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Abstract 

Geomechanical stability issues may arise due to induced thermal stresses because CO2 will generally reach the storage formation 
at a temperature lower than that of the reservoir. Cold injection will form a cold region around the injection well, which will
induce thermal stress reduction. We simulate cold CO2 injection in deep saline formations in a normal faulting stress regime and 
investigate under what conditions thermal stresses may jeopardize the caprock sealing capacity by studying the effect of the 
heterogeneity of the thermal expansion coefficient between the reservoir and caprock. Furthermore, we use an elastoplastic 
constitutive model to account for inelastic deformation related to fracture instability. We find that the temperature difference
should be limited in the presence of very stiff reservoirs, because the thermal stress reduction is proportional to the product of the 
rock stiffness, the temperature difference and the thermal expansion coefficient. Simulation results show that inelastic strain
occurs in the cooled region within the reservoir, but fracture instability does not propagate into the caprock in the considered
normal faulting stress regime. However, the cooled region of the lower portion of the caprock may experience yielding if the 
thermal expansion coefficient of the caprock is larger than that of the reservoir, because the thermal stress reduction in the 
caprock becomes larger than in the reservoir, which increases the deviatoric stress. Nevertheless, irreversible strain caused by
cooling within the caprock are limited to a small region of the lower portion of the caprock and thus, the overall sealing capacity 
of the caprock is not compromised, so CO2 leakage is unlikely to occur because of cooling. 
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1. Introduction 

Geomechanical stability issues may arise due to induced thermal stresses because CO2 will generally reach the 
storage formation at a temperature lower than that of the reservoir [1]. The most significant examples of this 
temperature difference are In Salah, Algeria, and Cranfield, Mississippi.  At In Salah, CO2 reached the storage 
formation 45 °C colder than the storage formation, even injecting CO2 at the wellhead 5 °C warmer than the mean 
ambient temperature [2]. At Cranfield, CO2 entered the storage formation 55 °C colder than the reservoir 
temperature [3]. Furthermore, liquid (cold) CO2 injection is likely to become a common practice because it is 
energetically efficient and thus, it permits reducing the compression costs significantly [4].  

Cold injection will form a cold region around the injection well [5], which will induce thermal stress reduction 
[6]. This may lead to fracture instabilities within the reservoir, leading to shear slip, and consequently, induced 
microseismicity [7]. This shear slip may be beneficial while it occurs within the reservoir because it opens up 
fractures due to dilatancy, enhancing injectivity [8, 9]. However, there is a certain fear about the possibility that this 
fracture instability within the reservoir caused by cooling propagates into the caprock.  

The likelihood of fracture instability in the lower portion of the caprock depends on the stress regime. A strike 
slip stress regime is more prone to inducing fracture instability in the caprock than normal faulting or reverse 
faulting stress regimes. Using the geological setting of In Salah, which is characterized by a strike slip stress regime, 
Gor et al. [10] predicted that tensile stress would appear in the lower portion of the caprock after 12 years of 
injection. According to them, this tensile stress would create fractures that could penetrate some tens of meters into 
the caprock. However, the simulation results of Vilarrasa et al. [11], who modeled the In Salah storage site using the 
same stress state as Gor et al. [10], did not lead to tensile stresses for a 30 year injection with a similar temperature 
difference. Nevertheless, simulation results of both studies predicted mobilized friction angles around 50° in the 
lower portion of the caprock, so shear slip is likely to occur in the cooled region of the caprock. This shear slip 
induced by cooling could explain part of the microseismicity observed at In Salah [12, 13]. 

On the other hand, this mechanical instability is not observed in normal faulting and reverse faulting stress 
regimes. Vilarrasa et al. [14] showed that the thermal stress reduction that occurs in the reservoir induces stress 
redistribution, which happens to satisfy stress equilibrium and displacement compatibility. This stress redistribution 
causes the horizontal total stresses to increase in the lower portion of the caprock, tightening it. This increase in 
stability in the lower portion of the caprock leads to a reduction of the risk of CO2 leakage around the injection well. 
However, Vilarrasa et al. [14] considered that the rocks behave elastically and that the thermal expansion coefficient 
of the reservoir and caprock were the same. 

