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Abstract—An information-theoretic lower bound is developed 7 A
for the caching system studied by Maddah-Ali and Niesen. By 1/: D, =~ W,
comparing the proposed lower bound with the decentralized Ecache % I
coded caching scheme of Maddah-Ali and Niesen, the optimal d
memory-rate tradeoff is characterized to within a multiplicative : \
gap of 4.7 for the worst case, improving the previous analytical Wi, -, Wy Dy bW,
gap of 12. Furthermore, for the case when users’ requests follow 7 > da
the uniform distribution, the multiplicative gap is tighte ned to4.7, K\ - f
improving the previous analytical gap of 72. As an independent Eupdate ' d
result of interest, for the single-user average case in whicthe Xa
user requests multiple files, it is proved that caching the mst f
requested files is optimal. d D W

> D W,y
. INTRODUCTION 7 ”
Recently, Maddah-Ali and Niesen considered the following d=(di,--,dx) d

problem setup ofcaching A file server has access to a
database ofV files. There arei users, each equipped with

an individual cache of the same size. Each user wishesﬂt]o developed | bound. and ind dent It of
retrieve one of theN files. During the placement phase € developed lower bound, and as an independent resutt o

some information is stored in the users’ caches. During tH%te_reSL we prove that caching the most requested files is an

delivery phase, the server sends updates through a sha Hmal caching strategy forthe sm_gle—user average caseay
link so that each user can recover the desired file from thE USEr May requestultiple files, i.e., any subset of thy
cache content and the received update message. The goélI @ (Theoren[B). . .
to design the cache contents and the update such that given Notation: We use calllgrgph[c symbols (e.gk) to den.ote
fixed cache memory, the update rate is minimized. For a givgﬁts' D?”Ote_bV'J the cardinality of a set. Random variables
cache size, the maximum update rate required over all pessiﬂnd their realizations are represented b_y uppercasesléetg:,
requests (the worst case) was studied in [1]. For the casa wh)g) a_nd I_owercase letters (e.g:_.), resp_ectwely. The probability
the users’ requests follow some probability distributidime distribution of a random variabl&X is denote_d .bpr‘ we
averaged update rate (the average case) was studied in [2F2Y thatX' —— ¥ —— Z form a Markov chain ifpx,y,z =
For the worst case, Maddah-Ali and Niesen gave an analfftPXyYPz|y-
ical characterization of the optimal memory—rate tradeoff Ve denotes™ := max{z,0} for all z € R and [a] :=
within a multiplicative gap ofi2 [1, Theorem3]. For the av- {1,2,---aj} foralla € N. Also, we denotg0 : a] = {0} U]a].
erage case in which the requests are distributed indeptipdef?/Ven any sequence or tuple,, z», - - - , ;) and any subset
and uniformly (the uniform case), they also gave an analytic”/ C [k, we use two short-hand notations and,f? for the
characterization of the optimal memory—rate tradeoff tthimi subsequencgvi 1i € J). For the case = [k], 2"l is simply
a multiplicative gap of72 [2, Claim 1]. Later on, Zhang, denoted by:™ or by x.
Lin, and Wang [[3] improved their arguments and gave a
universal multiplicative-plus-additive gap (87+2) for the
general average case. Other improved converse bounds cabenote by N the number of files and by< the number
be found in [4]-[6]. of users. LetW,,W5--- ,Wx be N random variables in-
In this work, we propose an information-theoretic lowedependently and uniformly drawn frof2’], where F is a
bound for the average case. By comparing with the achievabplesitive integer. EachiV,, represents a file of siz€' bits. On
memory-rate tradeoff ii[7, Theorem 1], we tighten the muthe other hand, we denote kly. the request of usek € [K].
tiplicative gap from12 to 4.7 for the worst case (Theorelm 3).For notational convenience, we denéte= (IWy,--- , Wy),
Moreover, for the uniform case we tighten the multiplicativd = (di,--- ,dk), andR = (Rq : d € [N]¥). The K-user
gap from72 to 4.7 (Theoren{#). As an essential lemma foraching system is depicted in Figlre 1.

