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Abstract

This thesis focuses on the development of robust control solutions for linear time-invariant
(LTD interconnected systems affected by polytopic-type uncertainty. The main issues in-
volved in the control of such systems, e.g. sensor and actuator placement problem, control
configuration selection, and robust fixed-structure control design are included.

The problem of fixed-structure control is intrinsically non-convex and hence computationally
intractable. Nevertheless, the problem has attracted considerable attention due to the great
importance of fixed-structure controllers in practice. In this thesis, necessary and sufficient
conditions for fixed-structure Hy, control of polytopic systems with a single uncertain parame-
ter in terms of a finite number of bilinear matrix inequalities (BMIs) are developed. Increasing
the number of uncertain parameters leads to sufficient BMI conditions, where the number of
decision variables grows polynomially. Convex approximations of robust fixed-order and fixed-
structure controller design which rely on the concept of strictly positive realness (SPRness)
of transfer functions in state space setting are presented. Such approximations are based on
the use of slack matrices whose duty is to decouple the product of unknown matrices. Several
algorithms for determination and update of the slack matrices are given.

It is shown that the problem of sensor and actuator placement in the polytopic interconnected
systems can be formulated as an optimization problem by minimizing cardinality of some
pattern matrices, while satisfying a guaranteed level of H,, performance. The control configu-
ration design is achieved by solving a convex optimization problem whose solution delivers
a trade-off curve that starts with a centralized controller and ends with a decentralized or a
distributed controller.

The proposed approaches are applied to inverter-interfaced microgrids which consist of
distributed generation (DG) units. To this end, two important control problems associated with
the microgrids are considered: (i) Current control of grid-connected voltage-source converters
with L/LCL-type filters and (ii) Voltage control of islanded microgrids. The proposed control
strategies are able to independently regulate the direct and quadrature (dgq) components
of the converter currents and voltages at the point of common couplings (PCCs) in a fully
decoupled manner and provide satisfactory dynamic responses. The important problem of
plug-and-play (PnP) capability of DGs in the microgrids is also studied. It is shown that an
inverter-interfaced microgrid consisting of multi DGs under plug-and-play functionality can
be cast as a system with polytopic-type uncertainty. By virtue of this novel description and
use of the results from theory of robust control, the stability of the microgrid system under
PnP operation of DGs is preserved. Extensive case studies, based on time-domain simulations

iii



Acknowledgements

in MATLAB/SimPowerSystems Toolbox, are carried out to evaluate the performance of the
proposed controllers under various test scenarios, e.g., load change, voltage and current
tracking. Real-time hardware-in-the-loop case studies, using RT-LAB real-time platform
of OPAL-RT Technologies, are also conducted to validate the performance of the designed
controllers and demonstrate their insensitivity to hardware implementation issues, e.g., noise
and PWM non-idealities. The simulation and experimental results demonstrate satisfactory
performance of the designed controllers.

Key words: Fixed-structure control, fixed-order controller design, polytopic uncertainty, con-

vex optimization, decentralized and distributed control, control structure design, inverter-
interfaced microgrids.
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Résumé

Cette these porte sur le développement de méthodes de commande robuste pour des systemes
linéaires interconnectés sujets a une incertitude polytopique. Les principaux problemes qui
existent pour le controle dans ces systemes sont inclus, tels que le probleme de positionnement
des capteurs et actionneurs, la sélection de la configuration des contrdleurs et la synthese
robuste de structure fixe.

Le probléme de la syntheése robuste de structure fixe est non-convexe et donc difficile a
résoudre en pratique. Néanmoins, ce probleme a attiré une grande attention a cause de I'im-
portance de controleur a structure fixe dans la pratique. Cette these développe des conditions
nécessaires et suffisantes pour le controle Hy, a structure fixe applicable a des systémes polyto-
piques avec un seul parametre incertain sous forme d'un nombre fini d’inégalités matricielles
bilinéaires (BMI). Augmenter le nombre de parametres incertains conduit a des conditions
suffisantes sous forme des BMIs ou1 le nombre de variable croit de facon polynomiale. On
présente aussi des approximations convexes des régulateurs robustes d’ordre fixe et de la
synthese de régulateurs de structure fixe basée sur le concept de positivité réelle stricte (SPR-
ness) des fonctions de transfert dans I’espace d’état. De telles approximations sont basées
sur des matrices de relaxation qui découplent le produit des matrices inconnues. Plusieurs
algorithmes pour le calcul et la mise a jour des matrices de relaxation sont présentés.

Il est démontré que le probléeme du positionnement de capteurs et d’actionneurs dans les
systemes polytopiques interconnectés peut étre formulé comme un probleme d’optimisation
dont I'objectif est la minimisation de la cardinalité de certaines matrices sous des contraintes
de performance H.,. La conception de la configuration du régulateur est réalisée par la
résolution d'un probléme convexe dont la solution produit une courbe de compromis qui
commence avec un régulateur centralisé et finit par un régulateur distribué ou décentralisé.

Les approaches proposées sont appliquées sur des micro-réseaux avec unités de génération
distribuées (DG). On aborde deux probléemes importants de régulation associés au micro-
réseaux : (i) la régulation de courant de convertisseurs en source de tension avec des filtres
L/LCL (ii) la régulation de tension pour des micro-réseaux ilotés. Les stratégies de controle
proposées permettent de réguler les composantes directes et de quadratures (dq) des tensions
et courants du convertisseur au point de couplage commun (PCC) d'une facon complete-
ment découplée et donnent une performance dynamique satisfaisante. On étudie aussi le
probléme du plug-and-play (PnP) d'unités de génération distribuées dans la micro-réseau.
On montre qu'une micro-réseau consitant d'unités de génération distribuées sous des fonc-
tionnalités de plug-and-play peut étre modélisée comme un systéme sous des incertitudes
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de type polytopique. En vertu de cette nouvelle description et de résultats de commande
robuste, la stabilité de la micro-réseau en opération PnP est préservée. Des études de cas
en MATLAB/SimPowerSystems sont présentées pour évaluer la performance des régulateurs
proposés dans différents cas, tels que des variations de la charge, de la tension et du courant.
Des études de cas avec hardware-in-the-loop en temps réel (RT-LAB OPAL-RT Technologies)
sont aussi analysées pour évaluer la performance des méthodes proposées et leur sensibilité
au bruit et aux défauts des PWM. Les simulations et résultats expérimentaux montrent une
performance satisfaisante des régulateurs synthétisés.

Mots-clés : Régulation a structure fixe, régulation a ordre fixe, incertitude polytopique, optimi-

sation convexe, régulation distribuée et décentralisée, synthese de structures de régulation,
micro-réseaux.
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|} Introduction

1.1 Research Context

1.1.1 Fixed-structure Control of Uncertain Systems

Classical controller design methods usually lead to full-order controllers which have same
order as that of a generalized plant, i.e. plant plus frequency weighting functions [1]. The
implementation of such controllers result in high cost in terms of both memory and processing
power, difficult commissioning, and potential problems in maintenance [2]. Low-, fixed-order
controllers are always preferred, particularly in many practical applications with limited
available memory and computational power, such as embedded control systems for space
and aeronautics industries [3, 4].

The classical control techniques cannot also cope with fixed-structure controllers in which
some structural constraints are imposed on the controllers. Constraints on the control struc-
ture are mainly rooted in different sources. The first source comes from the well-known Inter-
nal Model Principle (IMP) [5] which states that for tracking and disturbance rejection, the dy-
namics of persistently exciting references and/or disturbances must be replicated in the struc-
ture of the controller. Furthermore, the well-known proportional-integral (PI)/proportional-
integral-derivative (PID) controllers, widely used in industrial control systems, inherently
have a fixed structure. Finally, the last main source results from a need for decentralized or
distributed control of large-scale interconnected systems due to cost, reliability issues, and
limitations on communication links among local controllers. All these reasons highlight the
paramount importance of fixed-structure control design.

The problem of fixed-order and fixed-structure control still remains as an open issue. In fact,
the non-convexity of the set of all fixed-order and fixed-structure stabilizing controllers for a
given plant is the major root of difficulty in solving such a problem [4, 6]. Furthermore, if the
problem is formulated in the space of the controller parameters, it becomes nonsmooth [4].
Nevertheless, due to the great importance of fixed-structure controllers in practice, several
approaches for fixed-structure control design have been developed which are briefly reviewed
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in the next section.

Fixed-structure control design becomes more complicated for the systems affected by uncer-
tainties. The main sources of model uncertainties usually arise from unmodeled dynamics,
parameter uncertainty, and neglected nonlinearities [7]. In the case of uncertain systems, the
fixed-structure controller must be able to guarantee stability and performance specification
of the whole family of models in the uncertainty domain.

This dissertation centres around the development of new fixed-structure controller design
strategies for linear time-invariant (LTI) systems subject to unmodeled dynamics and parame-
ter uncertainty. More specifically, it focuses on the following main objectives:

¢ Development of robust fixed-order and fixed-structure control techniques
 Control structure design of LTI interconnected systems with parameter uncertainty

 Application to inverter-interfaced microgrids consisting of distributed generation (DG)
units

It is assumed that the LTT systems with uncertain parameters belongs to a polytope which is
the convex hull of parameters of a set of models called as the vertices of the polytope. The
polytopic-type uncertainty is one of the most general ways to present the physical parameter
uncertainty without any conservatism. In fact, this type of uncertainty can cover interval,
linear parameter, and multi-model uncertainties.

1.1.2 Inverter-interfaced Microgrids

Nowadays the growth of electricity demand, the critical shortages of fossil fuels, and global
warming caused by greenhouse-gas-effect have negatively impacted on conventional power
systems. The problems have been tackled alternatively through an efficacious integration and
coordination of distributed generation (DG) units among which, in terms of their potential for
energy generation, renewable energy sources such as photovoltaics (PV), wind power, and
hydropower are the most important ones.

Reliable integration of DGs into power systems can be achieved by means of microgrids which
are small electrical networks heterogeneously composed of DGs, loads, and energy storage
systems [8]. Renewable energy sources are normally interfaced to the microgrids through
power electronic converters acting as voltage sources [9].

Microgrids normally operate in grid-connected mode where they are connected to the main
grid at Point of Common Coupling (PCC). Under this connection scheme, the voltage and
frequency of the microgrids are predominantly determined by the main grid while the mi-
crogrid control system accurately shares active and reactive power among DGs and controls
the power exchange between the microgrid and the main grid. Due to intentional (sched-
uled)/unintentional reasons, the microgrids can experience islanding conditions where they
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are disconnected from the main grid [10]. In this case, due to a power mismatch between the
DGs and the loads, voltage and frequency of the loads deviate from their rated values and the
islanded microgrid eventually becomes unstable. This operation mode of the microgrids is
more challenging than the grid-connected mode because accurate load sharing mechanisms
are required to balance the power mismatch [8]. Therefore, upon the islanding condition,
a new microgrid control strategy must come into service in order to provide voltage and
frequency stability as well as a proper power sharing among DGs [11].

In spite of the potential benefits that the use of DGs may bring, their increasing penetration
challenges an appropriate control strategy to ensure stable and reliable operation of micro-
grids in both grid-connected and islanded modes and smooth transition between them [12].
The main challenges arise from basic differences existing between the physical characteristics
of the conventional electrical generators and the inverter-interfaced microgrids [13]. Con-
ventional power networks feature a large fraction of generation from traditional synchronous
generators that present large rotational inertia and play a key role in maintaining frequency
and voltage stability. Given current and future trends in the cost and regulation of distributed
photovoltaic systems, the future power network will feature deep penetration of inverter-
interfaced microgrids (see, e.g., the SunShot Initiative by the Department of Energy (DOE) in
the USAL). While larger renewable penetration is desirable, current power-electronic inverters
behave as low-inertia devices and are not designed to contribute to grid-wise stability.

The application part of this dissertation aims to develop new control strategies for stable and
efficient operation of microgrids in both grid-connected and islanded operation modes. A
brief summary of the most relevant existing works organized by research topic is provided in
the following section.

1.2 State of the Art

1.2.1 Current State of the Research in Fixed-structure Control

Fixed-structure control design is a theoretically challenging issue in control theory and it
has attracted considerable attention due to its great importance in practice. However, so far,
there has been no exact solution to this prominent problem and only rough approaches are
available to approximately solve such a problem. The fact is that the problem is intrinsically
non-convex; furthermore, it becomes nonsmooth in the case of problem formulation in the
space of the controller parameters [4].

The easiest and most straightforward technique for low-order controller design is plant and/or
controller order reduction using well-known methods, e.g. balanced model reduction [1].
However, plant or controller order reduction techniques do not always guarantee that the
closed-loop performance is preserved. Moreover, the order reduction approaches are not able

Ihttp://energy.gov/eere/sunshot/sunshot-initiative
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to impose any structural constraints on the controller. Therefore, the challenging problem is
to directly design a fixed-structure controller.

The only existing survey of fixed-order control/static output feedback has been conducted
in [14]. Nevertheless, the past two decades have witnessed much theoretical progress on
fixed-order controller design which has not been covered in that survey. A large amount of
research has been carried out on the development of fixed-order control via linear matrix
inequalities (LMIs) that among them one can mention: cone complementarity linearization
method [15], (directional) alternating projection algorithm [16, 17], min/max algorithm [18],
path-following approach [19], dual iteration method [20], XY-centring algorithm [21], penalty
function method [22], log-det heuristic approach [23], sequential linear programming matrix
method [24], augmented Lagrangian approach [25, 26], and concave minimization approach
[27,28]. A branch and bound (BB) algorithm for solving a general class of bilinear matrix
inequality (BMI) problems with application to fixed-structure control has been developed in
[29]. However, the BB approach is computationally high, particularly when the number of the
controller parameters increase. Although the proposed approaches cope with the fixed-order
control design, they cannot handle structural constraints imposed on the controller beyond
its order.

In addition to the LMI-based approaches, there exist nonsmooth non-convex optimization-

based fixed-structure control strategies, see, e.g. [30-36] which focus on solving the following

optimization problem:

min g(K)

K (1.1)
subjectto g(K)<p

where g(K) is a function of the closed-loop system matrices, e.g. spectral abscissa or an
H,, norm, and the scalar f is given. The above optimization problem is nonconvex and
nonsmooth. In fact, the lack of convexity and smoothness of the spectral abscissa and other
similar performance criteria make the above optimization problem difficult to solve [37].

The following software and recent MATLAB functions, available in Robust Control Toolbox,
can cope with the above nonsmooth nonconvex optimization problem.

e HIFOO (Hy- H» Fixed Order Optimization) [31-34]

HIFOO is a public-domain MATLAB package for static output feedback and fixed-order
stabilizing control design in state space setting with several performance objectives, e.g.
H.,, Hy, multiobjective optimization, simultaneous stabilization, spectral abscissa, and
complex stability radius optimization. HIFOO relies on quasi-Newton updating and
gradient sampling algorithm in [37,38].

* MATLAB commands: hinfstruct, looptune, systune [30, 35, 36, 39]
The MATLAB command hinfstruct, available in the Robust Control Toolbox since R2010b,
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addresses the problem of fixed-structure and fixed-order Hy, control synthesis in both
state space and transfer function framework. looptune tunes fixed-structure and fixed-
order feedback loops while satisfying the common engineering requirements including
performance bandwidth, setpoint tracking, roll-off, multiloop gain, and phase margins
[40]. The MATLAB routine systune deals with the fixed-structure and fixed-order control
synthesis with time-domain, frequency domain, open-loop shape, stability margin, and
closed-loop poles requirements [40]. systune can also handle multiple requirements as
well as multiple models.

The main properties of HIFOO, hinfstruct, looptune, and systune are that:

1) They are purely optimization-based, i.e. the fixed-order/fixed-structure control design
problem is formulated as a solution to a nonsoomth noncomvex optimization.

2) As compared to the Lyapunov-based methods, they are quite fast in terms of execution time
due to the absence of the Lyapunov matrix and the slack variables.

3) The existing nonsmooth nonconvex techniques cannot deal with the problem of fixed-
order/fixed-structure control of systems with parameter uncertainty.

The fixed-structure controller design problem becomes more complicated for systems subject
to polytopic uncertainty. In this case, the main objective is to design a fixed-structure controller
which guarantees robust stability as well as robust performance of the whole family of models
in the polytopic uncertainty domain. To solve this kind of problem, several LMI-based methods
have emerged in the literature, e.g. the methods of [3,41-45] in polynomial framework and the
methods of [46-58] in state space framework. The polynomial-based approaches are based on
the use of a central polynomial whose duty is to convexify the nonconvex problem of fixed-
structure control and develop some inner convex approximations of that problem. In the state
space approaches, which inherently introduce the Lyapunov matrix, some slack variables are
used as a tool to decouple the product of the closed-loop matrices and the Lyapunov matrix
leading to a sequence of sufficient LMI conditions. The main drawback of the fixed-structure
control approaches in the polynomial setting is that they are just limited to single-input
single-output (SISO) systems and cannot be employed for multi-input multi-output (MIMO)
systems.

The main issue of the state space approaches lies in their conservativeness, which is reflected
by the structure of the Lyapunov matrix. According to the structure of the Lyapunov matrix,
the fixed-structure control approaches in the state space setting can be categorized in four
classes: (i) QS-based methods, e.g. [46,51], which provide the robust stability (performance)
of the closed-loop system by means of a parameter-independent Lyapunov matrix. (ii) LPD-
based methods, e.g. [53,58], in which the robust stability (performance) is guaranteed via
a linearly parameter-dependent (LPD) Lyapunov matrix. (iii) PPD-based methods, e.g. [57],
which guarantee the robust stability and robust performance via a polynomially parameter-
dependent Lyapunov (PPD) matrix. (iv) HPPD-based approaches, e.g. [56], in which the robust

5
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stability (performance) is assessed by means of the existence of a homogeneous polynomially
parameter-dependent (HPPD) Lyapunov matrix.

In the fixed-structure control approaches, the first assumption is that the control structure is
given a priori. However, the problem of controller structure selection has a great importance,
especially in large scale interconnected systems. In interconnected systems with a large num-
ber of inputs and outputs, the constraints on the controller structure are associated with some
reasons: cost, reliability issues, inaccessibility of the states, and limitations on communication
links and information exchange among the subsystems and/or the subcontrollers.

First, it is not cost-effective to use all possible sensors and actuators in large-scale systems,
e.g. power grids [59], target-tracking [60], transportation networks [61], and buildings [62].
This leads to the problem of sensor and actuator placement in which a minimal set of sensors
and actuators is chosen, provided that stability and a satisfactory level of performance of the
system is guaranteed. The performance of a system not only depends on the control law but
also it is considerably affected by the number of sensors and actuators and their positioning.
The exact solution for the problem of sensor and actuator placement is to evaluate the overall
system performance for all possible choices of sensors and actuators. However, this approach
is not practical for the large values of sensors and actuators since it leads to a numerically
intractable combinatorial cost. Therefore, several approximate solutions have been developed,
e.g. [69-65]. Recently, some approaches based on convex optimization have been proposed,
e.g. [65-67]. Although the literature on sensor and actuator selection is quite vast, the proposed
methods do not consider the problem in the case of uncertainty in the system parameters. In
this case, the question arises is that how to place a minimal number of sensors and actuators
such that a good performance for the whole set of uncertain parameters is guaranteed?

Next, the interconnected systems need an appropriate design of control configuration which
entails a minimal amount of information exchange and communication links among the
subsystems and the local controllers. Under a fully decentralized control scheme, a set of non-
interacting local controllers is designed for each subsystem and there is no communication
links between different local controllers and different subsystems [68]. In spite of many
advantages of the decentralized controllers, they may not provide the desired performance
or even stability for the interconnected systems. Therefore, to avoid the stability problems
associated with the decentralized control approaches, a distributed control strategy is used.
In the distributed control methods, there exist several communication links between the local
controllers and the subsystems according to the control configuration. Most of available
distributed control approaches assume that the control configuration is given a priori [69].
However, it is possible that the assumed control structure is not the best one which can be
taken into consideration. Moreover, it is generally difficult to select the configuration of the
controller in advance. Therefore, the question arises is that in an interconnected system, what
is the best control configuration, in terms of the connections between the local controllers
and the subsystems, to provide a trade-off between the given control objectives? This problem
has been recently addressed by some researchers in [70-75] through the design of sparse
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static output/state feedback controllers where the gain between the subsystems’ inputs and
outputs/states is sparsified. Despite considerable efforts over the past few years, the problem
is still open in the case of parameter uncertainties in the interconnected systems.

Finally, decentralized/distributed state feedback controllers are not always adequate control
strategies for practical large-scale interconnected systems [76]. The state variables of certain
subsystems are not often available for control purposes. In such a case, it is necessary to apply
output feedback controllers, particularly low-order/static output feedback control due to the
ease of practical implementation and computational issues.

1.2.2 Current State of the Research in Microgrid Control Systems

Grid-connected Voltage-Source Converters

In the grid-connected operating mode of microgrids, the utility grid provides the regulated
frequency and voltage for the local loads at PCCs. In this case, each DG regulates its active and
reactive power exchange based on current control techniques.

Voltage-source converters (VSCs) are commonly interfaced to the grid by means of a pure L
or an LCL filter in order to attenuate switching high-frequency harmonics caused by pulse
width modulation (PWM) VSCs. The LCL filters are frequently used in VSCs due to their
cost-effectiveness in terms of size and weight of the filters and the efficient attenuation of the
switching harmonics [77]. However, the LCL filters increase the complexity of the dynamics of
the DG interface system. Moreover, due to the high resonant peak of the LCL filters, incorpo-
rating the LCL filters into VSCs necessitates modifying the conventional proportional integral
(PD) in stationary domain or proportional resonant (PR) current controllers in synchronous
reference domain. To overcome this issue, various current control approaches have been
proposed for grid-tied VSCs in the literature, which can be categorized into two major classes:
passive damping [78] and active damping approaches [77,79-88].

A common strategy in the passive damping methods is to use resistors in series with the
capacitor in the filters. Although this strategy is simple and reliable, the damping resistors
weaken the high-frequency harmonic attenuation property of the LCL filters and creates
power losses [89].

In the active damping methods, the current control structure is modified such that the grid-
connected VSC is stabilized. Active damping-based controllers are generally designed either
in stationary reference frame (abc-frame)|[79, 82, 83, 88,90] or in rotating reference frame (dg-
reference frame) [84, 87,91-93]. Although the stationary reference frame does not include the
coupling terms, it has some drawbacks, e.g. its sensitivity to the grid frequency changes [80,94],
complicated controller design, etc. Therefore, the dg-based controllers are generally more
preferred than the abc-frame ones [80]. Nevertheless, the rotating reference frame brings the
coupling terms into system equations [77]. The coupling components can be easily cancelled
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in the L-type filters [91, 92]; however, in the case of the LCL filters such terms are complicated
to handle.

Depending on the availability of the sensors and/or signals and from the economic and
practical points of view, the active damping approaches can be classified into two main
classes: (i) multi-loop and state feedback controllers[79, 82,84, 88] and (ii) dynamic output
feedback controllers (filter-based methods) [81,85-87]. In the first group, there exist two or
three control loops instead of a single current loop whereas in the second category, only one
current control loop is adopted. Therefore, multiloop and state feedback controllers need
more sensors leading to an increase in the overall cost of the system and a decrease in the
system reliability.

Generally, in the context of current control of the grid-tied VSCs, there are several areas
which can still benefit from further research: (1) robust stability and robust performance
specifications against the parameter uncertainty in the grid inductance and (2) decoupling of
the direct (d) and quadrature (g) components of current axes.

Islanded Microgrids

In order to standardize the operation and functionalities of microgrids, a hierarchical control
strategy has been recently developed in [95]. It mainly consists of three levels with separate
time-scales named as primary, secondary, and tertiary control. The first one is intended
to stabilize the voltage and frequency of the microgrids and to facilitate an accurate power
sharing. The second level compensates for the deviations in the voltage and frequency in
the steady-state and provides global controllability of the microgrids [96]. The last level is
related to the optimal operation in both islanded and grid-connected modes and the power
flow control in the grid-connected mode [97].

A control strategy ubiquitously used for the primary control of microgrids is droop control
which relies on the principle of power balance of a classical synchronous generator in con-
ventional power networks (see, e.g., [9,95,98-106]). In the power systems based on rotating
generators, frequency (rotor speed) is dependent on active power balance, i.e. the frequency
is dropped when the demanded active power increases [107]. The idea of the so-called “droop”
controllers has been developed by Chandorkar et al [108]. From a control point of view, droop
control is a decentralized proportional controller maintaining the voltage and frequency stabil-
ity of the microgrids [13]. The main advantage of droop-based control is the elimination of the
communication links among droop controllers enabling the plug-and-play (PnP) operation in
the microgrids.

In the droop control of an inverter-based microgrid with dominantly inductive lines, i.e. power
lines with small R/ X ratios, the active power is strongly influenced by the frequency (“w — P”
droop characteristic), while the reactive power is affected by the voltage deviations (“V — Q”
droop characteristic) [13]. The active power-frequency and reactive power-voltage droop
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controllers of the i" inverter are implemented as follows [13]:

w;=w"—Kp,(P;—P])

* % (1.2)

where w* is the desired (nominal) frequency, Vl* is the desired (nominal) voltage amplitude,
P; and Q; respectively are the active and reactive power injection at inverter i, and P; and Q;
are the nominal active and reactive power injection of inverter i, respectively. The controller
gains Kp, > 0 and K, > 0 are droop coefficients.

In low-voltage applications with predominantly resistive lines, the “w — Q” and “V — P” droop
characteristics are employed [109, 110]. However, in the case of resistive-inductive line condi-
tions and in the presence of conductances, the classical droop control laws cannot achieve
an efficient power sharing due to the coupled active and reactive power characteristics of the
power systems [111]. Although a large amount of research in the area of droop control has
focused on the microgrids with pure inductive and/or pure resistive line impedances, only
two main approaches have addressed the realistic case of complex line impedances in the
droop-based control. The first approach given in [112] decouples the voltage and frequency
droop controls through an orthogonal linear rotational transformation which depends on
the line reactance-to-resistance ratios. The second approach presented in [113] is based on
the concept of virtual impedance loop which improves the decoupling of active and reactive
power. The first approach is sensitive to the nature of the line impedance and restricted to
networks with constant resistance-to-reactance ratios, whereas in the second strategy the large
virtual impedance causes the output voltage of the inverter to drop severely [114]. Therefore,
the development of a novel control strategy for the case of complex and general line conditions
is still a challenging problem.

Droop-controlled inverter-interfaced microgrids have recently been under some rigorous
nonlinear analyses. The first stability analysis of “w — P” droop-controlled inverter-interfaced
microgrids with parallel topologies has been provided by Simpson-Porco et alin [115]. They
have shown that a microgrid system under “w — P” droop control can be described as a Ku-
ramoto model of phase-coupled oscillators, which have extensively been studied. Then, by
applying the results of theory of coupled oscillators, a necessary and sufficient condition for
frequency synchronization and a proportional active power sharing has been proposed [115].
The results addressed in [115] are devoted to acyclic network topologies; in consequence,
they are not applicable to meshed microgrids with cycles. In [13], a nonlinear stability analy-
sis of “w — P” droop-controlled inverter-interfaced microgrids with meshed topologies has
been provided. They have proposed sufficient conditions on the droop coefficients and set-
points to guarantee the frequency stability and a desired active power sharing in droop-based
microgrids with general structures.

An issue that has not been addressed in these recent works is a rigorous nonlinear analysis
of “V — Q” droop-controlled microgrids. The existing voltage droop control approaches do,
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in general, not guarantee a desired reactive power sharing [116]. However, this problem is
difficult and still an open problem because as opposed to frequency, voltage is not fixed along
the microgrid. Another important issue which has not been fully studied yet in the technical
literature is a rigorous transient stability analysis of the droop-controlled inverter-interfaced
microgrids due to load changes, nonlinear loads, faults, transition from the grid-connected to
the islanded mode, and vice versa.

The primary droop control methods lead to an inherent trade-off between power sharing and
voltage and frequency regulation. While obtaining a successful power sharing among DGs, the
voltage and frequency deviate from their nominal values [99, 104, 108]. In this case, secondary
control is employed to compensate the voltage and frequency deviations in the steady state.
Conventional secondary controllers exploit a centralized architecture which is unreliable in
case of a single point of failure [11]. Moreover, due to the distributed nature of microgrids, any
kind of centralized control strategies is almost impossible [117]. For these reasons, recently
several advanced distributed control strategies merging the primary and secondary levels
have been developed, e.g. [12,96,117-120]. The proposed methods are based on continuous
time averaging with all-to-all or nearest-neighbour communication. A review of the most
existing distributed secondary control approaches for the microgrids can be found in [11].

Tertiary control layer that considers the economical concerns in the optimal operation of
the microgrids can be formulated as an optimization problem by minimizing an economic
dispatch problem subject to nonlinear constraints caused by AC injections [121]. In [117,121],
it has been shown that the optimization problem in the tertiary level can be minimized via
droop control.

In addition to the droop-based control strategies in the primary level of the hierarchy, non-
droop-based approaches for voltage and frequency control of the islanded microgrids have
been also developed, e.g. [122-131]. The proposed methods regulate the voltage of a single-
DG [122-124,127,128] and/or a multi-DG microgrid [126, 129-131]. In these methods, the
frequency of each DG unit is controlled through an internal oscillator in an open-loop manner
with wg = 27 fy, where fj is nominal system frequency. All oscillators are synchronized by a
common time reference signal according to a global positioning system (GPS) [129].

Although extensive research has been carried out on the development of non-droop-based
control of micorgrids, there still exist several challenges to be addressed: (1) robustness to
parametric uncertainties, (2) a need for advanced control design strategies with decentralized
structure, (3) plug-and-play (PnP) functionality, and (4) low-complex voltage controllers.

1.3 Research Objectives

The main objectives of this dissertation are twofold: one mainly focuses on the development
of LMI-based fixed-structure control approaches satisfying several performance specifications
and second, the applications of the proposed control strategies to the inverter-interfaced
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microgrids.

The first objective is stated as follows: Given an uncertain plant, denoted by G, and a fixed-
structure controller K, find an appropriate setting for the controller (the controller parameters
and/or the control structure) such that the closed-loop system, denoted by |G, K|, satisfies
the following performance specification:

¢([GK])<u (1.3)

where ¢ is a control performance criterion such as spectral abscissa (decay rate), Hy, and Hy,
performance. The mentioned problem is formulated as follows:
min u

wK (1.4)

subjectto  ¢([G,K]) <p

To solve the above optimization problem, the following issues should be determined:

e Uncertain plant G

Among all kind of structured and unstructured uncertainties, this dissertation focuses
on polytopic-type uncertainty due to its simplicity, generality, and easy handling, mainly
in the context of the Lyapunov-based methods. To this end, consider a linear time-
invariant (LTI) plant subject to the polytopic uncertainty as follows:

G =

Ag() | Bg) ]

Cg(N) | Dg(A) 0
q Ay | By, '
Z/li 8i 8i
= Cgi Dgi

i=1

where A = [A4,...,14] is in the following unit simplex A :

q
qu{/ll,...,)tq Y Ai=1, Aizo} (1.6)
i=1

¢ is the number of vertices of the polytopic system and (Ag,, Bg,, Cg;, Dg,) is the i-th
vertex of the polytopic system. It should be noted that the dissertation can also take the
unmodeled dynamics into account.

¢ Fixed-structure controller K

The controllers are limited to LTI systems subject to some constraints on their struc-
ture. The constraints include a fixed order (e.g. low-order controllers and static output
feedback) and a given fixed structure (e.g. PIDs, lead-lag compensators, decentral-
ized/distributed controllers, etc.).
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* Performance specification ¢

A fundamental requirement of the closed-loop system [G(A), K] is robust stability for
all family of systems in G(A1), A € A4. Additional performance specifications can also
be considered; for instance, disturbance rejection, spectral abscissa, time-domain
specifications, and H,, performance.

* Appropriate algorithms/tools

The fixed-structure controller design which ensures the robust stability of the closed-
loop system [G, K| while satisfying the robust performance specifications is an im-
portant issue in the robust control theory and has attracted a remarkable attention.
However, the problem even in a nominal case, i.e. systems without uncertainty, is a
nonconvex and nonsmooth optimization problem [4]. To deal with these difficulties,
inner convex approximations of fixed-structure control problems are developed in this
dissertation. The main feature of the proposed convex optimization-based approaches
in this dissertation is that they rely on the concept of strictly positive realness (SPRness)
of some transfer functions [132].