Here, we simulate cold CO2 injection in deep saline formations in a normal faulting stress regime and investigate 
the effect of the heterogeneity of the thermal expansion coefficient between the reservoir and caprock. Furthermore, 
we use an elastoplastic constitutive model to account for inelastic deformation related to fracture instability. In this 
way, we assess the potential that thermally-induced fracture instability that may occur within the reservoir 
propagates into the caprock.

2. Methods 

We consider injection of cold CO2 in a baserock-reservoir-caprock system in a normal faulting stress regime. The 
top of the 20 m-thick reservoir is placed at a depth of 1500 m. The caprock and the baserock have a thickness of 50 
m. Table 1 shows the rock properties, which correspond to those of a permeable sandstone, i.e., reservoir, with 
homogeneous grain size [15] and a low-permeability, high capillary entry pressure shale, i.e., caprock and baserock 
[16]. To investigate the effect of the thermal expansion coefficient of each layer, we consider three cases: i) one in 
which the thermal expansion coefficient of the reservoir and the caprock are equal; ii) another one in which the 
thermal expansion coefficient of the reservoir is greater than that of the caprock; and iii) a third one in which the 
thermal expansion coefficient of the caprock is greater than that of the reservoir. 
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Table 1. Material properties used in the thermo-hydro-mechanical analysis of cold CO2 injection. 

Property Reservoir Caprock and baserock 

Permeability, k  (m2) 10-13 10-18 

Relative water permeability, rwk  (-) 3
wS 6

wS

Relative CO2 permeability, rck  (-) 3
cS 6

cS

Gas entry pressure, 0p  (MPa)  0.02 0.6 

van Genuchten m (-) 0.8 0.5 

Porosity,  (-) 0.15 0.01 

Young’s modulus, E  (GPa) 10.5 5.0 

Poisson ratio,  (-) 0.3 0.3 

Cohesion, c (MPa)  0.01 0.01 

Friction angle, ' (-)  30 27.7 

Thermal conductivity,  (W/m/K) 2.4 1.5 

Solid specific heat capacity, pc  (J/kg/K)  874 874 

Thermal expansion coefficient, T  (ºC-1) 1.0·10-5 0.5·10-5-3.0·10-5

The system is initially in hydrostatic conditions and the temperature distribution follows a geothermal gradient of 
33 °C/km with a surface temperature of 5 °C. The normal faulting stress regime considered in this study presents a 
horizontal effective stresses corresponding to a lateral earth pressure coefficient of 0.46, which is equivalent to a 
mobilized friction coefficient of 0.4, typical of intraplate sedimentary basins [17]. For details on the elastoplastic 
constitutive model used in this study, we refer the interested reader to Vilarrasa and Laloui [18]. 

An injection of 0.2 Mt/yr of CO2 at 20 °C (liquid conditions) through a vertical well is imposed. Since the 
reservoir is at a temperature around 55 °C, the temperature difference is of 35 °C. The outer boundary has a 
prescribed pressure and temperature and the top and bottom boundaries are no flow boundaries. Displacements 
normal to the bottom, outer and injection well boundaries are impeded. At the top of the caprock, a vertical 
lithostatic stress is applied.  

To solve this thermo-hydro-mechanical coupled problem, mass conservation of each phase, energy balance and 
momentum balance have to be solved simultaneously. These fully coupled thermo-hydro-mechanical simulations 
are performed using the finite element numerical code CODE_BRIGHT [19, 20], extended for CO2 injection [4]. 
The mesh is composed of structured quadrilateral elements of 1 m in size in both horizontal and vertical directions 
within the reservoir, the lower 10 m of the caprock and the upper 10 m of the baserock. This fine mesh is maintained 
around the injection well for a radius of 50 m. Further away, the mesh becomes coarser, reaching a size of 50 m in 
the horizontal direction next to the outer boundary. Prior to simulating CO2 injection, a steady-state calculation is 
carried out to ensure consistent initial conditions. 

3. Results 

3.1. Thermal expansion coefficient of the reservoir equal to that of the caprock 

The injection of cold CO2 forms a cold region around the injection well that has the same temperature as the 
injected CO2. This cold region advances much behind than the CO2 plume front because it has to cool down the rock 
[4, 5, 10, 11, 14]. Thus, the thermal stress reduction induced by cooling only affects a small portion of the reservoir 
in comparison with the much large extension affected by overpressure [21]. Advection is the heat transport 
mechanism that dominates in the reservoir because of its high permeability. But in the caprock, due to its low 
permeability, cooling propagates through conduction. However, the thermo-mechanical effect caused by this cooling 
is significant because the only region of the reservoir that yields is that affected by cooling (Fig. 1).  