Fig. 1. TheK-user caching problem with a database/\ffiles.

Il. PROBLEM STATEMENT
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An (M, R) caching scheme consists of bound for the uniform case which also serves as a converse
e one cache encoder, which assighs indices z,(w) e bound for the worst case.
[2LFM]], wherek € [K], to each tuplew € [2F]; Corollary 1: Consider the caching problem for the uniform
e one update encoder, which assigns an indgXw) € case. For allM > 0,
[2LF"Ral] to each tuplgw,d) € [2F]Y x [N]¥;
e K decoders, where decodér € [K] maps the received  Rjpniform(M) > max (1-1-1/N)) (N -kM)*. (3)
messages and the requests, (&, zq,d), into an estimate
UA)dk S [2F].

During the placement phase, the cache encoder maps the filﬁ\%ve will compare the proposed Iqwer bound in Corollay 1 .
. with the decentralized coded caching scheme of Maddah-Ali
Wy, ---, Wy into the cache content8y, - - - , Zx and places

Zy in the cache of usek € [K]. Then, during the delivery and Niesen[[[7]. The achievable memory-rate tradeoff iedtat

in the following theorem.
hase, th dat der broadcasts th date mes . . .
phase, the Upaate encocer broaccas.s e Upcaie mesgage Theorem 2 (Maddah-Ali-Niesen|[7]Lonsider the caching

to all users through the shared link. Finally, each user[K]

recovers the desired filéf[/dk from the received messagesor,Oblem for tk:jef Wozlst case. It holds thatl,..(0) <
(Zx, X4) and the requestsl. The probability of error is min{X, N}, and for allM € (0, N],
defined as

p ( R # ) R:vorst(M)

e := max max P(Wy Wa.). K

delviekel) T S(N—M%min{%(l_(l‘%) )1} @)

We say that a rate tupléM, R) is achievableif for every
e > 0, there exists an{M,R) caching scheme with large =: Run(K, N, M).

enough file sizeF" such thatP. < e. The optimal rate

region R* is the closure of the set of achievable rate tuple$he achievable memory-rate tradeoff described_In (4) is not
Given a fixed memory sizé/ > 0, we restrict attention to convex. Thus, by time sharing among the achievable poims, t
the following projections ofR. The first projection is the achievable memory—rate tradeoff can be improved. We denote

maximum of update rates (thus the worst case): by Run(K, N, M) the corresponding convexified bound.
. Our second contribution is in showing that given a fixed
* ——
Riyorst (M) = R:(MR)R* dE[NK Ra. (1) memory sizeM > 0, the decentralized coded caching with

Denote b a orobability distribution of users’ re ueststime sharing achieves an update rate to within a constant
ypp @ p y q multiplicative factor from the optimum memory-rate tratfeo

The second projection is the weighted sum of update rat§§ (M). The main result is the following theorem.

with weights thus the average case): worst
ghtspo ( I ) Theorem 3Forall N > 1, K > 1, andM € [0, N),
Ry (M):=_ min > pp(d)Ra. 2) }
R:(M,R)ER de[NK RMN(K7 N, M) i
In this work we assume that the requeBkts . .., Dk are i.i.d. Riorst (M)

.. . . o K
drawn from the distributionp, i.€., pp(d) = [1x—_ Pp(dk). Since our information-theoretic converse bound is dewedop

L : / Y
When we specializd [2) to the uniform case, @;,(d) — N for the general average case, we can also establish thevfollo
for all d € [N], we denote the corresponding optimal memory=—

rate tradeoff byR ....(M). Note that the uniform case'Y rs],tronger ?Ia|m." q
models the scenario where the requests of different users grineorem 4Forall N > 1, K = 1, andM € [0, N),
independent and the files are equally popular. Clearly, ld$o

that R* (M) < R}t (M) for all M > 0.

uniform worst

Run (K, N, M)
R itorm (M)

uniform

<4.7.