The second part of the dissertation is dedicated to the control of inverter-interfaced micro-
grids addressing various challenges associated with robustness to parametric uncertainty
and load variations, low complexity of the controller, plug-and-play operation of DGs, and
mixed line microgrids with resistive-inductive line conditions. To achieve these objectives,
innovative high-performance MIMO robust (decentralized) fixed-structure control strategies
are developed based on an LTI model of a microgrid in a synchronous reference frame (dg-
frame). The proposed control techniques are able to overcome the limitations of existing
droop-based controllers which are only appropriate for microgrids with dominantly induc-
tive and/or resistive power lines. Furthermore, opposed to most non-droop-based control
methods, e.g. [122-131], the present approaches guarantee the robust stability and robust
performance against the load parameter changes. Moreover, the proposed controller is robust
to PnP functionality of DGs; therefore, the plug-in and/or plug-out operation of DGs do not
affect the stability of the microgrid system. Simulation studies in MATLAB/SimPowerSystems
toolbox and experimental results using real-time hardware-in-the-loop (HIL) environment
demonstrate the effectiveness of the designed controllers.

1.4 Contributions

The salient contributions of this dissertation are as follows:

* It derives necessary and sufficient conditions in terms of bilinear matrix inequalities
(BMIs) for fixed-structure H,, control of continuous-time LTT polytopic systems with
two vertices by means of polynomially parameter-dependent Lyapunov matrices. The
conditions are built upon the celebrated (D, G) scaling [133-135]. The extension of the
results to a polytope with more than two vertices leads to only sufficient conditions.
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e It presents a linear matrix inequality (LMI) framework to design fixed-structure sta-
bilizing (H.,) controllers for linear time-invariant systems subject to polytpoic uncer-
tainty. The framework relies on the strictly positive realness (SPRness) of a transfer
function depending on two slack matrices. The slack matrices are determined by a set
of fixed-structure controllers designed for each vertex or all vertices of the polytope.
Continuous-time and discrete-time controller design are treated in a completely unique
manner.

* It proposes necessary and sufficient conditions for fixed-order controller design of
LTI continuous-time and discrete-time polytopic systems via homogeneous polyno-
mially parameter-dependent Lyapunov matrices. The proposed method is based on
the concept of SPRness of a transfer function depending on a parameter-dependent
gain. To convert the problem to a set of LMI conditions, the parameter-dependent gain
is determined a priori by means of a parameter-dependent state feedback controller.
It is theoretically and numerically demonstrated that the proposed approach allows
fixed-order stabilizing (Hy,) controller synthesis which potentially use less decision
variables than some existing approaches, e.g. (46,49, 54, 56].

e Itdevelops a convex optimization-based technique for sensor and actuator placement in
LTI polytopic systems. The proposed approach is successfully applied to the challenging
problem of phasor measurement unit (PMU) placements in IEEE 14-bus test system.

* It addresses the fixed-structure control design of LTI interconnected systems affected by
polytopic uncertainty. Different from the existing approaches, where the structure of
the controller is fixed a priori, the control structure and the controller parameters are
simultaneously designed through the minimization of a weighted ¢, norm of a pattern
matrix subject to a guaranteed level of H, performance.

The dissertation also

e proposes a robust fixed-structure decentralized/distributed H,, voltage controller for
islanded inverter-interfaced microgrids consisting of DGs under load parameter uncer-
tainty.

* presents a decentralized voltage control scheme for islanded inverter-interfaced micro-
grids with general structure enabling the plug-and-play functionality of DGs.

* develops a current controller for grid-connected voltage-source converter with L/LCL
filter ensuring robust stability and robust H,, performance to grid inductance parameter
uncertainty.

13



Chapter 1. Introduction

1.5 Dissertation Layout

The dissertation breaks into two main parts: The significant portion, Chapter 2-Chapter5, are
devoted to fixed-order and fixed-structure control of LTI polytopic systems. The remaining
chapters focus on the control of inverter-interfaced microgrids. In the following, we briefly
outline the contents of each chapter.

Fixed-structure Control Strategy
Chapter 2: Fixed-structure Control: A BMI Problem

Chapter 2 deals with the problem of fixed-structure controller synthesis of LTI polytopic
systems ensuring the H,, performance of the closed-loop system via polynomially parameter-
dependent (PPD) Lyapunov matrices. In the case of a polytopic system with two vertices, the
celebrated (D, G) scaling [133-135] enables us to derive necessary and sufficient conditions
in terms of bilinear matrix inequalities (BMIs) in a nonconservative way. However, for the
case of a polytope with more than two vertices, only sufficient conditions are developed. The
set of BMI conditions are solved using existing developed approaches. The efficacy of the
proposed BMI-based approach is illustrated by means of numerical comparisons with existing
fixed-order controller design approaches.

Chapter 3: Fixed-structure Control of Systems with Polytopic Uncertainty via LPD Lya-
punov Matrices

Chapter 3 presents how a fixed-structure control design of linear time-invariant (LTI) polytopic
systems can be formulated as a convex optimization problem. To this end, inner convex
approximations of fixed-structure stabilizing (Hy,) controllers are introduced. The proposed
approaches rely on the concept of strictly positive realness (SPRness) of a transfer function
depending on two slack matrices via linearly parameter-dependent (LPD) Lyapunov matrices.
The slack matrices are determined and iteratively updated through a convex optimization
problem and a set of initial fixed-structure controllers designed for each vertex of the polytope.
The performance of the proposed LMI-based approaches are evaluated in detail through
several numerical examples.

Chapter 4: Fixed-order Controller Synthesis of Systems with Polytopic Uncertainty via
HPPD Lyapunov Matrices

Chapter 4 is concerned with the design of static output feedback stabilizing (H,) controllers
for uncertain linear time-invariant (LTI) systems. The time-invariant uncertainty is in the form
of a polytopic and affects all the system matrices. Although we mainly focus on the problem
of static output feedback (SOF) controller design, it is not restrictive because a dynamic
output-feedback controller can be reformulated as SOF for an augmented plant. Necessary

14
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and sufficient conditions based upon the SPRness of a transfer function depending on a
parameter-dependent gain are developed. To convert the problem to a convex optimization,
the parameter-dependent gain is determined a priori by means of a parameter-dependent
state feedback controller. The robust stability and robust H,, performance of the closed-loop
polytopic systems are ensured via homogeneous polynomially parameter-dependent (HPPD)
Lyapunov matrices.

Chapter 5: Control Structure Design for LTI Interconnected Systems subject to Polytopic
Uncertainty

Chapter 5 copes with two important issues of LTI interconnected systems affected by polytopic
uncertainty: sensor and actuator placement and control configuration design. To this end,
the control problems are formulated as non-convex optimization problems by minimizing
the cardinality of some pattern matrices, while satisfying a guaranteed level of H, perfor-
mance. For the resulting combinatorial optimization problem, computationally tractable
convex relaxations are provided. More specifically, using the convex inner approximation
of Hy, controller synthesis in Chapter 3 and a weighted ¢; norm relaxation, several iterative
algorithms are proposed. The main characteristic of the proposed approaches is that the
control structure and the control parameters are simultaneously designed. Simulation results
confirm the effectiveness of the proposed approaches in this chapter.

Applications to Control of Inverter-interfaced Microgrids
Chapter 6: Grid-connected Voltage-Source Converters

In Chapter 6, an LMI-based method for robust decoupled dq current control, in the discrete-
time domain, of a grid-connected voltage-source converter with L/LCL filters under the
grid inductance uncertainty is presented. In fact, the robustness of the controller to the
grid inductance uncertainties and the decoupling of dq current axes are two key features
considered in this approach. The desired performance specifications including fast speed,
small overshoot, high closed-loop bandwidth as well as dg-axes decoupling are formulated in
terms of some H, criteria. The MIMO controller is obtained through a solution of a convex
optimization problem developed in Chapter 3. The controller guarantees the robust stability
and the robust performance for all values of the grid inductance assumed to be in a given
interval. The controller provides a high bandwidth; moreover, it is associated with an integral
action to track all step reference current signals with zero steady state error. The simulation
studies are conducted in SimPowerSystem environment of MATLAB under several case studies,
e.g. dqreference current signal tracking and robustness to the grid inductance. The simulation
results demonstrate the effectiveness of the designed current controller.

15



Chapter 1. Introduction

Chapter 7: Islanded Inverter-interfaced Microgrids

Chapter 7 investigates the autonomous (islanded) operation of inverter-interfaced microgrids
under load parameter uncertainty. The control objective is to regulate the voltage of DGs at
point of common couplings (PCCs) to achieve a prespecified load sharing among the DGs. To
this end, a power management system (PMS) specifies voltage set points of each DG according
to a classical power flow. The set points are sent to local robust decentralized controllers
which are designed, in dg-frame, using the developed approach in Chapter 5, based on an LTI
mathematical model of the microgrid system with polytopic-type uncertainty. To control the
frequency of the microgrid, DGs are equipped with internal oscillators, synchronized based
on a time-reference signal received from a global positioning system (GPS). Analysis of the
microgrid dynamics, simulations case studies in MATLAB, and experimental results based
on hardware-in-the-loop (HIL) test platform demonstrate the desired performance of the
proposed control strategy.

Chapter 8: Voltage Control of Islanded Microgrids with General Topology

Chapter 8 considers the challenging problem of plug-and-play (PnP) functionality of DGs
in an inverter-interfaced microgrid. To this end, a decentralized voltage controller for the
islanded inverter-interfaced microgrids with general topology is designed. The proposed
control scheme relies on Quasi-Stationary Line (QSL) approximate model of microgrid and
the concept of neutral interactions. The main feature of the proposed controller is that it is
robust to PnP functionality of DGs; therefore, the plug in and/or plug out operation of DGs do
not have any impact on the stability of the microgrid system. The controller performance in
terms of voltage tracking, microgrid topology change, and plug-and-play capability features is
successfully verified through simulations case studies of a microgrid system consisting of 11
DGs.

Chapter 9: Conclusions and Future Directions

This chapter summarizes the work, draws some general conclusions, and discusses the possi-
ble future directions.
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Y4 Fixed-structure Control: A BMI Prob-
lem

2.1 Introduction

This chapter addresses the problem of fixed-structure control of continuous-time linear

time-invariant systems affected by polytopic uncertainty by means of polynomially parameter-

dependent Lyapunov matrices. We show that such a problem is equivalent to feasibility of
infinite number of bilinear matrix inequality (BMI) conditions. However, the celebrated (D, G)
scaling [133-135] enables us to derive necessary and sufficient conditions in terms of finite

number of BMIs in a nonconservative way in the case of a polytopic system with two vertices.
For a polytope with more than two vertices, only sufficient BMI conditions are developed.

Various comparisons with existing fixed-order controller design approaches illustrate the

potential of the proposed framework of necessary and sufficient BMIs.

The organization of this chapter is as follows: Section 2.2 and Section 2.3 respectively present
problem statement for systems without and with polytopic-type uncertainty. Sections 2.4 and
2.5 are devoted to main results. Simulation examples are given in Section 2.6. The chapter

ends with concluding remarks in Section 2.7.

The notation used in this chapter is standard. In particular, I, and 0,«; are the n x n identity

matrix and the zero vector of dimension n, respectively. The symbols ®, x, and A(i : j,:)
denote the Kronecker product, the symmetric blocks, and the extraction of the i'”* through

the j'" row of matrix A, respectively. The symbol He{A} is a notation for A+ AT.
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2.2 Fixed-structure Control

2.2.1 System Dynamics

Consider a continuous-time linear time-invariant (LTI) system described by the following
state space equations:

Xg(f) = Agxg(t) + Bgu(t) + By w(1)
z(1) = Czxg (1) + Dy u(t) 2.1
y(t) = ngg(t)
where xg € R", u € R", w e R, y € R"™, and z € R® are the state, the control input, the

exogenous input, the measured output, and the controlled output, respectively. The state
space matrices Ag, Bg, By, Cz, Dy, and Cy are of appropriate dimensions.

2.2.2 Control Structure

The main objective is to design a fixed-structure output feedback controller K(s) of order m
(0 = m < n) with the following state space representation:

Xc(£) = Acxc(8) + By (1)
u(t) = Cexc(t) + Dey(2)

(2.2)

where A, € R™*™ B, e R™* Mo C,e R"*™ and D, € R"*"o,

2.2.3 Closed-loop System

The closed-loop system H,,, transfer function from w to z, is obtained by augmenting the
states of the system x; € R" and the states of the controller x. € R, yielding

x(t) = Ax(t) + Bw(t)

(2.3)
z(t) = Cx(1)
T
where x(t):[ xg (1) x[ (1) ] and
4| As+BeDCy BeCe | o[ Bu
B.Cg A 0 (2.4)

C=| C.+DouD.Cy DzCe |

The fixed-structure dynamic output feedback controller K(s) stabilizes the system if and only
if there exists a Lyapunov matrix P > 0 such that the following Lyapunov inequality is satisfied:
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ATP+PA<0O (2.5)

The main difficulty associated with fixed-structure controller design is that the stability con-
dition in (2.5) is not convex in unknown parameters. In fact, the inequality given in (2.5) is
a BMI problem which is generally NP-hard [136]. The well-known BMI solvers such as the
commercial software package PENBMI [137,138] and the free open-source MATLAB toolbox
PENLAB [139] locally solve optimization problems with BMI and LMI constraints. However,
the BMI solvers most often fail to provide a solution for the Lyapunov inequality in (2.5).
Moreover, the choice of an initial guess is very crucial in these solvers. In the next section,we
show that the problem of fixed-structure control of polytopic systems leads to infinite number
of BMI conditions.

2.3 Fixed-structure Control of Systems with Polytopic Uncertainty:
A Parameter-dependent BMI

Consider a continuous-time LTI polytopic system with g = 2! vertices described by:

kg (1) = Ag(M)xg (1) + Bg(D) u(t) + By (M w(t)
z(t) = C; (M) xg (1) + Dz (M) u(t) (2.6)
Y1) = CgM)xg (1)

where xg € R"”, u € R", w e R, y € R, and z € R’ are the state, the control input, the
exogenous input, the measured output, and the controlled output, respectively. The uncertain
matrices belong to a polytopic domain given by:

Q; = {(Ag(V), Bg(), Cg(A), Biy(A), C2(A), Dy (V)

q 2.7
= ZAi(Agi’Bgi'Cgi’Bwi'CZi'Dzut)}
i=1
where A = [A4,...,A4] is in the following unit simplex A ;:
q
Ag=3M,..,Aq| D Ai=1, A;=0¢, 2.8)
i=1

q is the number of vertices of the polytopic system and the matrices Ag;, Bg,, Cg,, Bu;, Cz;, and
Dy, build the i-th vertex of the polytope. To keep the linear dependency of the closed-loop
matrices on the vector A, only one of matrices Bg or Cg can have the polytopic uncertainty. In
what follows, we assume that Bg belongs to the polytopic uncertainty domain Q;.

The polytopic model in (2.6) can be equivalently converted into an affine parameter-dependent
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system as follows:

g (1) = Ag (@) xg (1) + Bg (@) u(t) + By, (O) w(1)
z(1) = CL(0) x4 (1) + D}, (0) u(r) (2.9)
y(1) = Coxg(1)

where the matrices A, (0), Bg(0), Cg, B, (0), C,(0), and D7,,(0) belong to the following uncer-
tainty domain:

l l
%whﬁwiyﬁv‘%@:%ﬁ;&%
1= i=

l
B@@)=B@0+§%9ﬂxw, Cg=Cg (2.10)
1=

l l
C.@=C,+) 0;,C,, D@0 =D, +) 0;D,
i=1 i=1

where 0; € [-1,1];i=1,...,1.

The problem addressed in this chapter is the design of a robust fixed-structure controller K(s)
with the state space representation given in (2.2). The closed-loop system H,,(0) is described
as follows:

x(t) = A@)x(t) + BO)w(t)

(2.11)
z(t) = C(O)x(1)
T
where x(t) = [ ng(t) xCT(t) and
/ ! ! / !
46) Ag(6)+Bg(,6)DCCg By@Ce | g0 | Bu® ]
B.C, A, 0 (2.12)
CO)=| CLO)+ DL, O)D:Cy DL, @O)C |
The triplet (A(6), B(9), C(0)) belongs to the following domain:
[
A0) = Ag+)_0;A;
i=1
l
B(O)=Bo+)_0;B; (2.13)
i=1

l
CO)=Co+)_06;:C;
i=1
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2.3. Fixed-structure Control of Systems with Polytopic Uncertainty: A
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where 0; € [-1,1] and

A, +B, D.C, Bl C. B!
Ag=| ToT TR TR Be= | o Co=| Cl,+DLyyDeCy Diy Ce |
4
A, +B. D.C, B.C. B!, @1
Aj= 8i ng § g(l) ) i= Ol , Ci=[ C;,»"'D,zuiDCC:g Dlzu,-cc ]
fori=1,...,1.

The closed-loop system in (2.11) is stable via a positive polynomially parameter-dependent
Lyapunov matrix of degree N (P(6)) if and only if the following constraint is satisfied:

AT@O)PO)+P©O)ADB) <0 (2.15)

for all 6; € [-1,1]. The above conditions are an infinite set of BMIs with respect to unknown
controller matrices appearing in the closed-loop matrix A(f) and the Lyapunov matrix P(6).
To convert the BMI conditions depending on an uncertain parameter, being hence a feasibility
problem of infinite dimension, to finite-dimensional BMIs, we use (D, G) scaling [133-135]
and multi-parameter (D, G) scaling approach [140, 141].

Theorem 1. ((D,G) Scaling [135]) Let® € RUHDxnk+D) Then, the following matrix inequality

¥ er1,) 006" er,) <0 (2.16)

T
where % = [ 1 6 6> ... ok ] , holds for all 0 € [-1,1] if and only if there exist a positive-

definite matrix D € R"™ "% qnd a real skew-symmetric matrix G € R " sych that
<I>+AZ(D, G) <0 (2.17)

where A’kZ(D, G) € RMk+Dxnlk+1) ;¢ defined as follows:

T

" D G I
AMD,G)=| k k. k#0 2.18
1(D,G) i ¢ -p || # (2.18)
where
i]?=[ Iy Okx1 ]®In
(2.19)

= opa Ik ol
and A (D, G) = 0. The inequality in (2.17) is an LMI with respect to the matrices ®, D, and G.

Theorem 2. (Multi-parameter (D, G) Scaling [140]) Consider a symmetric matrix ® € RM+1>xn(+1)
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Then, the following matrix inequality holds

0" e1,) ®0"e1,)<0 (2.20)

T

where O = [ 1 6, 6, --- 6 ] and0; € | —1,1], if there exist positive definite matrices
Dy, Dy, ...,D; and skew-symmetric matrices G; j, (i=0,....,1-1,j =1,...,1) of appropriate
dimensions such that

D Gop - Go,1
Gy, -Di Gia - Gu,1
D+ : : L : <0 2.21)
T T
(;0,5“_1 Gl,}—l T Gl—l,l
Go,; G, - Gy D

I
whereD = Y. D;.
i=1

1=

2.4 Fixed-structure Control of Affine Single Parameter-dependent
Systems

In this section, necessary and sufficient conditions for the existence of a fixed-structure
H,, controller for affine single parameter-dependent systems via polynomially parameter-
dependent Lyapunov matrices are presented. The main idea behind of these conditions is the
(D, G) scaling approach used to convert the parameter-dependent BMI condition in (2.15) to
the feasibility problem of a set of inequalities independent on 6.

2.4.1 Fixed-structure H,, Controller Design via Linearly Parameter-dependent
Lyapunov Matrices

In this part, the problem of fixed-structure Hy, controller design of affine single parameter-
dependent systems via linearly parameter-dependent Lyapunov matrices is proposed and the
results are given in the following theorem:

Theorem 3. There exists a fixed-structure controller that stabilizes the affine single parameter-
dependent systems in (2.9)-(2.10) with | = 1 and ensures |H;,,(0)lloo < ¥ with a linearly
parameter-dependent Lyapunov matrix P(0) = Py + 0P, if and only if there exist symmetric
matrices Py and Py, a positive-definite matrix D > 0, and a real skew-symmetric matrix G of
appropriate dimensions such that

Py+P; >0

(2.22)
Py—Py>0
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Wy +AM™(D, G y.T
118, 7D, 6) Ll | <o (2.23)
Y11 -yI
where
Py
wii=Hed | 1 || 40 A o] (2.24)
0
BIP BIpy+BI'P BTp
Yig=| ©°°° 1707 %0 M1 151 (2.25)
Co C 0

and A}*"™ (D, G) is given in (2.18) with k = 2.

Proof. First, the inequalities given in (2.22) imply that the Lyapunov matrix P(0) = Py + 0P is
positive definite. Then, applying the Schur complement lemma on (2.23) leads to the following
inequality:

Wi +y 'Y Y+ APTD,G) <0 (2.26)

According to the (D, G) scaling, the above inequality is equivalent to

T
In+m II’H'WZ
OLiem | Poo| O0Lnim | <O (2.27)
02[n+m 6° TInvm
where
Py Cy
Oy =He! | P, Ay Ay 0 |p+y | T Co Ci 0
0 0
(2.28)
Py By Py By
-i-’)/_1 PyB; + P1 By PyB; + P1 By
P By P By
The inequality in (2.27) can be rewritten as follows:
ATOPO)+PO)AG) +y 1CT©)CO)+y 1 PO)BO)BT (0)PO) <0 (2.29)
Therefore, || H;,,(0)llo < ¥ and the proof is complete. O
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2.4.2 Extension to Polynomially Parameter-dependent Lyapunov Matrices

In this subsection, we are interested in the extension of the previous results to polynomially
parameter-dependent Lyapunov matrices of degree N, i.e. Py (0) = Zf.\i 0 0! P;. The results are
summarized in the following theorem. As the degree of the polynomial P(0) increases, the
results converge to the optimal ones [142]. Finally, necessary and sufficient conditions for the
existence of a fixed-structure H,, controller for an affine single parameter-dependent system
are derived.

Theorem 4. For an affine single parameter-dependent system described by (2.9)-(2.10) with
[ =1, there exists a fixed-structure controller which guarantees the robust stability and ro-
bust performance | H;,,(0) oo < ¥ Via a polynomially parameter-dependent Lyapunov matrix
Pn(B) = ZﬁOBiPi if and only if there exist symmetric matrices P; fori =0,1,..., N, positive
definite matrices D and L, and real skew-symmetric matrices G and K such that

[ 2Py P, -+ P,y P
P 0 - 0 Py
1

3| S P ALK <0 (2.30)

Piy, 0 - 0 Py,

P;j  Pjy1 o Pajo1 2P;

T
Wl,N"‘AK,tT(D, G) Yl,N <0 2.31)
Yl,N —)/I
where AX'(D, G) is defined in (2.18) with k= N + 1 and
% if N is even
j= (2.32)
% if N is odd
Cp ]
Py
Wi, v = Hex Ay Ay 0 0|, (2.33)
Pn
0
T T T T T T T T
Yin = BO Py B1 P0+BO P, B1 P1+BOP2 Bl PN—1+BO Py Bl Py (2.34)
' Co C 0 0

Note that if N is an odd number, 2 j = N + 1, therefore, P, in (2.30) is replaced with 0.
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Proof. The inequality given in (2.30) directly expresses the positivity of matrix Py (0) based on
the (D, G) scaling approach in two cases where N is either even or odd. The rest of the poofis
similar to that of Theorem 3. a

Remark. The proposed conditions in Theorem 3 and Theorem 4 are necessary and sufficient
for fixed-structure Hy, controller design of polytopic systems with two vertices via linearly
and polynomially parameter-dependent Lyapunov matrices of order N, respectively. The
conditions are expressed by an optimization problem subject to two sets of BMI and LMI
constraints. To solve the optimization problems involving BMI constraints, several local and
global approaches have been developed in the literature, e.g. [137,143-145].

2.5 Fixed-structure Control of Affine Multi Parameter-dependent
Systems

In the previous section, necessary and sufficient conditions for fixed-structure Hy, output
feedback controller design of affine single parameter-dependent systems in terms of LMIs
and BMIs have been developed. The results can be extended to the robust fixed-structure
controller synthesis of affine multi parameter-dependent systems according to the multi
parameter (D, G) scaling approach.

Theorem 5. The fixed-structure controller given in (2.2) stabilizes the affine multi parameter-
dependent systemsin (2.9)-(2.10) and ensures | H;,, (0) oo <y Via alinearly parameter-dependent
Lyapunov matrix P(0) = Py + 25:1 0, P; if there exist symmetric matrices P; (i =0,1,...,1),
positive-definite matrices D; (i = 1,...,1), and real skew-symmetric matrices G; j (i =0,1,...,1—
1,j=i+1,...,1) ofappropriate dimensions such that

Py+Pi+-+P;>0 (2.35)

W;,1+AD,G yI
11 +AD,G) 1| <o (2.36)
Y -yI
where
Py
Py
Wi =Hed | Ay A - A,] 2.37)
Py
BIPp BIpy+BIP ... BIp
Yip=| °° 1707 %0 51 1l (2.38)
’ Co C, C
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D Gop - . Go,1
GOTJ -D; Gi2 - G,
AD,G) = : : L : (2.39)
T T
Goio1 Gri Gi-1,1
T T T
Go,l Gl,l Gl—l,l —D;

where D = 25:1 D;.

Proof. The set of inequalities in (2.35) indicates that P(0) = Py + Zgzl 0;P; > 0. The following
inequality results from applying the Schur complement lemma to (2.36):

Wi +y 'Y Y1+ AMD,G) <0 (2.40)

The remains of the proof are straightforward thanks to the multi-parameter (D, G) scaling
presented in Theorem 2.

2.6 Simulation Results

To demonstrate the effectiveness of the proposed BMI-based conditions for fixed-structure
H,, control, they are applied to two numerical examples and compared with existing fixed-
order controller design methods. The BMI constraints are implemented and solved in MATLAB
using the available software packages, e.g. YALMIP [146] and PENBMI [137].

Example 1. Consider a continuous-time polytopic system with two vertices given in [57]. The
system can be easily converted to an affine single parameter-dependent system in (2.9) with

[ =1, where
[ —1.346 34.065 179.82 0.356 —16.65 —83.67
Ap)=| 02424 -1.135 -21.69 | +6 | 0.0223 0.2834 103
| o 0 -30 0 0 0
[ —91.435 —6.345 0
By = 0 +0| 0 |, B,=]|1
30 0 1 (2.41)
0 o 1 0 0
C = , C=1o0 1 0
g 0 1 0
0o 0 1
Dy,=[0 o o]
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Table 2.1: Upper bound of || H;,,(0) |« in Example 1

Method Y K
[47] 9.7315 [0.5558 5.0823]
(48] (Theorem 4) 6.8028 [0.0536 0.6384]
[57] (Theorem 13) 2.3267 [0.4474 4.1860]
[147] 1.7947 | [77.1587 608.8698]
Proposed method with N =1 | 1.6602 | [130.3463 939.3718|
Proposed method with N =2 | 1.6446 | [0.1702e3 1.2234e3]

where 0 € [-1,1].

The objective here is to design a static output feedback H, controller with polynomially
parameter-dependent Lyapunov matrices. To this end, an optimization problem, which is
the minimization of y subject to the LMI and BMI constraints respectively given in (2.30) and
(2.31), is considered. The problem is solved by PENBMI (version 2.1) [137] with an initial
controller K, = [0 0] after 138 iterations in the case of N = 1 and after 66 iterations in the
case of N = 2. Resulting static output feedback controllers are given in Table 2.1. The CPU
times for both cases N =1 and N =2 are 14.20s and 16.27s, respectively, on a 3.4 GHz Intel
Core i7 with Mac OS X. It should be noted that PENBMI fails to provide any solution for the
case of N = 3.

The results are compared with the LMI-based methods in [47, 48, 57, 147]. It can be ob-
served from Table 2.1 that the proposed BMI-based method in this chapter with polynomially
parameter-dependent Lyapunov matrices of order two leads to the best results among the
others.

Example 2. Consider the model of a two-mass-spring system in [147]. The system can be
represented by:

0 0 1 0 0 0 0 o0
0 0 0 1 0 0 0 0
Al©@) = +6

g —Aay ap 0 0 —a) a) 0 0

apg —ay 0 0 a - 0 0
[ 0 0 (2.42)
0 0
I _ I _ I

Bg = I -0.75 |’ Dz, =0
0 0.75

CG=[o 1 0o ol c=[1 -1 0o o

where 0 € [-1,1], ag = %, a = @, k;=1.15,and k, = 2.

The goal is the design of a second-order Hy, controller. To this end, an optimization problem,
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which is the minimization of y subject to the LMI and BMI constraints in (2.30)-(2.31), is
solved.

To solve the optimization problem, the local optimization-based method in [145] is used. In
this way, the BMI constraint in (2.31) is reformulated as a difference of two positive semidef-
inite convex mappings. Then, the concave part is linearized at each iteration and a convex
subproblem involving a set of LMIs is obtained. Finally, the resultant LMI-based optimization
problem is solved using YALMIP [146] as the interface and MOSEK! as the solver. The termina-
tion criteria are the same as ones mentioned in [145]. The maximum iteration number is set
to hmax =100 and p; = 0.001 for i = 1,2,..., N + 2. The final second-order controllers for both
case N =1and N =2 are respectively given by:

A, | B
K= (2.43)
Ce, | Dg,
where
| —3.4963 -2.8297 | 57701
@ 21438 03006 |7 "7 | -0.6.3582 (2.44)
Co=| -52792 -4.2469 |, D, =86595
A, | B
K= |22 2 (2.45)
Ce, | D,
where
| -3.6053 -2.8822 | 5.8797
| 22776 04338 |" % | -0.9089 (2.46)

Ce,=| -5.4472 -43289 |, D, =8.8309
It should be mentioned that the resulting controller with N =1 (K}) is used as an initial guess
for the case N = 2.

The results of the proposed method and HIFOO [31] are reported in Table 2.2, where both
methods are initialized by the same controller K (0] designed in [147]. Note that the best results
of HIFOO during three sequences with 30 iterations have been mentioned in Table 2.2.

Since HIFOO does not guarantee the stability conditions and H, performance for the whole
polytope, the upper bound of || H;,,(8) I, obtained by HIFOO, is not determined in Table 2.2.

It is observed that the proposed method in this chapter with N = 2 leads to the better results

1 Available online in http://www.mosek.com
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Table 2.2: Upper bound of || H;,,(0) ]« in Example 2

Iteration .
Method NHzw O lloo | 1Hziw(=Dlloo | 1 Hziw(Dlloo Number Time (s)
HIFOO — 0.747 0.748 30 403.85
Proposed method | /) 0.753 0.652 81 86.17
with N=1
p h
roposed method | 0.741 0.604 7 10.8
with N =2

than HIFOOQO'’s. Furthermore, HIFOO needs considerable computational time to find a con-
troller. However, the linearized convex-concave decomposition approach needs a feasible
initial condition which is not easy to find.

2.7 Conclusion

In this chapter, the problem of fixed-structure H, controller synthesis of continuous-time
LTT polytopic systems by means of polynomially parameter-dependent Lyapunov matrices
is considered. Particular emphasis is laid upon the polytopic systems with two vertices in
which necessary and sufficient conditions for the existence of a fixed-structure Hy, controller
in terms of BMIs and LMIs are derived. The fundamental idea of this approach is based on the
use of the (D, G) scaling which can convert inequality conditions depending on an uncertain
parameter to a finite set of inequalities. The extension of the results to the robust fixed-
structure controller synthesis of the polytopic systems with more than two vertices via linearly
(polynomialy) parameter-dependent Lyapunov matrices leads to only sufficient conditions.
The BMI conditions can be solved using available BMI solvers and existing approaches in the
literature. However, the BMI solvers most often fail to provide a solution for the BMI problem:s.
Moreover, the choice of an initial guess for most existing methods is very crucial and affects
the feasibility of the BMI problem. In Chapter 3 and Chapter 4, we propose another set of
BMIs for fixed-structure control of polytopic systems which relies on the concept of strictly
positive realness (SPRness) of transfer functions and use of slack matrices. To solve the BMI
conditions, several heuristic approaches for the design of the slack variables are developed.
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8] Fixed-structure Control of Systems
with Polytopic Uncertainty via LPD
Lyapunov Matrices

3.1 Introduction

This chapter aims to develop a fixed-structure control strategy for linear time-invariant dy-
namical systems subject to polytopic uncertainty. The proposed approach is based on the
use of slack matrices which convexify the problem of fixed-structure controller design by
decoupling unknown matrices. The problem is formulated as a convex optimization problem
with a set of LMI constraints. Although the presented design approach can apply to any kind
of structured controllers, the main focus is on fixed-order control. The effectiveness of the
proposed control techniques is illustrated using several simulation examples.

