2π f0 and f0 is the nominal

frequency of the microgrid. All DGs are then synchronized by a global synchronization signal

that is communicated to the oscillators of DGs through a global positioning system (GPS)

[126]. The global phase-angle is employed for dq/abc (abc/dq) transformations.

7.3.3 Voltage Control

The voltage setpoints are communicated from PMS to the local controllers of the DGs and

transformed to the dq-frame based on the phase-angle signal θ(t) generated by their inter-

nal oscillator. The main objective is to develop a robust voltage controller for the islanded

operation of the inverter-interfaced microgrids with load parameter uncertainties given in

(7.14).

7.4 Robust Fixed-structure Voltage Control

A fixed-structure voltage controller for the islanded microgrid system whose dynamical equa-

tions are given in (7.11)-(7.13) with polytopic-type uncertainty in (7.14) is sought to satisfy the

following performance criteria:

• The closed-loop system must be asymptotically stable for the whole polytope.

• The closed-loop polytopic system should be able to asymptotically track all step voltage

reference signals
(
yr e f (t )

)
.

• The closed-loop response to step voltage reference signals should be fast within about

two/three cycles of f0 = 60 Hz with small overshoot for all values of the load parameters

within the prespecified uncertainty.

• Each local controller uses the minimum information exchange and communication

among DGs and their local controllers.

• The local controllers are structurally simple (low-order control design).

• The coupling among the output channels should be small.

To achieve all above mentioned conditions, in following, a fixed-order Two-Degree-of-Freedom

(2DOF) sparse controller with integral action is designed. The dynamics of the controller K (s)
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are given by:

ẋc (t ) = Ac xc (t )+
[

Bc1 Bc2

][ y(t )

yr e f (t )

]

u(t ) =Cc xc (t )+
[

Dc1 Dc2

][ y(t )

yr e f (t )

] (7.15)

where xc (t) is the states of the controller and matrices Ac , Bc1 , Bc2 , Cc , Dc1 , and Dc2 are of

appropriate dimensions. The transfer functions of the feedback and feedforward controllers

K f b(s) and K f f (s) are respectively given by:

K f b(s) =Cc
(
sI − Ac

)−1Bc1 +Dc1

K f f (s) =Cc
(
sI − Ac

)−1Bc2 +Dc2

(7.16)

The 2DOF controller is a solution of the following optimization problem:

min
Ac ,Bc1 ,Bc2 ,Cc ,Dc1 ,Dc2

μ+α‖W ∗Z (K )‖1

subject to ‖WsS(λ)‖2
∞ <μ

(7.17)

where Z (K ) is defined in (5.28). Transfer functions S(λ) = (
I +G(λ)K

)−1 and Ws are sensitivity

function and a weighting filter designed based on the desired time-domain performance [1].

The positive scalar α characterizes the emphasis on the tracking dynamics and the sparsity of

the controller architecture.

The weighting filter Ws is responsible to shape the sensitivity function S and provides the
desired performance characteristics of the closed-loop system. A common choice of Ws is
given as follows [1, 69]:

Ws (s) = diag

⎛
⎜⎜⎝
⎡
⎢⎢⎣

s
Msi

+ω∗
Bi

s+ω∗
Bi

εi
0

0
s

Msi
+ω∗

Bi
s+ω∗

Bi
εi

⎤
⎥⎥⎦
⎞
⎟⎟⎠ (7.18)

where ω∗
Bi

is approximately the desired closed-loop bandwidth, εi is the maximum tracking
steady state error, and Msi ≥ 1 is the maximum peak value of S. The choice of εi << 1 ensures
approximate integral action S(0) ≈ 0 [69]. A large value of ω∗

Bi
leads to a faster response for

output i . However, there always exists a trade-off between the speed of the closed-loop system
response and the sensitivity of the closed-loop system with respect to the measurement noise.
Therefore, to have an acceptable dynamic response of the microgrid system in terms of step
signal tracking and robustness to the measurement noise, the parameters of the weighting
filter Ws(s) are selected as follows:

ω∗
Bi

= 30, Msi = 1.5, εi = 3.33e −4 (7.19)
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Figure 7.3: Experimental setup: (A) load resistance, (B) load inductance, (C) load capacitance,
(D) three-phase converter and gating signal generator, and (E) OPAL-RT.

ω∗
Bi

= 30 is chosen to have a rise-time of about tr ≈ 30 ms (two cycles of f0) which is one of

the controller design requirements, Msi = 1.5 is chosen to have a damping ratio of ξ≈ 0.48

(equal to an overshoot of Mp = 18%), and εi = 3.33e − 4 is chosen to obtain ω∗
Bi
εi ≈ 0.01

which indicates that the pole of the low-pass filter Ws(s) which should be much less than the

closed-loop bandwidth.

7.5 Simulation and Experimental Results

In this section, the proposed fixed-structure control design techniques in Chapter 3 and

Chapter 5 are utilized to design a robust voltage controller for the islanded inverter-interfaced

microgrid in Fig. 7.1. The performance of the designed controllers is then verified by a set of

comprehensive simulation studies and is validated by means of experiments.

7.5.1 Scenario 1: Single-DG Microgrid

For the sake of simplicity, first we consider a single-DG microgrid system which supplies a

three-phase parallel RLC network whose parameters are given in Table 7.1. It is assumed

that the load resistance R1 can vary within ±80% of its nominal value (Rnom). Moreover, the

load parameters L1 and Ct1 are assumed to be bounded in the intervals
[
0.5,1.5

]×Lnom and

[0.5,1.5]×Cnom , respectively, where Lnom and Cnom are their nominal values. Therefore, the

RLC load parameter uncertainties build a polytope with q = 23 vertices.
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Table 7.1: Parameters of islanded single-DG microgrid

Filter parameters Rt = 37.7mΩ, Lt = 5mH
DC bus voltage Vdc = 340V

VSC rated power SV SC = 10K V A
PWM carrier frequency fsw = 10K H z

Load nominal resistance Rnom = 23Ω
Load nominal inductance Lnom = 5mH
Load nominal capacitance Cnom = 850μF

Inductor quality factor ql = 120
System nominal frequency f0 = 60H z (ω0 = 2π f0)

The frequency of the islanded microgrid is controlled through an internal oscillator in the

open-loop manner with ω0 = 2π f0. To design the 2DOF voltage controller, we impose a

restriction that the feedback part of the controller
(
K f b(s)

)
is first designed to guarantee

the robust stability while the feedforward controller K f f (s) is then designed for the robust

performance of the closed-loop system in the presence of load parameter uncertainties.

According to the fixed-structure stabilizing controller design procedure given in Algorithm
I in Subsection 3.5.1, first, eight initial sixth-order controllers with integrators are designed
using FDRC Toolbox [151] for eight vertices of the polytope. Then, using the initial controllers
and the set of LMIs in (3.32), the slack matrices M and T are determined. In the next step, the
feedback controller is determined by solving the set of LMIs given in (3.20). The parameters of
the resulting robust sixth-order feedback controller are as follows:

Ac =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 114.187 200.576 0 −3.384e3 2.687e3

0 −1.281e4 8.110e3 0 −7.561e3 5.674e3

0 964.293 −1.227e4 0 −2.328e3 1.779e3

0 1.495e3 −1.003e3 0 560.633 −321.734

0 −1.581e3 2.471e3 0 −3.086e4 2.430e4

0 −6.624e3 4.181e3 0 −4.259e3 −7.559e3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bc1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.96 −10.813

−190.697 −7.335

−1.278e3 −23.570

20.591 −15.528

46.662 −92.329

−55.562 −1.354e3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Cc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

14.552 25.395

−1.387e3 53.608

957.818 154.008

−22.352 17.363

−1.119e3 −2.948e3

793.861 2.359e3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Dc1 =
[

−20.298 −4.549

7.979 −11.005

]