Ill. MAIN RESULTS

Our first contribution is the following closed-form convers Remark 1:in [I], Maddah-Ali and Niesen proposed the
bound for the average case. Without loss of generality, f@llowing lower bound for the worst case:

assume thapp (1) > pp(2) > --- > pp(N).

+
Theorem 1:Consider the caching problem for the average R (M) > max (k Kk M) (5)
case with request distribution,. For all M > 0, W T ke [min{ KN} | N/k] ’
. N n for all M > 0. Numerical evaluation reveals that not sur-
Ry (M) 2 herR] (50 (k) = snt1(k))(n — kM), prisingly, the lower bound[{5) (which applies only to the

worst case) is often tighter than the proposed lower bound
wheresy1(k) =0 ands, (k) = 1 — (1 —pp(n))*, n € [N]. @) (which applies both to the worst and to the uniform case).
The proof of this theorem is deferred to Secfion IV. By settinNevertheless, there exist cases whéte (3) is tighter {hjn (5
pp(n) = %, n € [N], in TheorenlL, we have the convers€.g., whenN = K =5 and M = 1.



IV. CONVERSEBOUND FOR THEAVERAGE CASE where (a) follows from the data processing inequality and

In this section, we present the average case converse boliff!0’s inequality, andy tends to zero ag” — oo. The rest
When attributing a distributiopp on the requests, we furtherof the proof f_oIIows from the standard time sharing argument
assume thatV andD are independent. and then lettingf" — oo. [

Forn € [N], we denote byB,,1, Bz, - - - , B,r) the binary Now let us restrict attention to the case of i.i.d. requests,
representation ofV,,. SinceW,, is uniformly distributed over i.€.,pp(d) = [T;—, pn(ds) for some distributiorpp defined
2F], B,r are i.i.d. Bernoulli{/2) random variables. For on [N]. Then, by symmetry, the bound in Theorém 5 only

notational convenience, we dendie= (Bj, - - - , By), where depends on the cardinality of. Furthermore, to facilitate the
the entries are i.i.d. Bernoulli{2) random variables. Then, analysis, we relax the lower bound by swapping the positions
we have the following converse bound. of minimum and maximum. Then, we have the following
Theorem 5:Consider the caching problem for the averageorollary.
case with request distributigny. For all M > 0, Corollary 2: Considt}e{r the caching problem for the average
. . case withpp(d) = [[,_, pp(di) for some distributiorpp.
Ravg(M) > mmjr&z[il)g] H(Bp ,|Va,D), For all M > 0, 1
where Bp, = (Bp, : k € A) and the minimum is over all . .
conditional pmfspy, 5 such thatlx| —— B —— D form iniform (M) > I min H(Bpy,|Vk, D), (6)
a Markov chain and
where given a fixedk € [K], the minimum is over all
I(B;Vy) < |AM o
(B; Va) < [AIM, conditional pmfspy, |z such thatVy —— B —— D form
for all subsets4 C [K]. a Markov chain and (B; Vi) < kM.

Proof: Consider any subset C [K]. Recall thatB" is Next, we give a closed-form expression bf (6) by relating
the binary representation & . DenoteV; = (Zi, B'~'), k € it to a single-user caching problem. The caching network tha
(K], i € [F]. SinceW andD are independent by assumptionwe consider for this task is a generalization of our caching
the Markov chainV|x); —— B; —— D holds for alli € [F'].  problem withK = 1. In particular, we formulate a single-user
Then, sinceH (Z;,) < FM for all k € [K], we have caching system in which the user may requesitiple files,

namely, any subset of th& files, with request distribution
(AIFM > Z H(Zx) py, whereY is an element of the power sB{([N]). We refer