The organization of this chapter is as follows: Problem formulation and preliminaries are
respectively given in Section 3.2 and Section 3.3. A new parameterization of fixed-structure
stabilizing controllers is presented in Section 3.4. Two algorithms for fixed-structure stabilizing
controller design are developed in Section 3.5. Section 3.6 is devoted to fixed-structure Hy,
control synthesis. The case of polytopic uncertainty in all state space matrices is considered
in Section 3.7. Numerical examples are provided in Section 3.8. Section 3.9 concludes the
chapter.

Throughout this chapter, matrices I and 0 are the identity matrix and the zero matrix of
appropriate dimensions, respectively. The symbols T and x denote the matrix transpose and
symmetric blocks, respectively. The symbol He{A} is a notation for A+ AT, For symmetric
matrices, P >0 (P < 0) indicates the positive-definiteness (the negative-definiteness).
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3.2 Problem Formulation
3.2.1 System Dynamics
Consider a linear time-invariant (LTI) dynamical system described by:

8[xg ()] = Agxg (1) + Bgu(1)
y(t) = ngg(t)

(3.1

where xg € R" is the state, u € R™ in the input, and y € R™ is the output of the system.
Symbol §[-] presents the derivative term for continuous-time (6[xg(#)] = ig(¢)) and the forward
operator for discrete-time systems (5 [xg(t)] = xg(t + 1)). The state space matrices Ag, Bg, and
Cy are of appropriate dimensions. It is assumed that the matrices Ay and Bg belong to the
following polytopic uncertainty domain:

q
Q, = {(Ag(/l),Bg()L)) =) Ai(Agi,Bgl.)}; AeAy (3.2)
i=1

where (Agi,Bgi, Cg,O) is the i-th vertex of the polytope. To keep the linear dependence of
the closed-loop matrices on the vector A, we assume that Bg belongs to the polytopic-type
uncertainty domain Q; and Cg does not contain any uncertainty.

3.2.2 Control Structure

The problem addressed in this chapter is to present a set of LMI conditions for fixed-structure
controller design of the polytopic system in (3.1) and (3.2). The controller K is given by:

Olxc ()] = Acxc (1) + B y(1)
u(t) = Cexe(8) + Dey(1)

(3.3)

where A, € R"™*" B, e R (C.e R"*™ and D, € R"*"  The controller K can be also
described as follows:

Ac | Be
Cc | D¢

K= (3.4)

It is assumed that specific structural constraints on the controller matrices can be set by
designers to reflect some control design requirements/objectives. The constraints can be in
the form of:

e Static output feedback (m = 0)

* Fixed-, low-order dynamic output feedback (m < n)

e Strictly proper controller (D, = 0)
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* PID control, e.g. the state space realization of a continuous-time SISO PID controller is

given by [4]:
1 S
K(s)=Kp+ K;—+Kp
S 1+71s
0 O K7 (3.5)
-0 <t 2k
1 I‘Kp-i-%KD

* Decentralized control with block diagonal controller structure

* Distributed control with non-block diagonal/overlapping controller structure

As an example, consider an interconnected system consisting of two subsystems with following
state space realization:

, Bg=diag(Bg,,Bg), Cg=diag(Cg,,Cg,) (3.6)

There exists one sub-controller for each subsystem. It is assumed that the sub-controller
1 has access to the measurements of its own subsystem as well as the measurement of the
subsystem 2 while the sub-controller 2 uses only the measurements of the subsystem 2. In
this case, the controller structure is expressed as follows:

A 0 B B
Ae ,,Cl,l%,,,, B, ,,CLl,:,cLZ,
0 ' Acy 0 ' B, 3.7
CCH | 0 _ Dcll I DCI2
Cc—’***‘**’» c— | "5 T~
0 'Ce, 0 ! D,

Other specific structural constraints, such as fixed-order, on each sub-controller can be also
imposed. The design problem is then to find the parameters of the structured controller, i.e
the state space matrices (AC, B, C,, Dc), so that the resulting closed-loop system meets the
design requirements.

3.2.3 Closed-loop State Matrix

The interconnection of the controller K defined by (3.3) and the polytopic system in (3.1)-(3.2)
leads to the following closed-loop state matrix A(A):

Ag(D) + Bg(M)D:Cy  Bg(A)Ce

AN =
BcCq A

(3.8)
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where
q

A =Y NiAi; AieA, (3.9)

i=1

and

Agi + Bgi DCCg Bgi Ce
B.Cq Ae

i=

(3.10)

The closed-loop state matrix A(A) is robustly stable if all its eigenvalues are located inside the
unit circle for all A € A4 (discrete-time case)/if all its eigenvalues have strictly negative real
part for all A € A4 (continuous-time case).

3.3 Preliminaries
This section provides the basic lemmas which are used throughout this chapter.

Lemma 1. (Kalman-Yakubovich-Popov (KYP) Lemma [148]) A square transfer function H =
A|B

[T‘?] is strictly positive real (SPR) if and only if there exists a Lyapunov matrix P > 0 such

that

For continuous-time systems:

ATp+pA PB-CT

<0 3.11
BTp-c -D-DT (3-11)

For discrete-time systems:

ATpa-p  ATpB-CT

<0 3.12
BTPA-C BTPB-D-DT 8.12)

Lemma 2. The following statements are equivalent:

A|B
1. A square continuous-time transfer function H(s) = [?‘T] is SPR with a Lyapunov

matrix P> 0.

A-BC | B | . . .
T‘T] is SPR with a Lyapunov matrix P > 0.

Proof. According to the KYP lemma, Statement 1 is equivalent to the existence of a Lyapunov

2. Hl(s) =
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matrix P = PT > 0 such that

ATp+pPA PB-CT

<0 3.13
BTp-C -21 (8.13)

Using the Schur complement lemma [149], the above inequality can be written as follows:
T 1 Ty pT
A P+PA+5(PB—C JB'P-C)<0 (3.14)
This inequality can be rearranged to
1
(A—BC)TP+P(A—BC)+5(PB+CT)(BTP+C)<0 (3.15)

which is equivalent to

(A-BCO)TP+P(A-BC) PB+cCT
BTp+C or | <° (3.10)
Therefore, Statement 2 follows. O

A|B
Lemma 3. An SPR discrete-time transfer function H(z) = [T‘T and its inverse H™ (z) =

A-BC
-C

satisfy the KYP lemma with a common Lyapunov matrix P > 0.

Proof. The SPRness of H(z) is equivalent to the existence of a Lyapunov matrix P > 0 such
that

ATpaA-pP ATpB-CT

<0 3.17
BTPA-C BTPB-21 8.17)

Pre- and post-multiplication of (3.17) by UlT and U;

U, = ro (3.18)
S R ‘
lead to the following inequality:
(A-BCO)TP(A-BC)-P (A-BCO)TPB+CT
T T (3.19)
B'P(A-BC)+C B'PB-21]
which is equivalent to the SPRness of H ~1(z) with the Lyapunov matrix P > 0. O
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3.4 New Parameterization of Fixed-structure Stabilizing Controllers

3.4.1 Main Idea of the Proposed Approach

In [42] and [150], the basic idea for the synthesis of a fixed-structure controller for a SISO
polytopic system with a rational transfer function representation is given as follows: Suppose
that ¢;(s) fori =1,..., g is the closed-loop characteristic polynomials at the i-th vertex, then
the polytopic system is stable if ¢;(s)/d(s) for i = 1,...,q is an SPR transfer function where
d(s) is a given stable polynomial called the central polynomial. The choice of the central
polynomial is very crucial and affects the control performance as well as the conservatism of
the approach.

In this chapter, the idea of SPR transfer functions in the state space framework is used to find
a convex set of fixed-structure controllers for systems affected by polytopic-type uncertainty.
The idea relies on the concept of SPRness of transfer functions, the KYP lemma, Lemma 2, and
Lemma 3.

3.4.2 A Convex Set of Fixed-structure Stabilizing Controllers

The following theorems propose a new convex parameterization of fixed-structure stabilizing
controllers for both continuous-time and discrete-time polytopic systems given in (3.1) and
(3.2).

Theorem 6. (Continuous-time Case) Suppose that a stable matrix M and a non-singular
matrix T are given. Then, the fixed-structure controller defined in (3.3) stabilizes the continuous-
time polytopic system in (3.1) and (3.2) if there exist Lyapunov matrices P; > 0 such that

MTP,+P;M  Pi-MT+(T7'4,T)T

<0; i=1,..., 3.20
Pi—-M+T'A;T —21 q e

where A; is the closed-loop state matrix of the i-th vertex given in (3.10).

Proof. By convex combination of (3.20) for all vertices, one can obtain:

MTPpA)+PAMOM PO -MT+(T1anDT

21
PA)-M+T AT —21 <0 (3:21)

where A(A) = Z?:l AiA;, P(A) = Z?:l AiPj,and A € A4. According to the KYP lemma, the above
inequality indicates that the following transfer function is SPR with the Lyapunov matrix P(1):

M \ I

H(s) =
(s) M—T-lA(A)T\ I

(3.22)

As a consequence of Lemma 2, the following transfer function is also SPR with the same
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Lyapunov matrix:
o T'AWT | 1
H (s = — (3.23)
~M+TYANT \ I
and therefore
(TAD TPV +PA(TPANT) P +MT — (1A )T 0 (3.24)
PA+M-TYAMNT 21 '

By the multiplication of the above inequality on the right by diag (7!, 7~!) and on the left by
diag(7-7, T~T), the following inequality is obtained:

ATA)Pr (D) +Pr(MAQA)  Pr(A)+ M7 - AT)X 0 (3.25)
Pr(A) + My — XAL) —2X '
where
PrM)=TTPT', Mr=T"T"MT!, X=T"TT"! (3.26)

The application of the Schur complement lemma to (3.25) leads to
ATWPr() + PT(M)AL) <0 (3.27)

for A € A4. As aresult, the closed-loop state matrix of the polytopic system A(A) is stable with
a linearly parameter-dependent Lyapunov matrix Pr(A). O

Theorem 7. (Discrete-time Case) Suppose that a stable matrix M and a non-singular matrix
T are given. Then, the fixed-structure controller in (3.3) stabilizes the discrete-time polytopic
system in (3.1) and (3.2) if there exist Lyapunov matrices P; > 0 such that

MTP;,M-P; MTp,—MT +(T7'A; DT

o <0; i=1,..,q (3.28)
PiM—M+T YA T p;—2I

where A; is the closed-loop state matrix of the i-th vertex given in (3.10).
Proof. Similar to the proof of Theorem 6. O

The convex sets of fixed-structure stabilizing controllers presented in Theorem 6 and Theorem
7 are inner convex approximations to the non-convex set of all fixed-structure stabilizing
controllers for the polytopic systems.
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Remarks.

1. Inequalities given in (3.20) and (3.28) are LMIs in terms of the controller matrices
(Ac, Be, Ce, D) and symmetric positive-definite matrices P;, i = 1,..., q.

2. According to Lemma 2 and Lemma 3, it can be readily shown that the inequalities given
in (3.20) and (3.28) are respectively equivalent to the following sets of inequalities:

AlPr +Pr,A; Pr,—AlX+Mj

<0; i=1,...,q (3.29)
P, — XA; + My —2X

and

AlPrAj—Pr,  AlPp,—ATX+M]

<0; i=1,...,q (3.30)
PTl-Ai —XA;+ Mgt PT,» -2X

where Pr, = T~Tp; 77! and My and X are defined in (3.26).

3. The use of the slack matrices M and T enables us to decouple the Lyapunov matrices
and the controller parameters appearing in the closed-loop matrices. Taking advantage
of this property, a fixed-structure controller can be designed via linearly parameter-
dependent Lyapunov matrices and without employing a common Lyapunov matrix
for all vertices. However, the use of linearly parameter-dependent Lyapunov matrices
instead of (homogeneous) polynomially parameter-dependent ones is one of the main
sources of conservatism in the proposed approach.

3.5 Algorithms for Fixed-structure Stabilizing Controller Design

The slack matrices M and T play a crucial role in the proposed approach to fixed-structure
controller design. In fact, an appropriate choice of these matrices affect the quality and the
conservatism of the proposed fixed-structure control technique. However, yet, there exists no
strict manner in which the slack matrices can be assigned. To tackle this issue, two heuristic
algorithms for the fixed-structure control design are presented.

3.5.1 Algorithm I: “Fixed-structure stabilizing controller design”

Algorithm I is based on the use of a set of initial fixed-structure stabilizing controllers designed
for each vertex/all vertices of the polytopic system. The initial controller(s) may be computed
through some of the existing fixed-structure controller design approaches in MATLAB such
as hinfstruct' [30] and systune [36]. In the case of fixed-order controller design, the initial
controllers may be designed using balanced controller order reduction of a full-order controller

1 Available in the Robust Control Toolbox since R2010b
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[1], the convex relaxation of a rank constraint in the classical full-order controller design [16],
and MATLAB toolboxes, e.g. HIFOO (31, 32,34] and FDRC [151].

Suppose that A; is the closed-loop state matrix of the i-th vertex with its corresponding
controller. Then, the slack matrices M and T can be chosen as follows:

T = (chol(X)) ™"

T 3.31)
M=TTM;T

where chol denotes Cholesky factorization and (Mr, X) are a solution to the following LMI
conditions:

For continuous-time systems:

AlPr, +Pr,A;  Pr,—-AlX+M]

i <0; i=1,..,q (3.32)
PTi —XA;+Mrp —2X

For discrete-time systems:

AlPrAi—Pr, AlPr,—Al'X+M]

1 i <0; i=1,..,q (3.33)
Pr,A;— XA; + My Pr, —2X

If the above LMIs become feasible, M and T can be used in the set of LMI conditions given
in (3.20)/(3.28) to design a fixed-structure stabilizing controller. In the case of infeasibility of
either (3.32)/(3.33) or (3.20)/(3.28), different initial controllers or Algorithm II can be applied.

3.5.2 Algorithm II: “Stretching algorithm”

Algorithm II relies on the fixed-structure controller design for a nominal system defined as
follows:

14 14
Agnom = Z Agi Bgnom = Z Bgi C nom — Cg (334)
qix1 qix1

where (Ag;, Bg;, Cg,0) is the state space realization of the i-th vertex of the polytopic system.

Suppose that K% is an initial fixed-structure controller for the nominal system. The next step
is to obtain the slack matrices M7 and X using (3.32) for continuous-time systems and (3.33)
for discrete-time systems. Note that for a single stabilizable system, feasibility of (3.32)/(3.33)
or equivalently (3.20)/(3.28) is always guaranteed, as A is a stable closed-loop state matrix.

A new polytope with following vertices is built in the iteration j of an iterative algorithm as
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explained in the following.

. , 1—aqll 4 . , 1—qll 4
AY = all ag + Ag, B =aBy + By,
l -1 2 l -1 0
. o (3.35)
k#i k#i
Ul _
Cgi _Cg

fori=1,...,q, where a!/! (% < /Y < @/l <1) is a scaling factor for the original polytope in
(3.1) and (3.2). Note that al/! = % and al/! = 1 reflect that the nominal model and the original
polytope are covered, respectively. Moreover, it can be easily shown that the new polytopic
system in the iteration j encompasses the old one (for al/~1).

The objective is to create a polytopic system with maximum scaling factor « (é sasl)

in which the closed-loop state matrix A(A) for all A € A4 remains stable. In the following,
a procedure to design a fixed-structure stabilizing controller with the maximum polytopic
uncertainty domain is presented. The procedure is generally divided into two parts. In the first
part, the slack matrices and the maximum value of & are computed using the LMI conditions
given in (3.32)/(3.33) and according to the stabilizing controller from the previous iteration. In
the second part, a new fixed-structure controller is designed using (3.20)/(3.28).

The iterative procedure can be summarized with the following steps. To ease the presentation,
the inequalities in (3.20)/(3.28) and (3.32)/(3.33) are respectively defined as follows:

761 (P, K|M,T) <0 (3.36)
7} (P, Mr, X, a|K) <0 (3.37)

fori=1,...,q. Thesign | in the arguments of Jfll and szl separates the decision variables and
the known parameters in the LMI conditions. Therefore, the set of LMIs in (3.36) is used to
design a fixed-structure controller K = (Ac, B, C,, Dc) for a given pair of (M, T). In the same
way, the LMI conditions in (3.37) are employed to find M7, X, and « for a given controller K.

Step 1 (Initialization): Choose a0l = % and set j = 1 and a small tolerance for € > 0. Design
an initial fixed-structure stabilizing controller for the nominal model in (3.34) (K [0}y,
Step 2: Compute M/ and X'/ from the following optimization problem:

alil = max a
Py, M XU (3.38)
subject to 25 (Pr, M, XU a|KU ) <0; i=1,...,q
Then, obtain the slack matrices M!J! and T! using (3.31).

Step 3: According to the current value all, anew polytope with the vertices given in (3.35) is
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built, i.e. (47, BY, i, 0).
Step 4: Solve the following set of LMIs to obtain a fixed-structure stabilizing controller KU! for
the new polytope corresponding to al/l:

26 (P, KV MU TV ol <0; i=1,...,q (3.39)

Step 5 (Termination): If either Aa = all =gV~ < ¢ or il =1, stop. Otherwise use the
obtained controller in Step 4 as an initial controller and go to Step 2 with j — j +1.

Remark. The iterative algorithm leads to monotonic non-decreasing convergence of the
scaling parameter a.

3.6 Fixed-structure H,, Controller Synthesis

3.6.1 Problem Statement
Consider an LTT dynamical system described by the following minimal state space realization:

Slxg(D)] = Agxg(t) + Bgu(t) + By w(1)
z(t) = Czxg (1) + Dy u(t) + Dy w(t) (3.40)
y(1) = Cgxg(t) + Dy w(t)
where xg € R”, u € R", w e R, y € R, and z € R® are the state, the control input, the
exogenous input, the measured output, and the controlled output, respectively. The state

space matrices are of appropriate dimensions. It is assumed that the polytopic uncertainty
affects the state space matrices Ag, Bg, By, Cz, Dzy, and Dy, i.e.

(3.41)

Q3 ={(Ag(A), Bg(A), Bw(A),C2(A), Dzy(A), D21y (M)
1

q

Z Ai(Agi’Bgi’BWi’ CZi’DZMi’DZWi)}
iz

where A € A; and (Ag,, Bg,, Cg, Buw,» Cz;, Dzu;, Dzw,, Dw) is the i-th vertex of the polytope. To
keep the linear dependence of the closed-loop matrices upon the vector A, either pair (Bg, Dz)
or (Cg, D) belongs to the polytopic uncertainty domain Q3. In what follows, matrices Cy and
D, are assumed to be independent of the uncertain parameter A.

The state space representation of the closed-loop system H,, (1), transfer function from w(t)
to z(t), with the dynamic output feedback controller in (3.3) is as follows:

Slx(0)] = AN x(1) + BAw(1)

(3.42)
z(1) = C)x(t) + DN w(r)

43



Chapter 3. Fixed-structure Control of Systems with Polytopic Uncertainty via LPD
Lyapunov Matrices

where x(1) = [xg (1) x!(1)] "and

Ag(D) + Bg(A)D:Cy  Bg(A)Ce By () + Bg(A) DDy
B:Cq Ac B:Dy, (3.43)

C(A) =[C.:(M)+Dz,(A)D:Cy Dzu(MC¢|, D) =Dy(A) +Dzu(M)DcDyy

AN = , B =

The vertices of the closed-loop polytopic system H,,, (A1) are given as follows:

L= 1=1,...,q .
“wi Ci D;
where
Ai _ Agi BgiBCCg BgiCC , Bi _

By +Bg, DcDy
B:Cq A, B:Dy

Ci= [Czi +DzuiDcCg DzuiCc]» D;= Dzwi +Dzu,»Dch

(3.45)

The fixed-structure Hy, control synthesis problem to be addressed in this section is stated as
follows:

Problem 1. (Fixed-structure Hy, control)

Design a fixed-structure output-feedback controller with dynamic equations given in (3.3) such
that || Hzy (A) |leo is minimized, i.e.

min u

2 (3.46)
subjectto  |HzpwMllso <p, YAEA,

3.6.2 Inner Convex Approximation of Fixed-structure H,, Controllers

The following lemma determines the H,, norm of the transfer function H,, (1).

Lemma4. (Bounded Real Lemma) Consider H_,,(1) = (A(A), B(A), C(A), D(A)). Then, || Hzy (M) 1|2, <
u if and only if there exists a symmetric matrix P(A) > 0 such that

For continuous-time systems [148]:

ANTPV)+PVAN) POBW) CcTw
BT(WPW) -1 DT [<o0, 2eA, (3.47)
Cc) D(A) —ul
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For discrete-time systems [152]:

AMDTPAAN) - P AMVTPABW) ctw
BTPHAW —ul+BTMPWBW) DT | <0, AeAy (3.48)
CcV) D) -1

The above parameter-dependent inequalities contain the products of the Lyapunov matrix
P(A) and the controller parameters appearing in the closed-loop matrices A(1), B(1), C(1),
and D(A). In the following, an LMI representation for fixed-structure H,, controller synthesis
of LTT systems with polytopic uncertainty is given. The results are based on the use of slack
matrices which are able to decouple the product of unknown matrices.

Theorem 8. (Continuous-time Case) Suppose that a stable matrix M and a nonsingular slack
matrix T are given. Then, the fixed-structure controller in (3.3) stabilizes the polytopic system
in (3.40) and (3.41) and ensures the performance criterion | H,, (M) 1|2, < w for all A € Ay if there
exist symmetric matrices P; > 0 such that

MTpP;+P;M  Pi-MT+(T7'A, DT 0 r'ct

Pi—-M+T7'A;T 21 T7'B; 0 0 i-1o2 (3.49)
y 1=1,2,..., .
0 (T-1B)T -1 DT 9
CiT 0 D,’ —[JI

Proof. Convex combination of (3.49) for all vertices leads to the following inequality:

MIp ) +POM PO -MT+T AT 0 TTcT ()

PA) = M+TTANT 21 T'BH 0 <0 (3.50)
0 (T BT - D'W |
C)T 0 D(A) —ul

where A € Ay, P(A) = Z?Zl AiP;, and the closed-loop matrices (A(A), B(1),C(A), D(1)) are
given in (3.43). Then, the multiplication of the above inequality on the right by U, (1)

I 0 0
Py oo
Us(A) = o I o (3.51)
0 0 I
and on the left by UZT () leads to the following inequality:
PAT YA +(TPAN TP T'BOPW TTcT
(T'BAYTPWY) -1 DT <0 (3.52)

CA)T D(A) —ul
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According to the bounded real lemma [148], the above inequality indicates that || H;,, (1)l go <
u. O

Theorem 9. (Discrete-time Case) Suppose that a stable matrix M and a nonsingular slack
matrix T are given. Then, the fixed-order controller of (3.3) guarantees the robust stability and
the robust performance | H,, (1) |2, < p of the closed-loop system given in (3.42)-(3.45) if there
exist Lyapunov matrices P; > 0 such that

-MTP;,M+ P; MTP,—MT +(T71'A; )T 0 r’ct

PM-M+T AT -P;+21 T-'B; 0
-1 T T > 0) 1= ]-J 27 ’ q

0 (T7'By) I D]

CiT 0 Di ,Lt[

(3.53)

Proof. By convex combination of (3.53) for all vertices, the following inequality is obtained:

-MTPO)M + P(L) MTpA) - MT + (T 1A )T 0 TTcT )

PAM-M+T'ANT —-P(A) +21 T-'B() 0 0
0 (T'B(A)T I DT
CAT 0 D(A) ul
(3.54)

where A € Ay, P(A) = zle AiP;,and (A(L), B(A), C(A), D(A)) are given in (3.43). Then, pre- and
post-multiplication of (3.54) with matrix Us(A) and UST(/U, respectively,

-7 1 TMT-ATQ)T T 0 —u~tcT
Us(A) = . o T (3.55)
0 BTT -1 u DT ()
yield
P — (TP A DT PP AN T) - cHT) T (CAT) * 0
(r ' B TP T AT + DV T (CAT) ul— (1B TPAY(T~'B) - DT (WDW)
(3.56)

which is equivalent to (3.48) using the Schur complement lemma. Therefore, the closed-loop
performance || H;,, (1) ||§O < u is guaranteed. O

Similar to the fixed-structure stabilizing control design, in order to choose the slack matrices M
and T, matrix inequalities equivalent to (3.49) and (3.53) in which M, T, and P are decoupled
are presented.
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Lemma 5. The following set of inequalities is equivalent to (3.49):

AlPr,+Pr,A;  Pr,+M}—-A'X -MIB;+A'XB; C/

Pr,+ M7 —XA; -2X XB; 0 )
T T T r | <0 i=1,...,q (8.57)
—-B; M7+ B; XA; B/ X -1 D;
Ci 0 D; —ul

where Pr, = T-TP;T™! and Mr and X are defined in (3.26).

Proof. The inequalities given in (3.57) are obtained by the multiplication of (3.49) on the left
by U, and on the right by U4T .

-t -1 TMT+ATTT 0 0
g-| Tt 0 0 (3.58)
oo 0 I o0 '
0 0 0 I
O

Lemma 6. The following set of inequalities is equivalent to (3.53):

—AlPr,Aj+Pr, AlPr,+M] -ATX MIB;—ATXB; C!

PTiAi+MT_XAi _PT,-+2X XB; 0 .
T T T r |>0 i=1,..,q9 (359
Bi" Mr—B; XA B; X I D;
Ci 0 D; pl

where Pr, = T~ Tp, T~' and My and X are defined in (3.26).

Proof. Multiply the inequalities given in (3.53) on the left and on the right by the following
matrix Us and U/, respectively.

' 1 ITMT-ATTT 0 0
u-| © T 0 0 (3.60)
7] o 0 I 0 '
0 0 0 I
O

In the following, a systematic algorithm for the problem of the fixed-structure H, controller
design of LTT polytopic systems is given.
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3.6.3 Algorithm III: “Fixed-structure H,, controller design”

To ease the presentation, the inequalities in (3.49)/(3.53) and (3.57)/(3.59) are respectively
defined as follows:

Fi(Pi, K,u|M, T) <0 (3.61)
F(Pri, Mr, X, p|K) <0 (3.62)

fori=1,...,q. The sign | in the arguments of 91’ and 92‘ separates the decision variables and
the known parameters in the LMI conditions. The set of LMIs in (3.61) is used to design a
fixed-structure Hy, controller K = (AC, B, C,, DC) for a given pair of (M, T) whereas the LMI
conditions in (3.62) are employed to find Mt and X for a given controller K.

Step 1 (Initialization): Design an initial fixed-structure (Hy,) controller for each vertex of the
polytopic system (K i[0] ;i=1,...,q). Put the iteration number j = 1 and choose the maximum
number of iterations h,,,, and a small tolerance for € > 0.
Step 2: Compute M [T] Vand X! from the following optimization problem:
j1 _ .
Hi= i
P, M7 XU

subject to gzi(PT,-,M[Tj],X[j],u|Ki[j_H) <0 (3.63)

i=1,...,q

Then, obtain the slack matrices M'/! and TU! using (3.31) and according to the current values
ofM;j] and XU,

Step 3: Solve the following convex optimization problem to obtain a fixed-structure Hy,
controller KUU:

Ul _

gy = min
P KUl
subject to gf(Pi,K[j],MMU], TU]) <0; (3.64)

i=1,...,q
Step 4 (Termination): If either ,u[lj -0 _ ,u[lj I < € or even maximum number of iterations Nimax
reaches, stop. Otherwise use the obtained controller in Step 3 as an initial controller (K, l.[] I=
KUl;i=1,...,q) and go to Step 2 with j — j +1.

It can be easily proven that the above iterative algorithm leads to monotonic convergence of

the upper bound on the H,, norm. The proof is based on the fact that (3.61) and (3.62) are
[

equivalent inequalities. Therefore, for j > 1, K/~ and p./' are always feasible solutions to the

optimization problem in Step 3 which guarantees that ,u[lj < p[zj !, On the other hand, M [T] ¢l

and p[lj L are always solutions to the optimization problem in Step 2 at iteration j + 1. Thus,
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[j+1] [J]
By S Hy

and monotonically converges to a suboptimal solution.

. As aresult, ,u[lj < ,u[lj ! which shows that the upper bound y; is not increasing

3.7 Fixed-structure Controller Design in the Case of Polytopic Un-
certainty in All State Space Matrices

Consider the LTI dynamical system described by (3.40) where the polytopic uncertainty affects
all the state space matrices, i.e.

Q4 ={(Ag(N), B¢(A), Bw(A), Cg(A), Cz(A), Dz (A), D21y (A), D1y ()

q (3.65)
= Z /ll'(Agi’ngBwi’Cgi'CZﬂDZMi’DZWNDwi)}
i=1

where A € Ay and (Ag;, Bg,, Cg,,» Bw,» Cz;, Dzu;, Dzw,» Dw,) is the i-th vertex of the polytope.

In the case of polytopic uncertainty in all state space matrices, the proposed conditions in Sec-
tion 3.4 and Section 3.6 cannot guarantee the stability and the H, performance specification
of the closed-loop systems due to the product of Bg, D, and Cg,, Bg, D and Dy, Dy, D and
Cg,, and Dy, D and Dy,. In this section, new LMI-based conditions for fixed-structure con-
troller synthesis of polytopic systems in which the uncertainty affects all the system matrices
are developed. The results rely on the use of slack matrices which are able to decouple the
product of unknown matrices as well as the state space matrices.

Theorem 10. (Continuous-time Case) Suppose that two slack matrices M and X are given.
Then, the fixed-structure controller of (3.3) stabilizes the given LTI continuous-time polytopic
system in (3.40) and (3.65) and ensures the robust performance || H,, (M) |12, < p forall A € Ag if
there exist matrix L and symmetric matrices P; > 0 such that

MAg +A;M" Pi-M+ALX MB,, Cl  MBgK Cq,
* -x-x'  X'B,, 0 XT"BgK 0
* * -1, D}, 0 + He Dl |Lp<0
* * * —uls Dz, K 0
* * * * 0 ~Imin,
(3.66)
fori=1,...,q, where
A; B
K= CC Dc (3.67)
[ [

49



Chapter 3. Fixed-structure Control of Systems with Polytopic Uncertainty via LPD
Lyapunov Matrices

and
_ Ay, 0 _ 0 By, _ By
Agi = & ’ Bgi = 8i ’ w; = i
0 0, I, O 0
- 0 I, _
g = Cgi 0 ) Cz, [ C; O ]» Dzul = [ 0 Dzu,
_ _ 0
Dzwi = Dzwi» Dw,- = D (3.68)
w;

Proof. By convex combination of (3.66) for all vertices, the following inequality is obtained.