(7.20)

The parameters of feedforward controller
(
Bc2 ,Dc2

)
are determined by solving the following
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convex optimization problem and fixing the matrices Ai , i = 1, . . . , q , C , and D .

min
Pi ,Bc2 ,Dc2 ,M ,X ,μ

μ

subject to

⎡
⎢⎢⎢⎢⎣

Pi AT
i + Ai Pi Pi +M − Ai X B Pi C T

Pi +M T −X AT
i −2X 0 0

B T 0 −I DT

C Pi 0 D −μI

⎤
⎥⎥⎥⎥⎦< 0

Pi = P T
i > 0; i = 1, . . . , q

(7.21)

where

Ai =
[

Ai
g +Bg Dc1Cg Bg Cc

Bc1Cg Ac

]
, B =

[
Bg Dc2

Bc2

]

C =
[

Cg 0
]

, D = 0

(7.22)

The resulting feedforward controller is:

Bc2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

20.817 3.304

48.723 −34.250

28.047 2.704

−11.663 29.727

−24.629 1.592

13.016 51.422

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Dc2 =
[

6.238 −5.233

−1.149 1.927

]
(7.23)

The designed 2DOF voltage controller guarantees the robust stability as well as the robust

performance criterion ‖WsS(λ)‖∞ < 1.087 in spite of the prespecified load parameter uncer-

tainties. Moreover, the controller provides the asymptotic tracking of all step voltage reference

signals.

Experimental Results: The performance of the designed robust H∞ voltage controller in (7.20)

and (7.23) is validated by means of an experimental test system with the parameters given

in Table 7.1. The experiment has been carried out at the Electrical Engineering Department,

Ecole Polytechnique de Montreal, Montreal, QC, Canada and implemented in the RT-LAB

real-time platform of OPAL-RT Technologies1.

A photo of the laboratory experimental setup is shown in Fig. 7.3 which includes OPAL-RT,

three-phase two-level converter, and three-phase RLC load. The performance of the control

system is validated using several tests including voltage tracking and sudden changes in the

load parameters. In all case studies, the system is assumed balanced and operates in the

islanded mode.

The first test demonstrates the capability of the designed controller in voltage reference signal

1www.opal-rt.com
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Figure 7.4: Experimental and simulation results of the islanded microgrid in voltage tracking (a)
d-component of the load voltage, (b) q-component of the load voltage, and (c) instantaneous
load voltages

tracking. The d-component of the voltage reference is stepped down to 0.686 pu at t = 0.28s

and then the q-component of the reference voltage is suddenly changed from 0.5145 pu to

0.1715 pu at t = 0.743s. The experimental and simulation results of the islanded microgrid

system due to these step changes in the load reference signals are shown in Fig. 7.4. The

results demonstrate that the proposed controller can regulate the load voltages with good

tracking performance. Moreover, Fig. 7.4 shows that the simulation results are very close

to the experimental data. However, in the experimental results some ripples and delays are

observed in the load voltages due to non-idealities of the DC source and the dynamics and

switching harmonics of the PWM-based voltage-source converter. The differences between the

simulation and experimental results arise from the fact that the dynamics of the PWM-based

voltage-source converter have not been considered in the simulations. However, note that the

amount of ripples in the experimental results is acceptable according to IEEE standards [173].

Moreover, the effects of the ripples are negligible in the instantaneous load voltages at PCC

(Fig. 7.4, part (c)).

In the second test, the proposed voltage controller regulates the d and q components of the

load voltages at 0.8 pu and 0.6 pu, respectively. The load inductance and load capacitance

128



7.5. Simulation and Experimental Results

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.4

0.6

0.8

1
 V

i,d
q
 (

p
u

)
 (a)

 

 
 V

i,d

 V
i,q

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.2

0.4

 V
ti

,d
q
(p

u
)

 (b)

 

 
 V

ti,d

 V
ti,q

0.15 0.2 0.25 0.3 0.35
−1

0

1

 V
i (

p
u

)

 Time (s)

 (c)

 

 

 v
a

 v
b

 v
c

Figure 7.5: Dynamic responses of the experimental test system due to a resistive load change
(a) d q-components of the load voltage, (b) control inputs, and (c) instantaneous load voltages

are also fixed at their nominal values, as given in Table 7.1. The load resistances in the

three phases are equally stepped down from 5 lamps to no lamp (Δ configuration) at about

t = 200ms. Fig. 7.5 shows the dynamical response of the test system due to this resistive load

change.

In the third test, the d and q components of the load voltages are set at 0.93 pu and 0.37 pu,

respectively. While the load resistances and the load capacitances are fixed at their nominal

values, the load inductances in the three phases are suddenly stepped up from 5mH to 25mH .

Then, they suddenly decrease to 5mH at about t = 0.5s. The dynamic response of the system

for the second load inductance change is shown in Fig. 7.6.

In the last test, a change in the load capacitance is considered. To this end, the load capaci-

tances in the three-phases are suddenly changed from the nominal value 850μF to 1700μF at

about t = 1.1s, while the load resistances and the load inductances are set based on the values

given in Table 7.1. The dynamic response of the test system is depicted in Fig. 7.7.

Fig. 7.5 and Fig. 7.6 demonstrate that in spite of the large variations in the load resistance and

the load inductance, the controller successfully regulates the load voltage with small transients
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Table 7.2: Parameters of the islanded microgrid system with three DGs

Parameters of RL filter 1 Rt1 = 1mΩ, Lt1 = 137.271μH
Parameters of RL filter 2 Rt2 = 1.4mΩ, Lt2 = 183.028μH
Parameters of RL filter 3 Rt3 = 2.1mΩ, Lt3 = 274.542μH

DC bus voltages Vdc = 1500V
VSC terminal voltage (line-line) VV SC = 600V

Transformer parameters XT = 8%
Transformer voltage ratio k = 0.6/13.8K V (Δ/Y )
Parameters of RLC load 1 R1 = 350Ω, Ct1 = 60μF

(nominal values) L1 = 0.11H , Rl1 = 2Ω
Parameters of RLC load 2 R2 = 375Ω, Ct2 = 65μF

(nominal values) L2 = 0.1mH , Rl2 = 2Ω
Parameters of RLC load 3 R3 = 400Ω, Ct3 = 55μF

(nominal values) L3 = 0.12mH , Rl3 = 2Ω
System nominal frequency f0 = 60H z

Parameters of line 1 R12 = 3.35Ω, L12 = 2.97mH
Parameters of line 2 R23 = 5.025Ω, L23 = 4.5mH

in the responses. Fig. 7.7 also indicates that the controller adjusts the load voltages within

about two cycles. Therefore, the obtained results confirm that the controller is robust with

respect to the load parameter uncertainties. In addition, the coupling between the output

signals is small.

The experimental results show that the proposed voltage controller provides satisfactory

dynamic performance in terms of voltage tracking and robustness to load parameter variations

according to IEEE standards [173].

7.5.2 Scenario 2: Three-DG Microgrid

In the second scenario, an islanded microgrid consisting of three DGs with the voltage rating

of 0.6 kV and power ratings of 1.6 MVA, 1.2 MVA, and 0.8 MVA is considered. The values and

the definition of the parameters are provided in Table 7.2.

It is assumed that the load resistances Ri and inductances Li , i = 1,2,3 are uncertain up to

±20% of their nominal values given in Table 7.2. Therefore, the uncertainty in this system is in

the form of a polytope built by q = 26 vertices.