S I;EEL‘ZA) to this caching network as the single-user multiple request
- caching network.
=1(W;Za) The relation between the multi-user single request caching
= I(B"; Z4) network (our primary problem of interest) and the single-
F ‘ user multiple request caching network is as follows. In the
= Z I(Bi; Za|B™) multi-user single request setup, uséys: - , K wish to recover
=1 files Wp,,---,Wp,, respectively. Following a cut-set based
il argument in which we assume that users in some sulset
- ZI(B“VN)' [K] cooperate, the cache memories are combined resulting
=1 in a single cache of sizgA|M. Moreover, the (cooperative)
Next, we have decoder wishes to recover multiple filé&Vp, : k& € A).
Thus, the optimal memory—rate tradeoff for the single-user
Fde[XN:]KpD(d)Rd multiple request network with memory sizd|M and request
Y = (Dy : k € A) serves as a lower bound on the multi-
> > pp(d)H(Xa/D =d) user single request network with memory sizeand requests
de[N]¥ (Dy,---,Dg).

H(Xp|D)
H(WDA,XD|ZA,D) — H(WDA|XD,ZA,D)

Y

A. Single-user multiple request caching

(_a) For eachn € [N], we denote

2 H(WDA|ZA,D) —FEF

= H(BY |Z4,D) - Fep sni=P(Y 3n)= Y  pr(y. 7)
F . yEP(IN)

= H(Bp,i|B}y ., Z4,D) - Fep stney

1

.
Il

Without loss of generality, we assume thgat> sy > --- >
sn. We establish the following theorem for the single-user

> : :
- multiple request caching network.

H(BDAZ'|V_A1',D) — FEF

-

N
Il
-



Theorem 6: Consider the single-user multiple request 10
caching problem with request distributign-. The optimal
memory—rate tradeoff for the average case is

N
R;vg(M) = Z(Sn - SnJrl) (n - M)Jr ;

n=1

wheres,, is defined in[(¥) for alln € [N] andsy 1 = 0.
The proof of Theorerhl6 is deferred to Appendix.

Remark 2:Theorem[® indicates that an optimal caching
strategy for the single-user multiple request caching agkw
is to cache the most popular files, where the popularity is
measured by how often they are requested.

o
T

o [ N w H (6] [e)] ~N [os] o
7
s
1

B. Proof of Theorerfll

Next, we observe that given any fixéde [K], it holds that M
for all n € [N],

o
[EEN
N
w
»
w

Fig. 2. Plots of various bounds fqi, N) = (15,10) and M € [0, 5].
sn=P(ne€{Dy,---,Dr})

=1- P(n ¢ {Dlv e 7Dk}) SanE RlOWSV(K’ N, M) < R:niform(M) < R\:/orst(M) <
k Rypper (K, N, M), it suffices to show
=1-[[P(D; #n) y
, R, K,N,M
j=1 R K NID ppe'(K N M) <4.7, M €]0,N).
=1 (1 — PD(TL))k Iower( s 1V, )

Finally, by applying Theorerhl6 to Corollafy 2, we have thgﬁé :oiagl?g?ll(c%ﬁ;lence, we dendfe= min{ K, [N/4]}

closed-form converse bound in Theorgm 1. The lower boundRjower (K, N, M) is an intersection of half

planes. The corner points @ower (K, N, M) are character-

B ized by the sef2 = {(wi, Riower (K, N,wy)) : k € [0 : K|},
If N =1, it can be easily checked thdyy(K,1,M) = \where

1-M=R: (M). For N € {2,3,4}, we have

V. THE GAP ANALYSIS: PROOF OFTHEOREMS3AND [4

uniform N if k= O,
o _ 1k o
RMN(K7N7]\/[) < N-M W = N(l N) F Ika[K—l],
R om(M) -~ maxei (1= (L= 1/N)F)(N — kM) VHERI(-R) 1
k=1 N—-M 0 if k=K.
<
](\} - 5117— 1/N))(N — M) It can be checked that for all € [K — 1], the two lines
= N <4.7.