Fig. 1 shows the volumetric and the deviatoric plastic strain for the case in which the thermal expansion 
coefficient of the reservoir and the caprock are equal ( 5 11.0 10  °CT ). Interestingly, the fracture instability that 
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occurs within the reservoir does not propagate into the caprock. This is because the thermal stress reduction that 
occurs in the reservoir affects not only the horizontal stresses, but also the vertical stress. This reduction in the 
vertical stress in the reservoir is somehow similar to an excavation, which affects the stresses in its surroundings. To 
satisfy the overall stress equilibrium, the horizontal total stresses increase in the lower portion of the caprock, 
increasing its stability and preventing fracture propagation to penetrate into the lower portion of the caprock. 
Nevertheless, a small deviatoric plastic strain occurs in the caprock next to the reservoir-caprock interface, but 
without propagating upwards. 

Fig. 1. (a) Temperature, (b) volumetric plastic strain and (c) deviatoric plastic strain after 1 year of cold CO2 injection for the case in which the 
thermal expansion coefficient of the reservoir and the caprock are equal. A negative volumetric plastic strain indicates expansion. 

3.2. Thermal expansion coefficient of the reservoir greater than that of the caprock 

If the thermal expansion coefficient of the reservoir ( 5 11.0 10  °CT ) is greater than that of the caprock (
5 10.5 10  °CT ), the situation is even safer. Fig. 2 displays the volumetric and the plastic strains after 1 year of 

cold CO2 injection for this case. Neither the volumetric nor the deviatoric plastic strains propagate into the caprock, 
which ensures its integrity and minimizes the risk of CO2 leakage. 
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Fig. 2. (a) Volumetric plastic strain and (b) deviatoric plastic strain after 1 year of cold CO2 injection for the case in which the thermal expansion 
coefficient of the reservoir is greater than that of the caprock. 

3.3. Thermal expansion coefficient of the caprock greater than that of the reservoir 

In the case in which the thermal expansion coefficient of the caprock ( 5 13.0 10  °CT ) is greater than that of the 
reservoir ( 5 11.0 10  °CT ), deviatoric plastic strain occurs in the lower portion of the caprock. Fig. 3 shows the 
volumetric and the plastic strains after 1 year of cold CO2 injection for this case. Though the volumetric plastic 
strain remains confined within the reservoir, deviatoric plastic strain one order of magnitude larger than in the 
previous cases occurs in the lower portion of the caprock. However, the thickness of the caprock affected by 
irreversible deformation is very thin (less than 5 m). Therefore, even though some CO2 may penetrate into the lower 
portion of the caprock due to opening of fractures, which may enhance permeability and reduce the entry pressure, 
CO2 is unlikely to leak through the caprock because the sealing capacity of the vast majority of the caprock remains 
unaffected. 

Fig. 3. (a) Volumetric plastic strain and (b) deviatoric plastic strain after 1 year of cold CO2 injection for the case in which the thermal expansion 
coefficient of the caprock is greater than that of the reservoir. Note that the scale of the deviatoric plastic strain is different than for the other two 

cases. 
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3.4. Effect of the caprock thermal expansion coefficient  

The distribution and magnitude of inelastic strain depends on the contrast between the thermal expansion 
coefficient of the reservoir and the caprock. The safer situation occurs for caprocks with a thermal expansion 
coefficient lower than that of the reservoir, in which case no damage of the caprock occurs (Fig. 2). On the other 
hand, caprocks with a thermal expansion coefficient greater than that of the reservoir undergo some damage in the 
lower portion of the caprock that is affected by cooling (Fig. 3). This is caused by the magnitude of the induced 
thermal stresses, which, assuming no lateral deformation in the far-field, are proportional to the thermal expansion 
coefficient as 

3T TK T , (1) 

where K  is the bulk modulus and T  is the temperature difference. Thus, the larger the thermal expansion 
coefficient, the larger the thermal stress reduction due to cooling (Fig. 4). The difference in thermal induced stresses 
between the caprock and the reservoir generates a shear stress at the reservoir-caprock interface that may cause 
yielding. 