MAg)+AFMMT PO -M+AFMX  MBy(l) CIA)  MBg(WK Cg ()
* -x-xT XTB,0 0 XTBg(MK 0
* * ~Ir D, 0 +He DL |Ly<o0
* * * —,UIs Dzu(/l)K 0
* * * * 0 —Im+n,
(3.69)
where A€ Ay, P(A) =X A;P; and
{(Ag(A), Bg(1),Cg(AN), Byy(A), C2(A), Dz (A), Dy (A), Dy (M)
q - - - - - - - -
= Z Ai(Agi’Bgi' Cgi’Bwi’ CZi’DZMi’DZWi'Dwi)}; /ll' € Aq (3.70)
i=1

Pre-multiplication and post-multiplication of inequality (3.69) by V(A1) = | Lm+n)+r+s zZT |,
where

ZAW=| CgA) 0 Dy 0 (3.71)

lead to the following inequality:

MAg)+AFMMT PO -M+AF (WX  MBy(l) CIA)  MBg(WK

* -x-xT XTB,) 0 XTBg(MK
V) * * -1,  DL,w 0 vy <o 6.72)
* * * —IJIs Dzu(/l)K
* * * * 0
Note that
Cg (1)
0
V(WHes | DIy |Lyviy=0 (3.73)
0
_Im+n,,
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Inequality (3.72) can be rewritten as follows:
MAgM)+Ag WM™ PQA)-M+Ag(MX  MB,(W) CI)
* -x-xT XTB,) 0
* * =1 Dsz @)
* * * —pl
MBg(MK
.
vHed | X Bz WK 20t <0 (3.74)
Dzu(MK
By multiplying the inequality (3.74) by Us(A) on the left
I AL +CMKTBg() 0 0
UsM=| 0  Bj,(M+Dy,(WK"Bg (1) I 0 (3.75)
0 0 0 I

and UGT (1) on the right, the inequality (3.47) is obtained with linearly parameter-dependent
Lyapunov matrix P(A). Thus, the proof is complete. O

Theorem 11. (Discrete-time Case) Suppose that two slack matrices M and X are given. Then,
the fixed-structure Ho, controller of (3.3) stabilizes the given LTI discrete-time polytopic system
in (3.40) and (3.65) and provides the robust performance || Hz,, (1) ||C2>O <uforall A€ Ay if there
exist matrix L and symmetric matrices P; > 0 such that

Pi—AgM"-MAg, -M+AgX -MBy,, CJ, -MBgK Cq,
* X+XxT+pP; XTBy, 0 XTBg,K 0
* * I, DL, 0 + He Dy, |Lp>0
* * * wl Dy, K 0
* * * * 0 ~Imin,

(3.76)

fori=1,...,q, where K and (Ag,, Bg,,Cg,,Cz,, Dzu;, Dzw,, Duw,) are respectively given in (3.67)
and (3.68).
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Proof. Convex combination of the set of conditions in (3.76) leads to the following inequality:

[ PO -A;WMT = MA;A) -M+A;M'X -MB,() CJ/(A) -MBgWK ]

* X+xT+P) XTB,) 0 XTBg(MK

* * I DI, ) 0

* * * wl D, (MK

* * * * 0

2 (1)
0
+Hes | DI (W) |[Lp>0 (3.77)
0
| _Im+no ]

where 1 € A4, P(A) = 2?21 AiP; and (Ag(A), Bg(A), Cg(A), C2(A), Dz (A), D21y (A), Dy (1)) are
given in (3.70). Multiply the above parameter-dependent LMI by [ D(m+ny+r+s ZT ) ]
on the left, Z is given in (3.71), and its transpose on the right. Then, by multiplication of the
resulting inequality by U7 (A) on the left

I AT -CIWKTBIM) 0 —p(C(N) + Doy (WK Cg(A)T
U7z(M) = 5T AT TAT A = = T
0 By, (M) + D, (A)K" Bg (A) -1 —(Dzy(A) + Dy (M) KDy (A))
(3.78)

and by U7T (1) on the right and finally applying the Schur complement lemma, (3.48) is ob-
tained. O

Remarks.

1. The inequalities given in (3.66) and (3.76) are LMIsin terms of K, L, y,and P;,i = 1,...,q.

2. The slack matrix L decouples the product of Bg,K and Cg,, By, K and D,,,, D, K and
Dy, as well as D, K and Cgl.. In the case that the polytopic uncertainty appears in
neither pair (Bg,, D;y,) nor (Cg,, Dy,), the slack matrix L can be easily removed and
in consequence, the conservatism caused by the use of a unique slack matrix L for all
vertices is eliminated.

3. Theorem 10 and Theorem 11 can be adapted to cope with fixed-structure stabilizing
controllers by excluding the third and forth rows and columns in (3.66) and (3.76).

4. Theorem 10 and Theorem 11 can be used for fixed-structure Hy, controller design of
LTT system with polytopic uncertainty given in (3.40) and (3.65). To this end, similar
to Algorithm III in Subsection 3.6.3, the slack matrices M and X can be chosen and
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Figure 3.1: Evolution of the scaling factor a versus the iteration numbers in Example 1

iteratively updated according to a set of initial fixed-structure controllers, i.e.

min
M,X,L,u,P;

S.t.

(3.66)| . ((3.76)| . )

P;=P] >0;

3.8 Numerical Examples

i=1,..

Hq

(3.79)

In this section, three simulation examples are provided in order to demonstrate the effective-

ness of the proposed methods in this chapter. The convex optimisation problems are solved
by YALMIP [146] as the interface and SDPT3 [153]/SeDuMi [154] as the solver.

Example 1 (Fixed-order stabilizing control). Consider the state space model of the linearized

vertical-plane dynamics of an aircraft (AC1 benchmark problem in [155]) given by:

o
oq
Il

S O © O O

o

0 P1
—-0.0538 —-0.1712
0 0

0.0485 0
-0.2909 0

0 0 0 O
1 0 0 O
1 0 0

0

0

1
—0.8556

02

-1
0.0705
0
-1.013

—P3

0
-0.12

Pa
Ps

0
1
0
0
0

0

0

0
—1.665

~0.0732 |

(3.80)
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where p; =1.132, p2 =1.0532, p3 = 0.6859, p4 = 4.419, and p5 = 1.575. We assume that all five
parameters p1, P2, P3, P4, and ps contain the uncertainty up to +60% of their nominal values.
A first-order output feedback controller is sought to stabilize the resulting polytopic system
with g = 2° vertices in a five-dimensional space.

According to Algorithm II in Subsection 3.5.2, a first-order output feedback stabilizing con-
troller is designed using hinfstruct for the nominal system defined in (3.34) as follows:

A;=-100.6193, B,=| 7.9859 8.7991 8.8372

9.8927 ~0.0280 -0.7255 —0.3759 (3.81)
Cc=| 96167 |, Dc=| 04738 -6.7940 1.7955
10.1794 1.6036 —1.9755 2.1200

This controller can be used as an initial controller for the iterative algorithm in which the
scaling parameter « is maximized. Finally, after 21 iterations, a is increased up to 1. The
evolution of a versus iterations is shown in Figure 3.1. The final stabilizing controller after 21
iterations is given by:

A, =-183.4386, B.=| 8.1305 14.6246 1.2300x 103

12.7043 -0.0302 —0.9143 -84.1476 (3.82)
Ce=| -56.2052 |, Dc=| 06063 -2.0523 431.3461
~3.3766 1.6314 —0.9903  45.6236

Example 2 (Fixed-order H,, control). Consider the following state space model of a discrete-
time system in [43] given by:

0 0 - Ty
0 1 -3 0 (3.83)

C:=]0 0 1|, Dz,=0, Dzy=1 Dy=1

with r; =-0.1, 7, = 0.5, r3 = —1.2, and r4 = 0.2. It is assumed that the parameters ry, 12, r3, and
r4 contain uncertainty up to +20% of their nominal values, resulting in an unstable polytope
with 24 = 16 vertices in a four-dimensional space. The objective is to design a second-order
Hy, controller such that the performance criterion || H;,, (1) || is minimized

According to Algorithm III in Subsection 3.6.3, at the first step, sixteen initial second-order
controllers are designed using FDRC Toolbox [151] for each vertex of the polytope. Then,
the initial controllers are utilized to determine the slack matrices M and T using the convex
optimization problem given in (3.63). Finally, the iterative algorithm converges to the following
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Figure 3.2: Evolution of the upper bound of the H,, norm versus the iteration number in
Example 2

Table 3.1: Upper bound of || H;,, (1) | for different approaches in Example 2

(3] [156] [44]
Approach 42 b | d@ e | deE  dbe) Results of Theorem 9

Y=VH 225 195 | 225 195 | 1.75 1.75 1.64

controller with p = 1.6428 after 15 iterations:

—0.8942 0.0555
1.0025 -0.1035

1.6979
—0.0006

c=

) c—

(3.84)
CC=[ ~0.4733 0.1292 ] D, = 0.5409

Figure 3.2 shows the monotonic decreasing of the upper bound of || H;,, (1)l Versus the
iteration number. Since the state space realization of the system is in the canonical form,
the polynomial-based approaches in the literature (e.g. [3, 44, 156]) which rely on the idea
of SPRness are employed for the comparison purpose. The results of these approaches for
two different central polynomials d; (z) and d»(z) have been reported in [44]. The results are
summarised in Table 3.1. The results show that the proposed approach in this chapter obtains
the best results among the others.

Example 3 (Fixed-order distributed H,, control). Consider a network of three intercon-
nected second-order discrete-time subsystems given in [74] with following state space matri-
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ces:
an 011 a;3 0 1-03 0
01 0.1, 0 0 ,-03 0.2
|03 01,06 01, 0 0
102 05/01 aw ! 0 0
0 0'-02 0 '04 0
0104 -01'02 03
-0.5 0.2 0.5
Bg = diag )
04 ] 103 (3.85)
-0.2 0.4 0
= diag )
-0.2 0.2
Cg—dlag([l 1] [1 L)
C.=diag([ 13 04 |,[0 -2 |,[ -05 o]
D, =diag(—0.3,0.1,0.5), Dg, =diag(0.1,0.5,0)
Dy, = diag(-0.3,0,0.5)

It is assumed that the parameters a;1, a3, and ag4 are not precisely known, but they belong
to theintervals 0 < a;; 0.4, -1 < a;3 <1, and 0 < ay4 < 0.8. The objective of this example is
to design a distributed H,, control with the following structure for the polytope with g = 8
vertices:

A =diag(Ac,, Ac,) Ac,),  Bc =diag(Bg,, Be,, B,)

A P2 Jop (3.86)
CC = dlag (Ccl’ CCZ’ CCS)’ DC = DCz] | Dczz | DCZS

where the order of A.,, Ac,, and A, is fixed to one.

According to Algorithm III in Subsection 3.6.3 together with hinfstruct for initial fixed-structure
controller design, the following fixed-structure controller is obtained after 20 iterations:

Ac = diag(0.2145,-0.5230,0.2098), B, = diag(0.1262,—0.1614,0.8826)
10214 0 . 0

I

|
—
N
p—
[
S
|
e
N
—
(0]
o

|
o
N
D
[\
o

C. = diag(0.8455,1.0642,-0.6998), D,

0 ! 0 ' —0.4103

The results versus the iteration number are depicted in Figure 3.3, which indicates that the
upper bound of the infinity norm monotonically decreases. The obtained controller achieves
| H,wlloo < 1.0133, which is 22% smaller than the results of [157] in which an H,, control
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Figure 3.3: Evolution of the upper bound of the infinity norm versus the iteration number in
Example 3

with the same structure given in (3.86) has been designed for the system in (3.85) without
uncertainty.

3.9 Conclusion

This chapter presents LMI-based approaches to fixed-structure control of continuous-time
and discrete-time LTT systems subject to polytopic uncertainty. The proposed approaches
rely on the concept of strictly positive realness (SPRness) of transfer functions depending on
several slack matrices. The slack matrices are utilized as a key tool to convexify the stability
conditions as well as the H, performance specifications. They are determined through a
convex optimization problem and a set of initial fixed-structure controllers designed for each
vertex of the polytopic system. To design fixed-structure stabilizing (H,,) controllers for
the polytopic systems, several systematic iterative algorithms are developed. Moreover, it is
shown that the proposed approaches monotonically converge to a suboptimal solution by
iterative update on the slack matrices according to the controller in the previous iteration. The
simulation examples from the literature demonstrate the efficiency of the proposed methods.

In the next chapter, a slack variable-based approach for the problem of fixed-order control of
polytopic systems is developed. Similar to the proposed approach in this chapter, it is based
on the SPRness of a transfer function in which the slack matrices are designed using a state
feedback controller.
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Fixed-order Controller Synthesis of
Systems with Polytopic Uncertainty
via HPPD Lyapunov Matrices

4.1 Introduction

This chapter addresses the problem of fixed-order controller design of linear time-invariant
polytopic systems via homogeneous polynomially parameter-dependent Lyapunov matrices.
The proposed approach relies upon the concept of Strictly Positive Realness (SPRness) of a
transfer function depending on a parameter-dependent gain. Continuous-time and discrete-
time controller design are treated in a unified fashion. It is theoretically and numerically
demonstrated that the proposed approach allows fixed-order stabilizing (Hy,) controller syn-
thesis and uses less decision variables than some existing LMI-based approaches. Numerical
examples show the efficacy of the proposed conditions compared with existing fixed-order
control strategies.

The organization of this chapter is as follows. The problem formulation is given in Section 4.2.
Section 4.3 presents necessary and sufficient parameter-dependent conditions for fixed-order
stabilizing control. The relation between the proposed conditions and the existing methods
is given in Section 4.4. Fixed-order H,, controller design strategy is proposed in Section 4.5.
Section 4.6 is devoted to simulation results. Section 4.7 concludes the chapter.

The notation used throughout the paper is standard. In particular, Z. is the set of nonnegative
integers.
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4.2 Problem Formulation

4.2.1 System Dynamics

Consider a linear time-invariant (LTI) system subject to polytopic uncertainty given by:

Olxg ()] = Ag(A)xg (1) + Bg(A)u(t) + By (D) w(r)
z(1) = C; (M) xg (1) + D2y, (M) u(t) + Dy () w() (4.1)
y(1) = Cg(A) xg(2)
where x; € R", u € R, w € R, y € R™, and z € R® are the state, the control input, the

exogenous input, the measured output, and the controlled output, respectively. The uncertain
matrices Ag(A), Bg(A), By(A), C;(A), Cg(A), D2y (A), and Dy, (A) belong to the following set:

Qs = {(Ag(1), B¢(A), By(A),C;(A), Cg(A), Dy (), Dy (M)

q (4.2)
= Z Ai(Agi’Bgi’Bwi’CZi’Cgi’Dzui’Dzwi)}; Ae Aq

where the matrices Ag,, Bg,, By,, Cz;, Cg;, Dzy;, and Dy, build the i-th vertex of the polytope.

4.2.2 Controller Dynamics

The main objective of this chapter is to design a robust fixed-order controller of order m
(0 = m < n) with dynamical equations given in (3.3) that stabilizes the polytopic system of
(4.1)-(4.2) and meets various closed-loop performance specifications.

The problem of dynamic output-feedback controller synthesis can be equivalently trans-
formed to static output feedback by introducing an augmented plant as follows [15]:

81xg (0] = Ag(M)Xg (1) + Bg(A) u(t) + By (D) w(1)
2(1) = C (M) Xg (1) + Dy (D) () + Dy (M) w(t) (4.3)
y() = Cg(A)X'g(t)

where
| Agh) 0 = v | 0 Bg)
Ag=| T | Be=1 ]
s o | Bu | 4| 0 Inm
By(A= 0 , Cg) = Ce) 0 (4.4)
C:=] ¢ 0|, Du=|0 Du |

Dzw(/u = Dzw(/l)
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4.2.3 Closed-loop System Dynamics

The closed-loop system H,,, (1), transfer function from w(#) to z(¢), is described as follows:

Olx(0] = A x(1) + BAD) w(1)

(4.5)
z() =C M) x(t) + DIV w(r)
T
where x(1) = | xJ () x/() | and
AA) = Ag(MN) + Bg(A)KCg(A), B(A) = By(A) 46)
Cc = Cz(/l) + Dzu(A)KCg(A), D) = Dzw(/l) .
where
A, B
K= 4.7)
C. D,

4.3 Fixed-order Stabilizing Controller Design

The following theorems present necessary and sufficient conditions for the existence of a
stabilizing static output feedback controller for the augmented polytopic systems described
by (4.3) and (4.4).

Theorem 12. (Continuous-time Case) There exists a static output feedback controller K which
stabilizes the augmented continuous-time polytopic system in (4.3) and (4.4) if and only if there
exist a parameter-dependent gain Ks(1), a Lyapunov matrix P(A) > 0, and two matrices X and
L such that

MT)PA)+P(AMMQ) PA)Bg(A) - NT Q)

BI (WP - N _x-xT <0 (4.8)
forall A € Ay, where
M) = A,(A) + B (WK (A
(1) = Ag(A) + Bg(A)Ks(A) o

N(A) = XK (A1) — LC4(A)

Moreover, the controller gain is presented as K = X L.

Proof. Sufficiency: Based on the KYP lemma, inequality (4.8) indicates that the following
transfer function is SPR with Lyapunov matrix P(1):

_ M) | Bg)
X(K; M) -KCg) | X

H(s) (4.10)
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According to Lemma 1, the SPRness of H(s) implies that H ~1(s) with the following realization
is also SPR with the same Lyapunov matrix P(A).

H(s) A(L) | —Bg(WXx~!

_ _ e (4.11)
KM -KCgh) | X

The SPRness of H1(s) with P(A) leads to the stability of the closed-loop state matrix A(A) with
the parameter-dependent Lyapunov matrix P(A) > 0.

Necessity: Assume that K stabilizes the closed loop polytopic system in (4.5)-(4.6). Let’s choose
X=I(X+XT>0),L=K,and Ks(1) =K Cq(A). Then, the following transfer function is SPR;
accordingly, (4.8) is satisfied.

HE) =13 Ii

M) | Bg) }

- 4.12)
=0x (sI-MA) ' x Bg(V) +1
=1
Thus, this completes the proof. O

Theorem 13. (Discrete-time Case) There exists a static output feedback controller K which
stabilizes the augmented discrete-time polytopic system in (4.3) and (4.4) if and only if there
exist a parameter-dependent gain K(1), a Lyapunov matrix P(A) > 0, and two matrices X and
L such that

MTAPAMA) —PA) MTA)PA)Bg(D) - NT ()

B WPAMQA) -NQ) Bz (MWPA)Bg(A) - X - XT <0 (4.13)

forall A € Ay, where M(A) and N(A) are defined in (4.9). Moreover, the controller gain is
presented as K = X' L.

Proof. Similar to the proof of Theorem 12. O

4.4 Relation between Theorem 12/Theorem 13 and the Existing Meth-
ods

In this section, the relation between the proposed stabilizing static output feedback control

approach in Theorem 12/Theorem 13 and the methods in [46, 49, 54, 56] is given. In particular,

we show that the proposed approaches in [46, 49, 54, 56] can be interpreted as relying on the
concept of the SPRness of a transfer function where A-matrix is fixed by a gain matrix.

Lemma 7. Suppose that K is a state feedback controller for the continuous-time augmented
system described by (4.3) and (4.4). Then, the following statements are equivalent:
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(a) The static output feedback K stabilizes the augmented plant in (4.3) and (4.4).

(b) There exist two matrices X and L such that the following transfer function is SPR:

A, +B.K, | B
H(s)= | —2—52 ‘ § (4.14)
XK—LCq | X
(¢) There exist a Lyapunov matrix P > 0 and matrices X and L such that
(Ag+BgK)TP+P(Ag+BgKy) PBg—(XK;—LCy)" 0 (4.15)
BgTP—(XKS—LCg) -x-xT '

(d) There exist a Lyapunov matrix P > 0 and matrices F, V, X, and L such that the following

inequality holds [56]:
(Ag +BgK)TFT + F(Ag + BgKy) * *
P-FT+V(Ag+ BgKy) -v-vT * <0 (4.16)
B’gTFT +LCq — XK BgvT -x-xT

(e) There exist a Lyapunov matrix P > 0 and two matrices X and L such that the following
inequality is satisfied [46].
He{

Moreover, the static output feedback controller is presented as K = X L.

- _
AgP_+PAg *

Kkl
BP 0 -1

[RZSAE ]}<0 (4.17)

Proof. The statements (a), (b), and (c) directly result from the KYP lemma and Theorem 12.
Therefore, it is enough to show that (4.16) is equivalent to (4.15). Post-multiplying (4.16) by Q;
and pre-multiplying by QIT , the inequalities given in (4.15) is obtained.

I 0
Qi=| Ag+ByK; By (4.18)
0 I

To prove the statement (e), the inequality given in (4.15) is obtained by pre- and post-multiplication
of (4.17) by the following matrix:

I K
= 4.19
Q2 0 I (4.19)
Thus, the proofis complete. a

Lemma8. Suppose that K; is a state feedback controller for the discrete-time augmented system
described by (4.3) and (4.4). Then, the following statements are equivalent:
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(a) The static output feedback K stabilizes the augmented plant in (4.3) and (4.4).

(b) There exist two matrices X and L such that the following transfer function is SPR:

A, +B.K, | B
H(z) = |2 —8° ‘ § (4.20)
XK LCq | X
(¢) There exist a Lyapunov matrix P > 0 and matrices X and L such that
(Ag+BgK) "P(Ag+BgKy)—P (Ag+BgKy)TPBg— (XK;—LCg)” <0 @21)
Bg P(Ag + BgKy) — (XK, — LCy) BgPBg—X—-X" '
(d) There exist a Lyapunov matrix P > 0 and matrices F, X, and L such that [54]:
-P * *
FT(Ag+BgKy) P-F-F" * <0 (4.22)
LCq - XTK; BgF -x-xT

(e) There exist a Lyapunov matrix P > 0 and matrices Fy, F», F3, Fy, X, and L such that [49]:

Fi(Ag+BgKy) + (Ag+BgK)TF[ -P  « * *
Fy(Ag + BgKy) -P * *
i 4R 3T ET L [ _ 3T pT 3T T _ T <0
F3(Ag+BgKy) + By F + LCg— XK;  BgF) F3BgF{ —(X+XT) *
Fy(Ag + BgKy) — Ff P-F] FyBg—F] —Fy—Ff
(4.23)

Moreover, the static output feedback controller is presented as K = X' L.

Proof. The statements (a), (b), and (c) are the direct results of the KYP lemma and Theorem
13. To show (4.22) and (4.21) are equivalent, post-multiply (4.22) by Q; given in (4.18) and
pre-multiply it by Q] .

The equivalence between the inequalities in (4.21) and (4.23) is obtained by multiplication of
(4.23) on the right by Q3 and on the left by QgT

I 0 0
0 I 0
Qs = 0 0 I (4.24)
Ag+BygKs 0 By
leading to the following inequality:
-P * *
P(Ag+BgK;) -P * <0 (4.25)
LCq - XK ng -Xx-XxT
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Then, by pre- and post-multiplication of (4.25) by the following matrix, the inequality given in
(4.21) is derived.

I (Ag+BgKyT 0
0 Bg I

4 = (4.26)

Thus, the proofis complete. O

As a result, the slack matrices (F, V) in (4.16), F in (4.22), and (Fy, F2, F5, Fy) in (4.23) can be
eliminated without conservatism. In fact, these matrices do not affect the final static output
feedback controller; however, elimination of them leads to less computation time.

4.5 Fixed-order H,, Controller Design

Theorem 14. (Continuous-time Case) There exists a static output feedback controller K which
stabilizes the augmented continuous-time LTI polytopic system in (4.3)-(4.4) and satisfies
| H,y M2, <, forall A € Ay, if and only if there exist a parameter-dependent gain Ks(A), a
Lyapunov matrix P(A) > 0, and two slack matrices X and L such that

MTA)PQA) + PAYML) * * *
nT _ _v_vT
B} (4)13(1) N) X-X * |y w27
BL(A)P(A) 0 —ul

C'z(/l) +Dzu(/1)Ks(/1) Dzu(/l) Dzw(l) _I
where M(A) and N(A) are defined in (4.9). Moreover, the controller gain is presented as K =

X1L.

Proof. Sufficiency: By applying the Schur complement lemma to (4.27), the following inequal-
ity is obtained:

MTQA)PA) +PA)MA) * *
Bg(MPA)-NW)  -X-XT % |+A<0 (4.28)
BL WP 0 —ul
where
(Cz(D) + Dz MK (AT
A= DL, | G-+ DoKW D) Dawl) | @:29)
DI,
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By multiplying the inequality in (4.28) on the left by Q5(A)

I CTHKT-KT) o
= 8 s 4,
Qs(1) 0 0 I (4.30)
and on the right by Q5T (1), the following inequality is obtained:
ATWHPAV) +PVAN) % cT
D 0 4.31
BT P —ul DTN [ Ci) D) |< *-31)

which is equivalent to the following inequality by application of the Schur complement lemma:

ATQOPA)+PLV)AN) = *
Q) = BT(W)PW) -ul x| <0 (4.32)
C) D) -1

Therefore, the static output feedback K stabilizes the closed-loop polytopic system in (4.5)-
(4.6) and ensures that || H,,, (1) II§o <pu, forall 1€ Ay.

Necessity: Assume that K is an Hy, controller for the augmented polytopic system in (4.3)
and (4.4) which guarantees || H;,, (1) ”(2)0 <u, forall A € A,. Therefore, based on the bounded
real lemma, there always exists a Lyapunov matrix P(A) > 0 such that the inequality (4.32) is
satisfied, i.e. Q.(A) < 0. Let’s choose K (A1) = KC‘g (1) and X such that

X+XT>0
P(A)Bg(M) - NT (1)
X+X">-| BI(WPW-NW) 0 DL |Q;'() 0
D, (A)

(4.33)

Then, set L = XK. Applying the Schur complement lemma to (4.33), the following inequality is
obtained:

ATWHPWL) + P AN * * *
nT _ _v_vT
Bg(pp(/l) N) X-X * L w30
BLompPW) 0 -ul
Cc(\) D;u(A)  Dzp(d) -I

Since K;(A) = KCq4(A), we have:
NA) =0, MQA)=AN), CWA)=C,(A)+D,, (MK

Therefore, the parameter-dependent inequality given in (4.27) holds.
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Theorem 15. (Discrete-time Case) There exists a static output feedback controller K which
stabilizes the augmented discrete-time LTI polytopic system in (4.3)-(4.4) and guarantees
| Hy oy (D12, < , forall A € Ay, if and only if there exist a parameter-dependent gain Ks(1), a
Lyapunov matrix P(A) > 0, and two slack matrices X and L such that

MTQ)PA)MQ) - P(A) * * *
Bg WPAMMA) - NQ) Bg (MPA)Bg(D) - X - X" * L

BLMP)MW) BLMPM)B, (1) —ul+BLAMPMVB,A)

C2(A) + Dzu(WKs(A) Dzu() Dzw() -1
(4.35)

where M(A) and N(A) are defined in (4.9). Moreover, the controller gain is presented as K =
XL

Proof. Similar to the proof of Theorem 14. O
Remarks.

1. If the parameter-dependent gain K(A) is given a priori and P(A) is considered as a
homogeneous polynomial w.r.t. A, the parameter dependent conditions in Theorem
12-Theorem 15 can be handled by a sequence of LMI relaxations. Parameter-dependent
LMIs with parameters in the unit simplex always have homogenous polynomially
parameter-dependent solutions of sufficiently high degree [158]. Moreover, they can be
solved with no conservatism by a set of LMI relaxations.

2. Ahomogeneous polynomially parameter-dependent Lyapunov matrix P(A) of order d),
is defined as follows [158]:

P = Y AN AP, k=kikeekg (4.36)
keK(dp)

where }Lfl .../1];,”, Ai€Ag, ki€ Z,,i=1,...q are the monomials, and Py € RU+mx(n+m),
k € K(dp) are matrix-valued coefficients. K(dp) is obtained as all possible combinations
of nonnegative integers k;, i = 1,...,g such that k) + ko + - + kg =dp.

4.5.1 Parameter-dependent Gain K (1)

An appropriate choice of the parameter-dependent gain K;(1) can affect the quality of the
proposed fixed-order control strategy. Matrix K;(1) must stabilize M (1) defined in (4.9), i.e.
the eigenvalues of M(A) are located inside the unit circle for all A € A4 (discrete-time case) or
they have strictly negative real part (continuous-time case). In this subsection, two approaches
for the design of K;(A) are given.
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Method 1: Matrix Ks(A) can be determined using a parameter-dependent state feedback
controller for the augmented polytopic system in (4.3) and (4.4). The parameter-dependent
state feedback controllers are designed through the following theorems.

Theorem 16. (Continuous-time Case) The parameter-dependent state feedback controller
K (1) stabilizes the augmented polytopic systems in (4.3)-(4.4) and guarantees the desired
performance || H,,, (M2, < u, forall A € Ay, if and only if there exist a parameter-dependent
Lyapunov matrix P(A) > 0, matrices F(A), Z(A), and a positive scalar 6 > 0 such that

AgWF) + FT)AL () +Bg(WZA) + ZT(A)Bg (1) * *x %
P(A) = F(A) +8(FT () Ag () + Z" (W Bg (1)) =8P+ FTA) LA I
CwMFN) +Dzu (M) Z(A) 6(CwMFA) +Dzy(MZA)  —pl  *
BL ) 0 Dy -1
(4.37)

forall A € Ay. Moreover, the parameter-dependent state feedback is presented as Ks(1) =
ZF').

Proof. Sufficiency: Multiply (4.37) by Qg on the left and Q6T on the right.

I A[Q) 0 0
Q=0 CiA) I O (4.38)
0 0 0 I

where

AL = AgD) + BgWZWF (D), Bi(D) = Bu(A)

- - _ (4.39)
C1(A) = Cu(W) + Dy (M ZMF ' (A), D1(A) =D.y(A)

Necessity: Assume that there exists a parameter-dependent state feedback controller K (A1)
which ensures || H;;, (1) ||§O < u, forall A € A4. Therefore, according to the bounded real lemma,
there exists a Lyapunov matrix P(1) > 0 such that

AP +PWATA)  x *
CI(MPQ) —ul % | <0 (4.40)
B{ (1) prw -1

Then, we consider F(A) = P(1) and Z(A) = K;(A) P(1). Moreover, there always exists a scalar
0 > 0 such that

A{MPA)+PMAT)  *  *

C1(MP(A) —ul  *
Bl (W) Df(A) -I
(4.41)
ATVF)
+6 | CGCAWFW) | FW+FTan~| FTwafw Ffcrw o | <o
0
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Applying the Schur complement lemma on (4.41) and considering F(1) = P(A), the inequality
given in (4.37) holds. Thus, the proof is complete. O

Theorem 17. (Discrete-time Case) The parameter-dependent state feedback controller K (1)
stabilizes the augmented polytopic systems in (4.3)-(4.4) and guarantees || H,,,(A) ||, < u, for all
A € Ay, if and only if there exist a parameter-dependent Lyapunov matrix P(A) > 0, matrices
F(1), Z(A), and a positive scalar § > 0 such that

P(A) * * *
T aT T AT Tiay_
F (A)Ag(/l)+Z (A)Bg(/l) ) FA)+F (/}) P(A) * * 20 4.42)
0 CyAWFA)+D,,(M)ZA) I *
Bj,(A) 0 Do) plI

forall A € Ay. Moreover, the parameter-dependent state feedback is presented as Ks(1) =
ZWF ).

Proof. Sufficiency: Multiply the inequality given in (4.42) by Q; on the left and Q7T on the right.

I —A/) 0 -uB)
_ 4.43
G=1 Ci) -1 uDi(V) (4.43)

where A; (1), B1(A), C1(A), and D; (A) are defined in (4.39).

Necessity: We assume that there exists a parameter dependent state feedback controller K¢(1)
guaranteeing || Hz,, (V)| < p, for all A € Ag4. Therefore, based on the application of the
bounded real lemma, there always exists a Lyapunov matrix P (A1) > 0 such that

P(A) - AtWPAT ) * *
Ci(MP AT (V) —CtAPWCIM+1 + >0 (4.44)
Bl Di(A) pl

The above inequality is equivalent to:

P(A) * * *

PMAT(A) P x %
0 awpy 1 o« |70 (4.45)

B (V) 0 D) ul

In fact, by applying the Schur complement on the (2,2) submatrix of the above inequality,
inequality of (4.44) results. By considering F(A) = P(A) and Z(A) = K(1) P(A), the inequality
given in (4.42) is obtained. Thus, the proof is complete. O
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Method 2: Parameter-dependent gain matrix K;(1) can be obtained by a set of parameter-
Ac(AD) B
Cc(V) DcW)
Bg(1)K(1)Cq(A) is stable. In this case, Ks(1) = K(1)Cg(A).

dependent output feedback controllers K (1) = , provided that matrix Ag A+

Remarks.

1. Theorem 16 and Theorem 17 can be used for the design of stabilizing parameter-
dependent state feedback controllers for the augmented system in (4.3) and (4.4) by
removing the third and forth rows and columns of (4.37)/(4.42).

2. It should be mentioned that the set of LMI constraints from parameter-dependent LMIs
in Theorem 12-Theorem 17 with parameters in the unit simplex can be constructed using
ROLMIP (Robust LMI Parser)[159]. ROLMIP is a computational MATLAB package which
provides an interface for the users to construct a finite set of LMIs from parameter-
dependent LMIs with parameters in the unit simplex according to Pélya relaxation
hierarchy [159] .

4.5.2 Algorithm I: “Fixed-order controller design procedure”
The robust fixed-order H,, controller design procedure includes the following steps:

Step 1: Choose the order of controller (m) and construct the augmented system in (4.3) and
(4.4).

Step 2: Set the iteration number j = 1 and choose the maximum number of iterations h, 4
and a small tolerance for € > 0.

Step 3: Design the parameter-dependent gain K, 5[1] () for the augmented system using either
Method 1 or Method 2.

Step 4: Update matrix M(A):

M) = Ag) + B WK (1) (4.46)

Step 5: Choose the degree of the homogenous Lyapunov matrix P(A) in (4.27) (for continuous-
time case) or in (4.35) (for discrete-time case) and solve the convex optimization problem
proposed in Theorem 14 or Theorem 15 by constructing the LMI constraints in (4.27) or (4.35)
(using e.g. ROLMIP) to obtain the static output feedback controller K/,

Step 6: If V"V~ 4/ > e and j < hyay, update the parameter-dependent gain K;(4), K"V (1) =
KUC4(), and go to Step 4 with j — j +1, else stop.