y=(1-(1-1/N")(N -~ ka),

For the rest of analysis, we assume that> 5. To facilitate
Y y=(01—1—1/NN = (k+1)2)

the gap analysis, we consider the following relaxed upper

bound of Theorer]2: intersect atc = wy,.
. 1 Next, we relax the upper bounéuppe,(K, N, M) by the
Ryorst (M) < (N — M) -mln{ﬁ,l} following piecewise-linear bound resulting frofw; : k €
0: K|}
::Rupper(KaNaM)7 [ ]}
/
for all M € (0,N], and we defineRypper(K,N,0) := Ripper (I, N, M)
min{ K, N}. We remark thatR,pper (K, N, M) is quite sub- i= (1 = 0) Rupper (K, N, wi) + 6 Rupper (K, N, wi—1),

optimal as an upper bound and is not continuoudfat= 0\ hare s — (1 — 0w, + Bwy,_, for somed € [0,1), k € [K].
whenK < N. However, the corresponding convexified bounﬂlote thatR!_..(K, N, M) :R (K,N M)vfor’ all M ¢
9 9 ] - upper I I

Rupper (K, N, M) is sufficient for our analysis. On the other Lelo K In Fi . :
T X : : . In Figure e provide an example with
hand, we consider the following relaxed lower bound {ws €l I} igure[2 we provi xample Wi

(K,N) = (15,10) summarizing the various bounds used in

« (M) the analysis.

uniform Then, for each segmeriy,wy_1), & € [K], the ratio
> _max (1—(1—1/N)")N - kM)* R (K,N.M) . _ . A o

k€[min{ K,[N/41}] WNM) is a linear-fractional function with respect id,

=: Riower (K, N, M). and thus it Is quasiconvek|[8]. A quasiconvex function has th



2
property that the value of the function on a segment does gt N > 1, (c) follows since ¢(z ) = ¢* (1 + === 1) is an

exceed the maximum of its values at the endpomts That 'S|ﬁ%reasmg functioth and » < —& Nn(1 —1/N) (sincek <
it suffices to check whethdiee MMy 7 o1 g
say, It suffices to check whethgg™ 575 < orall 1< N/4). Finally, smce—Nln(l—l/N) is a decreasing
M € {wo, w1, ,wg} function of N and N > 5, we have
First, it is clear that we have
2
li R{JPPer(Ka Na M) =1 Rilpper(K7 N7 wk) < e’ ( - )
]\41?]1\7 R|0WSF(K7 N7 M) o Rlower(K, N’ wk) er -1 z:—%ln(l—l/t'))
Next, we have ( vinv )2
=v |1+ —
Ripper (1, N, 0) min{ K, N} =1,
e — 4
Riower(K,N,0) (1 —(1—-1/N)E)N ~ 4.607.
4k /N
< 1—(1—1/N)x APPENDIX: PROOF OFTHEOREM[G]
(Z) 4. K/N For the single-user caching problem, a single-letter aiara
- 1—er/N terization of the optimal memory—rate tradeoff for the aegr
®) 1 ~ 4521 case can be found inl[9, Chapter 3.7.3]. For the considered
= 1 _e-l/aT 7Y setup in Theorerl 6, the optimal memory—rate tradeoff can be
where (a) follows since(1 —1/z)* <e~! for all z > 1 and expressed as
(b) follows sincey(z) = === is an increasing function and X .
H/NS1/4 B Ravg(M)_mlnH(BY|VaY)
As for k € [K — 1], we have where the minimum is over all conditional pmfg| 5 such that
R} per (K, N, wi) V —— B —— Y form a Markov chain and(B; V) < M.
Riower (K, N, wy,) (Converse.) et M > 0 be fixed. Consider any conditional
N—ws pmf py 5 such thatV —— B —— Y form a Markov chain
< o andI(B;V) < M. Recall thatB = (By,---, By). Then, for
(1= (1 =1/N)F)(N = kwg) all n € [N], we have
= (see the top of the current page)
2 .
_1 1 E(p- 1)t M > 1(B;V)
= (1_l)k +1_(1_L)k ZI(B[n]v‘/'B[nJrlN])
N N
" . N = H(Bpy) — H(B)|V, Bti:n))
2 e? (1 + (i 1NN o = 1) =n— H(B,|V, Bjpt1:n1) — H(Bn—1)|V, Bp:ny)- (8)
o < )2 Now we show that
<e 1+
e —1 N
c 2 —_ _ +
(<) ez<1+ zz 1) 7 H(By|V,)Y) Z; Spa1) (n—M)" .
- z=—4 In(1-1/N)
where (a) follows by a change of variable = —kIn(1 — § 1t can be verified that the functios(z) = e 271)2, z2>0,is