Fig. 4 displays the evolution of the minimum effective stress in the caprock close to its contact with the reservoir 
as a function of the caprock thermal expansion coefficient. The stresses decrease as the caprock is cooled down, but 
the reduction is larger for higher values of the thermal expansion coefficient (recall Equation (1)). This higher 
reduction for high values of the caprock thermal expansion coefficient leads to a lower mean effective stress that 
brings the stress state closer to failure. Furthermore, the deviatoric stress also becomes larger as the thermal stresses 
increase, which leads to yielding of the cooled portion of the caprock (Fig. 5).  

Fig. 4. Evolution of the minimum effective stress and temperature for three values of the thermal expansion coefficient of the caprock at a point 

of the caprock that is located 20 m away from the injection well and 1 m above the reservoir-caprock interface. The inset shows a schematic 

representation of the location of the observation point and the position of the CO2 plume (red line) and cold region (blue line).
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Fig. 5 shows the 'q p  (deviatoric stress – mean effective stress) trajectories in the caprock close to its contact 
with the reservoir as a function of the caprock thermal expansion coefficient. For a low value of the thermal 
expansion coefficient, the thermal stress reduction is lower than for a large value and therefore, the mean effective 
stress undergoes a lower reduction. This lower reduction in the mean effective stress, combined with a smaller 
increase in the deviatoric stress, permits the stress state to remain within the elastic region throughout the whole 
injection when the thermal expansion coefficient of the caprock is lower than that of the reservoir. When the thermal 
expansion coefficient of both the reservoir and the caprock are equal, the stress state reaches the failure envelope, 
inducing irreversible strain. This irreversible strain becomes even larger when the thermal expansion coefficient of 
the caprock is greater than that of the reservoir because of the larger thermal stress reduction (recall Figs. 1 and 3). 

Fig. 5. 'q p  (deviatoric stress – mean effective stress) trajectories of a point of the caprock located 20 m away from the injection well and 1 m 
above the reservoir-caprock interface for three values of the thermal expansion coefficient of the caprock. 

4. Discussion 

Cooling has the potential to induce inelastic strain (Fig. 1). However, inelastic strains are very small, which 
indicates that only small shear slips of fractures are associated with this irreversible strain. These shear slips will 
induce microseismicity as the rock yields, but are unlikely to jeopardize the caprock sealing capacity. Indeed, 
inelastic strain does not propagate into the caprock even the strength of the caprock is lower than that of the 
reservoir (Table 1), at least for the normal faulting stress regime considered in this study. 

The worst situation occurs when the thermal expansion coefficient of the caprock is greater than that of the 
reservoir. In this case, the cooled region of the lower portion of the caprock undergoes inelastic strain. However, the 
overall caprock sealing capacity is not compromised because inelastic strain does not extend more than 5 m into the 
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caprock. Furthermore, the minimum effective stress is far from becoming negative, i.e., tensile stress does not take 
place, which means that hydrofractures are unlikely to be formed. Thus, cold CO2 injection should not be feared 
because of the induced thermal stresses. 

In general, the range of values of the thermal expansion coefficient of geomaterials is small [22-27]. For 
sandstone, it is usually around 10·10-6 ºC-1 [28]. Limestone and shale present a wider variability, 2.5-20·10-6 ºC-1 for 
limestone [28] and 9-23·10-6 ºC-1 for shale [29]. Hence, in most of the situations, the heterogeneity of the thermal 
expansion coefficient between the reservoir and the caprock will be small, leading to similar values of the thermal 
expansion coefficient in both the reservoir and the caprock. Thus, a situation similar to the case in which both 
thermal expansion coefficients are equal will usually occur (Fig. 1). This fact is very beneficial because if the 
thermal expansion coefficient of the caprock is similar to that of the reservoir, the sealing caprock capacity will not 
be compromised due to cooling, which will prevent CO2 leakage. 

The thermo-plastic behaviour of shale may be complex [30]. Though an overconsolidated shale will expand if it 
is heated up, a normally consolidated shale will contract, i.e., thermal consolidation, because the yield surface 
shrinks as temperature increases and since the stress state would be close to the yield surface, the normally 
consolidated shale will yield. Yielding leads to rearrangement of the grain particles, which causes the shale to 
collapse and decrease in volume despite the temperature increase. An intermediate situation would be a slightly 
consolidated shale, which will initially expand, but as the yield surface shrinks for increasing temperatures, the shale 
will eventually yield and thus, it will undergo contraction. In our simulations, the shale is slightly overconsolidated. 
However, since the shale experiences a cooling path, rather than a heating path, the yield surface increases in size, 
so the observed elastic behaviour in our simulation results is coherent with the theory and observation of thermo-
plasticity of shale.