Theorem 18. The iterative algorithm leads to monotonic convergence of the upper bound on
the Hy, norm.
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Proof. The proof stems from the fact that if controller K'/~! is an H,, controller guarantee-
ing I H.,p (M1, < pl~Y, there always exist X1/~1, LU=1, and K/ (1) = k17~ Cg(A) such
that (4.27)/(4.35) is satisfied. Now, suppose that we fix K/ (1) = K/~ Cq(A) and a new con-
troller KUU! is sought. Since (K=Y, uli=1) is a feasible solution to the optimization problem
in (4.27)/(4.35), it is guaranteed that ul/l < yli=1. Therefore, the upper bound of the Hy,
norm in the proposed iterative algorithm is not increasing and monotonically converges to a
suboptimal solution. O

4.6 Simulation Examples

In this section, several examples from the literature are given to evaluate the effectiveness of
the proposed approaches in this chapter. A comparison with the recent existing methods in
the literature is made. It should be noted that in all tables, the set {d z,dr, dp, " d p} respectively
denotes the degrees of the homogeneous polynomials Z (1), F(1), P(1) in Theorem 16 and
Theorem 17, and the degree of homogeneous polynomially parameter-dependent Lyapunov
matrix P(1) in Theorem 12-Theorem 15'.

To solve the LMI problems in MATLAB, YALMIP [146] as the interface and SeDuMi [154] and
MOSEK as the solvers are used.

Example 1. Consider a third-order continuous-time polytopic system, borrowed from [57],
with the following vertices:

[ -1 4 0 -1 1 0
Ag=| 0 0 1 |, Ag=| 0 -5 1
6 -1 0 1 -1
0 0
(4.47)
Bg=|0]|, Bg,=|0
1 1
c 110 110
7 lo 10" ® {000

The main objective is to design a stabilizing static output feedback controller which leads to
the larger interval of parameter a. Therefore, the system can be modeled as a polytope with

three vertices, i.e. Ag,| , and Ag,. The minimum and maximum values of a
X

a=amin’ Agl |a:ama,
can be determined by a bisection algorithm. The results of Theorem 12 are compared with
ones of [56,57,160, 161] in Table 4.1. The proposed methods in Theorem 12 and [56] are both

initialized with the same parameter-dependent state feedback K (7).

As it has been reported in [57], since matrix Cg(A) is not full row rank, the approaches of
[160, 161] are not applicable. Results given in Table 4.1 indicate that the proposed methods in

I The degree of the other slack variables of [56] is considered equal to one.
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Table 4.1: Maximum Interval of Parameter a in Example 1

Method {dz,d]:,dpsf,dp} a

Theorem 12 {1,0,1,1} -17.8 1222
(56] {1,0,1,1} -17.8 1222
[57] {---1} [3.6 82.2]
[160] — Non-applicable
[161] — Non-applicable

Table 4.2: Upper bound of || H;,, (1) [leo in Example 2

Method Iterations | y =/l K
[47] 1 9.73 [0.56 5.08]
(48] 1 6.80 [0.054 0.64]
[57] 1 2.33 [0.45 4.19]
[147] 5 1.79 | [77.16 608.87]
[162] 30 1.66 | [130.35 939.37]
Theorem 14 5 1.78 [9.36 69.57]

this chapter and [56] lead to the best results among the others.

Example 2. Consider the following continuous-time polytopic system with two vertices in

[57]:
[ —0.9896 17.41
Ag =| 02648 -0.8512
_ 0 0
[ —97.78
Bg, = 0 » Bg, =
30
(1 0 0
Cy, = , Cp=
§ 01 0 v

96.15
~11.39 |, Ag, =
~30
~85.09

0 |, Bw=
30

1 00

01 0], Du
00 1

[ —-1.702 50.72 263.5
0.2201 -1.418 -31.99
0 0 -30

(4.48)

The objective here is to design a static output feedback H,, controller with linearly parameter-
dependent Lyapunov matrices. To this end, an optimization problem, which is the mini-
mization of p subject to a sequence of LMI constraints is solved. Resulting static output
feedback initialized by a parameter-dependent state feedback controller with dz =1, dr =0,
and dp,, = 2 is given in Table 4.2. The results are compared with the LMI-based methods in
[47,48,57,147] and the BMI-based method in [162]. For all cases, the degree of Lyapunov ma-
trix P is one. As it is observed from Table 4.2, the proposed approach in this chapter provides
the best results among the other LMI-based methods.
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Table 4.3: Parameters of four operating points in Example 3

Operating points 1 2 3 4
Mach number 0.5 0.9 0.85 1.5

Altitude(ft) 5000 35000 5000 35000
an -0.9896 | -0.6607 | -1.0702 | -0.5162
as 17.41 18.11 50.72 29.96
as 96.15 84.34 263.5 178.9
a1 0.2648 | 0.08201 | 0.2201 | -0.6896
azo -0.8512 | -0.6587 | -1.418 | -1.225
a3 -11.39 | -10.81 | -31.99 | -30.38
by -97.78 | -272.2 | -85.09 | -175.6

Example 3. As the third example, consider the modified version of the pitch control of F4E,
given in [53], described by the following state space matrices:

an a2 a3z b 0
a a a 0 0 c 0 0 O
Ag = 21 422 23 . Bg= . Ce=
0 0 =30 30 0 0 ¢c 0O
0 0 0 -10* 104
. (4.49)
1 00
1 0 0 O 0
010
B, = 0o 1l Co=101 0 0|, Dz;zu=10
0 01 O 1
0 0 O

where 0.5 < ¢ < 1 and parameters a;;, i = 1,2; j = 1,2,3, and b, for four operating points are
given in Table 4.3.

The uncertainty of the system in (4.49) is in the form of a polytope with g = 8 vertices. The
proposed approach in [53] as well as the full-order controller design method of [51] are
employed for the comparison purposes. It should be noted since the main assumption of [57]
is that CL D,,, = 0, it cannot be applied to Example 3.

Theorem 15 is initialized by two different parameter-dependent gain K(A). In the first case,
initial parameter-dependent state feedback controllers are designed using Theorem 17 with
dz=0,dr=0,and dp, ,=LIn the second case, Kg(1) = KJ'C¢(A) is considered, where K" is
a simultaneously stabilizing controller of order m designed by HIFOO [31]. The results of both
cases are then summarized in Table 4.4.

Theorem 15 initialized by the parameter-dependent state feedback K;(A) resulted from Theo-
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Table 4.4: Upper bound of || H;,, (1) |le in Example 3

Initialization Theorem 17 HIFOO
controller order m=0 m=1| m=0 m=1
degree of P (dp) 1 1 1 2
Iterations 4 2 30 30
Y=Vi 3.0780 3.1026 | 3.3378 2.2818

rem 17 leads to the following reduced-order H, controllers:

K’”:O:[ 1.9407 12.3911 ]

me1 | —43979| 0 0 (4.50)
Km=1 =
0 |22321 143543
For the second case, the following HIFOO controllers are used to initialize Ks(1):
K" = 0.0958 0.7670 |
-1.1754 ‘ 0.2729 -1.8780 (4.51)

m=1 _
Ky~ =

0.6998 | 0.3876 0.24434

Theorem 15 initialized by K;(A1) obtained by HIFOO controllers in (4.51) leads to the following
reduced-order H., controllers:

K’”Z":[ 0.0965 0.8012 ]
(4.52)

me1 | —1.8044 | 01048 —3.1589
K =

0.9039 ‘0.3921 3.1998

As mentioned in [56], the proposed approach of [53] leads to the lowest H,, upper bound
37.20 for m =0, 1 and the full-order control design method in [51] does not find any feasible
solution.

4.7 Conclusion

This chapter deals with the problem of fixed-order H,, controller design of LTI continuous-
time and discrete-time polytopic systems. Necessary and sufficient conditions based on
the concept of strictly positive realness (SPRness) of a transfer function depending on a
parameter-dependent gain are developed. To convert the problem to a set of LMI conditions,
the parameter-dependent gain is determined a priori by means of a parameter-dependent
state feedback controller. The robust stability and robust H, performance of the closed-loop
polytopic systems are ensured via homogeneous polynomially parameter-dependent Lya-
punov matrices. Simulation results and comparison with recent existing methods demonstrate
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the effectiveness of the proposed approach.

In the next chapter, the problem of fixed-structure H,, control of LTT interconnected systems
subject to polytopic-type uncertainty is considered. The problem is formulated as an opti-
mization problem which is the minimization of the cardinality of a pattern matrix subject
to an Hy, performance constraint. Due to intrinsical non-convexity of the problem, a con-
vex optimization-based design procedure for the control structure design and the controller
synthesis is proposed in Chapter 5.
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Control Structure Design for LTI
Interconnected Systems subject to
Polytopic Uncertainty

5.1 Introduction

Control of interconnected systems has attracted considerable attention in recent years due
to their numerous applications such as power systems, urban traffic control systems, water
distribution, digital communication networks, etc. Most available strategies for the control
of interconnected systems assume that a control structure is specified a priori. However,
it is not generally easy to determine an appropriate structure for the controller in advance,
especially in the control of large-scale interconnected systems. Furthermore, it is possible
that the assumed control structure is not the best one which can be taken into consideration.
In general, the control structure design is an important step toward the control of complex
systems. The problem of control structure selection consists of the following tasks [69]:

1. Controlled input selection (actuator placement problem)
2. Selection of outputs (sensor placement problem)

3. Control configuration selection (a structure interconnecting the measurements and the
control inputs)

4. Control type selection (control law specification, e.g. PID, fixed-order controller, etc.)

The problem of actuator/sensor placement is to choose a minimal set of actuators/sensors (k)
from a possible set of g actuators/sensors provided that a good performance of the system
is obtained. The problem has been attracted remarkable attention due to its application in
large-scale systems, e.g. power grids [59], target-tracking [60], transportation networks [61],
and buildings [62]. Number of actuators/sensors as well as actuator/sensor locations affect
the performance of the system. The objective is to minimize the number of expensive sen-
sors/actuators while the best possible performance for a given number of sensors/actuators
is achieved. The exact solution for the problem of actuator/sensor placement is to evaluate
the system performance for all %ik)! possible choices of actuators/sensors. However, this
approach is not practical for the large values of k and g.
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The problem of the control configuration design refers to the restrictions imposed on the
overall controller by its decomposition into a set of local controllers with their communication
links [69]. In this case, the question usually arises is that what is the best control configuration,
in terms of the connections between the subsystems and their local controllers, to satisfy given
control objectives?

The main objective of this chapter is to describe the main issues involved in control structure
design and to develop some convex optimization-based approaches to fixed-structure control
of polytopic interconnected systems. Different from the existing approaches, where the control
structure is fixed a priori, the structure of the controller is part of the optimization problems.
As aresult, the control structure and the control parameters are simultaneously designed.

The organization of the chapter is as follows: A convex optimization-based solution to the
problem of sensor and actuator placement in LTT polytopic systems is presented in Section
5.2. Convex set of fixed-structure decentralized/distributed control of polytopic systems with
guaranteed H,, performance is provided in Section 5.3. Section 5.4 concludes the chapter.

5.2 Sensor and Actuator Placement

5.2.1 Problem Formulation

Consider a linear time-invariant dynamical system subject to polytopic uncertainty described
by

5lxg(1)] = Ag(N)xg (1) + Bg(A)u(t) + Buy(Ww(1)
Z(t):Cz(/l)xg(t)+Dzu(A)u(t)+Dzw(/l)w(t) (5.1)
Y(0) = CgM)xg(8) + Doy (D w(D)

where x; € R"”, u € R, w e R", y € R", and z € R® are the state, the control input, the
exogenous input, the measured output, and the controlled output, respectively. The uncertain
state space matrices belong to the following set:

Q6 = {(Ag (1), Bg(1), Buw(A), Cg(D), Cz(A), Dzu(A), Dzw(A), D (1)

q (5.2)

= Z Ai(Agi’Bgi’Bwi’ Cei» CZi’DZMi’DZWi’DWi)}
i=1

where A € Ay and (Ag,, Bg;, Cg,, Bw;» Cz;» Dzu;» Dzw;» Dw,) is the i-th vertex of the polytope. The
main objective is to minimize the number of actuators/sensors while ensuring the robust sta-
bility and a satisfactory robust Hy, performance of the closed-loop system with the following
dynamic output-feedback controller:

Olxc(D)] = Acxc () +ch(t)
u(t) = Cexe(8) + Dy (1)

(5.3)
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5.2. Sensor and Actuator Placement

where A, e R"™*"™ B, e R"™* " C,eR"*™ and D, € R"*"o,

The basic idea of the problem of sensor placement relies on the fact that the i’ sensor is
not employed in the dynamic output feedback controller if the i* column of the matrix

has only zero entries. In other words, the number of sensors can be minimized by

Cc

e . B,
minimizing the number of nonzero columns of matrix D | In the same manner, the
C

number of actuators can be minimized by minimizing the number of nonzero rows of the
matrix [ C. D, ]

. B,
To minimize the number of the non-zero columns of and non-zero rows of [ C. D, ] ,
c

the following pattern matrices are respectively defined:

2= | g ) | P ] 64
Zp = card([ C.(,) D.(,) ]) card([ Ce(ni,)  De(ni,?) ])] (5.5)

where card(-) is the cardinality operator defined as the number of non-zero elements of
(-). Note that B.(:, i), D.(:,1), Cc(j,:), and D.(j,:) respectively present the i-th column of the
matrices B, and D, and the j-th row of C, and D,. It is obvious that the i-th element of Z;
Bc(:, i . . .
(z1,) is equal to zero if and only if [ DC(( l')) = 0 or equivalently, the i-th sensor is not used.
c(y i
In a similar way, the j-th actuator is not utlized in the controller if and only if the j-th element
of Z, is equal to zero. Therefore, to find a minimum number of the sensors (actuators), matrix
Z1 (Z») should be as sparse as possible. The sparsity of Z; and Z, are presented by their

cardinality.

The sensor and actuator placement problems to be addressed in this chapter are stated as
follows:

Problem 2. (Sensor placement)
Given a linear dynamical system subject to polytopic uncertainty, determine a set of sensors and
design a fixed-structure dynamic output feedback controller such that

1. Closed-loop system is robustly stable.

2. A trade-off between the performance | H,, (M, < u and the number of sensors is ob-
tained.

79



Chapter 5. Control Structure Design for LTI Interconnected Systems subject to Polytopic
Uncertainty

The aforementioned conditions can be formulated as the following optimization problem:

min p+ay x card(Z,)
K (5.6)
subjectto ||Hzy(A) ||(2>o <u

where a) determines a trade-off between two objectives. A larger a; leads to a sparser Z,
whereas a = 0 renders the fixed-structure Hy, controller design problem.

Problem 3. (Actuator placement)
Given an LTI polytopic system, select a set of actuators and design a fixed-structure dynamic
output feedback controller such that

1. Closed-loop system is robustly stable.

2. A trade-off between the performance | H,,, ()12, < u and the number of actuators is

obtained.

The aforementioned conditions can be formulated as the following optimization problem:

min p+az xcard(Z,)

K (6.7
subject to || Hyyy (M), <

where ay determines a trade-off between two objectives.

The above-mentioned problems are non-convex due to the noncovexity of the cardinality op-
erator and the non-convex fixed-structure Hy, dynamic output feedback controller synthesis
problem. In the next section, a convex relaxation of the cardinality is presented.

5.2.2 Sensor and Actuator Placement via Convex Optimization

The non-convex cardinality minimization can be relaxed via the convex weighted ¢, norm as
follows [163]:

J1 =W x Z411h
s L (5.8)
S || BeGD ]
i=1 D.(,1) 1
J2 =1Wo % Z5|11
(5.9)

| ctiy Dot |

1
= Z W2,
i=1

1
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where wj, and wy, respectively are the i'" entry of the weighting vectors W, and W,. If

wy,; and wy, are respectively chosen to be inversely proportional to F; = [ IE;C((’ ll)) ] and
Cc\s 1
. . T\ .
Hi=|[ ctiy Detiy )7 vie.
1/F;, if F; #0
wy. = .
! oo, lfFi =0
(5.10)
1/H;, itH; #0
Wy, = .
! 0, if H;=0

then the weighted ¢, norm and the cardinality operator coincide. However, since the weights
depend on the unknown controller parameters, the above strategy cannot be implemented.
In [163], an iterative algorithm for choosing the vectors W) = [wy,] and W» = [wy, | has been
developed.

An inner convex approximation of fixed-structure H,, controllers is presented in Chapter 3.
Therefore, the problem of sensor and actuator placement of linear time-invariant polytopic
systems can be respectively solved by the following convex optimization problems:

o B.(,
min pt+ap ) wi, e ],)
A¢,Be,Ce,De, i, (L), P; j=1 J DC(:) ]) 1
(5.11)
s.t. (3.66)/(3.76)
Pi=P/ >0, i=1,....q
n; T
i + A Ce(y) De(jy: ]
A CTn e H az;wzj | Cei) Dl 1
(5.12)
S.t. (3.66)/(3.76)

P;=P/>0; i=1,..q

Remark. In the case of polytopic uncertainty only in the state space matrices Ag, Bg, By, C,
D,y, and D, the slack matrix L can be removed and the set of inequalities in (3.66)/(3.76) is
replaced with (3.49)/(3.53).

In the following, a systematic iterative algorithm for the problem of sensor and actuator
placement is given.

5.2.3 Algorithm I: “Sensor and actuator placement in LTI polytopic systems”

The algorithm for sensor and actuator placement in linear dynamical systems subject to
polytopic-type uncertainty described by (5.1)-(5.2) is summarized with the following steps:
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Step 1: Design some initial controllers for each vertex of the polytope (K; [0]). Put the iteration
number h =1, wﬂ_] =1;j=1,...,n0 and wg] =1; j=1,...,n;. choose a small tolerance for

€1 > 0and e >0, and maximum number of iteration 5, 4.

Step 2: For given K l.[h_u, solve the convex optimization problem given in (3.79) and determine
MM and X,

Step 3: Solve the following convex optimization problem to obtain a fixed-structure Hy,
controller K" which simultaneously minimize the number of sensors and actuators.

BC(:)j)
DC(:rj)

(h]

no T
prar Y w! [ Cci) Dty |
=1

min
AchcyCcyDeyu:(L):Pi 1

(5.13)

1
+ ao Z Ll/g]l]
1 j=1
s.t. (3.66)/(3.76)
Pi=P/>0; i=1,..,q

B¢, )

dH" = [ o Do || ding to th
DY, ) and H; [ G,y DG ] , according to the

Step 4: Update F][.h] = H [
1

current controller K,

Step 5: Update the weighting vectors W,"*!) and W}"*!/ as follows:

ey _ L L
wy =———— j=1,...,n0
L F][.h]+€1
1 (5.14)
wg””:T; i=1,...,n;
J Hj +€2

Step 6: Terminate the algorithm if it converges or if maximum number of iterations /4y
reaches. Otherwise, use the obtained controller in Step 3 as an initial controller (K l.[h] —
K"™;i=1,...,q) and go to Step 2 with h — h+ 1.

Remark. Algorithm I can be used for the problem of sensor placement if we consider a, =0
in the cost function given in (5.13). In the similar way, we can apply Algorithm I to place the
actuators if ¢; = 01is setin (5.13).

5.2.4 Simulation Examples

In this section, the effectiveness of the proposed algorithm is evaluated through some simula-
tion examples. The LMI-based optimization problems are solved by YALMIP [146] and SDPT3
[153]/SeDuMi [154] as the interface and the solvers, respectively.

Example 1 (PMU placement in IEEE 14-bus test system). In this example, the problem of
phasor measurement units (PMUs) placement in IEEE 14-bus test system shown in Figure 5.1
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@ GENERATORS 13

@ SYNCHRONOUS 12 7
COMPENSATORS
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T 9

f’*@

Figure 5.1: IEEE 14-bus test system

is considered.

The IEEE 14-bus system consists of 14 buses with 2 generators and 3 synchronous compen-
sators. The synchronous compensators in the grid are replaced with some generators resulting
in five buses with generators and nine load buses. The phase dynamics of the grid can be
modeled using electromechanical swing equations [107] as follows:

. "s  EE;
JiG+Di0=P— Y —Lsin@;-0; (5.15)
i=1,j#i “ij

where J; is the moment of inertia of the generator, D; is the damping coefficient, E; is the
g-axis voltage at node i, P; is the power injection at node i, and X;; = Xj; is the reactance
of the line between node i and j. Then, the nonlinear swing equations are linearized by
first-order Taylor approximation method around the operating points 0. Finally, the system
is described by the following state space representation:

Xg(t) = Agxg(t) + Bgu(t) + By w(t)
y(t) = Cgxg(t)

(5.16)

where xg contains the phase angle 6;; i = 1,...,14 and the phase velocity (frequency) 0 s
J7=1,2,3,6,8. The inputs and outputs of the system are P;; j =1,2,3,6,8 and 0;; i = 1,...,14,
respectively. Moreover, the disturbance signal w is a sudden change in the mechanical power
or in the load demand. More details about the state space matrices and the parameters of the
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Figure 5.2: Number of PMUs versus iteration number in Example 1

system can be found in [164] and [65].

We assume that there exists a group of N generators at bus 1 and 2. In this case, to model
the dynamical behaviour of each bus, the aggregated swing equation can be applied. In the
aggregated swing equation, the moment of inertia J; in (5.15) is replaced with the aggregated
inertia of N generators [165]. In conventional power systems, the assumption is that the
(aggregated) inertia is fixed. However, nowadays with the high depth of penetration of dis-
tributed generation (DG) units, e.g. wind turbines and photovoltaics (PV), in power grids, this
assumption is not valid. In fact, wind and PV units significantly decrease the inertia of the
system. A case study on German power system shows that the aggregated inertia is changing
from its nominal value, in the case of conventional generators, to half of the nominal value
when wind turbines and photovoltaics are deployed [165]. Therefore, the moment of inertia J;
and J, are not precisely known and it is reasonable to assume that they are uncertain up to
50% of their nominal values leading to a polytope with g = 22 vertices.

The objective is to place the minimum number of PMUs, which measure the phase angles
at certain buses, such that the effect of the disturbance on the outputs is minimized. To
this end, PMUs should be placed on the buses which provide a satisfactory Hy, closed-loop
performance with a static output feedback controller.

The parameters €; = 1072, a; = 1, and a; = 0 are set. Using Algorithm I in Subsection 5.2.3
and after 150 iterations, minimum g = 8 PMUs in the buses 1,2,3,4,9,12,13, and 14 are placed.
Figure 5.2 depicts the number of PMUs versus the iteration number. The worst case upper
bound of | H;,, (1)l Versus the number of PMUs is shown in Figure 5.3. The obtained results
indicate that as the number of PMUs decreases, the upper bound of || H;,, (1) |« increases. It
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Figure 5.3: Worst case upper bound of || H;,, (1) ||« Versus the number of PMUs

should be mentioned that the proposed algorithm could not find any subsets of less than 8
PMUs for h,;,4x = 150 iterations.

Example 2. Consider a discrete-time interconnected system of five SISO subsystems, bor-
rowed from [70], with the following state space matrices:

030 -029, 0 0 ,-024 021 ,-0.16 003 , 0 0
—029 032 o0 0  -018 0 028 032, 0 0
0 0 1050 0041 0 0 1 0 0 1 0 0
0 0 , 018 059, 0 0 , 0 0 , 0 0
| 0 0 '-0.08 -0517" 036 010 0 0 -028 0.5
®7] .0 0 1-013 004,-024 069, 0 0 -029 020
-038 -0.20, 0 0 | 047 007 [ -010 011 | © 0
006 -034: 0 0 1-001 -022:-009 018 ' 0 O
0 0 |, 004 -001, 0 0 | @ -001, a 0I5
o0 0 003 013! 0 0 005 034' 015 025 | (5.17)
-0.2 0 0 1.9 -0.4
B, =dia ) y ) ’
g~ g( -1 08 |'| 04 |'| 16 by )
-0.5 0 0 -1.1 -0.6
By =di : : : ,
w lag( 0 0.8 |’| 13 0 -1 )
Cy=diag(| 18 0 ],[ 0 -02 ][ -15 o |,[-03 o], [0 02])
szdiag([ 13 04 H 0 -2 H 05 0 H ~13 -02 ][ 0 02 ])

Dz;,=0, Dg,=0, D,=0

where 0.378 < a; <0.702, —0.182 < ap < —0.098, and —0.52 < b; < —0.28. The objective of this example
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Figure 5.4: Number of sensors and actuators versus iteration number in Example 2

Table 5.1: Upper bound of || H;,, (1) ||« for different number of sensors and actuators in Exam-
ple 2

Y= \/ﬁ 1.6234 1.9534 1.9966 2.002
No. of sensors 5 4 3 3
No. of actuators 5 4 4 3

Performancegap | 0%  20.32% 2299% 23.32%

is to design a static output feedback H,, controller for the polytope of eight vertices with the minimum
number of sensors and actuators.

In Algorithm I in Subsection 5.2.3, the parameters € = 107°, @y = 0.5, a» = 0.5, and h,,4x = 30 are
considered. Figure 5.4 shows the number of sensors and actuators versus the iteration numbers. As it
can be observed from this figure, the minimum number of sensors and actuators is 3. The upper bound
of || Hz (M) lleo () for different number of sensors and actuators is shown in Table 5.1. By decreasing
the number of sensors and actuators, the upper bound of || H;,, (1) |« is increasing. Table 5.1 shows
the Hy, performance gap of 20.32% and 23.32% for the case of g =4 and g = 3 sensors and actuators
compared to the best performance obtained for k = 5 sensors.

5.3 Control Configuration Design

This section is devoted to the problem of control configuration design for a given interconnected
system subject to polytopic-type uncertainty. We assume that the measurements and the control
inputs are determined a priori.
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5.3.1 Problem Formulation

System Dynamics

Consider a linear time-invariant interconnected system consisting of N subsystems described by the
following state space equations:

. o N ‘ N . o
sljl=Axj+ Y Alfxbw+ Y Bl wk0 +Blui )

k=1(k#)) k=1
. N N .
=Y c"xkw+ Y DL,w ®+DL,ul (1) (5.18)
k=1 k=1

. . N .
Yo =clxiw+Y plywkw; j=1,..,N
k=1

where xj € R", u/ € R™, w/ € R, y/ € R", and z/ € R® are the state, the control input, the exogenous
input, the measured output, and the controlled output of the j-th subsystem, respectively. Symbol

O[] presents the derivative term for continuous-time (6 [x(D)] = fC(l’)) and the forward operator for
discrete-time systems (6[x(t)] =x(t+ 1)). The state space matrices Ag, A]gk, Bé, Cg,, B{Uk, c;", Diu,

Dﬁﬁ,, and D{Uk are of appropriate dimensions. Matrix Aé,k = 0 if and only if there is no interaction
between the subsystems j and k. It is assumed that the state space matrices belong to a polytopic
uncertainty region as follows:

Q, ={(afF o, Bi, BIF v, iy, ci* v, b, 0, DI, DIf ()

q G (5.19)
k k k k k .

= Ai(Ag By, By, Cy, CL DLy DLy, DY)y k=1, N

i=1

where A € A, defined in (2.8) and (A%\, B, BIY,c] ,cI¥, D], DI}, DI)) is the i-th vertex of
the subsystem j.

The whole network of N subsystems is presented by the following equations:
Olxg()] = Ag(M) xg(t) + Bg(A)u(t) + By (D) w(t)

2(t) = C;(M)xg (1) + Dy (M u(®) + Dy (M w(t) (5.20)
Y(0) = Ce(D)xg (1) + Dy (W w(2)

where

)

, wo=[w’, . wN)T (5.21)

y() = [le,...,yNT]T, z(t) = [ZIT,...,ZNT]T

Xg(t) = [x;T,...,X{gVT]T
uy=[u",.. . uN")"

87



Chapter 5. Control Structure Design for LTI Interconnected Systems subject to Polytopic
Uncertainty

and the state space matrices are given as follows:

AN AN By B

AgM=1 o p o s Be@= s
AVt AN BN'W ... BNV
[ cl'y) ... CcVQY ] DL | ' DIN(L)

cw=| 0 |, D= | 622
TR O DML W
D) | . DIV (1)

D,(A) = 777;77:77:‘77777}777
’bﬁf(i)ﬂ*"ﬂbffﬁ(i)’

and

Bg(A) = diag(Bg(A),..., By (1))
Cy(A) = diag(Cg(A), ..., CY (1) (5.23)
Dy (\) = diag (DL, (),..., DY, (D)

Dynamic Output Feedback Controllers

It is assumed that there is one local controller corresponding to each subsystem described by:

j Tk ko, S ik K
Slxl(0] =) Al"xi(0)+ ) By @)
k=1 k=1 (5.24)

N N .
W =Y cl**m+ Y pify*w; j=1,..,N
k=1 k=1
where xg € R is the state vector of the j-th local controller. The controller matrices Aik, Bg k,
Cg k, and ng are of appropriate dimensions. According to this structure, each local controller
uses the outputs of its own subsystem and other subsystems as well as the states of other local

controllers (centralized control strategy). The centralized controller K with this structure is
given by:

Olxc(0)] = Acxc(2) + By (1)

(5.25)
u(t) = Cexe(t) + Dey(1)
where

xe(t) =[x, N T (5.26)
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[ Al LAY B | . BIN
R At B R A e
Ac= Lo P , B.= o b
R S e
ANI‘ ‘ANN BNI‘ ‘BNN
S S . e (5.27)
Cglw \CgN D},I\ \D(I:N
R St e Sl el Bl
C.= Lo oo , D.= o P
o o
T | CNN | DN ' DNV

To select an appropriate control configuration, it is important to determine whether there
exists any link between the local controller j and the subsystem k as well as the local controller
h. In other words, the outputs of the subsystem k do not contribute to the construction of
the control inputs j if and only if both Bg ¥~ 0and ng = 0. Moreover, the states of the local
contro.llliers h are not employed in the construction of xZ (¢) and w/ (¢) if and only if both Aih =0
and Cc!" = 0.

The main objective is to design a controller such that each local controller uses a minimum
amount of information exchange between the subsystems and the local controllers. In order
to design such controller, the following pattern matrix Z (K) = [z j k] is defined:

1 gl éN BCIN
card cgl Dél card cgN DiN
Z(K) = (5.28)
N1 N1 NN pNN
B A B
card CEVI DZVI ) ... card CéCVN DZVN ) ‘

Element z;; of Z (K) represents the communication links between the local controller j and
the subsystem and the local controller k. The number of the non-zero elements of Z (K) is
equal to the number of the communication links of the controller. Note that z;; = 0 if and only
Alx ik
c/* plf
k with its corresponding controller. The control configuration is represented by a binary

if =0, i.e. there exists no link between the local controller j and the subsystem

information flow matrix .# (K) = [I;i| determined as follows:
Ijk = sgn(zjk) (5.29)

where sgn is the signum function. When all entries of matrix .# (K) are equal to 1, the corre-
sponding controller is centralized and when .# (K) is diagonal, the corresponding controller
is decentralized. Any case between the centralized and decentralized control strategy is a
distributed controller.

To find a controller configuration with minimum communication links between the subsys-
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tems and the local controllers, the cardinality of Z (K) should be minimized. The problem
of fixed-structure decentralized/distributed control of LTT interconnected systems subject to
polytopic uncertainty described by (5.18)-(5.19) is summarized as:

Problem 4. (Control Configuration Design in Interconnected Systems)
Given a linear dynamical interconnected system consists of N subsystems subject to polytopic
uncertainty, design a fixed-structure dynamic output feedback controller K such that

1. The cardinality of Z (K) is minimized (Control Configuration Selection).

2. Closed-loop system is robustly stable and performance criterion | H,, (A) |12, < u is guar-

anteed (Controller Parameter Design).

The aforementioned conditions can be formulated as the following non convex optimization
problem:

min p+axcard(Z(K))
K (5.30)
subjectto || Hzy(A) IICZ)O <u

where a determines a trade-off between the sparsity of the controller and the Hy, performance
criterion.

5.3.2 An LMI-based Approach to Control Configuration Selection

To reduce the amount of information exchange between the subsystems and the local con-
trollers in an interconnected system, matrix Z (K) in (5.28) should be sparse. The sparsity
requirements are expressed in terms of the cardinality which is non-convex. The non-convex
cardinality minimization can be relaxed by the convex one-norm (¢;) minimization [163]. In
fact, one-norm is the convex envelope of the cardinality [166].