1/N), (b) follows sincez > 0 and (1 — 1/N)=" > ¢ for an increasing function by showing that its first derivatisenbhnegative.



First, we have
H(BY |Va Y)
Y. pr(WHB,V)
yEP([N])
(@) &
> Z s, H
n=1
where(a) follows by recursively applying the inequality

> py(W)H(By|V, Biyiin))
yeP(IN])
> spH(Bn|V, Bn+1 N])

+ Y py(WH(BYV, B, Biany),
y€P([N])

(BnH/va[nJrl:N])u

inthe orderN, N—1, - - -
lower bounded as

, 1. Next, H(By |V, Y') can be further

(By|V,Y)
N
> anH(BnW, Bny1:n7)
- N—
=syH(BN|V) + Z H(Byu|V, Bit1:n7)
(@ .
> sy (N —M — H(Biy_1)|V, Bn))
N-1
n=1
® .
> sy (N—=M)" —syH(By-1|V,Bn)
N1
+ Z spH(Bn|V, Bipy1:n7)
n=1
N1
=sny(N—M)"+ n = SN)H(Bn|V, Big1:n)
n:l
=sn (N —M)" + (sy_1 — sn)H(Bn-1|V, Bx)
N—
Z n — SN )H(Bn|V, Biyy1:n7)

+(3N 1—sn) (N—=1-M — H(Bn_9lV, B[N71:N]))+

n— SN)H(Bn|V, Bl N])

@ + +
ZSN(N—M) —‘r(SN,l—SN)(N—l—M)
—(SN 1 —sN)H(Bn—2|V, Bin-1:n7)

+Z

N(N—M)

n = SN)H(Bn|V, Bint1:.n)

+ (sy_1—sn) (N —=1—M)"

ot

n=1

n — SN— 1 (Bn“/aB[nJrlN])a

where(a) and(c) follow from (8) andH (B, |V, Bj,11:n]) >
0 with n = N andn = N — 1, respectively, andb) and (d)
follow since (u —v)* > (u)* — v for all v > 0. At this point,
it is clear that we can apply the same argument for another
N — 2 times and arrive at

N
2 Z(Sn = Sn41) (0 — M)Jr ’

n=1

H(By|V,Y) ©)
wheresy1 = 0.

(Achievability.)Note that the lower boundl(9) is equivalent
to saying that

1) if M > N, thenH(By|V,Y) >0, and

2) if n—1< M < n for somen € [N], then

H(By|V,Y)
N
>sp(n— M)+ Z S5
j=n+1
= Y oy (n—=M)+ Y py(y)H(By|Bp).
yEP[N] yEP[N]
s.t.ncy

Therefore, for allM € {0} U[N], settingV' = (B, -, Bum)
makes [(P) hold with equality. Since the rest of the memory—
rate tradeoff can be achieved by time sharing, the achiktyabi

is established.
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