Simulation results show that inelastic deformation is small in the modeled cases. However, thermal stresses are 
proportional, apart from the thermal expansion coefficient, to the rock stiffness and the temperature difference 
(Equation (1)). Thus, in the presence of stiffer reservoirs or a large temperature contrast, thermal stresses would be 
larger, which could lead to larger inelastic strain that could induce excessive microseismicity. Consequently, proper 
site characterization and site specific thermo-hydro-mechanical modeling are necessary to carry out safe CO2

storage projects. 

5. Conclusions 

We have simulated cold CO2 injection in deep saline formations in a normal faulting stress regime and 
investigated the effect of the contrast of the thermal expansion coefficient between the reservoir and the caprock, 
considering an elastoplastic constitutive law to account for inelastic strain. We found that irreversible strain occurs 
within the cooled region of the reservoir, but fracture instability does not propagate into the caprock in the 
geological setting considered in this study. However, the cooled region of the lower portion of the caprock may 
undergo some damage due to cooling when the thermal expansion coefficient of the caprock is greater than that of 
the reservoir. This damage occurs because thermal stresses are proportional to the thermal expansion coefficient and 
thus, high values of the caprock thermal expansion coefficient induce a higher thermal stress reduction, which leads 
to a lower mean effective stress and a higher deviatoric stress. These stress changes may yield inelastic strain in the 
reservoir, but they do not propagate into the caprock. At most, inelastic strain occurs in the lower portion of the 
caprock that undergoes cooling, so the overall caprock sealing capacity is not compromised and CO2 leakage is 
unlikely to occur due to cooling. 

Acknowledgements 

V.V. acknowledges support from the ‘EPFL Fellows’ fellowship programme co-funded by Marie Curie, FP7 
Grant agreement no. 291771. 



 Victor Vilarrasa and Lyesse Laloui  /  Energy Procedia   86  ( 2016 )  411 – 419 419

References 

[1] Paterson L, Lu M, Connell LD, Ennis-King J. Numerical modeling of pressure and temperature profiles including phase transitions in carbon 
dioxide wells. SPE Annual Technical Conference and Exhibition Denver, 21-24 September 2008. 

[2] Bissell RC, Vasco DW, Atbi M, Hamdani M, Okwelegbe M, Goldwater MH. A full field simulation of the In Salah gas production and CO2

storage project using a coupled geo-mechanical and thermal fluid flow simulator. Energy Procedia 2011; 4:3290–3297. 
[3] Kim S, Hosseini SA. Above zone pressure monitoring and geomechanical analyses for a field scale CO2 injection project in Cranfield, MS. 

Greenhouse Gases: Science and Technology 2014; 4(1):81-98. 
[4] Vilarrasa V, Silva O, Carrera J, Olivella S. Liquid CO2 injection for geological storage in deep saline aquifers. International Journal of 

Greenhouse Gas Control 2013; 14:84–96. 
[5] Bao J, Xu Z, Fang Y. A coupled thermal-hydro-mechanical simulation for carbon dioxide sequestration. Environmental Geotechnics 2014; 

doi:10.1680/envgeo.14.00002. 
[6] Segall P, Fitzgerald SD. A note on induced stress changes in hydrocarbon and geothermal reservoirs. Tectonophysics 1998; 289:117-128. 
[7] de Simone S, Vilarrasa V, Carrera J, Alcolea A, Meier P. Thermal coupling may control mechanical stability of geothermal reservoirs during 

cold water injection. Journal of Physics and Chemistry of the Earth 2013; 64:117-126. 
[8] Rutqvist J, Stephansson O. The role of hydromechanical coupling in fractured rock engineering. Hydrogeology Journal 2003; 11:7-40. 
[9] Vilarrasa V, Koyama T, Neretnieks I, Jing L. Shear-induced flow channels in a single rock fracture and their effect on solute transport. 