To have a better approximation of the cardinality, the weighted ¢, norm is used [163]. There-
fore, the objective function in (5.30) can be written as:

J=p+alW=*Z(K)h (5.31)

where W = [w ] is the matrix of weights. The cost function J is written as follows:

N N
J=p+a), Y wic|kic, (5.32)
j=lk=1
Ak gt
where ki = C§k ‘| and wji = 0is the jk-th entry of W which is inversely proportional
[ c
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to ||kjk||l,i.e.

1

_ (5.33)
€+ ” ki ” 1

Wik
where € is a small positive number used to ensure that the weights are well-defined when
|| ki ||1 = 0. In this case, for almost zero-valued kj, a very high weight is assigned. Since the
weights depend on the unknown local controllers, the above weight matrix design strategy
cannot be implemented. In [163], an iterative algorithm for choosing the weights has been
given.

A convex set of fixed-structure controllers based on the use of slack matrices has been given in
Chapter 3. Therefore, the problem of fixed-structure decentralized/distributed Hy, control of
LTT interconnected systems subject to polytopic uncertainty can be solved by the following
convex optimization problem:

min p+alW = Z(EK)lh
ACrBL‘)CL‘)Dchi)/J
S.t. (3.66)/(3.76) (5.34)
P;>0; i=1,...,q

where a determines a trade-off between the number of communication links in the distributed
controller and the H,, performance criterion. In the following, a systematic algorithm for the
problem of fixed-structure decentralized/distributed H, controller design of LTI polytopic
systems is given.

5.3.3 Algorithm II: “Fixed-structure decentralized/distributed H, controller de-
sign”

In this subsection, an iterative LMI-based algorithm for the problem of fixed-structure sparse
H, controller design of LTT interconnected system affected by polytopic uncertainty in (5.18)-
(5.19) is presented. The iterative procedure can be summarized by the following steps:

Step 1 (Initialization): Design some initial controllers for each vertex of the polytope (Kl.[O]).
Put the iteration number & = 1, a small tolerance for € > 0, maximum iteration number /4y,
and wj[lk] =1, j,k=1,..,N. Determine a based on the desired H,, performance and the
sparsity of the controller.

Step 2: Solve the convex optimization problem given in (3.79) for a given controller and
determine M and X",

Step 3: Solve the convex optimization problem given in (5.34) to obtain a sparse fixed-structure
H,, controller K.

Step 4: Find H kjk || [lh] for j,k=1,..., N based on the current controller K,
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Step 5: Update the jk-th elements of the weighting matrix W+

Tealrse 17F
AR S (5.35)
jk '
0o, j=k
forj,k=1,..,N.

Step 6: Terminate on convergence or when maximum number of iterations 5,4, reaches.
Otherwise, use the obtained controller in Step 3 as an initial controller (K l.[h“] — K =
1,...,q) and go to Step 2 with h — h + 1.

Step 7 (Polishing): Design a fixed-structure H,, controller by solving the optimization prob-
lem in (5.34), where a = 0 is considered.

5.3.4 Simulation Examples

Example 3 (Fixed-order distributed control). Consider a network of three interconnected
second-order subsystems subject to polytopic uncertainty given in (3.85). The objective of this
example is to design a first-order sparse H,, controller. To this end, according to Algorithm
IT in Subsection 5.3.3 with the parameters € = 107° and a = 0.5, at the first step, eight initial
first-order centralized controllers are designed by using the command hinfstructin MATLAB
for each vertex of the polytope. The initial controllers are transformed to discrete-time ones
by using the bilinear (Tustin) approximation with the sampling time T = 0.1s. Then, these
controllers are utilized to obtain the slack matrices M and T using LMIs in (3.63). The next
step is to determine the sparse controller by solving the convex optimization problem in
(5.34). These steps are iteratively repeated and finally after /,,,, = 60 iterations, some control
structures are obtained. The computational time is about 187s, on a 3.4 GHz Intel Core i7 with
Mac OS X. Figure 5.5 shows the number of communication links versus the iteration numbers.

For each obtained control structure, an H,, controller is iteratively designed where the struc-
ture of the controller is fixed a priori. For instance, in the case of four communication links,
the following distributed Ho, controller with || H;,, ()]l < 0.9673 is obtained:

00074 . 0 , 0 00945, 0 | 0
Ac=| -0.3107 06538, 0 |, Bc=| 0.0430, 0.0013 6 0
0 ' 0 '0.1519 0 ' 0 0.0662
| | ST (5.36)
26502 0 0 1.2327 0 \
Cc=| —3.8635,0.4953 , 0 , Dc=| -1.4132 | -0.8750 , 0
0 ' 0 '-3.2312 0 ' 0 104798

The above controller guarantees the stability as well as the Hy, performance of the whole poly-
tope. Figure 5.6 shows the upper bound of || H;,, (1) |, versus the number of communication
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Number of communication links

5 10 15 20 25 30 35 40 45 50 55 60
iteration

Figure 5.5: Candidates for the control structure in Example 3

links. It is observed that by increasing the sparsity of the controller structure, a decrease in
the H,, performance is achieved. For example, the closed-loop system with a centralized con-
troller (with 9 communication links) has an H,, upper bound of || H;;, (1) ||oc < 0.8962 whereas
the distributed controller given in (5.36) with 4 communication links leads to || H;,, (1) o <
0.9673.

Example 4 (Distributed static output feedback control). Consider the discrete-time inter-
connected polytopic system of five SISO subsystems given in (5.17). The objective is to design
a distributed or decentralized (if possible) static output feedback controller which minimizes
the H,, norm of the closed-loop system H,,(A) for the whole polytope of g = 23 vertices. To
this end, the iterative algorithm given in Subsection 5.3.3 is used. First, e = 10~ and a = 0.5
are set. Since a static output feedback is sought, eight static output feedbacks are designed
via hinfstruct as initial controllers for the vertices. After 30 iterations, some candidates for
the control configuration are obtained. Then, || H;;, (1) |l is iteratively minimized using LMI
conditions in (3.53) and subject to the structural constraints determined by the candidates.

The upper bound of || H;,, (1)l versus the number of communication links is plotted in
Fig. 5.7. Tt is observed that by decreasing the sparsity of the controller structure, the Hy,
performance is improved. For example, the closed-loop system corresponding to a centralized
controller (with 25 communication links) has an Hy, upper bound of || H;;, (1) [lco < 1.62
whereas the distributed controller with 8 communication links leads to || H;,, (1) |loo < 1.745.

The distributed static output-feedback controller corresponding to 8 communication links is
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H.  Norm
inf

Number of communication links

Figure 5.6: Upper bound of || H;,, (1) |, Versus the number of communication links in Example
3

given as follows:

[ 011137 0 1 0 0783 . 0
0 ,-37119, 0 , O ., O
D.=|05719 o 05807 0o | 0 (5.37)
0 | 0 02012/-00380, 0
0O ' 0 ' 0 ' 0 163590 |

The sparse controller guarantees the robust stability as well as the H,, performance of the
whole polytope.

5.4 Conclusion

This chapter centres around addressing two important issues in the control structure design of
LTT interconnected systems subject to polytopic uncertainty: sensor and actuator placement
and control configuration design. The control problems are formulated as optimization prob-
lems by minimizing the cardinality of some pattern matrices, while satisfying a guaranteed
level of Hy, performance. For the resulting combinatorial optimization problem, computa-
tionally tractable convex relaxations are provided. More specifically, using the convex inner
approximation of fixed-structure H,, control design proposed in Chapter 3 and a weighted
/1 norm relaxation, several iterative algorithms are developed. The main feature of the pro-
posed approaches is that the control structure and the control parameters are simultaneously
designed.
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H, Norm

I I I I I I I I I
13 14 15 16 17 18 19 20 21 22 23 24 25
Number of communication links

Figure 5.7: Upper bound of || H;,, (A1) leo versus the number of communication links in Example
4

As compared to the existing approaches for control structure design, the proposed LMI-
based strategy is advantageous since (i) the control structure and the control parameters are
simultaneously designed. (ii) the controller structure is designed for a family of models which
belongs to a polytopic-type uncertainty domain (iii) the communication links between the
subsystems and the local controllers as well as the communication among the local controllers
are minimized.
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Grid-connected Voltage-Source Con-
verters

6.1 Introduction

This chapter studies the problem of dg-based current control of a grid-connected voltage-
source converter with L/LCL filters under grid inductance uncertainties. The current con-
troller must be able to provide desired performance specifications including current reference
tracking, high closed-loop bandwidth as well as dg-axes decoupling. The control objectives are
encoded into an optimization problem subject to H,, constraints. The problem is then over-
come and a robust fixed-structure MIMO current controller is designed through the developed
algorithms in Chapter 3.

The controller ensures robust stability and robust performance against grid inductance pa-
rameter uncertainty. In addition, the proposed MIMO controller decouples the d and ¢
components of the current signal. The simulation studies conducted in MATLAB/SimPow-
erSystems show the effectiveness of the proposed controller in terms of current reference
tracking and robustness to the grid inductance parameter uncertainty.

The organization of this chapter is as follows. The system description is given in Section 6.2.
Section 6.3 presents controller design method. The robust dg-based current controllers are
given in Section 6.4. Section 6.5 is devoted to simulation results. Section 6.6 concludes the
chapter.

6.2 System Description

Consider the configuration of an electronically-interfaced distributed generation (DG) unit in
grid-connected mode, as shown in Fig. 6.1. The DG unit is connected to the grid via a voltage-
source converter (VSC) and an L/LCL-type filter at the point of common coupling (PCC).
In this figure, Phase-Locked Loop (PLL), which is used for the synchronization, estimates
the phase angle 0(¢) at the PCC [167]. The abc/dq and dq/abc blocks convert the signals
from stationary reference to the rotating reference frame and vice versa, according to Park’s

99



Chapter 6. Grid-connected Voltage-Source Converters
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Figure 6.1: Configuration of a grid-connected voltage-source converter under study and its
dg-based current controller

transformation [107]. The values and definitions of the system parameters are given in Table
6.1.

Remark: It would be better to connect the PLL to a stiff source, i.e. V;, to avoid disturbances
imposed to PLL input. However, it may need a communication link.

6.2.1 Grid-connected VSC with an L-type Filter

In this subsection, the mathematical model of the three-phase grid-connected VSC system
with an L-type filter in Fig. 6.1 is derived. The dynamics of the system are described as follows:

i ,abc .
g Lgit = Uy abe(t) = Tglg abe(t) — Vs(£) (6.1)
where ig apc, Vr,ape, and Vi are the grid current, the VSC terminal voltage, and the grid voltage,
respectively. Lg = Lg, + Lg, presents the total inductance.

Assuming that the three-phase system of Fig. 6.1 is balanced, the mathematical model in
abc-frame is first transformed to af-frame using xqp = x4 + xpe”/ @' + x,e/?"/3) Then, it
is transformed to the dg-frame using x4, = V2/3xq B /9, where @ is the transformation angle
(phase angle of vg 4. at the PCC is considered as the reference). The system equations in
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Table 6.1: Parameters of VSC in Fig. 6.1

L.=15mH Converter-side inductor of the LCL filter
re=0.1Q Series resistance of L.

Lg, =1mH Grid-side inductor of the LCL filter
rg =0.1Q Series resistance of Lg,
C=15uF Capacitance of the LCL filter

Lg =5mH Inductance of the L filter
rg =0.3Q Resistance of the L filter

LgZ € [Lmein LgZ max ]

Grid inductance

fPWM =5010Hz

Vs =220V Grid voltage (phase-to-phase rmsvoltage)

Ve =440V DC bus voltage

fo=60Hz System nominal frequency (wo = 27 fp)
fs=10020Hz Sampling frequency

PWM carrier frequency

dg-frame are given as follows:

ig(1) = AgXg(t) + Bgu,(t) + By us(D)

(6.2)
y(1) = Cgxg(t)

where xg (1) = [iga igq] isthestate, v,(1) = [vya viq)" )"
]T

is the input, v(1) = [ Vs, Vs,
is the disturbance, and y(t) = [i gd lgql| 1S the output signals. The dg-subscripts indicate

the dg components of the corresponding signals. The state space matrices are as follows:

_Ig 1
Ag=| L g=| (1)
. 0 (6.3)
—I. 1 0
By = Og 1 | Cg = 1
Lg

Due to the abc-dq transformation, coupling terms wgLgig,; and woLgig 4 appear between the
direct and quadrature current axes. To remove the cross coupling terms and decouple these
axes, feedback and feedforward controllers are designed such that the coupling terms are
encapsulated in control laws (conventional dq current control) [168].

Vi = Vs, —woLglg g+ Ug
d g.gq (6.4)
Vt,q = Vsq +w0ngg,d + Ug

where u; and u, are the feedback control signals of the direct and quadrature axes. The
feedback controller is a conventional PI controller with the following structure:

1+sT,
sT;

Kpi(s) = (6.5)
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The controller time constant T}, is usually chosen qual to the dominant time constant of the
system, i.e. Ty, = Lg/rg. The parameter T; is equal to 7/rg, where 7 is normally between 0.5ms
and 5ms [169].

According to (6.4), the use of the feedforward terms theoretically results in fully decoupled
control loops. Nevertheless, in practice due to measurement errors and grid parameter
uncertainties, it is almost impossible to precisely determine the values of wg, Lg, ig 4, and ig 4.
Therefore, exact coupling term cancelation is not possible and a full axis-decoupling cannot
be achieved [170].

To improve the axes decoupling, a modified multivariable-PI controller has been developed in
[170], where the control laws are written as follows:

woTy . .
vt,d = Vsd - ST (lquref - lg’q) + ud
o ’Il" (6.6)
0 . .
Vg = Vsq + S_Tl-n(lg’d”’f - lg,d) + Ugqg
where
_1+sTy, . .
Ug = (lg,d,ef - lg,d)
sT; (6.7)
1+5Ty, '

Ug = s—:ri(igrqref —ig.q)

lgd,, andigq ' respectively are the direct and quadrature reference current signals. Although
the integral terms in (6.6) reduce the effect of axes coupling, parameter uncertainties in the
system can still degrade an ideal axis-decoupling. For instance, in the case of grid inductance
parameter uncertainty, the feedback and feedforward control terms are fixed and it may result
in a poor operation of the current controllers.

6.2.2 Grid-connected VSC with an LCL-type Filter

Consider the voltage-source converter in Fig. 6.1 connected to the utility grid through an
LCL-type filter. The resonance frequency of the LCL filter is determined as follows:

1 Lg + L.
=5 / 6.8
fres 27 LchC ( )

The resonance frequency varies depending on the grid inductance values. Inductive grids lead

to a decrease of the resonance frequency.
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The dynamical equations of the system in the abc-frame are as follows:

dicap .
Lc% = _rclc,abc(t) - Vc,abc(t) + Vt,abc(t)
dv
cZZeabe _ icabe(t) = g ape(t) (6.9)
dat
dig ap )
g% = Ve,abc(t) — Tglg apc(t) — V(1)

where i¢ ape, ig,aber Ve,aber Vt,abe» and Vs are the converter-side current, the grid-side current,
the voltage of the filter capacitance, the VSC terminal voltage, and the grid voltage, respectively.
The dynamical equations can be described by the following state space representation:

xg,abc(t) = Ag,ahcxg,abc(t) + Bg,ubc Vi, abe(t) + By, abe Vs(1) (6.10)

yabc(t) = Cg,abcxg,abc(t)

. . T . .
where xg qpc (1) = [zmbc Ve, abe lg,abc] and yqpc (1) = ig apc- The state space matrices are

given by:
[ Te 1
TE
Agabe=| T 0 -
0 1 _I
| Lg Lg
[ LL 0 (6.11)
Bg,abc = 0 ) Bv,abc = 0
0 _1
L I
Cgabe=| 0 0 1|

Under balanced conditions, the dynamical equations in abc-frame are transformed to dg-
frame and expressed by (6.2), where the state, input, disturbance, and output signals respec-

tivelyare xg (1) = [ic,g icq Ved Vegq ig.d ig,q]T, ve(t) = [vra Vt,q]T, vs(t) = [ Vs, Vsq]T
y() =iga ig,q]T, and

)’

~E wy - 00 0 L0 ] 0 0
—wy -7 0 -1 0 0 0 0 0
e L0 0 w -% o s_| 0 0 s_| 0 0
81 o0  —wy 0 0 -t 1" o of V| 0O 0
1 T, 1
0 0 - 0 - 0 0 -7; O (6.12)
0 0 0 7 -w —z—i | 0 0 | o -
000010
Cg =
000001
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6.2.3 Grid Parameter Uncertainty

Itis assumed that the grid inductance value is not precisely known and it belongs to a given
interval, Lg, € [Lg, = Lg, |. Therefore, the state space matrices Ag, B,, and Bg (in the case
of L-type filter) represent a polytopic uncertainty with g = 2 vertices as follows:

Ag(l) =AAg + (1 - 1) Ag,
By(A) = ABy, +(1-2A)By, (6.13)
Bg(1) = ABg, + (1= A)Byg,

where 0 < A < 1. Vetrices Ag, Ag,, By,, By,, and Bg,, Bg, are obtained based on the maximum

and the minimum values of the grid inductance Lg,. For instance, matrices Ag, and Ag, for
the system with L-type filter are as follows:

rg )
A, = I‘gl +Lg2min 0
81 —w _ Tg
0
Lgl +L32min (6 14)
N S '
A — Lgl +L82max
& Cwy T
Lgl +Lg2max

The state space model given in (6.2) is transformed to the following discrete-time system with
the sampling time T = %

xg(k+1) = Ag, (M) xg (k) + Bg, (A)v; (k) + By, (M) v (k)
y(k) = ngxg(k)

(6.15)

according to the following approximations, based on the first-order Taylor series, assuming
that the sampling time T is small enough.

RV
Ag, = el = [+ ToAq

T,

Bg, = f e*" Bydt ~ T;Bg

o (6.16)

By, = f e¢"B,dt ~ TB,
0

Cg, =Cg
It is assumed that there exists one sample delay between the converter voltage command u(k)

and the VSC terminal voltage v,(k), i.e. v;(k) = u(k —1) [84]. Therefore, by considering the
delay, the following augmented model G is derived.

Xgug (K +1) = Ag,, (M xg,,. (k) + Bg,, u(k) + By,,, (M vs(k)
y(k) = Cgaugxgaug(k)

(6.17)
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where xg,,, (k) = [xI () v!(k)]" and

Agaug (A’) =

Bgaug =

Cgaug =

Ag,(V) Bg,(A)
0 0

0 By,(A)

’ Bvaug W)= 0

Ces O |

6.3 Controller Design Method

(6.18)

In this section, a robust fixed-structure MIMO control strategy for the current controller design
of the grid-connected voltage-source converter in Fig. 6.1 is proposed.

6.3.1 Controller Design Requirements

A current controller for the grid-connected voltage-source converter described by (6.17)-(6.18)
with grid inductance uncertainty is sought to meet the following performance criteria:

* The closed-loop system must be asymptotically stable for all values of Lg, in the given

interval.

* The closed-loop polytopic system should be able to track all step current reference

signals (y,.r) with zero steady state error.

* The closed-loop response to step current reference signals should have small rise time

(within about one cycle of fy = 60 Hz) and overshoot for all values of the grid inductance

within the pre-specified uncertainty interval.

* The closed-loop system should eliminate the impact of the disturbance signal v;.

* The coupling between the d and g output channels should be small.

6.3.2 Structure of the Proposed Current Controllers

To satisfy all the aforementioned criteria, a current controller K with the following structure is

proposed.

xe(k+1) = Acxc(k) + Be(yrep (k) — y(K))
u(k) = Cexe(k) + De(yrer (k) = y (k)

(6.19)
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where A, € R”™*" and B, C;, and D, are of appropriate dimensions. The above controller is a
solution of the following optimization problem:

111(1(121)1 11 + a2
subjectto  |[WS)IZ, < w1 (6.20)

ITA) = Tall, < 2

where S = (I+GK)™', T = GK(I+ GK)™', W, and T} are the sensitivity function, the com-
plementary sensitivity function, the weighting filter, and the desired closed-loop model,
respectively. The positive scalars a; and a, characterize the emphasis on the H, norm of the
weighted sensitivity transfer function and the model matching problem || T(1) — Tl co-

The weighting filter W is responsible to shape the sensitivity function S. In fact, the minimiza-
tion of [WS(1) |l provides the desired performance characteristics of the closed-loop system
while the minimization of | T'(1) — Tl leads to a decoupling between two output channels
for a desired diagonal T,;. The signals z; and z; are defined as follows:

21(k) = W (yrer (k) — y(K))

(6.21)
zo(k) = y(k) - TdJ’ref(k)
A common choice for W [69] and T, in continuous-time case is given as follows:
M‘—‘wvtwg 0
w=| T, (6.22)
0 si,wge
T
Tys)=| *™» o} (6.23)
0 s+(u§

where w}, is the desired closed-loop bandwidth, € is the maximum tracking steady state error,
and M, = 1 is the maximum peak value of the magnitude of S. Weighting filter W and the
model reference T, are discretized using the ZOH method. We assume that the state space
equations of these transfer functions are given by:

Xw(k+1) = A Xy (k) + By(yrer (k) — y(k))

(6.24)
21(k) = CuyXi (k) + Dy (yref (k) — y (k)

xa(k+1) = Agxaq(k) +Bayrer(k)
yr(k) = Cgxq(k) + Ddyref(k)

(6.25)

To obtain the state space representation of WS, first the dynamical equations of the plant
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given in (6.17)-(6.18) and the weighting filter W are augmented as follows:
Rg(k+1) = Ag(A)%g(k) + Bg(M)u(k) + By (D) vs(k) + By w(k)

J(k) = Cgig(k) + Dy w(k)
z1(k) = C &g (k) + Dy w(k)

T
where (k)= | x] (6 xL() |, wk) = yrep(K), 506 = yres (k) - y(k), and

. A A 0
Ay = | A
_Bngaug AW
N B R By, (A) . 0
B, = 8aug , B.,(A) = Vaug , B, =
=] o NeY) : = 5
Co=| ~Cguy 0|, Du=1
éz: _chgaug Cw ]» Dzw:Dw

(6.26)

(6.27)

Then, by augmenting the dynamical equations of the augmented plant in (6.26)-(6.27) and the

controller in (6.19), the state space representation of WS is obtained as follows:

x1(k+1) = A1 (M) x1(k) + Bryrer(k)
z1(k) = C1x1(k) +DIYref(k)

where x; (k) = [& (k) xI(k)]" and

Ag(M) +BgD.Cyq ByC,

AN =
1(A) B.Cy A,

G=[¢ o] Di=h.

In a similar way, the dynamical equations of the system T — T,; are given by:

xo(k+1) = Ay (M) x2(k) + B2 yrer (k)
z3(k) = Cox2(k) + Do yrer (k)

where x2(k) = [xg, (k) x/(k) x](k)] "' zo(k) = y(k) - y-(k), and

Agaug (A’) - BgaugDCCgaug Bgaug CC 0 BgaugDC
Ay(M) = ~BCgy, A 0|, B.=| B
0 0 Ay By

C2: Cgaug 0 —Cd » D2=—Dd

(6.28)

(6.29)

(6.30)

(6.31)
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We assume that specific structural constraints on the controller matrices can be imposed.
These constraints can be in the form of:

* Fixed-order dynamic output feedback

The order of the controller is independent of the plant order and it is fixed a priori.

¢ Fixed-structure matrix A
To track step current reference signals and reject the disturbance signal v;, the controller
K (z) must contain integrators. To this end, matrix A, must have two poles at z = 1.

* PI control design (for the case of L-filter)

For the case of L-type filter, the objective is to design a simple PI controller to satisfy all
the required criteria.

Remark: The control design method can also consider the impact of high frequency dynamics
due to PWM switching.

6.3.3 Controller Design Method

All the aforementioned control design requirements for grid-connected VSCs with L/ LCL-type
filter described by (6.17)-(6.18) can be ensured by the set of LMI-based conditions, given in
Theorem 9 in Chapter 3.

6.4 Robust dg-frame Current Controllers

In order to design a fixed-structure controller for the voltage-source converter of Fig. 6.1 with
an L/ LCL-type filter, the weighting filter W and desired closed-loop transfer function T, are
chosen as follows:

$+1000 0
W(s) = ”0001 $£1000 (6.32)
“sToT
1000 0
Ta(s) = 5%000 1000 (6.33)
$+1000

We also set a; = 0.2 and a» = 1 in the optimization problem given in (6.20).

6.4.1 dg-frame Current Controller for the VSC with an L-type Filter

In this part, a dg-based PI current controller for a VSC with an L-type filter with the parameters
given in Table 6.1 is designed. It is assumed that the grid inductance Lg, belongs to [0, 1m H].
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According to Algorithm III in Subsection 3.6.3, the following Hy, PI controller is obtained after
20 iterations:

1 0 0.506  0.0021
Ac: » c=
0 1 —-0.0021 0.5061
(6.34)
0.0602 —0.3999 5.2880 —0.1361
¢ 0.3988 0.0605 | ¢ 0.1425 5.2900

The designed PI controller guarantees the robust stability and the robust performance criteria
[WSA)lleo < 1.1235 and | T(A) — T4lleo < 0.1102 for all values of the uncertain parameter
Lg, € [0,1mH].

6.4.2 dg-frame Current Controller for the VSC with an LCL-type Filter

The objective is to design a robust dg-based current controller for a VSC with an LCL filter
described by (6.17)-(6.18). We assume that the grid inductance Lg, belongs to [0,0.5mH]|. Fol-
lowing the control design procedure in Algorithm IIT and the stretching approach in Algorithm
II respectively given in Subsection 3.6.3 and Subsection 3.5.2, the final H,, current controller
is obtained after 5 iterations as follows:

[ 1 0 -0.058 0.046 -0.020 -0.005 -0.011 0.016
0 1 -0.028 0.046 -0.023 -0.150 0.173 —-0.088
0 0 0.008 0.493 0.003 0.002 0.0004 -0.002
A, = 0 0 0.024 -0.018 0.507 0.0003 0.004 —0.005
0 0 0.036 -0.029 0.012 0.003 0.007 -0.011
0 0 0.003 -0.005 0.002 0.014 0.482 0.009
0 0 0.009 -0.013 0.005 0.035 —-0.038 0.519
| 0 0 0.011 -0.02 0.01 0.062 -0.073 0.037
3.045 —0.001 0.005  0.025 ’ (6.35)
0.003 4.614 —-0.016 0.004
-0.5 0.0002 2.204 -0.218
—1.002 0.001 —5.347 0.352
B, = , Ce=
—2.006  0.0004 4254 -0.119
—0.0011 -0.5 0.197  2.163
—-0.0014 —1.0005 -0.337 —=5.274
| —0.0017 —2.002 0.124 4.212
D, = 3.1729 -0.1467
0.1488 3.1662

The resulting controller ensures the robust stability as well as the robust performance criteria

WS lloo < 1.4532 and || T(A) — Ty lleo < 1.5068 for the whole range of the uncertain parameter

L
g

R

Remark. The LMI-based optimization problems are solved using YALMIP [146] and SDPT3
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[153] as the interface and the solver, respectively.

6.5 Performance Evaluation

In this section, the performance of the designed controllers in (6.34) and (6.35) is evaluated by
means of simulation results carried out in MATALB/SimPowerSystems under several scenarios:
1) current tracking and 2) robustness to the grid inductance uncertainty.

In the tracking test scenario, the performance of the proposed controllers in the step dg-
current reference tracking is assessed. The second scenario is conducted to demonstrate the
robustness of the controllers against the interval uncertainty in the grid inductance. In the
simulation case studies, a realistic model of the VSC (nonlinear switching model) is used.

6.5.1 VSC with an L-type Filter

The values of the parameters of the VSC with an L filter in Fig. 6.1 are set according to Table
6.1. We study the dynamical responses of the system for two case: Lg, =0 and Lg, = 1mH. In
both case studies, the d and g components of the current signal are initially set at 0.686 pu and
0.5145 pu, respectively, by the PI controller in (6.34). The d component is stepped up to 0.8575
puat £ =0.1s. The d component is suddenly stepped down to 0.1715 pu at ¢ = 0.3s. Fig. 6.2
and Fig. 6.3 show the dynamical responses of the system to these changes.

6.5.2 Comparison with Conventional and Multivariable-PI Current Control Meth-
ods

In this subsection, the performance of the proposed robust PI controller for the VSC with an
L-type filter is compared to the conventional [168] and the multivariable-PI current controllers
[170]. To this end, the parameters of the the conventional and the multivariable-PI controller
(T;, Ty) are properly tuned assuming that Lg, = 0.

To show the transient behavior of the controllers, two step changes in the direct and quadrature
current axes are applied. The d component of the current signal changes from 0.686 pu to
0.8575 pu at ¢t = 0.1s whereas g component is stepped down to 0.1715 pu at ¢ = 0.3s.

Fig. 6.4 shows the dynamical response of ig 4, for three PI current controllers to those step
changes in the case of Lg, = 0. It is observed that the proposed robust PI controller in (6.34)
provides better transient response in terms of rise time and dg-channels decoupling. The
conventional and multivariable-PI controller are slower than the proposed PI controller.
Moreover, the conventional controller is not able to completely decouple the direct and
quadrature axes.

In the second case study, a test scenario similar to the pervious case is carried out to verify the
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Figure 6.2: Dynamical responses of the grid-connected VSC with an L-type filter- Case 1)
Current tracking with Lg, = 0 (a) dg-components of the the grid current ig 44, (b) control

inputs u, (c) real and reactive power components of DG, and (d) instantaneous grid currents
ig ab
g,abc
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Figure 6.3: Dynamical responses of the grid-connected VSC with an L-type filter- Case 1)
Current tracking with Lg, = 1mH (a) dg-components of the the grid current i 44, (b) control

inputs u, (c) real and reactive power components of DG, and (d) instantaneous grid currents
ig,ab
g,abc
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Figure 6.4: Transient response of the proposed, conventional, and multivariable-PI controllers
to step changes in the direct and quadrature axis reference current- Case 1) Current tracking

with Lg, = 0 (a) d-component of the the grid current ig 4, and (b) g-component of the the
grid current ig 44.
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Figure 6.5: Transient response of the proposed, conventional, and multivariable-PI controllers
to step changes in the direct and quadrature axis defence current- Case 1) Current tracking

with Lg, = 1mH (a) d-component of the the grid current ig 4, and (b) g-component of the the
grid current ig g4.
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Figure 6.6: Dynamical responses of the grid-connected VSC with an LCL filter- Case 1) Current
tracking with Lg, = 0 (a) dg-components of the the grid current ig 44, (b) control inputs u, (c)
real and reactive power components of DG, and (d) instantaneous grid currents i g,abc

performance of the controllers in spite of the grid inductance uncertainty. It is assumed that
real value of the grid inductance is Lg, = 1m H. Dynamical responses of the controllers to the
step changes in ig 4, are depicted in Fig. 6.5. As it is observed from Fig. 6.5, the convention
and the multivariable-PI controllers are really sensitive to the system parameter uncertainties.

6.5.3 VSC with an LCL-type Filter

1) Current Tracking: The values of the parameters of the system in Fig. 6.1 with an LCL filter
are considered according to Table 6.1. First, we assume that Lg, = 0. Initially, the d and g
components of the reference current signals are respectively set at 0.686 pu and 0.1715 pu.
Then, the g component of the reference current is stepped up to 0.5145 pu at ¢ = 0.1s. Finally,
there is a step change in d component of the reference current to 0.8575 pu at ¢ = 0.3s. The
dg components of the grid current ig 44, the controller signals u, the real and reactive power
components of DG, and the instantaneous grid currents ig 5 are illustrated in Fig. 6.6.

Next, we consider that the grid inductance value is Lg, = 0.5mH. The d and g components of
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Figure 6.7: Dynamical responses of the grid-connected VSC with an LCL-type filter- Case
1) Current tracking with Lg, = 0.5mH (a) dg-components of the the grid current ig 44, (b)

control inputs u, (c) real and reactive power components of DG, and (d) instantaneous grid
currents ig qpc

the reference current signals are initially regulated at 0.6708 pu and 0.4472 pu, respectively.
Then, a step change in the d component of the reference signal from 0.6708 pu to 0.8944 pu is
made at ¢ = 20ms while the reference value of d component is fixed. The dynamical responses
of the system are shown in Fig. 6.7.

2) Sudden Change in Grid Inductance: To evaluate the robustness of the the designed controller
in (6.35) to the grid inductance uncertainty, the grid inductance Lg, is suddenly changed from
0.5mH to 0 at t = 0.2s. Fig. 6.8 shows the transient behaviour of the system under the grid
inductance uncertainty. The results verify that the designed controller is robust with respect
to the uncertainty in the grid inductance.