The proposed fixed-structure H∞ control method with minimum communication links in

Chapter 5 is used to design a controller for the islanded microgrid consisting of 3 DGs. The

final controller is resulted from the following hierarchy of issues:

• Initial centralized controllers are designed using FDRC Toolbox [151] for each vertex of

the polytope.
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Figure 7.6: Dynamic responses of the experimental test system due to an inductive load change
(a) d q-components of the load voltage, (b) control inputs, and (c) instantaneous load voltages
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Figure 7.7: Dynamic responses of the experimental test system due to a capacitive load change
(a) d q-components of the load voltage, (b) control inputs, and (c) instantaneous load voltages
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Figure 7.8: Number of communication link in the feedback controller versus the iteration
number

• To ensure the integral action of the controller, the controller must have six poles at zero.

Therefore, one can simply consider six columns/rows of matrix Ac to be identically

equal to zero (one integrator for each output loop).

• The feedback term of the controller is first designed such that the closed-loop system is

robustly stable and its spectral abscissa (β) is minimized.

• The feedforward term of the controller is then designed such that ‖WsS(λ)‖∞ is mini-

mized.

• The parameters of Algorithm IV given in Subsection 5.3.3 are set as follows: ε= 1e−10

and α= 1.

• LMI-based optimization problems are solved using YALMIP [146] as the interface and

MOSEK as the solver.

After 20 iterations, some control structures are obtained. Fig. 7.8 shows the number of com-
munication links of the feedback controller versus the iteration numbers. The resulting
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Figure 7.9: Reference setpoint tracking of DG 1: (a) d-component of the load voltage at PCC 1,
(b) q-component of the load voltage at PCC 1, (c) d-component of the control signal of DG 1,
(d) q-component of the control signal of DG 1, and (e) instantaneous load voltages at PCC 1

decentralized controller in the 20th iteration is given as follows:

Ac = diag

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

0 9.08e2 0 −1.07e2

0 −1.885e4 0 1.65e3

0 1.068e2 0 9.079e2

0 −1.65e3 0 −1.885e4

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

0 2.787e2 0 −1.122e1

0 −4.53e3 0 1.096e3

0 8.99e0 0 2.787e2

0 −1.064e3 0 −4.526e3

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

0 9.74e2 0 −1.17e2

0 −1.84e4 0 1.012e3

0 1.167e2 0 9.74e2

0 −1.0117e3 0 −1.839e4

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

Bc1 = diag

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

3.24e2 3.23e1

−3.217e3 −3.6157e3

−3.0583e1 3.227e2

3.618e3 −3.158e3

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

−1.518e2 7.034e2

5.711e3 −1.1076e4

−7.0023e2 −1.577e2

1.101e4 5.8155e3

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

3.066e2 1.8206e2

1.206e3 −5.15e3

−1.832e2 3.052e2

5.16e3 1.2445e3

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

Cc = diag

⎛
⎜⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

4.9264 2.58

2.2890 3.926

−2.5786 4.926

−3.9323 2.287

⎤
⎥⎥⎥⎦

T

,

⎡
⎢⎢⎢⎣

8.0376 3.368

−5.73 6.8521

−3.3725 8.0425

−6.82 −5.776

⎤
⎥⎥⎥⎦

T

,

⎡
⎢⎢⎢⎣

5.532 4.6948

−3.081 8.642

−4.6955 5.516

−8.6424 −3.0794

⎤
⎥⎥⎥⎦

T ⎞
⎟⎟⎟⎟⎠

Dc1 = diag

([
6.8763 −9.899e −1

1.0153 6.871

]
,

[
2.9976e1 −2.243

2.3468 3.0213e1

]
,

[
1.728e1 −1.156

1.163 1.7314e1

])

(7.24)
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Figure 7.10: Reference setpoint tracking of DG 2: (a) d-component of the load voltage at PCC
2, (b) q-component of the load voltage at PCC 2, (c) d-component of the control signal of DG
2, (d) q-component of the control signal of DG 2, and (e) instantaneous load voltages at PCC 2

The above controller provides the spectral abscissa β=−4.9219. The decentralized feedfor-
ward term of the controller is resulted after 2 iterations:

Bc2 = diag

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

162.22 −138.43

27.298 15.629

140.24 163.68

−15.459 27.16

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

315.49 117.7

−27.581 60.459

−117.98 317.01

−59.828 −28.427

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

351.9 −96.812

18.278 19.767

96.12 352.65

−19.944 18.106

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

Dc2 = diag

([
0.085 −0.014

0.013 0.086

]
,

[
0.010 −0.336

0.335 0.007

]
,

[
0.367 −0.009

0.008 0.369

]) (7.25)

The 2DOF feedback-feedforward controller guarantees the robust stability as well as the robust

performance criterion ‖WsS(λ)‖∞ < 1.547 for the whole polytope.

Simulation Results: To evaluate the performance of the designed controller, we consider the

capability of the nominal system in voltage setpoint tracking of each DGs. We assume that

the load voltages at PCCs are initially regulated at 1∠0°. Then, the output power of DG 2

varies due to a change in its local load. Since all three DGs contribute to compensate the

134



7.6. Conclusion

1.45 1.5 1.55 1.6 1.65
0.995

1

1.005
 V

3,
d
(p

u
)

 (a)

1.45 1.5 1.55 1.6 1.65
−5

0

5
x 10

−3

 V
3,

q
(p

u
)

 (b)

1.45 1.5 1.55 1.6 1.65
0.7

0.72

0.74

 V
t3

,d
(p

u
)

 (c)

1.45 1.5 1.55 1.6 1.65
0.115

0.12

0.125

0.13

 V
t3

,q
(p

u
)

 (d)

1.45 1.5 1.55 1.6 1.65
−1

0

1

 Time (s)

 V
3(p

u
)

 (e)

Figure 7.11: Reference setpoint tracking of DG 3: (a) d-component of the load voltage at PCC
3, (b) q-component of the load voltage at PCC 3, (c) d-component of the control signal of DG
3, (d) q-component of the control signal of DG 3, and (e) instantaneous load voltages at PCC 3

total power demand, the PMS determines the following new setpoints for each DG at t = 1.5s:

V1,d qr e f = 1.01∠0.14°, V2,d qr e f = 1∠0°, and V3,d qr e f = 1∠−0.06°. Fig. 7.9, Fig. 7.10, and Fig. 7.11

show the transient response of each DG due to the setpoint change. The results demonstrate

that the proposed controller provides satisfactory dynamic performance according to IEEE

standards [173].

Remark. Two-stage 2DOF control design restricts the achievable performance compared to a

simultaneous design [69]. However, due to the size of system and number of vertices in the

microgrid case study, SDP solvers encounter numerical problems in the design of one-stage

2DOF H∞ control through the convex optimization problem in (5.34). Therefore, the 2DOF

decentralized voltage controller for the microgrid system is designed in two steps.

7.6 Conclusion

This chapter presents a control strategy for autonomous inverter-interfaced microgrids com-

posed of distributed generation units with radial configuration. It mainly consists of three
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parts: a power management system (PMS), an open-loop frequency control and a synchro-

nization scheme, and local voltage controllers. The power management system assigns the

terminal voltage setpoints for DGs according to a classical power flow analysis. Frequency of

the microgrid is controlled in an open-loop manner by the use of an internal oscillator for each

DG which also generates the phase-angle waveform θ(t ) required for dq/abc (abc/dq) transfor-

mations. Synchronization of DGs is achieved by exploiting a GPS-based time-reference signal.

The local voltage controller of each DG, which is the main focus of the chapter, is designed

through the proposed results in Chapter 3 and Chapter 5.

The prominent features of the proposed control strategy are severalfold: (i) The PMS precisely

controls power flow of the system and achieves a prescribed load sharing among the DGs,

(ii) Local controllers provide voltage tracking with fast transient time and small overshoot,

(iii) Local controllers are robust to load parameter uncertainties, (iv) Local controllers are

implemented in a decentralized manner which obviates the need for a high-bandwidth com-

munication and information exchange among the local controllers of DGs, (v) Local controllers

are low-order and structurally simple, and (vi) frequency of the microgrid system is fixed and

cannot deviate due to transients.