Transport In Porous Media 2011; 87:503-523. 
[10] Gor YG, Elliot TR, Prévost JH. Effects of thermal stresses on caprock integrity during CO2 storage. International Journal of Greenhouse 

Gas Control 2013; 12:300–309. 
[11] Vilarrasa V, Rutqvist J, Rinaldi AP. Thermal and capillary effects on the caprock mechanical stability at In Salah, Algeria. Greenhouse 

Gases: Science and Technology 2015; 5:1-13. 
[12] Oye V, Aker E, Daley TM, Kühn D, Bohloli B, Korneev V. Microseismic monitoring and interpretation of injection data from the In Salah 

CO2 storage site (Krechba), Algeria. Energy Procedia 2013; 37:4191–4198. 
[13] Stork AL, Verdon JP, Kendall JM. The microseismic response at the In Salah Carbon Capture and Storage (CCS) site. International Journal 

of Greenhouse Gas Control 2015; 32:159-171. 
[14] Vilarrasa V, Olivella S, Carrera J, Rutqvist J. Long term impacts of cold CO2 injection on the caprock integrity. International Journal of 

Greenhouse Gas Control 2014; 24:1-13. 
[15] Dana E, Skoczylas F. Experimental study of two-phase flow in three sandstones. II. Capillary pressure curve measurement and relative 

permeability pore space capillarity models. International Journal of Multiphase Flow 2002; 28:1965–1981. 
[16] Rutqvist J, Birkholzer JT, Tsang C-F. Coupled reservoir–geomechanical analysis of the potential for tensile and shear failure associated with 

CO2 injection in multilayered reservoir–caprock systems. Rock Mechanics and Mining Sciences 2008; 45:132–143. 
[17] Vilarrasa V, Carrera J. Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak. 

Proceedings of the National Academy of Sciences 2015; 112(19):5938-5943. 
[18] Vilarrasa V, Laloui L. Potential fracture propagation into the caprock induced by cold CO2 injection in normal faulting stress regimes. 

Journal of Geomechanics for Energy and the Environment 2015; doi: 10.1016/j.gete.2015.05.001. 
[19] Olivella S, Carrera J, Gens A, Alonso EE. Nonisothermal multiphase flow of brine and gas through saline media. Transport in porous media

1994; 15(3):271-293. 
[20] Olivella S, Gens A, Carrera J, Alonso EE. Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline 

media. Engineering Computations 1996; 13:87–112. 
[21] Birkholzer JT, Zhou Q. Basin-scale hydrogeologic impacts of CO2 storage: Capacity and regulatory implications. International Journal of 

Greenhouse Gas Control 2009; 3(6):745-756. 
[22] Cooper HW, Simmons G. The effect of cracks on the thermal expansion of rocks. Earth and Planetary Science Letters 1977; 36(3):404-412. 
[23] Wong TF, Brace WF. Thermal expansion of rocks: some measurements at high pressure. Tectonophysics 1979; 57(2):95-117. 
[24] Palciauskas VV, Domenico PA. Characterization of drained and undrained response of thermally loaded repository rocks. Water Resources 

Research 1982; 18(2):281-290. 
[25] Ghabezloo S, Sulem J. Stress dependent thermal pressurization of a fluid-saturated rock. Rock Mechanics and Rock Engineering 2009; 

42(1):1-24. 
[26] Khalili N, Uchaipichat A, Javadi AA. Skeletal thermal expansion coefficient and thermo-hydro-mechanical constitutive relations for 

saturated homogeneous porous media. Mechanics of materials 2010; 42(6):593-598. 
[27] Goodarzi S, Settari A, Keith D. Geomechanical modeling for CO2 storage in Nisku aquifer in Wabamun lake area in Canada. International 

Journal of Greenhouse Gas Control 2012; 10:113–122. 
[28] Berest P, Vouille G. Notions de base de la thermomécanique, in La Thermomecanique des Roches, BRGM Manuels et Methods 1988 ; 

16:68-101. 
[29] Gilliam TM, Morgan IL. Shale: Measurement of thermal properties. No. ORNL/TM-10499. Oak Ridge National Lab., TN (USA), 1987. 
[30] François B, Laloui L. (2008). ACMEG TS: A constitutive model for unsaturated soils under non isothermal conditions. International 

journal for numerical and analytical methods in geomechanics 2008; 32(16):1955-1988. 