Remark. It should be noted that the grid inductance value is uncertain and it does not
change in step; however, the step variations in this parameter leads to the worst-case transient
response of the system. Therefore, it can be a good index for the evaluation of the robustness
of the designed controller to the grid inductance uncertainty.
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Figure 6.8: Dynamical responses of the grid-connected VSC with an LCL-type filter- Case 2)
Sudden change in the grid inductance (a) d g-components of the the grid current ig 44, (b)
control inputs u, (c) real and reactive power components of DG, and (d) instantaneous grid
currents ig gpc

6.6 Conclusion

In this chapter, dg-based current controllers for grid-connected voltage-source converters
(VSC) with L/ LCL-type filters under polytopic uncertainty are designed. The uncertainty is
imposed by the grid inductance which is assumed to belong to a given interval. The current
controllers assigned with integrators result from a convex optimization problem developed in
Chapter 3. The proposed controllers guarantee the robust stability and robust performance of
the system against the grid inductance uncertainty.

In summary, as compared to the existing grid-connected VSCs control methods, the proposed
current controllers have the following main advantages:

1. The controllers require to measure only the current signal; therefore, in contrast to
multi-loop control strategies, only one sensor is necessary.

2. The controllers provide dq axes-decoupling between the direct (d) and the quadrature
(@) components of the current signal by means of the minimization of an H,, norm
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constraint.

3. The MIMO controllers fulfil the requirements of stability, fast rise-time, small overshoot,
attenuated resonance damping, and robustness to a pre-specified range of the grid
inductance.

4. The controller design procedure is straightforward and equally applicable to VSC-based
energy conversion applications.

To verify the performance of the proposed controllers, several case studies are conducted in
MATLAB/SimPowerSystems. The simulation results confirm that the designed controllers are
robust to the grid inductance uncertainty and they are able to track step current reference
current signals with fast rise-time and small overshoot.
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7d Islanded Inverter-interfaced Micro-
grids

7.1 Introduction

This chapter focuses on the development of a robust fixed-structure control strategy for
autonomous inverter-interfaced microgrids consisting of DGs. The special emphasis is given
to decentralized control technique where there is not any communication link and information
exchange among the local controllers of DGs. The control strategy is composed of (i) a power
management system (PMS) which specifies voltage setpoints for each voltage-controlled bus
based on a power flow analysis, (ii) local voltage controllers of DGs which provide tracking
of the voltage setpoints with fast rise time and smooth non-peaking transient responses and
robustness to load parameter uncertainties, and (iii) an open-loop frequency control and
synchronization scheme maintaining system frequency.

The robustness and the decentralized features of the local voltage controllers are important
for a microgrid system because

e centralized controllers are uneconomical due to the complexity and cost of the required
high-bandwidth communication infrastructure, and they are unreliable in case of a
single point of failure. Moreover, due to the distributed nature of microgrids, any kind
of centralized control strategies is almost impossible [117].

* robust controllers are able to overcome the uncertainty issues of the microgrid parame-
ters/structure.

The emphasis of this chapter is on local voltage controllers of DGs which are designed based
on the developed algorithms in Chapter 3 and Chapter 5. To study different performance
aspects of the proposed voltage controllers, they are applied to a single-DG and a three-DG
microgrid and a set of comprehensive simulation case studies in MATLAB and experimental
results validate the desired performance of the proposed controllers.

The organization of Chapter 7 is as follows: Section 7.2 presents the dynamical model of
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an islanded inverter-interfaced multi-DG microgrid. Sections 7.3 is devoted to the islanded
microgrid control system. The dg-frame robust fixed-structure voltage controllers are given in
Section 7.4. Simulation and experimental results are presented in Section 7.5. Chapter 7 ends
with concluding remarks in Section 7.6.
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Figure 7.1: Configuration of two DGs connected via line i j

7.2 Dynamical Model of Islanded Inverter-interfaced Microgrids

Consider an islanded inverter-interfaced microgrid consisting of N DGs. Each DG is mod-
eled by a DC voltage source, a voltage-source converter (VSC), a series RL filter, a step-up
transformer with transformation ratio k, and a local load modeled by a three-phase parallel
RLC network. For the sake of simplicity, first we consider the configuration of a microgrid
system with two DGs as shown in Fig. 7.1. However, the proposed voltage control method in
this chapter is general and can be applied to the microgrids composed of N DGs with radial
configuration. The system is described by the following dynamical equations in dg-frame:

AViag , _ 1 ki ;. 1 1
i +JjwoViag = _@Vi,dq +Rc_n,ltz,dq — ¢ lLdgt e lijag
; ti,dq . _ i i 1
DG S +jwoltiaq=—1-Vidaq— 7 ltidaq + 7,; Viidg (7.1)
IL;,dq

. _ 1y . _ R
ar TJWolL,dqg = L_Vz,dq Ll.l lr,,dq

i
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aAViag | o 1 1. ki 1 1 g
ar t100Viaq =g, Vidq* g, ltidq = Ldq ¢ lijdg
) Alijaq | __k i 1
DGjy —ar tJwolijaq=—1;Vide— T ltjdq+ 1;Vijaq (7.2)
diLj,dq R,

e e I PR L1y i
ar - TJwolL;aq=1;Vidg~ T, L,dq

. .. dlijag | . Ry 1 1
Line if: —7= + jwolijaq = —1; lijaq + 1;Viaq — 1; Vidg (7.3)

where (Vi aq, Vjaq), (Itiag Itj.aq)s (irnag ic;aq)s (Viiag Vijag), and Ijj a4 respectively are
the dg components of the load voltage at PCCs, the current filters, the load inductance currents,
the VSC terminal voltages, and the transmission line current. It should be noted that the dc-
side of VSC is modeled by an ideal voltage source.

The microgrid system in Fig. 7.1 can be presented as a linear time-invariant system by the
following state space equations:

%) | '777141-77;74157;77977 x; (1) 71731'7;7077 i (0)
S, (0 | = | 2 Ay, A Ay || x@ [+ 00 f ]
JAL I | ‘ ji o A J o (7.4)
1 | 1 X(t)
yi(1) | 9’7\707\707 ) xll O
(¢ 0'0'C; Y
v | co x; (1)
where
. . T
Xi=| Via Vig lia ltiq In,d ILgq ]
. . T T
Xj= Vj,d Vj,q I[j,d Itj,q le,d le,q ] ’ xlij:[ Iij,q Iij,q
. ; (7.5)
ui=| Viia Viig ] ) uj:[ Vija Vijg ]
T T
Vi=| Via Vig ] ) J’j:[ Via Viag ]
and
1 k 1 1
RiCyi w(l) Cii 2 T Cu 01 Cii 0
1
T TRG O w0 T 0 =
_k 0 - 0 0 0 o
Aj = Ly . Lyi }? , Ali] = (7.6)
0 £ —wy —f 0 0 0 0
1 Ry
£ 0 0 0 -7 0 0
0 L0 0 e - 0 0
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1 k. _1
R;Cyj w(l) Cej 2 Cij 01 = 0
tj
—Wo Rerj 0 C_t] 0 _C_tj 0 1
A0 —Mow, 0 0 “
A] _ Lyj B Lyj R, , Alji 0 0 7.7)
0 -5 ~wo -1 0 0 0 0
tj tj R
%,. 0 0 0 —L—’]f wo 0 0
1 Ry 0 0
0 - 0 0 -—w -7
p —f—j wo , A 0 0000 -
PIT _ag ‘f—j S ) A 0000 Y
0 0 0 0
0 0 0 0
1 1
Bi=| L ||, Bji=|" | (7.9)
0o A 0o~
Ly; Lyj
0 0 0 0
0 0 0 0
1 0 0
Ci=Cj= . (7.10)

7.2.1 Islanded Microgrids with N DGs

The state space model in (7.4) can be extended to the islanded microgrids composed of N DGs
with a radial topology. The overall microgrid system G(s) is described as follows:

Xg (1) = Agxg(1) + Bgul(t) (7.11)

where
T
[, 7 T T T
Xg —[ X Xy, Yoo X, XN
. T
u:[ uy Uy ] (7.12)
T
y=| vl i |
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and the state space matrices are given:

Aq Ao 0 0 0 0
—Api2 Az Apie 0 0 0
) 0 —Ap Az A2 0 0
& 0 0 —Ap2z Az Aoz 0
0 0 0 0 0 .. Ay |
B, 0 0 0 | (7.13)
0 0 0 0 Ci 0 0 0 O 0
0 B O 0 0 0 C 0 O 0
Bg: 0 0 0 0 , Cg: 0 0 0 0 Cy 0
0 0 Bs 0 : : :
: . 0O 0 0 0 o Cn
0 0 0 .. By|

where Al‘, Alij) Alj,ij» Al,ijr Bi’ and Ci are define in (7.6)-(7.10) for Z,] = 1,...,N.

7.2.2 Islanded Microgrids with Polytopic-type Uncertainty

The parametric uncertainty of the microgrid system in Fig. 7.1 arises from the fact that the RLC
load parameters of DG i can vary based on consumers’ demands. For the sake of simplicity,
the following definitions are used.

_1
boCy

It is also assumed that the RLC load parameters are bounded within the maximum and mini-
mumvaluesasR; , <R;<R;,  ,L;, <Li<L; ,andC;  <C; =<C; whichrepresentsa
cube in which the load parameters are allowed to change. In the general case of N DGs, itis a
hyper-cube with g = 2" vertices, where ng is the number of uncertain load parameters. It can
be shown that the image of this hyper-cube in the space of the elements of matrix A is inside
a polytope of g = 2™ vertices. This polytope covers the whole uncertainty in the RLC load
parameters and is defined as the convex combination of the vertices Aé, l=1,...,q [148]:

q
Ag) =Y LA, AeA (7.14)
=1

where A is defined in (2.8) and vertices Afg, are obtained based on the maximum and minimum

values of the RLC load parameters.
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Figure 7.2: Block diagram of the proposed control strategy

7.3 Islanded Microgrid Control System

Consider a schematic diagram of the microgrid control strategy composed of a power man-
agement system (PMS), local voltage controllers of DGs, and a frequency control scheme in
Fig. 7.2.

7.3.1 Power Management System

A power management strategy is required for reliable and efficient operation of a microgrid
system with multiple DGs, particularly in the islanded mode of operation [171]. The main
function of PMS is to maintain an optimal operating point for the microgrid. PMS assigns the
active and reactive power setpoints for the DGs to (i) properly share the real and reactive power
among the DGs based on a cost function associated with each DG, a market signal [126], power
rate of DGs, etc., (ii) appropriately respond to the microgrid disturbances and major changes
[172], (iii) balance the microgrid power, and (iv) provide the resynchronization of the microgrid
system with the main grid, if required [172]. The setpoints are then transmitted to the local
controllers of the DGs. The local controllers measure the voltage at their corresponding PCC
or the active/reactive output power of their own DG and then enable the voltage tracking
according to the received reference setpoints [129].
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7.3.2 Frequency Control

The frequency of the microgrid system is controlled in open-loop. To this end, each DG
includes an oscillator which generates 6(¢) = fot wodt, where wy =27 fy and fj is the nominal
frequency of the microgrid. All DGs are then synchronized by a global synchronization signal
that is communicated to the oscillators of DGs through a global positioning system (GPS)
[126]. The global phase-angle is employed for dq/ abc (abc/ dq) transformations.

7.3.3 Voltage Control

The voltage setpoints are communicated from PMS to the local controllers of the DGs and
transformed to the dg-frame based on the phase-angle signal 6(¢) generated by their inter-
nal oscillator. The main objective is to develop a robust voltage controller for the islanded
operation of the inverter-interfaced microgrids with load parameter uncertainties given in
(7.14).

7.4 Robust Fixed-structure Voltage Control

A fixed-structure voltage controller for the islanded microgrid system whose dynamical equa-
tions are given in (7.11)-(7.13) with polytopic-type uncertainty in (7.14) is sought to satisfy the
following performance criteria:

* The closed-loop system must be asymptotically stable for the whole polytope.

* The closed-loop polytopic system should be able to asymptotically track all step voltage
reference signals (y,ef(1)).

* The closed-loop response to step voltage reference signals should be fast within about
two/three cycles of fy = 60 Hz with small overshoot for all values of the load parameters
within the prespecified uncertainty.

e Each local controller uses the minimum information exchange and communication
among DGs and their local controllers.

e The local controllers are structurally simple (low-order control design).

e The coupling among the output channels should be small.

To achieve all above mentioned conditions, in following, a fixed-order Two-Degree-of-Freedom
(2DOF) sparse controller with integral action is designed. The dynamics of the controller K(s)
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are given by:

J/ref(t)

(1)
Yref(t)

(7.15)
u(t)chxC(t)+[ De, Do ]

where x.(1) is the states of the controller and matrices A, Be,, Be,, C¢, D¢,, and D, are of
appropriate dimensions. The transfer functions of the feedback and feedforward controllers
Krp(s) and K rr(s) are respectively given by:

Kfp(s) = Ce(sI = Ac) "' Be, + Dg,

1 (7.16)
Kyp(s) = Ce(sI—Ac) " Be, + Dy,
The 2DOF controller is a solution of the following optimization problem:
min pw+alWs=Z(K)lh
AC'BCI 'BCZYCC'DCI YDCZ (7.17)

subject to IWsSIIZ, <

where Z (K) is defined in (5.28). Transfer functions S(A1) = (I +GA)K )_1 and W; are sensitivity
function and a weighting filter designed based on the desired time-domain performance [1].
The positive scalar a characterizes the emphasis on the tracking dynamics and the sparsity of
the controller architecture.

The weighting filter W; is responsible to shape the sensitivity function S and provides the
desired performance characteristics of the closed-loop system. A common choice of W; is
given as follows [1, 69]:

s *
Wy TR, 0
. stwp €
Ws(s) = dlag ! ﬁ_'_wg‘ (718)
i i
St

>
B;€i

where wgi is approximately the desired closed-loop bandwidth, ¢; is the maximum tracking
steady state error, and Mj, = 1 is the maximum peak value of S. The choice of €; << 1 ensures
approximate integral action S(0) = 0 [69]. A large value of a)gi leads to a faster response for
output i. However, there always exists a trade-off between the speed of the closed-loop system
response and the sensitivity of the closed-loop system with respect to the measurement noise.
Therefore, to have an acceptable dynamic response of the microgrid system in terms of step
signal tracking and robustness to the measurement noise, the parameters of the weighting
filter Ws(s) are selected as follows:

wj =30, My =15 ¢ =3.33¢-4 (7.19)
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7.5. Simulation and Experimental Results

Figure 7.3: Experimental setup: (A) load resistance, (B) load inductance, (C) load capacitance,
(D) three-phase converter and gating signal generator, and (E) OPAL-RT.

wzi = 30 is chosen to have a rise-time of about ¢, = 30 ms (two cycles of fy) which is one of
the controller design requirements, My, = 1.5 is chosen to have a damping ratio of ¢ = 0.48
(equal to an overshoot of M), = 18%), and ¢; = 3.33e — 4 is chosen to obtain wziei ~ 0.01
which indicates that the pole of the low-pass filter Ws(s) which should be much less than the
closed-loop bandwidth.

7.5 Simulation and Experimental Results

In this section, the proposed fixed-structure control design techniques in Chapter 3 and
Chapter 5 are utilized to design a robust voltage controller for the islanded inverter-interfaced
microgrid in Fig. 7.1. The performance of the designed controllers is then verified by a set of
comprehensive simulation studies and is validated by means of experiments.

7.5.1 Scenario 1: Single-DG Microgrid

For the sake of simplicity, first we consider a single-DG microgrid system which supplies a
three-phase parallel RLC network whose parameters are given in Table 7.1. It is assumed
that the load resistance R; can vary within +80% of its nominal value (R;,;). Moreover, the
load parameters L; and Cy; are assumed to be bounded in the intervals [0.5, 1.5] X Lyom and
[0.5,1.5] x Cpom, respectively, where L, and Cppy are their nominal values. Therefore, the
RLC load parameter uncertainties build a polytope with g = 23 vertices.
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Table 7.1: Parameters of islanded single-DG microgrid

Filter parameters R, =377"mQ, L;=5mH
DC bus voltage Ve =340V
VSC rated power Sysc =10KVA
PWM carrier frequency fsw=10KHz
Load nominal resistance Ryuom =230
Load nominal inductance Lyom=5mH
Load nominal capacitance Crnom =850uF
Inductor quality factor q; =120
System nominal frequency fo=60Hz (wg =271 fy)

The frequency of the islanded microgrid is controlled through an internal oscillator in the

open-loop manner with wg = 27 fy. To design the 2DOF voltage controller, we impose a

restriction that the feedback part of the controller (K fb(s)) is first designed to guarantee

the robust stability while the feedforward controller K rr(s)is then designed for the robust

performance of the closed-loop system in the presence of load parameter uncertainties.

According to the fixed-structure stabilizing controller design procedure given in Algorithm
I'in Subsection 3.5.1, first, eight initial sixth-order controllers with integrators are designed
using FDRC Toolbox [151] for eight vertices of the polytope. Then, using the initial controllers
and the set of LMIs in (3.32), the slack matrices M and T are determined. In the next step, the
feedback controller is determined by solving the set of LMIs given in (3.20). The parameters of
the resulting robust sixth-order feedback controller are as follows:

0
0
Ac= 0
0
0
0

114.187 200.576 0 -—3.384e3 2.687e3
—1.281e4 8.110e3 0 -7.561e3 5.674e3
964.293 -1.227e4 0 -2.328e3 1.779e3
1.495e3 —-1.003e3 0 560.633 —321.734
—1.581e3 2.471e3 0 -3.086e4 2.430e4
—6.624e3  4.181e3 0 —4.259e3 —7.559€3 |
-3.96 -10.813 14.552 25.395
-190.697  —-7.335 —-1.387e3  53.608
-1.278e3  —23.570 C.= 957.818 154.008
20.591 -15.528 |’ 7| -22.352 17.363
46.662 -92.329 —1.119e3 —2.948e3
—55.562 —1.354€3 793.861 2.359e3
—20.298 —4.549
7.979  —-11.005

(7.20)

The parameters of feedforward controller (B,,, D,) are determined by solving the following
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convex optimization problem and fixing the matrices A;,i =1,...,q, C, and D.

min u
PivBEZ 'DCZ ,M,X,}l

P;AT+A;P;  Pi+M-A;X B PCT

Pi+ M —XAT -2X 0 0
subject to ' T ! r | <0 (7.21)
B 0 -1 D
CP; 0 D -ul
Pi=P/>0; i=1,..,q
where
i Al +BgD Cg ByC, g BeDe ]
B, Cq Ac B, (7.22)
c=[ ¢ o] D=0
The resulting feedforward controller is:
20.817 3.304
48.723  —34.250
Be, = 28.047 2.704 . D, = 6.238 —-5.233 (7.23)
-11.663  29.727 -1.149 1.927
—24.629 1.592
13.016 51.422

The designed 2DOF voltage controller guarantees the robust stability as well as the robust
performance criterion || W;S(A) |l < 1.087 in spite of the prespecified load parameter uncer-
tainties. Moreover, the controller provides the asymptotic tracking of all step voltage reference
signals.

Experimental Results: The performance of the designed robust Hy, voltage controller in (7.20)
and (7.23) is validated by means of an experimental test system with the parameters given
in Table 7.1. The experiment has been carried out at the Electrical Engineering Department,
Ecole Polytechnique de Montreal, Montreal, QC, Canada and implemented in the RT-LAB
real-time platform of OPAL-RT Technologies'.

A photo of the laboratory experimental setup is shown in Fig. 7.3 which includes OPAL-RT,
three-phase two-level converter, and three-phase RLC load. The performance of the control
system is validated using several tests including voltage tracking and sudden changes in the
load parameters. In all case studies, the system is assumed balanced and operates in the
islanded mode.

The first test demonstrates the capability of the designed controller in voltage reference signal

Lwww.opal-rt.com
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Figure 7.4: Experimental and simulation results of the islanded microgrid in voltage tracking (a)
d-component of the load voltage, (b) g-component of the load voltage, and (c) instantaneous
load voltages

tracking. The d-component of the voltage reference is stepped down to 0.686 pu at t = 0.28s
and then the g-component of the reference voltage is suddenly changed from 0.5145 pu to
0.1715 pu at t = 0.743s. The experimental and simulation results of the islanded microgrid
system due to these step changes in the load reference signals are shown in Fig. 7.4. The
results demonstrate that the proposed controller can regulate the load voltages with good
tracking performance. Moreover, Fig. 7.4 shows that the simulation results are very close
to the experimental data. However, in the experimental results some ripples and delays are
observed in the load voltages due to non-idealities of the DC source and the dynamics and
switching harmonics of the PWM-based voltage-source converter. The differences between the
simulation and experimental results arise from the fact that the dynamics of the PWM-based
voltage-source converter have not been considered in the simulations. However, note that the
amount of ripples in the experimental results is acceptable according to IEEE standards [173].
Moreover, the effects of the ripples are negligible in the instantaneous load voltages at PCC
(Fig. 7.4, part (c)).

In the second test, the proposed voltage controller regulates the d and g components of the
load voltages at 0.8 pu and 0.6 pu, respectively. The load inductance and load capacitance
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Figure 7.5: Dynamic responses of the experimental test system due to a resistive load change
(a) dq-components of the load voltage, (b) control inputs, and (c) instantaneous load voltages

are also fixed at their nominal values, as given in Table 7.1. The load resistances in the
three phases are equally stepped down from 5 lamps to no lamp (A configuration) at about
t =200ms. Fig. 7.5 shows the dynamical response of the test system due to this resistive load
change.

In the third test, the d and g components of the load voltages are set at 0.93 pu and 0.37 pu,
respectively. While the load resistances and the load capacitances are fixed at their nominal
values, the load inductances in the three phases are suddenly stepped up from 5mH to 25mH.
Then, they suddenly decrease to 5m H at about ¢ = 0.5s. The dynamic response of the system
for the second load inductance change is shown in Fig. 7.6.

In the last test, a change in the load capacitance is considered. To this end, the load capaci-
tances in the three-phases are suddenly changed from the nominal value 850uF to 1700uF at
about ¢ = 1.1s, while the load resistances and the load inductances are set based on the values
given in Table 7.1. The dynamic response of the test system is depicted in Fig. 7.7.

Fig. 7.5 and Fig. 7.6 demonstrate that in spite of the large variations in the load resistance and
the load inductance, the controller successfully regulates the load voltage with small transients
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Table 7.2: Parameters of the islanded microgrid system with three DGs

Parameters of RL filter 1
Parameters of RL filter 2

Rin=1mQ, Ly =137271uH
Ri»=1.4mQ, L;=183.028uH

Transformer voltage ratio

Parameters of RL filter 3 Ri3=2.1mQ, L;3=274542uH
DC bus voltages Vie =1500V
VSC terminal voltage (line-line) Vvsc =600V
Transformer parameters Xr=8%

k=0.6/13.8KV(A/Y)

Parameters of RLC load 1
(nominal values)
Parameters of RLC load 2
(nominal values)
Parameters of RLC load 3
(nominal values)

R, =350Q, C; =60uF
Ly=0.11H, R, =2Q
Rz = 3759, Ctz = 65”1‘7
L, =0.1mH, R;,=2Q
R3=400Q, C3=>55uF
L3=0.12mH, Rj,=2Q

System nominal frequency

fo=60Hz

Parameters of line 1
Parameters of line 2

R12 =3.35Q), L12 =297mH
Rzg =5.025Q), ng =45mH

in the responses. Fig. 7.7 also indicates that the controller adjusts the load voltages within
about two cycles. Therefore, the obtained results confirm that the controller is robust with
respect to the load parameter uncertainties. In addition, the coupling between the output
signals is small.

The experimental results show that the proposed voltage controller provides satisfactory
dynamic performance in terms of voltage tracking and robustness to load parameter variations
according to IEEE standards [173].

7.5.2 Scenario 2: Three-DG Microgrid

In the second scenario, an islanded microgrid consisting of three DGs with the voltage rating
of 0.6 kV and power ratings of 1.6 MVA, 1.2 MVA, and 0.8 MVA is considered. The values and
the definition of the parameters are provided in Table 7.2.

It is assumed that the load resistances R; and inductances L;, i = 1,2,3 are uncertain up to
+20% of their nominal values given in Table 7.2. Therefore, the uncertainty in this system is in
the form of a polytope built by g = 2° vertices.

The proposed fixed-structure Hy, control method with minimum communication links in
Chapter 5 is used to design a controller for the islanded microgrid consisting of 3 DGs. The
final controller is resulted from the following hierarchy of issues:

e Initial centralized controllers are designed using FDRC Toolbox [151] for each vertex of
the polytope.
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Figure 7.6: Dynamic responses of the experimental test system due to an inductive load change
(a) dq-components of the load voltage, (b) control inputs, and (c) instantaneous load voltages
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Figure 7.7: Dynamic responses of the experimental test system due to a capacitive load change
(a) dq-components of the load voltage, (b) control inputs, and (c) instantaneous load voltages
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Figure 7.8: Number of communication link in the feedback controller versus the iteration
number

To ensure the integral action of the controller, the controller must have six poles at zero.
Therefore, one can simply consider six columns/rows of matrix A, to be identically
equal to zero (one integrator for each output loop).

The feedback term of the controller is first designed such that the closed-loop system is
robustly stable and its spectral abscissa () is minimized.

The feedforward term of the controller is then designed such that || WS(A) || oo is mini-
mized.

The parameters of Algorithm IV given in Subsection 5.3.3 are set as follows: € = 1e—10
and a=1.

LMI-based optimization problems are solved using YALMIP [146] as the interface and
MOSEK as the solver.

After 20 iterations, some control structures are obtained. Fig. 7.8 shows the number of com-
munication links of the feedback controller versus the iteration numbers. The resulting
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Figure 7.9: Reference setpoint tracking of DG 1: (a) d-component of the load voltage at PCC 1,
(b) g-component of the load voltage at PCC 1, (c) d-component of the control signal of DG 1,
(d) g-component of the control signal of DG 1, and (e) instantaneous load voltages at PCC 1

Ac = diag

B¢, = diag

C. =diag

D¢, = diag

decentralized controller in the 20*" iteration is given as follows:
0 9.08¢2 0 —1.07e2 0 2787¢2 0 -1.122¢1 0
0 -1.885e4 0  1.65€3 0 -453¢3 0 1.096e3 0
0 1.068¢2 0 9.079¢2 || 0 8990 0 2787¢2 |'| O
0 -165e3 0 —1.885¢4 0 -1.064e3 0 —4.526e3 0
3.24¢2 3.23el —-1.518e2  7.034e2 3.066e2
—-3.217e3  —3.6157€3 5.711e3  —1.1076e4 1.206€3
—-3.0583el  3.227¢2 |’| -7.0023e2 —-1.577e2 |’ | —1.832e2
3.618e3 —3.158€3 1.101e4 5.8155€3 5.16e3
49264 258 8.0376 3368 | 5.532 4.6948
2.2890 3.926 -573  6.8521 -3.081 8.642
—-2.5786 4.926 | '| -3.3725 8.0425 "| -4.6955 5.516
-3.9323 2.287 -6.82 —5.776 —-8.6424 —3.0794
6.8763 —9.899e—1 2.9976el  —2.243 1.728¢1  —1.156
1.0153 6.871 | 23468  3.0213el |'| 1.163  1.7314el

9.74e2 0 -1.17e2
—1.84e4 0 1.012e3
1.167e2 0 9.74e2
—-1.0117e3 0 —1.839¢4
1.8206e2
—5.15e3
3.052e2
1.2445e3
(7.24)
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Figure 7.10: Reference setpoint tracking of DG 2: (a) d-component of the load voltage at PCC
2, (b) g-component of the load voltage at PCC 2, (c) d-component of the control signal of DG
2, (d) g-component of the control signal of DG 2, and (e) instantaneous load voltages at PCC 2

The above controller provides the spectral abscissa f = —4.9219. The decentralized feedfor-
ward term of the controller is resulted after 2 iterations:

162.22 —138.43 31549  117.7 351.9 —96.812
5 —dia 27.298  15.629 ~27.581  60.459 18.278  19.767
=M1 14024 16368 || —117.98 317.01 96.12  352.65
~15.459  27.16 _59.828 —28.427 ~19.944 18.106 (7.25)
_ 0.085 —0.014 0.010 —0.336 0.367 —0.009
D, = diag , ,
0.013  0.086 0.335 0.007 0.008  0.369

The 2DOF feedback-feedforward controller guarantees the robust stability as well as the robust
performance criterion ||WsS(A) |loo < 1.547 for the whole polytope.

Simulation Results: To evaluate the performance of the designed controller, we consider the
capability of the nominal system in voltage setpoint tracking of each DGs. We assume that
the load voltages at PCCs are initially regulated at 1£0°. Then, the output power of DG 2
varies due to a change in its local load. Since all three DGs contribute to compensate the
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Figure 7.11: Reference setpoint tracking of DG 3: (a) d-component of the load voltage at PCC
3, (b) g-component of the load voltage at PCC 3, (c) d-component of the control signal of DG
3, (d) g-component of the control signal of DG 3, and (e) instantaneous load voltages at PCC 3

total power demand, the PMS determines the following new setpoints for each DG at t = 1.5s:
Vg, = 1.0120.14%, Vo g4 . =120 and V3 44, = 12 - 0.06°. Fig. 7.9, Fig. 7.10, and Fig. 7.11
show the transient response of each DG due to the setpoint change. The results demonstrate
that the proposed controller provides satisfactory dynamic performance according to IEEE
standards [173].

Remark. Two-stage 2DOF control design restricts the achievable performance compared to a
simultaneous design [69]. However, due to the size of system and number of vertices in the
microgrid case study, SDP solvers encounter numerical problems in the design of one-stage
2DOF Hy, control through the convex optimization problem in (5.34). Therefore, the 2DOF
decentralized voltage controller for the microgrid system is designed in two steps.

7.6 Conclusion

This chapter presents a control strategy for autonomous inverter-interfaced microgrids com-
posed of distributed generation units with radial configuration. It mainly consists of three
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parts: a power management system (PMS), an open-loop frequency control and a synchro-
nization scheme, and local voltage controllers. The power management system assigns the
terminal voltage setpoints for DGs according to a classical power flow analysis. Frequency of
the microgrid is controlled in an open-loop manner by the use of an internal oscillator for each
DG which also generates the phase-angle waveform 6(t) required for dq/ abc (abc/ dq) transfor-
mations. Synchronization of DGs is achieved by exploiting a GPS-based time-reference signal.
The local voltage controller of each DG, which is the main focus of the chapter, is designed
through the proposed results in Chapter 3 and Chapter 5.

The prominent features of the proposed control strategy are severalfold: (i) The PMS precisely
controls power flow of the system and achieves a prescribed load sharing among the DGs,
(ii) Local controllers provide voltage tracking with fast transient time and small overshoot,
(iii) Local controllers are robust to load parameter uncertainties, (iv) Local controllers are
implemented in a decentralized manner which obviates the need for a high-bandwidth com-
munication and information exchange among the local controllers of DGs, (v) Local controllers
are low-order and structurally simple, and (vi) frequency of the microgrid system is fixed and
cannot deviate due to transients.

The effectiveness of the proposed control technique is evaluated through some simulation
studies in MATLAB and some Hardware-In-the-Loop (HIL) verifications. The simulation and
experimental results demonstrate satisfactory dynamic performance of the islanded microgrid
system in terms of load voltage regulation and robustness to step changes in linear loads.

The proposed voltage control approach in this chapter cannot cope with challenging problem
of plug-and-play (PnP) functionality of DGs. Under plug-in/-out operation, the proposed
control strategy, which relies on the microgrid model, needs to retune the local controllers in
order to guarantee the stability of the new system. In the next chapter, a decentralized voltage
control technique is developed which enables PnP operations of DGs. The controller is robust
with respect to PnP functionality and does not require to retune the local controllers when a
DG is plugged in/out.
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Voltage Control of Islanded Micro-
grids with General Topology

8.1 Introduction

A challenging problem in the context of inverter-interfaced microgrids is plug-and-play (PnP)
functionality of DGs. DGs frequently join and leave power generation systems due to avail-
ability and intermittency of renewable energies, such as solar power and wind, an increase
in energy demand, faults, converter failure, maintenance, etc. Under plug-in/-out feature of
DGs, the topology of the microgrid system is changed and the main objective is to preserve
the stability of the new system.