The effectiveness of the proposed control technique is evaluated through some simulation

studies in MATLAB and some Hardware-In-the-Loop (HIL) verifications. The simulation and

experimental results demonstrate satisfactory dynamic performance of the islanded microgrid

system in terms of load voltage regulation and robustness to step changes in linear loads.

The proposed voltage control approach in this chapter cannot cope with challenging problem

of plug-and-play (PnP) functionality of DGs. Under plug-in/-out operation, the proposed

control strategy, which relies on the microgrid model, needs to retune the local controllers in

order to guarantee the stability of the new system. In the next chapter, a decentralized voltage

control technique is developed which enables PnP operations of DGs. The controller is robust

with respect to PnP functionality and does not require to retune the local controllers when a

DG is plugged in/out.
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8 Voltage Control of Islanded Micro-
grids with General Topology

8.1 Introduction

A challenging problem in the context of inverter-interfaced microgrids is plug-and-play (PnP)

functionality of DGs. DGs frequently join and leave power generation systems due to avail-

ability and intermittency of renewable energies, such as solar power and wind, an increase

in energy demand, faults, converter failure, maintenance, etc. Under plug-in/-out feature of

DGs, the topology of the microgrid system is changed and the main objective is to preserve

the stability of the new system.

The main advantage of the droop-based control strategy is the elimination of the communica-

tion links among droop controllers enabling the plug-and-play operation of DGs. Nonetheless,

the droop-based approaches suffer from several drawbacks including poor transient perfor-

mance, load-dependent frequency/voltage deviation, and coupled dynamics between active

and reactive power. Moreover, the main assumption about the droop controllers is that the

transmission lines are purely inductive or resistive [9]. Therefore, in the case of resistive-

inductive line conditions (mixed lines) and in the presence of conductances, the classical

droop control laws cannot achieve an efficient power sharing due to the coupled active and

reactive power characteristics of the power systems [111].

Under PnP functionality of DGs, non-droop-based controllers, which rely on the system

model, need to retune their local controllers in order to guarantee the stability of the new

system. Recently, a decentralized control strategy has been developed in [130, 131] which

is based on a Quasi-Stationary Line (QSL) approximate model of microgrids [174] and the

idea of neutral interactions [175]. According to this control technique, when a DG is plugged

in and/or plugged out, the other DGs which are physically connected to it have to retune

their local controllers. Although the control strategy almost bridges the gap between the

existing droop and non-droop-based controllers, the problem of non-droop-based control of

the inverter-interfaced microgrids enabling the PnP functionality of DGs without a need for

retuning their local controllers can still benefit from further research.
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This chapter focuses on the design of a decentralized voltage controller for the islanded

inverter-interfaced microgrids with general topology. The microgrid system consists of differ-

ent local loads and several DGs. It is also expected that some of DGs can be arbitrarily plugged

in or plugged out from the microgrid system. The main objective is to preserve the voltage

stability at the PCCs in a decentralized manner, i.e. with no communication links among the

local controllers of DGs. To this end, a decentralized voltage controller is developed. Similar

to [131], the proposed method relies on the Quasi-Stationary Line (QSL) approximate model

of microgrids and the concept of neutral interactions. The main contribution of this chapter is

that the proposed controller is robust to PnP operation of DGs; therefore, the plug-in and/or

plug-out operation of DGs do not affect the stability of the microgrid system. To this end, all

possible connections and disconnections of DGs to a DG are considered as polytopic-type

uncertainty. Then, a robust controller is designed for the microgrid system subject to the

polytopic uncertainty.

In summary, the proposed control technique is able to overcome the limitations of existing

droop-based controllers which are only appropriate for microgrids with dominantly inductive

and/or resistive power lines. Furthermore, opposed to most non-droop-based control meth-

ods, e.g. [126, 129–131], the present approach does not require to retune the local controllers

when a DG is plugged in/out.

The organization of the chapter is as follows: The mathematical model of the microgrid is

presented in Section 8.2. The problem of decentralized voltage controller design is proposed

in Section 8.3. A solution for the problem of plug-and-play operation of DGs in the microgrids

is given in Section 8.4. Section 8.5 is devoted to simulation results. Section 8.6 concludes the

chapter.

Throughout the chapter, matrices I and 0 are the identity matrix and the zero matrix of

appropriate dimensions, respectively. The symbols T and � denote the matrix transpose

and a symmetric block, respectively. Signals Xd and Xq are the d and q components of

the three-phase signal X , respectively. For symmetric matrices, P > 0 (P < 0) indicates the

positive-definiteness (the negative-definiteness).

8.2 Islanded Microgrid Model

Consider an islanded microgrid with general structure consisting of N DGs. Each DG is mod-

eled as a DC voltage source, a voltage-source converter (VSC), a series RL filter, a step-up

transformer with transformation ratio ki , a shunt capacitor, and a local load whose topology

and parameters are unknown. It is assumed that DG i is connected to a set of Ni ⊂ {1, . . . , N }

DGs. The schematic diagram of a microgrid system of two DGs i , j connected through a trans-

mission line i j is shown in Fig. 8.1. In this figure, Vi , Iti , ILi , Vti , and Ii j are the load voltage at

PCC i , the filter current, the load current, the VSC terminal voltage, and the transmission line

current, respectively. The islanded system is described by the following dynamical equations
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VSC i
Rti Lti

Cti

Vdc

Load

ILi

ItiVti Vi PCCi

Rij

Lij

Vdc VSC j
Rtj Ltj

Ctj Load

ILj

ItjVtj Vj

PCCj

DG i

DG j

Line ij

Iij

Figure 8.1: Electrical scheme of two DGs connected via line i j

in dq-frame:

DG i

{ dVi ,d q

d t + jω0Vi ,d q = ki
Cti

It i ,d q − 1
Cti

ILi ,d q + 1
Cti

Ii j ,d q
d Iti ,d q

d t + jω0Iti ,d q =− ki
Lti

Vi ,d q − Rti
Lti

It i ,d q + 1
Lti

Vti ,d q

(8.1)

DG j

⎧⎨
⎩

dVj ,d q

d t + jω0Vj ,d q = k j

Ct j
It j ,d q − 1

Ct j
IL j ,d q − 1

Ct j
Ii j ,d q

d It j ,d q

d t + jω0It j ,d q =− k j

Lt j
Vj ,d q − Rt j

Lt j
It j ,d q + 1

Lt j
Vt j ,d q

(8.2)

Line ij:
d Ii j ,d q

d t + jω0Ii j ,d q =−Ri j

Li j
Ii j ,d q + 1

Li j
Vj ,d q − 1

Li j
Vi ,d q (8.3)

where
(
Vi ,d q ,Vj ,d q

)
,
(
Iti ,d q , It j ,d q

)
,
(
ILi ,d q , IL j ,d q

)
,
(
Vti ,d q ,Vt j ,d q

)
, and Ii j ,d q respectively are

the dq components of the load voltages at PCCs, the current filters, the load currents, the VSC

terminal voltages, and the transmission line current. It should be noted that in this study the

dynamics of the renewable energy sources are not considered and they are just modeled by an

ideal voltage source.

Under the assumption of the Quasi-Stationary Line (QSL) [174], i.e.
d Ii j ,d q

d t = 0, the islanded

microgrid system is described in the following state space framework:

ẋgi = Agi i xgi + Agi j xg j +Bgi ui +Bwi wi

yi =Cgi xgi ; i = 1, . . . , N
(8.4)
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where xgi =
[

Vi ,d Vi ,q Iti ,d Iti ,q

]T
is the state, ui =

[
Vti ,d Vti ,q

]T
is the input, wi =[

ILi ,d ILi ,q

]T
is the exogenous input, and yi =

[
Vi ,d Vi ,q

]T
is the output of DG i . The

state space matrices are given as follows [131]:

Agi i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Cti

∑
j∈Ni

Ri j

Z 2
i j

ω0 − 1
Cti

∑
j∈Ni

Xi j

Z 2
i j

ki
Cti

0

−ω0 + 1
Cti

∑
j∈Ni

Xi j

Z 2
i j

− 1
Cti

∑
j∈Ni

Ri j

Z 2
i j

0 ki
Cti

− ki
Lti

0 −Rti
Lti

ω0

0 − ki
Lti

−ω0 −Rti
Lti

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Agi j =
1

Cti

⎡
⎢⎢⎢⎢⎢⎣

Ri j

Z 2
i j

Xi j

Z 2
i j

0 0

− Xi j

Z 2
i j

Ri j

Z 2
i j

0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

Bgi =

⎡
⎢⎢⎢⎢⎣

0 0

0 0
1

Lti
0

0 1
Lti

⎤
⎥⎥⎥⎥⎦ , Bwi =

⎡
⎢⎢⎢⎢⎣

− 1
Cti

0

0 − 1
Cti

0 0

0 0

⎤
⎥⎥⎥⎥⎦

Cgi =
[

1 0 0 0

0 1 0 0

]

(8.5)

where ω0 = 2π f0 ( f0 is the nominal frequency of the microgrid), Xi j = ω0Li j , and Z 2
i j =

R2
i j +ω2

0L2
i j . The dynamics of the transmission lines are described by the following equations:

ẋl ,i j = All ,i j xl ,i j + Ali ,i j xgi + Al j ,i j xg j (8.6)

for i = 1,2, . . . , N , j ∈ Ni , i 
= j , where

xl ,i j =
[

Ii j ,d Ii j ,q

]T
(8.7)

and

Ali ,i j =
[ − 1

Li j
0 0 0

0 − 1
Li j

0 0

]

Al j ,i j =
[ 1

Li j
0 0 0

0 1
Li j

0 0

]

All ,i j =
⎡
⎣ −Ri j

Li j
ω0

−ω0 −Ri j

Li j

⎤
⎦

(8.8)
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The overall microgrid system in Fig. 8.1. is modelled as follows:⎡
⎢⎢⎢⎢⎣

ẋgi

ẋg j

ẋl ,i j

ẋl , j i

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

Agi i Agi j 0 0

Ag j i Ag j j 0 0

Ali ,i j Al j ,i j Al l ,i j 0

Ali , j i Al j , j i 0 All , j i

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ai j

⎡
⎢⎢⎢⎢⎣

xgi

xg j

xl ,i j

xl , j i

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

Bgi 0

0 Bg j

0 0

0 0

⎤
⎥⎥⎥⎥⎦
[

ui

u j

]

+

⎡
⎢⎢⎢⎢⎣

Bwi 0

0 Bw j

0 0

0 0

⎤
⎥⎥⎥⎥⎦
[

wi

w j

]

[
yi

y j

]
=
[

Cgi 0 0 0

0 Cg j 0 0

]⎡⎢⎢⎢⎢⎣
xgi

xg j

xl ,i j

xl , j i

⎤
⎥⎥⎥⎥⎦

(8.9)

It should be noted that due to block triangular structure of matrix Ai j and stability of All ,i j =
All , j i , the stability of the following system leads to stability of (8.9).

[
ẋgi

ẋg j

]
=
[

Agi i Agi j

Ag j i Ag j j

][
xgi

xg j

]
+
[

Bgi 0

0 Bg j

][
ui

u j

]
+
[

Bwi 0

0 Bw j

][
wi

w j

]
[

yi

y j

]
=
[

Cgi 0

0 Cg j

][
xgi

xg j

] (8.10)

Therefore, in what follows, we consider the dynamics of DGs interconnected through the QSL

model given in (8.4)-(8.5).
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8.2.1 QSL-based Model of Islanded Microgrids with N DGs

In a similar way, the overall model of the islanded microgrid system of N DGs can be described

in the state space framework as follows:

⎡
⎢⎢⎢⎢⎣

ẋg1

ẋg2

...

ẋgN

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

Ag11 Ag12 · · · Ag1N

Ag21 Ag22 · · · Ag2N

...
...

. . .
...

AgN 1 AgN 2 · · · AgN N

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

xg1

xg2

...

xgN

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

Bg1 0 · · · 0

0 Bg2 · · · 0
...

...
. . .

...

0 0 · · · BgN

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1

u2
...

uN

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

Bw1 0 · · · 0

0 Bw2 · · · 0
...

...
. . .

...

0 0 · · · BwN

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

w1

w2
...

wN

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y1

y2
...

yN

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

Cg1 0 · · · 0

0 Cg2 · · · 0
...

...
. . .

...

0 0 · · · CgN

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

xg1

xg2

...

xgN

⎤
⎥⎥⎥⎥⎦

(8.11)

where matrices Agi i , Agi j , Bgi , Bwi , and Cgi (for i , j = 1,2, . . . , N ) are defined in (8.5). Matrix

Agi j = 0 if and only if there exists no connection between DG i and DG j . The frequency of the

microgrid system is controlled via the approach explained in Chapter 7, Section 7.3.2.

8.3 Decentralized Voltage Control of Islanded Microgrids

This section focuses on the development of a voltage control strategy for autonomous mi-

crogrids. It can be applied to the microgrids with different types of configuration. The main

emphasis is given to decentralized voltage control techniques which do not use any communi-

cation links.

8.3.1 Design Requirements

A dq-based voltage controller for the islanded inverter-interfaced microgrid described in (8.11)

is sought such that the following conditions are met:

• The controller has a fully decentralized structure.

• The closed-loop system is asymptotically stable.

• The closed-loop system asymptotically tracks all voltage reference signals yr e f i
with

desired time-domain performance.
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In the following, a decentralized voltage controller with integral action is developed in order

to achieve the mentioned conditions.

8.3.2 Decentralized Voltage Controllers

One of the control requirements is that DGs must track reference voltage signals yr e f i
. To this

end, each DG is augmented with an integrator whose dynamics are as follows:

v̇i = yr e f i
− yi

= yr e f i
−Cgi xgi

(8.12)

Therefore, the augmented DG system is described by:

˙̂xgi = Âgi i x̂gi +
∑

j∈Ni

Âgi j x̂g j + B̂gi ui + B̂wi ŵi

ŷi = Ĉgi x̂gi

(8.13)

where x̂gi =
[

xT
gi

vT
i

]T
, ŷi =

[
yT

i vT
i

]T
, ŵi =

[
wT

i yT
r e f i

]T
, and

Âgi i =
[

Agi i 0

−Cgi 0

]
, Âgi j =

[
Agi j 0

0 0

]

B̂gi =
[

Bgi

0

]
, B̂wi =

[
Bwi 0

0 I

]

Ĉgi =
[

Cgi 0

0 I

]
(8.14)

The remaining of this subsection belong to the design of decentralized voltage controllers Ki

with the following control laws:

ui (t ) = Ki x̂gi (t ); i = 1,2, . . . , N (8.15)

The closed-loop dynamics of the i th augmented subsystem with the local controller Ki are

described as follows:

˙̂xgi (t ) = (
Âgi i + B̂gi Ki

)
x̂gi (t )+ ∑

j∈Ni

Âgi j x̂g j (t )+ B̂wi ŵi (t )

ŷi (t ) = Ĉgi x̂gi (t )
(8.16)

The overall closed-loop system is presented as follows:

˙̂x(t ) = (
Â+ B̂K

)
x̂ + B̂w ŵ(t )

ŷ(t ) = Ĉ x̂(t )
(8.17)
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where x̂ = [
x̂T

g1
. . . x̂T

gN

]T , ŵ = [
ŵT

1 . . . ŵT
N

]T , ŷ = [
ŷT

1 . . . ŷT
N

]T , ẑ = [
ẑT

1 . . . ẑT
N

]T , and

Â =

⎡
⎢⎢⎢⎢⎣

Âg11 Âg12 · · · Âg1N

Âg21 Âg22 · · · Âg2N

...
...