The main advantage of the droop-based control strategy is the elimination of the communica-
tion links among droop controllers enabling the plug-and-play operation of DGs. Nonetheless,
the droop-based approaches suffer from several drawbacks including poor transient perfor-
mance, load-dependent frequency/voltage deviation, and coupled dynamics between active
and reactive power. Moreover, the main assumption about the droop controllers is that the
transmission lines are purely inductive or resistive [9]. Therefore, in the case of resistive-
inductive line conditions (mixed lines) and in the presence of conductances, the classical
droop control laws cannot achieve an efficient power sharing due to the coupled active and
reactive power characteristics of the power systems [111].

Under PnP functionality of DGs, non-droop-based controllers, which rely on the system
model, need to retune their local controllers in order to guarantee the stability of the new
system. Recently, a decentralized control strategy has been developed in [130, 131] which
is based on a Quasi-Stationary Line (QSL) approximate model of microgrids [174] and the
idea of neutral interactions [175]. According to this control technique, when a DG is plugged
in and/or plugged out, the other DGs which are physically connected to it have to retune
their local controllers. Although the control strategy almost bridges the gap between the
existing droop and non-droop-based controllers, the problem of non-droop-based control of
the inverter-interfaced microgrids enabling the PnP functionality of DGs without a need for
retuning their local controllers can still benefit from further research.
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This chapter focuses on the design of a decentralized voltage controller for the islanded
inverter-interfaced microgrids with general topology. The microgrid system consists of differ-
ent local loads and several DGs. It is also expected that some of DGs can be arbitrarily plugged
in or plugged out from the microgrid system. The main objective is to preserve the voltage
stability at the PCCs in a decentralized manner, i.e. with no communication links among the
local controllers of DGs. To this end, a decentralized voltage controller is developed. Similar
to [131], the proposed method relies on the Quasi-Stationary Line (QSL) approximate model
of microgrids and the concept of neutral interactions. The main contribution of this chapter is
that the proposed controller is robust to PnP operation of DGs; therefore, the plug-in and/or
plug-out operation of DGs do not affect the stability of the microgrid system. To this end, all
possible connections and disconnections of DGs to a DG are considered as polytopic-type
uncertainty. Then, a robust controller is designed for the microgrid system subject to the
polytopic uncertainty.

In summary, the proposed control technique is able to overcome the limitations of existing
droop-based controllers which are only appropriate for microgrids with dominantly inductive
and/or resistive power lines. Furthermore, opposed to most non-droop-based control meth-
ods, e.g. [126,129-131], the present approach does not require to retune the local controllers
when a DG is plugged in/out.

The organization of the chapter is as follows: The mathematical model of the microgrid is
presented in Section 8.2. The problem of decentralized voltage controller design is proposed
in Section 8.3. A solution for the problem of plug-and-play operation of DGs in the microgrids
is given in Section 8.4. Section 8.5 is devoted to simulation results. Section 8.6 concludes the
chapter.

Throughout the chapter, matrices I and 0 are the identity matrix and the zero matrix of
appropriate dimensions, respectively. The symbols T and * denote the matrix transpose
and a symmetric block, respectively. Signals X; and X, are the d and g components of
the three-phase signal X, respectively. For symmetric matrices, P > 0 (P < 0) indicates the
positive-definiteness (the negative-definiteness).

8.2 Islanded Microgrid Model

Consider an islanded microgrid with general structure consisting of N DGs. Each DG is mod-
eled as a DC voltage source, a voltage-source converter (VSC), a series RL filter, a step-up
transformer with transformation ratio k;, a shunt capacitor, and a local load whose topology
and parameters are unknown. It is assumed that DG i is connected to a set of N; c {1,..., N}
DGs. The schematic diagram of a microgrid system of two DGs i, j connected through a trans-
mission line i j is shown in Fig. 8.1. In this figure, V;, Iy, Ir;, V};, and I;; are the load voltage at
PCC i, the filter current, the load current, the VSC terminal voltage, and the transmission line
current, respectively. The islanded system is described by the following dynamical equations
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Figure 8.1: Electrical scheme of two DGs connected via line i j
in dg-frame:
Vg Vidg= 21 By, L
DG i +jwoV; dqg = ti,dq — Cz Lidqgt ¢ z] dq 8.1)
MJr woly; —LV- Rii AV, '
at Jowoltiaq = I, Vidg~ L ti,dg t ri,dq
dV
DG i it jwoViag = It]dq T ILJ,dq—éIijdq 62
! ‘””d+w1 —’“fv Rig LV, (®:2)
JWoltjdg =T, Vjda~ L tj,dg+ tj,dq
. .. dl; _ Ryj 1
Line ij: dj[dq +jwolijaq = Il] dgt V] dqg— L_l,jvi,dq (8.3)

where (Vi ag, Vjaq), (Itiaqr 1tj.dq)> (ILndg Ie,.dq)s (Veidg Vijag), and Ijjaq respectively are
the dq components of the load voltages at PCCs, the current filters, the load currents, the VSC
terminal voltages, and the transmission line current. It should be noted that in this study the
dynamics of the renewable energy sources are not considered and they are just modeled by an
ideal voltage source.

Under the assumption of the Quasi-Stationary Line (QSL) [174], i.e. dl” 44 = 0, the islanded
microgrid system is described in the following state space framework:

Xg, = Ag;; Xg; + Ag,; Xg; + Bg; Ui + Buy, Wi
. (8.4)
Vi=Cgxg; i=1,...,N
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T T
where xg, = [ Via Vig Iya Iyq | isthestate, u; = [ Vina Vig ] is the input, w; =

T T
[ I,a ILg ] is the exogenous input, and y; = [ Via Vig ] is the output of DG i. The
state space matrices are given as follows [131]:

1 y R;; 1 Xij k;
o -z wo— X & o 0
Cu jen; Zii Cu jen, 4y Cu
X;j Ri; :
—wo+ - X - -= X - 0 g—l
Ay = i jeN; “ij i jeN; i fi
gll kl R[l
I, 0 I, 0
K o B
Ly 0 Ly |
Rij X
7z 7z 00
l ]
1 _ﬁ Rij 0 0
—_ ZZ ZZ
8~ ¢ ij i ’ 8.5
“l 0 0 00 (8.5)
0 0 0 O
1
0 o o 0
B vy B 0 g
g = L y w;: — i
’ . O L 0 0
1
0z 0o 0
1 00
Cq =
01 00

where wg = 27 fo (fo is the nominal frequency of the microgrid), X;; = woL;;, and Zl.zj =
R? it ng% i The dynamics of the transmission lines are described by the following equations:

xl,ij = A”,,-jxl,ij + Ali‘i].xgi + Al]._i].xgj (8.6)

fori=1,2,...,N, je N;, i # j, where

T
xl,ijz Iij,d Il'qu] (8.7)
and
—LL 0 00
ECC N S R
L—lj 0 0 0
Ayy=| Lo (8.8)
ij
_R,
Apij= Lij :
Vi —wo _Rij
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The overall microgrid system in Fig. 8.1. is modelled as follows:

g, Ag; Ag; i 0 0 Xg, Bg, O
Yo (2| s Agyi O 0 || Xy | L]0 By || W
X1,ij Ay Ayt Ay 0 X1,ij 0 0 uj
X1,ji 1 A Ayt 00 Ay X, ji 0 0
By, 0
0 By. wi (8.9)
P IO
0 0 wj
0 0
Xgi
[yi]_ Co 0,0 0] xg
vil | 0 Cglo o] xj
X1,ji

It should be noted that due to block triangular structure of matrix A;; and stability of Ay ;; =
Aj1,ji, the stability of the following system leads to stability of (8.9).

g, ]_ Ag, Ag, || xa Bg, 0 u; By, O w;
Xg; Ag  Agj Xg; 0 By uj 0 By, wi 6.10)
Vi 0 Cg || *g

Therefore, in what follows, we consider the dynamics of DGs interconnected through the QSL

model given in (8.4)-(8.5).
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8.2.1 QSL-based Model of Islanded Microgrids with NV DGs

In a similar way, the overall model of the islanded microgrid system of N DGs can be described
in the state space framework as follows:

)'Cg1 [ Ag“ Ag12 Aguv Xg, Bg1 o .- 0 Uy
)'ng B Agm Ag22 AgzN Xg, . 0 Bg2 0 U
ng L AgNl AgNZ e AgNN Xgn 0 0 e BgN un
[ By, 0 e 0 w1
0 By, - 0 wo
+ . . . . . (8.11)
0 0 <+ By, wyn
y] [ Cgl 0 e 0 Xgl
yz _ 0 ng ce 0 ng
YN | 0 o .- CgN Xgn

where matrices Ay, Ag,;, Bg;, Buw;, and Cg, (for i, j =1,2,..., N) are defined in (8.5). Matrix
Ag,; = 0if and only if there exists no connection between DG i and DG j. The frequency of the
microgrid system is controlled via the approach explained in Chapter 7, Section 7.3.2.

8.3 Decentralized Voltage Control of Islanded Microgrids

This section focuses on the development of a voltage control strategy for autonomous mi-
crogrids. It can be applied to the microgrids with different types of configuration. The main
emphasis is given to decentralized voltage control techniques which do not use any communi-
cation links.

8.3.1 Design Requirements

A dg-based voltage controller for the islanded inverter-interfaced microgrid described in (8.11)
is sought such that the following conditions are met:

* The controller has a fully decentralized structure.
¢ The closed-loop system is asymptotically stable.

¢ The closed-loop system asymptotically tracks all voltage reference signals y;.r, with
desired time-domain performance.
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In the following, a decentralized voltage controller with integral action is developed in order
to achieve the mentioned conditions.

8.3.2 Decentralized Voltage Controllers

One of the control requirements is that DGs must track reference voltage signals y;.r,. To this
end, each DG is augmented with an integrator whose dynamics are as follows:

v =DYref, — Vi

(8.12)
= Yref; — CgiXg
Therefore, the augmented DG system is described by:
Xg = Ag kg + ) Ag g, +Bg ui+ By, w;
JEN; (8.13)
Vi= Cgijegi
T T T
wherefcgi:[ xioov! ] ,J7i=[ N ,Lf)iz[ w{ Yl | and
Agii = Ag O ) Agi' = Ay 0
~Cg, 0 I 0 0
N B, A By O
B, = & 1 = Wi 8.14
& 0 i 0 I (614
A Cs, O
Co=| &
& 0 I

The remaining of this subsection belong to the design of decentralized voltage controllers K;
with the following control laws:

ui(f) = Kixg;(1); i=12,...,N (8.15)

The closed-loop dynamics of the i’ augmented subsystem with the local controller K; are
described as follows:

';Cgi(t) = (Agii +EgiKi)5€gi(t) + Z Agijfcgj(t) +Ewi w; (1)
JEN; (8.16)
Ji(0) = Cg, g, (1)

The overall closed-loop system is presented as follows:

>

A

+BK) %+ By (1)
x(1)

(

(0=
. (8.17)
v =

o
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& _ [aT ~T 1T A~ [ AT ~T1T A _ 14T ~T1T »~ 12T AT1T
where X = [&g ... %g |, w=[w] ... w], y=[9] .9y 2=1[2] ... 23], and
Agy  Agn - Agy
N A821 Agzz T AgzN
A= ) ) :
AgNl AgNz o AgNN

A, ) (8.18)
B =diag(Bg,, ..., Bg,)

Bw = diag(éwl,...,BwN)
C =diag(Cy,, ..., Cgy)
K =diag(K;,...,Kn)

The state feedback controller is designed via the following theorem which is based on the use
of slack variables [176].

Theorem 19. There exists a state feedback controller K which stabilizes an open-loop system
G(s) = (A, B, C,0)if and only if there exist a symmetric matrix P = PT > 0, slack matrices G, Y,
and a positive scalar € such that the following conditions hold:

AG+GTAT+BY +YTBT P-GT+¢(GTAT+YyTBT)"
rar s ’ <0 (8.19)
P-G+e(G'AT+Y'BT) -e(G+G")

Moreover, the state feedback gain is presented as K = YG™!,

If the coupling terms }_ je v, Agij Xg, are neglected, according to Theorem 19, the augmented
subsystem of each DG (Ag,,, By, Cq;,0) with the state feedback gain K; is stable if and only if
there exist Lyapunov matrices P; = Pl.T > 0 and slack variables G;, Y;,e¢; > 0 such that

Ag Gi+G AL, + By i+ YTBL Pi=GT+ei(GTAL +vTBI) | _ o0
Pi-Gi+e;(GT A} +Y[B]) -¢i(Gi+GY) '
fori=1,...,N. The local state feedback controllers are presented as K; = YiGl._l; i=1,...,N.
However, the interaction terms have significant effects on the stability of the closed-loop
system and decentralized design of the local controllers cannot generally guarantee the sta-
bility of the whole system, i.e. A. In the next subsection, we show that under some specific
conditions, the stability conditions given in (8.20) lead to the overall closed-loop asymptotic
stability.

8.3.3 Decentralized Voltage Control based on Neutral Interactions

In this subsection, a decentralized voltage controller design strategy is presented. The main
objective is to design the local controllers individually without considering the interaction
terms such that the asymptotic stability of the closed-loop microgrid system is guaranteed.
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To this end, the idea of neutral interaction [175] is used. The interaction terms are neutral
with respect to the stability criterion in (8.19) if and only if the interaction matrix A, = A— A,
where A, = diag(Ag,,,..., Ag,,, ), is factorized as follows:

A

A.=GTS (8.21)
where G is the slack matrix in (8.19) and S is a skew-symmetric matrix, i.e. S r—_g.

Under the following conditions, the interaction terms in the augmented microgrid model
described by (8.17)-(8.18) are neutral.

1. C,=Csfori=1,...,N.

2. Thelocal state feedback controllers K; satisfy the stability conditions given in (8.20) with
the following fixed-structure slack matrices G;:

Lo, O
G = | e T . i=1,...,N (8.22)

where 17 > 0 is a common parameter among all G;, i = 1,..., N and matrices Gz, are of
appropriate dimensions.

3 NR;;j

T ~0fori=1,...,Nand je N;.
s l]

If the above mentioned conditions hold, the interaction term ACG + GTACT ~ 0, where G =
diag(Gu,..., Gy) because

A, G;= |2 8.23
8ij I ’776”\76’ (8.23)
TIRiJZ' 77Xi£' 0 ang
C.Z%  C.ZZ C 72
.y = J 1y ij
where ®@;; = nXij  NRij Y 0
CsZ% CZ? CsZ?

8.3.4 Pre-filter Design & Disturbance Rejection Strategy

Under the conditions 1-3 in Subsection 8.3.3, the decentralized state feedback controllers K;
designed by (8.20) guarantee the stability of the closed-loop microgrid system. However, to
improve the performance of the system in terms of dynamics behaviour for voltage reference
tracking and disturbance rejection, the local controllers are modified. The modification proce-
dure are based on the use of a three-degree-of-freedom (3DOF) controller whose structure is
shown in Fig. 8.2. The feedforward controller K! is designed to improve reference tracking
performance whereas K (2 aims to attenuate the effects from the disturbance w; on the output
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i
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Figure 8.2: Block diagram of 3DOF controller

signals. The closed-loop system including the 3DOF controller in Fig. 8.2 is described as
follows:

yi= (Ti(s)K;'(s)) Vref, + (H,-(S)Kfi(s) + HY (s)) w; (8.24)

where

A A 5 -1
Ti(s) = Cg, (sI - (Ag,, + Bg, Ky))

) ) ) L (8.25)
Hi(s) = Cg, (sI - (Ag, + Bg,K)) ™ By,

A

A A 5 -1
HE(s) = Cy, (s - (Ag,, + Bg, i)™ Bu,

1

To achieve desired time-domain performance specifications for reference tracking and mini-
mize the effect of load changes on the voltages at PCCs, the controllers Krl (s) and Ka"i(s) are
respectively designed by means of solving the following optimization problems:

mingg [ T;()K; (5) = T, (8) oo (8.26)

ming; | Hi(s)Kg(s) + H{' () oo (8.27)

where Ty, (s) is a desired reference tracking (reference model) designed according to the desired
performance of DG i . To solve the above optimization problems, the MATLAB commands
hinfstruct and systune can be used.

8.4 Plug-and-Play (PnP) Functionality in Microgrids

In this section, the problem of plug-in/-out operation of DGs in the islanded inverter-interfaced
microgrids is considered. The objective is to preserve the stability of the microgrid system
when several DGs are plugged in and/or plugged out.
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8.4.1 Robustness to PnP Functionality of DGs

A new feature is added to the proposed decentralized control strategy which is robustness
to PnP functionality of DGs. By virtue of the fact that the connection/disconnection of DG
Jj to/from DG i affects matrix Ag,,, two cases for each DG are considered: first, maximum
possible connections of the DGs to DG i (N;,,,. < {1,...,N}) and second, only the connection

- - Rij Xij . . .
J with minimum values of —Z’Z’ and —Z’Z’ among the other connections. Corresponding matrix
2 2

ij
Ag,, for both cases are given as follows:

1 Rij 1 Xij ki
- Z =7 LL)()—C— Z -3 C—l 0
li jeN: Z," i jeN: ij t
JE Imax ]X JE lma;c? J
1 ij 1 ij ki
—wo+ A i — i 0o &
gii - ] Imax ] Imax
_ki 0 Ry
L, L, 0
ki Ry
0 I —Wo —T.
i i (8.28)
1 Rij 1 Xij ki
wo—+24 k¢
Ct,- Z;. 0 Cti izj Ctl
_ Aijo 1 R ki
2 wWo + 72, C, Z2, 0 Cy;
A = ij ij
§ii _ ki 0 _By
L, L, o
ki Ry
0 Lfi wo Lti

Therefore, any possible connection/disconnection of DGs to/from DG i belongs to the follow-
ing polytopic uncertainty domain:

Ag, () = AAg, + (1 -V A%, (8.29)

where 0 < A < 1. As a result, matrices Ag,, also have the polytopic uncertainty as follows:

Ag, (M) =AAy, +(1-NAZ, (8.30)
where
. Al . A2 0
Aalgii - & ’ éii = 8 8.31)
_Cgi 0 _Cgi 0
fori=1,...,N.

Now, we aim to design a decentralized state feedback controller for the augmented polytopic
system (Ag,, (1), Bg,, Cg,,0) by means of the following theorem:

Theorem 20. [fthere exist symmetric matrices Plj > 0, slack matrices G;, Y;, and a given scalar
€; > 0 such that the following set of LMIs holds

AL Gi+GIAL )T + B Yi+ YT BL  PI-GI +ei(AL, Gi+ By, V)

) ‘ <0 (8.32)
P;—Gi+€i(A£,iiGi+BgiYi)T _ei(Gi+Gf)
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for j =1,2. Then, the state feedback controller K; = YiGi_1 stabilizes the polytopic system
(Agii L), ng égl.,O) via a linearly parameter-dependent Lyapunov matrix P;(A) = /1Pi1 +(1-
A P?, where0 < A <1.

Remark. In the case of microgrids with radial configuration, the connection/disconnection of
DGs to/from DG i can be described by a multi-model uncertainty composed of three models:
DN;={i—1,i+1},2) N;={i—1},and 3) N; = {i + 1}.

8.4.2 Algorithm I: “Decentralized Control of Islanded Inverter-interfaced Micro-
grids”

In this subsection, a systematic algorithm for the design of the local state feedback controllers
K; for the DG i described by (8.4)-(8.5) under plug-and-play functionality of DGs is given. The
algorithm consists of the following steps:

Step 1: Build two vertices A(lg”, and Azgii given in (8.28) as well as augmented matrices A}},ﬁ and
Az in(831),fori=1,...,N.

Step 2: Impose the structural constraints given in (8.22) on the slack matrix G; in (8.32).

Step 3: Fix the scalar parameter €; > 0 in (8.32) and solve the following convex optimization
problem to obtain the state feedback controllers Kj:

min U]
Yivpl!vanZZi
biect t A{SiiGi+GiT(Aé'ii)T+Bgilfi+YiTBgTi Pz!_GiT-'-Ei(A{giiGi-"BgiYi) <0
subjectto Pf—G~+e~(Af G;+B Y-)T —€i(Gi+GI)
i 1 1 gii 1 g,' 1 1 1 i
P{:P{T>o
i=1,...,N; j=12
(8.33)

Set K; = V;G; .
Step 4: Design pre-filters for controller performance improvement.

Step 5: Improve the local controllers to minimize the effect of disturbance (load changes) on
the voltages at PCCs.

8.5 Simulation Results

To verify the performance of the proposed control approach, we consider an islanded inverter-
intefaced microgrid consisting of 11 DGs with meshed topology, borrowed from [130], as
graphically shown in Fig. 8.3. The parameters of each DG and the transmission lines are given
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Figure 8.3: Layout of an islanded microgrid system composed of 11 DGs

in Table 8.1 and Table 8.2, respectively.

Following Algorithm I in Subsection 8.4.2, all possible connections of DGs to each DG are
considered. For example, DG 1 has connections with DG 2, DG 3, and DG 11 (N, ={2,3,11}).
Moreover, for DG1, the second vertex A?gu is constructed through the connection with DG 11.

max

Then, local voltage controllers are designed through the convex optimization problem given
in (8.33) which is solved using YALMIP [146] as the interface and MOSEK as the solver.

The dynamic performance of the microgrid system in Fig. 8.3 with the designed controllers
is validated by a set of comprehensive test cases including voltage setpoint variations, PnP
operation of DGs, and major changes in the microgrid topology.

Case 1: Voltage Tracking Performance Assessment: Consider the microgrid system in Fig. 8.3
which contains 11 DGs. Each DG provides the active and reactive power for own local loads
according to the information/setpoints received from Energy Management System (EMS). The
dqg components of the reference voltages for DGs are initially set according to the values listed
in Table 8.1. The d and g components of the reference voltage for DG 6 respectively change
from 0.6 pu and 0.8 pu to 0.8 pu and 0.6 pu at ¢ = 2.5s. The dynamic responses of DG 6 due to
new reference voltages are plotted in Fig. 8.4. Fig. 8.5 also shows the dq voltages of the other
DGs connected to DG 6. The simulation results illustrate that the local voltage controller of
DG 6 manages to reach the new setpoints in less than 0.5s with zero steady state error.

Case 2: Plug-and-Play Capability: The objective of this case study is to demonstrate the
capability of the proposed control strategy in PnP operation of DGs. To conduct this case
study, we assume that DG 11 is plugged out at £ = 1.5s and due to this failure all the connections
attached to DG 11 are disconnected. Therefore, because of this disconnection, dynamics of
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Figure 8.4: Dynamic responses of DG 6 due to new reference voltages (a) d g-components of
the load voltage at PCC 6, (b) instantaneous load voltages of PCC 6, and (c) output active and
reactive power of DG 6
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Figure 8.5: Dynamic responses of DG 5,10,11 due to step changes in Vag,. " (a) d-component
of the load voltages at PCCs, (b) g-component of the load voltages at PCCs, (c) output active
power of DGs, and (d) output reactive power of DGs
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Figure 8.6: Dynamic responses of DGs due to plug-out and plug-in of DG 11 at t = 1.5s5 and
t =2.5s (a) dg-component of the load voltages at PCC 11 and (b) output active and reactive
power of DG 11.
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Figure 8.7: Dynamic responses of DG 1 and DG 6 due to PnP functionality of DG 11 (a) d-
component of the load voltages at PCCs, (b) g-component of the load voltages at PCCs, (c)
output active power of DGs, and (d) output reactive power of DGs
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Table 8.1: Electrical parameters of microgrid in Fig. 8.3

DGs Filter parameters | Shunt capacitance | Load parameters | Reference voltages
R:(mQ) L,(uH) Ci(uF) R(Q) L(uH) Vd,[,,f (pw) Vq,ef (pu)

DG1 1.2 93.7 62.86 76 111.9 0.9 0.436
DG2 1.6 94.8 62.86 85 134.3 0.9 -0.436
DG3 1.5 107.7 62.86 93 123.1 0.8 0.6
DG4 1.5 90.6 62.86 80 167.9 0.8 -0.6
DG5 1.7 99.8 62.86 125 223.8 0.995 0.1
DG6 1.6 93.4 62.86 90 156.7 0.6 0.8
DG7 1.6 109.6 62.86 103 145.5 0.707 0.707
DG8 1.7 104.3 62.86 150 179 0.9 0.436
DG9 1.7 100 62.86 81 190.2 0.9 -0.436
DG 10 1.5 99.4 62.86 76 111.9 0.8 0.6
DG 11 1.5 100 62.86 76 111.9 0.6 0.8

DC bus voltage Ve =2000V

Power base value Spase =8KV A

Voltage base value Vpase,low = 0.5KV, Vigsenigh = 11.5KV

VSC terminal voltage (line-line) Vvsc =600V

VSC rated power Sysc =3MVA

Transformer voltage ratio k; =0.6/13.8KV(A/Y)

Switching frequency fsw=10KHz

System nominal frequency fo=60Hz

DG1 and DG6 are affected. Then, DG 11 is plugged into the system at ¢ = 2.5s5. Dynamic
responses of DG 11 and its neighbours due to the PnP functionality of DG 11 are depicted in
Fig. 8.6 and Fig. 8.7. The results illustrate the robust performance of the proposed control
technique to PnP functionality of DGs. Although the PnP operation of DG 11 changes the
microgrid dynamics, the robustness of the voltage controllers guarantees stability and a

Table 8.2: Parameters of the transmission lines in Fig. 8.3

Line impedance Z;; | R;;j(Q) L;j(mH)
Z12 1.1 600
Z13 0.9 400
Z34 1 500
Zoy 1.2 700
Zas 1 550
Zs7 0.7 350
756 1.3 800
Zs9 1.2 650
778 1 450

7610 1.1 600
2111 1 700
Zs11 1.1 600

desirable microgrid performance even in the case of PnP functionality of DGs.
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Figure 8.8: Layout of a new microgrid.
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Figure 8.9: Dynamic responses of DGs due to a change in microgrid topology at t = 1.5s (a)
d-component of the load voltages at PCCs and (b) g-component of the load voltages at PCCs.
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Chapter 8. Voltage Control of Islanded Microgrids with General Topology

Case 3: Microgrid Topology Change: The objective of this case study is to assess the robust
performance of the local voltage controllers to major topological uncertainties. To this end,
the topology of the microgrid in Fig. 8.3 is changed to the configuration of Fig. 8.8 at t = 1.5s.
The microgrid transients due to this topology change are illustrated in Fig. 8.9. The change in
the microgrid configuration affects the system dynamics. However, simulation results reveal
that the local voltage controllers are able to maintain the stability of the microgrid after a
significant change in its configuration.

8.6 Conclusion

In this chapter, a voltage control technique is developed for the islanded operation of inverter-
interfaced microgrids with general topology. The control structure is fully decentralized and it
relies on the Quasi-Stationary Line (QSL) approximate model of microgrids. The main features
of the proposed control strategy is that local controllers are robust to plug-and-play operation
of DGs. As a result, the stability of the microgrid system is preserved in the case of plug-in/-out
of the DGs. The performance of the proposed controller is verified under several case studies
such as voltage tracking, microgrid topology change, and plug-and-play capability of DGs.
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Conclusions and Future Directions

9.1 Conclusions

This dissertation proposes the innovative fixed-order and fixed-structure control strategies
for linear time-invariant (LTI) systems affected by polytopic-type uncertainty. The developed
approaches are mainly based on strictly positive realness (SPRness) of transfer functions
depending on some slack matrices in the state space framework. By fixing the slack matrices
in different ways, the problem of fixed-order and fixed-structure control design is converted
to a convex optimization subject to a set of LMI constraints. The control design approaches
are evaluated via a set of different examples and compared with the existing methods in the
literature.

The dissertation also covers the main issues involved in the control of LTT interconnected
systems with polytopic uncertainty, e.g. sensor and actuator placement problem, control
configuration design, and robust fixed-structure control. The problems of sensor and actuator
placement as well as control configuration design are formulated as optimization problems by
minimizing a weighted ¢, norm relaxation of the cardinality of some pattern matrices, while
satisfying a guaranteed level of H,, performance. The solution of the optimization problems
delivers a trade-off curve between the control structure and the H,, performance criteria.

The application part of the dissertation focuses on the control of inverter-interfaced microgrids
consisting of distributed generation units (DGs). The dissertation addresses several important
problems in the context of microgrids including (i) current control strategy of grid-connected
voltage-source converters (ii) voltage control of islanded microgrids. Moreover, it is shown
that an inverter-interfaced microgrid under plug-and-play (PnP) functionality of DGs can be
cast as a polytopic system. By virtue of this novel description and use of the results from theory
of robust control, the microgrid system guarantees stability and a desired performance even
in the case of PnP operation of DGs. Various case studies, based on time-domain simulations
in MATLAB/SimPowerSystems Toolbox and real-time hardware-in-the-loop experiments, are
carried out to evaluate the performance of the proposed control strategies under different
test scenarios, e.g., load change, voltage and current tracking, PnP functionality of DGs, and
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microgrid topology change. The simulation and experimental results demonstrate satisfactory

performance of the designed controllers.

The following main conclusions can be drawn from the work presented in this dissertation.

e The proposed LMI-based approaches in this dissertation are developed in the state

space framework and are based on the use of slack variables. The size of these variables
and the Lyapunov matrices grow with the order of the system and/or the number of
vertices of the polytopic system. For instance, if a system of order n without uncertainty
(nominal system) is considered, the control strategy introduces a Lyapunov matrix with
@ unknown variables whereas a fixed-order controller with a comparatively small
number of parameters is sought. This issue turns out to be problematic for large scale
interconnected systems with large number of states, inputs, and outputs. The main
problem arises from the numerical issues associated with the inapplicability of LMI

solvers to large-scale problems.

The LMI-based fixed-order/fixed-structure H, controller design algorithms presented
in Chapter 3 and Chapter 4 can only ensure the monotonically non-increasing conver-
gence of the upper bound of H,, norm. However, there is not any guarantee that the
algorithms converge to a local or global minimum.

Non-droop-based control strategies in Chapter 7 and Chapter 8 do not take account
of the dynamic behavior of renewable energy sources and model them as a constant
voltage source.

9.2 Future Research Directions

Further research in the continuation of this work includes the following:

Fixed-structure Control of Polytopic Systems
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e Fixed-structure control of MIMO polytopic systems in frequency domain

The main drawback of the existing LMI-based fixed-structure control techniques is
the inherent use of Lyapunov variables, whose numbers quadratically grow according
to the size of the closed-loop system. This issue turns out to be highly problematic
for large scale systems where the order of plant is significantly large. In this case, the
existing SDP solvers may easily fail to provide a feasible solution to the underlying
problem. Therefore, frequency domain-based approaches have a beneficial effect on
fixed-structure control of the large-scale polytopic systems without introducing extra
unknown matrices.



9.2. Future Research Directions

* Nonsoomth non-convex fixed-structure control of polytopic systems

The recent MATLAB functions hinfstruct and systune, available in the Robust Control
Toolbox, can cope with fixed-structure Hy, control of linear time-invariant systems.
These functions are based on the state-of-the-art nonsmooth non-convex optimization
techniques [30,36]. As compared to the LMI-based methods in the state space setting,
hinfstruct and systune are quite fast in terms of execution time due to the absence of
the Lyapunov matrix and the slack variables. For instance, given a 55 x 55 matrix Ag,
a 55 x 2 matrix By, and a 2 x 55 matrix Cg, we are looking for a 2 x 2 stabilizing static
output feedback K. The control design according to the Lyapunov inequality needs
1544 decision variables, most of them, i.e. 1540, for Lyapunov matrix P whereas the
optimization problem in (1.1) requires just 4 tunable controller parameters. However,
the main shortage of the existing nonsmooth non-convex optimization techniques
is that they cannot deal with the polytopic systems. Therefore, development of an
innovative nonsmooth non-convex optimization-based approach or the extension of
the current ones to LTI polytopic systems can be an interesting research direction.

Inverter-interfaced Microgris

Generally, in the context of non-droop-based control of the inverter-interfaced microgrids,
there are several areas which can still benefit from further research:

* Voltage stabilization in presence of unbalanced voltage conditions and nonlinear loads

The voltage control systems proposed in this dissertation do not consider voltage imbal-
ance and distortions caused by unbalanced and nonlinear loads. To ensure balanced
voltages at PCCs, it is suggested that robust (decentralized) fixed-structure controllers
are developed in the abc-frame and track sinusoidal reference signals, in consequence,
eliminate the imbalance. To provide an acceptable total harmonic distortion (THD) of
the voltages at PCCs, the controllers should include imaginary poles corresponding to
significant harmonic frequencies.

e Improvement to non-droop-based control strategy

The following improvements can be made to the non-droop-based control approaches:

- Accurate modeling of DGs, e.g. incorporation of the DC-side dynamics
- Aneed for advanced control design strategies with decentralized structure

— Robustness to (non)parametric uncertainties
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