. . .
...

ÂgN 1 ÂgN 2 · · · ÂgN N

⎤
⎥⎥⎥⎥⎦

B̂ = diag
(
B̂g1 , . . . , B̂gN

)
B̂w = diag

(
B̂w1 , . . . , B̂wN

)
Ĉ = diag

(
Ĉg1 , . . . ,ĈgN

)
K = diag(K1, . . . ,KN )

(8.18)

The state feedback controller is designed via the following theorem which is based on the use

of slack variables [176].

Theorem 19. There exists a state feedback controller K which stabilizes an open-loop system

G(s) = (
Â, B̂ ,Ĉ ,0

)
if and only if there exist a symmetric matrix P = P T > 0, slack matrices G ,Y ,

and a positive scalar ε such that the following conditions hold:[
ÂG +GT ÂT + B̂Y +Y T B̂ T P −GT +ε

(
GT ÂT +Y T B̂ T

)T

P −G +ε
(
GT ÂT +Y T B̂ T

) −ε(G +GT
)

]
< 0 (8.19)

Moreover, the state feedback gain is presented as K = Y G−1.

If the coupling terms
∑

j∈Ni
Âgi j x̂g j are neglected, according to Theorem 19, the augmented

subsystem of each DG
(

Âgi i , B̂gi ,Ĉgi ,0
)

with the state feedback gain Ki is stable if and only if

there exist Lyapunov matrices Pi = P T
i > 0 and slack variables Gi ,Yi ,εi > 0 such that

[
Âgi i Gi +GT

i ÂT
gi i

+ B̂gi Yi +Y T
i B̂ T

gi
Pi −GT

i +εi
(
GT

i ÂT
gi i

+Y T
i B̂ T

gi

)T

Pi −Gi +εi
(
GT

i ÂT
gi i

+Y T
i B̂ T

gi

) −εi
(
Gi +GT

i

)
]
< 0 (8.20)

for i = 1, . . . , N . The local state feedback controllers are presented as Ki = Yi G−1
i ; i = 1, . . . , N .

However, the interaction terms have significant effects on the stability of the closed-loop

system and decentralized design of the local controllers cannot generally guarantee the sta-

bility of the whole system, i.e. Â. In the next subsection, we show that under some specific

conditions, the stability conditions given in (8.20) lead to the overall closed-loop asymptotic

stability.

8.3.3 Decentralized Voltage Control based on Neutral Interactions

In this subsection, a decentralized voltage controller design strategy is presented. The main

objective is to design the local controllers individually without considering the interaction

terms such that the asymptotic stability of the closed-loop microgrid system is guaranteed.
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To this end, the idea of neutral interaction [175] is used. The interaction terms are neutral

with respect to the stability criterion in (8.19) if and only if the interaction matrix Âc = Â− Âd ,

where Âd = diag
(

Âg11 , . . . , ÂgN N

)
, is factorized as follows:

Âc =GT S (8.21)

where G is the slack matrix in (8.19) and S is a skew-symmetric matrix, i.e. ST =−S.

Under the following conditions, the interaction terms in the augmented microgrid model

described by (8.17)-(8.18) are neutral.

1. Cti =Cs for i = 1, . . . , N .

2. The local state feedback controllers Ki satisfy the stability conditions given in (8.20) with

the following fixed-structure slack matrices Gi :

Gi =
[

ηI2×2 0

0 G22i

]
; i = 1, . . . , N (8.22)

where η> 0 is a common parameter among all Gi , i = 1, . . . , N and matrices G22i are of

appropriate dimensions.

3.
ηRi j

Cs Z 2
i j
≈ 0 for i = 1, . . . , N and j ∈ Ni .

If the above mentioned conditions hold, the interaction term ÂcG +GT ÂT
c ≈ 0, where G =

diag
(
G1, . . . ,GN

)
because

Âgi j G j =
[

Φi j 0

0 0

]
(8.23)

where Φi j =
⎡
⎣ ηRi j

Cs Z 2
i j

ηXi j

Cs Z 2
i j

− ηXi j

Cs Z 2
i j

ηRi j

Cs Z 2
i j

⎤
⎦≈

⎡
⎣ 0

ηXi j

Cs Z 2
i j

− ηXi j

Cs Z 2
i j

0

⎤
⎦.

8.3.4 Pre-filter Design & Disturbance Rejection Strategy

Under the conditions 1-3 in Subsection 8.3.3, the decentralized state feedback controllers Ki

designed by (8.20) guarantee the stability of the closed-loop microgrid system. However, to

improve the performance of the system in terms of dynamics behaviour for voltage reference

tracking and disturbance rejection, the local controllers are modified. The modification proce-

dure are based on the use of a three-degree-of-freedom (3DOF) controller whose structure is

shown in Fig. 8.2. The feedforward controller K i
r is designed to improve reference tracking

performance whereas K i
d aims to attenuate the effects from the disturbance wi on the output
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ui 
yi yref_i yref_i ∫+++++++ +KiKr

i
i

Kd
i

xgi

−
+ DG i 

wi 

vi 

Figure 8.2: Block diagram of 3DOF controller

signals. The closed-loop system including the 3DOF controller in Fig. 8.2 is described as

follows:

yi =
(
Ti (s)K i

r (s)
)

yr e fi +
(
Hi (s)K i

d (s)+H d
i (s)

)
wi (8.24)

where

Ti (s) = Ĉgi

(
sI − (Âgi i + B̂gi Ki )

)−1

[
0

I

]

Hi (s) = Ĉgi

(
sI − (Âgi i + B̂gi Ki )

)−1
B̂gi

H d
i (s) = Ĉgi

(
sI − (Âgi i + B̂gi Ki )

)−1
B̂wi

(8.25)

To achieve desired time-domain performance specifications for reference tracking and mini-

mize the effect of load changes on the voltages at PCCs, the controllers K i
r (s) and K i

d (s) are

respectively designed by means of solving the following optimization problems:

minK i
r
‖Ti (s)K i

r (s)−Tdi (s)‖∞ (8.26)

minK i
d
‖Hi (s)K i

d (s)+H d
i (s)‖∞ (8.27)

where Tdi (s) is a desired reference tracking (reference model) designed according to the desired

performance of DG i . To solve the above optimization problems, the MATLAB commands

hinfstruct and systune can be used.

8.4 Plug-and-Play (PnP) Functionality in Microgrids

In this section, the problem of plug-in/-out operation of DGs in the islanded inverter-interfaced

microgrids is considered. The objective is to preserve the stability of the microgrid system

when several DGs are plugged in and/or plugged out.
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8.4.1 Robustness to PnP Functionality of DGs

A new feature is added to the proposed decentralized control strategy which is robustness

to PnP functionality of DGs. By virtue of the fact that the connection/disconnection of DG

j to/from DG i affects matrix Agi i , two cases for each DG are considered: first, maximum

possible connections of the DGs to DG i (Nimax ⊂ {1, . . . , N }) and second, only the connection

j with minimum values of
Ri j

Z 2
i j

and
Xi j

Z 2
i j

among the other connections. Corresponding matrix

Agi i for both cases are given as follows:

A1
gi i

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Cti

∑
j∈Nimax

Ri j

Z 2
i j

ω0 − 1
Cti

∑
j∈Nimax

Xi j

Z 2
i j

ki
Cti

0

−ω0 + 1
Cti

∑
j∈Nimax

Xi j

Z 2
i j

− 1
Cti

∑
j∈Nimax

Ri j

Z 2
i j

0 ki
Cti

− ki
Lti

0 −Rti
Lti

ω0

0 − ki
Lti

−ω0 −Rti
Lti

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

A2
gi i

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Cti

Ri j

Z 2
i j

ω0 − 1
Cti

Xi j

Z 2
i j

ki
Cti

0

−ω0 + Xi j

Z 2
i j

− 1
Cti

Ri j

Z 2
i j

0 ki
Cti

− ki
Lti

0 −Rti
Lti

ω0

0 − ki
Lti

−ω0 −Rti
Lti

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.28)

Therefore, any possible connection/disconnection of DGs to/from DG i belongs to the follow-

ing polytopic uncertainty domain:

Agi i (λ) =λA1
gi i

+ (1−λ)A2
gi i

(8.29)

where 0 ≤λ≤ 1. As a result, matrices Âgi i also have the polytopic uncertainty as follows:

Âgi i (λ) =λÂ1
gi i

+ (1−λ)Â2
gi i

(8.30)

where

Â1
gi i

=
[

A1
gi i

0

−Cgi 0

]
, Â2

gi i
=
[

A2
gi i

0

−Cgi 0

]
(8.31)

for i = 1, . . . , N .

Now, we aim to design a decentralized state feedback controller for the augmented polytopic

system
(

Âgi i (λ), B̂gi ,Ĉgi ,0
)

by means of the following theorem:

Theorem 20. If there exist symmetric matrices P j
i > 0, slack matrices Gi ,Yi , and a given scalar

εi > 0 such that the following set of LMIs holds[
Â j

gi i
Gi +GT

i (Â j
gi i

)T + B̂gi Yi +Y T
i B̂ T

gi
P j

i −GT
i +εi

(
Â j

gi i
Gi + B̂gi Yi

)
P j

i −Gi +εi
(

Â j
gi i

Gi + B̂gi Yi
)T −εi

(
Gi +GT

i

)
]
< 0 (8.32)
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for j = 1,2. Then, the state feedback controller Ki = Yi G−1
i stabilizes the polytopic system(

Âgi i (λ), B̂gi ,Ĉgi ,0
)

via a linearly parameter-dependent Lyapunov matrix Pi (λ) = λP 1
i + (1−

λ)P 2
i , where 0 ≤λ≤ 1.

Remark. In the case of microgrids with radial configuration, the connection/disconnection of

DGs to/from DG i can be described by a multi-model uncertainty composed of three models:

1) Ni = {i −1, i +1}, 2) Ni = {i −1}, and 3) Ni = {i +1}.

8.4.2 Algorithm I: “Decentralized Control of Islanded Inverter-interfaced Micro-
grids”

In this subsection, a systematic algorithm for the design of the local state feedback controllers

Ki for the DG i described by (8.4)-(8.5) under plug-and-play functionality of DGs is given. The

algorithm consists of the following steps:

Step 1: Build two vertices A1
gi i

and A2
gi i

given in (8.28) as well as augmented matrices Â1
gi i

and

Â2
gi i

in (8.31), for i = 1, . . . , N .

Step 2: Impose the structural constraints given in (8.22) on the slack matrix Gi in (8.32).

Step 3: Fix the scalar parameter εi > 0 in (8.32) and solve the following convex optimization

problem to obtain the state feedback controllers Ki :

min
Yi ,P j

i ,η,G22i

η

subject to

[
Â j

gi i
Gi +GT

i (Â j
gi i

)T + B̂gi Yi +Y T
i B̂ T

gi
P j

i −GT
i +εi

(
Â j

gi i
Gi + B̂gi Yi

)
P j

i −Gi +εi
(

Â j
gi i

Gi + B̂gi Yi
)T −εi

(
Gi +GT

i

)
]
< 0

P j
i = P j

i

T > 0

i = 1, . . . , N ; j = 1,2

(8.33)

Set Ki = Yi G−1
i .

Step 4: Design pre-filters for controller performance improvement.

Step 5: Improve the local controllers to minimize the effect of disturbance (load changes) on

the voltages at PCCs.

8.5 Simulation Results

To verify the performance of the proposed control approach, we consider an islanded inverter-

intefaced microgrid consisting of 11 DGs with meshed topology, borrowed from [130], as

graphically shown in Fig. 8.3. The parameters of each DG and the transmission lines are given
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Figure 8.3: Layout of an islanded microgrid system composed of 11 DGs

in Table 8.1 and Table 8.2, respectively.

Following Algorithm I in Subsection 8.4.2, all possible connections of DGs to each DG are

considered. For example, DG 1 has connections with DG 2, DG 3, and DG 11 (N1max = {2,3,11}).

Moreover, for DG1, the second vertex A2
g11

is constructed through the connection with DG 11.

Then, local voltage controllers are designed through the convex optimization problem given

in (8.33) which is solved using YALMIP [146] as the interface and MOSEK as the solver.

The dynamic performance of the microgrid system in Fig. 8.3 with the designed controllers

is validated by a set of comprehensive test cases including voltage setpoint variations, PnP

operation of DGs, and major changes in the microgrid topology.

Case 1: Voltage Tracking Performance Assessment: Consider the microgrid system in Fig. 8.3

which contains 11 DGs. Each DG provides the active and reactive power for own local loads

according to the information/setpoints received from Energy Management System (EMS). The

dq components of the reference voltages for DGs are initially set according to the values listed

in Table 8.1. The d and q components of the reference voltage for DG 6 respectively change

from 0.6 pu and 0.8 pu to 0.8 pu and 0.6 pu at t = 2.5s. The dynamic responses of DG 6 due to

new reference voltages are plotted in Fig. 8.4. Fig. 8.5 also shows the dq voltages of the other

DGs connected to DG 6. The simulation results illustrate that the local voltage controller of

DG 6 manages to reach the new setpoints in less than 0.5s with zero steady state error.

Case 2: Plug-and-Play Capability: The objective of this case study is to demonstrate the

capability of the proposed control strategy in PnP operation of DGs. To conduct this case

study, we assume that DG 11 is plugged out at t = 1.5s and due to this failure all the connections

attached to DG 11 are disconnected. Therefore, because of this disconnection, dynamics of
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Table 8.1: Electrical parameters of microgrid in Fig. 8.3

DGs
Filter parameters Shunt capacitance Load parameters Reference voltages
Rt (mΩ) Lt (μH) Ct (μF ) R(Ω) L(μH) Vdr e f (pu) Vqr e f (pu)

DG 1 1.2 93.7 62.86 76 111.9 0.9 0.436
DG 2 1.6 94.8 62.86 85 134.3 0.9 -0.436
DG 3 1.5 107.7 62.86 93 123.1 0.8 0.6
DG 4 1.5 90.6 62.86 80 167.9 0.8 -0.6
DG 5 1.7 99.8 62.86 125 223.8 0.995 0.1
DG 6 1.6 93.4 62.86 90 156.7 0.6 0.8
DG 7 1.6 109.6 62.86 103 145.5 0.707 0.707
DG 8 1.7 104.3 62.86 150 179 0.9 0.436
DG 9 1.7 100 62.86 81 190.2 0.9 -0.436

DG 10 1.5 99.4 62.86 76 111.9 0.8 0.6
DG 11 1.5 100 62.86 76 111.9 0.6 0.8

DC bus voltage Vdc = 2000V
Power base value Sbase = 8K V A
Voltage base value Vbase,low = 0.5K V ,Vbase,hi g h = 11.5K V
VSC terminal voltage (line-line) VV SC = 600V
VSC rated power SV SC = 3MV A
Transformer voltage ratio ki = 0.6/13.8K V (Δ/Y )
Switching frequency fsw = 10K H z
System nominal frequency f0 = 60H z

Table 8.2: Parameters of the transmission lines in Fig. 8.3

Line impedance Zi j Ri j (Ω) Li j (mH)

Z12 1.1 600
Z13 0.9 400
Z34 1 500
Z24 1.2 700
Z45 1 550
Z57 0.7 350
Z56 1.3 800
Z59 1.2 650
Z78 1 450
Z610 1.1 600
Z111 1 700
Z611 1.1 600

DG1 and DG6 are affected. Then, DG 11 is plugged into the system at t = 2.5s. Dynamic

responses of DG 11 and its neighbours due to the PnP functionality of DG 11 are depicted in

Fig. 8.6 and Fig. 8.7. The results illustrate the robust performance of the proposed control

technique to PnP functionality of DGs. Although the PnP operation of DG 11 changes the

microgrid dynamics, the robustness of the voltage controllers guarantees stability and a

desirable microgrid performance even in the case of PnP functionality of DGs.
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Case 3: Microgrid Topology Change: The objective of this case study is to assess the robust

performance of the local voltage controllers to major topological uncertainties. To this end,

the topology of the microgrid in Fig. 8.3 is changed to the configuration of Fig. 8.8 at t = 1.5s.

The microgrid transients due to this topology change are illustrated in Fig. 8.9. The change in

the microgrid configuration affects the system dynamics. However, simulation results reveal

that the local voltage controllers are able to maintain the stability of the microgrid after a

significant change in its configuration.

8.6 Conclusion

In this chapter, a voltage control technique is developed for the islanded operation of inverter-

interfaced microgrids with general topology. The control structure is fully decentralized and it

relies on the Quasi-Stationary Line (QSL) approximate model of microgrids. The main features

of the proposed control strategy is that local controllers are robust to plug-and-play operation

of DGs. As a result, the stability of the microgrid system is preserved in the case of plug-in/-out

of the DGs. The performance of the proposed controller is verified under several case studies

such as voltage tracking, microgrid topology change, and plug-and-play capability of DGs.
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9.1 Conclusions

This dissertation proposes the innovative fixed-order and fixed-structure control strategies

for linear time-invariant (LTI) systems affected by polytopic-type uncertainty. The developed

approaches are mainly based on strictly positive realness (SPRness) of transfer functions

depending on some slack matrices in the state space framework. By fixing the slack matrices

in different ways, the problem of fixed-order and fixed-structure control design is converted

to a convex optimization subject to a set of LMI constraints. The control design approaches

are evaluated via a set of different examples and compared with the existing methods in the

literature.

The dissertation also covers the main issues involved in the control of LTI interconnected

systems with polytopic uncertainty, e.g. sensor and actuator placement problem, control

configuration design, and robust fixed-structure control. The problems of sensor and actuator

placement as well as control configuration design are formulated as optimization problems by

minimizing a weighted 	1 norm relaxation of the cardinality of some pattern matrices, while

satisfying a guaranteed level of H∞ performance. The solution of the optimization problems

delivers a trade-off curve between the control structure and the H∞ performance criteria.

The application part of the dissertation focuses on the control of inverter-interfaced microgrids

consisting of distributed generation units (DGs). The dissertation addresses several important

problems in the context of microgrids including (i) current control strategy of grid-connected

voltage-source converters (ii) voltage control of islanded microgrids. Moreover, it is shown

that an inverter-interfaced microgrid under plug-and-play (PnP) functionality of DGs can be

cast as a polytopic system. By virtue of this novel description and use of the results from theory

of robust control, the microgrid system guarantees stability and a desired performance even

in the case of PnP operation of DGs. Various case studies, based on time-domain simulations

in MATLAB/SimPowerSystems Toolbox and real-time hardware-in-the-loop experiments, are

carried out to evaluate the performance of the proposed control strategies under different

test scenarios, e.g., load change, voltage and current tracking, PnP functionality of DGs, and
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microgrid topology change. The simulation and experimental results demonstrate satisfactory

performance of the designed controllers.

The following main conclusions can be drawn from the work presented in this dissertation.

• The proposed LMI-based approaches in this dissertation are developed in the state

space framework and are based on the use of slack variables. The size of these variables

and the Lyapunov matrices grow with the order of the system and/or the number of

vertices of the polytopic system. For instance, if a system of order n without uncertainty

(nominal system) is considered, the control strategy introduces a Lyapunov matrix with
n2+n

2 unknown variables whereas a fixed-order controller with a comparatively small

number of parameters is sought. This issue turns out to be problematic for large scale

interconnected systems with large number of states, inputs, and outputs. The main

problem arises from the numerical issues associated with the inapplicability of LMI

solvers to large-scale problems.

• The LMI-based fixed-order/fixed-structure H∞ controller design algorithms presented

in Chapter 3 and Chapter 4 can only ensure the monotonically non-increasing conver-

gence of the upper bound of H∞ norm. However, there is not any guarantee that the

algorithms converge to a local or global minimum.

• Non-droop-based control strategies in Chapter 7 and Chapter 8 do not take account

of the dynamic behavior of renewable energy sources and model them as a constant

voltage source.

9.2 Future Research Directions

Further research in the continuation of this work includes the following:

Fixed-structure Control of Polytopic Systems

• Fixed-structure control of MIMO polytopic systems in frequency domain

The main drawback of the existing LMI-based fixed-structure control techniques is

the inherent use of Lyapunov variables, whose numbers quadratically grow according

to the size of the closed-loop system. This issue turns out to be highly problematic

for large scale systems where the order of plant is significantly large. In this case, the

existing SDP solvers may easily fail to provide a feasible solution to the underlying

problem. Therefore, frequency domain-based approaches have a beneficial effect on

fixed-structure control of the large-scale polytopic systems without introducing extra

unknown matrices.
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• Nonsoomth non-convex fixed-structure control of polytopic systems

The recent MATLAB functions hinfstruct and systune, available in the Robust Control

Toolbox, can cope with fixed-structure H∞ control of linear time-invariant systems.

These functions are based on the state-of-the-art nonsmooth non-convex optimization

techniques [30, 36]. As compared to the LMI-based methods in the state space setting,

hinfstruct and systune are quite fast in terms of execution time due to the absence of

the Lyapunov matrix and the slack variables. For instance, given a 55×55 matrix Ag ,

a 55×2 matrix Bg , and a 2×55 matrix Cg , we are looking for a 2×2 stabilizing static

output feedback K . The control design according to the Lyapunov inequality needs

1544 decision variables, most of them, i.e. 1540, for Lyapunov matrix P whereas the

optimization problem in (1.1) requires just 4 tunable controller parameters. However,

the main shortage of the existing nonsmooth non-convex optimization techniques

is that they cannot deal with the polytopic systems. Therefore, development of an

innovative nonsmooth non-convex optimization-based approach or the extension of

the current ones to LTI polytopic systems can be an interesting research direction.

Inverter-interfaced Microgris

Generally, in the context of non-droop-based control of the inverter-interfaced microgrids,

there are several areas which can still benefit from further research:

• Voltage stabilization in presence of unbalanced voltage conditions and nonlinear loads

The voltage control systems proposed in this dissertation do not consider voltage imbal-

ance and distortions caused by unbalanced and nonlinear loads. To ensure balanced

voltages at PCCs, it is suggested that robust (decentralized) fixed-structure controllers

are developed in the abc-frame and track sinusoidal reference signals, in consequence,

eliminate the imbalance. To provide an acceptable total harmonic distortion (THD) of

the voltages at PCCs, the controllers should include imaginary poles corresponding to

significant harmonic frequencies.

• Improvement to non-droop-based control strategy

The following improvements can be made to the non-droop-based control approaches:

– Accurate modeling of DGs, e.g. incorporation of the DC-side dynamics

– A need for advanced control design strategies with decentralized structure

– Robustness to (non)parametric uncertainties
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