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Abstract—An information-theoretic lower bound is developed
for the caching system studied by Maddah-Ali and Niesen. By
comparing the proposed lower bound with the decentralized
coded caching scheme of Maddah-Ali and Niesen, the optimal
memory–rate tradeoff is characterized to within a multiplicative
gap of 4.7 for the worst case, improving the previous analytical
gap of 12. Furthermore, for the case when users’ requests follow
the uniform distribution, the multiplicative gap is tighte ned to4.7,
improving the previous analytical gap of 72. As an independent
result of interest, for the single-user average case in which the
user requests multiple files, it is proved that caching the most
requested files is optimal.

I. I NTRODUCTION

Recently, Maddah-Ali and Niesen considered the following
problem setup ofcaching: A file server has access to a
database ofN files. There areK users, each equipped with
an individual cache of the same size. Each user wishes to
retrieve one of theN files. During the placement phase,
some information is stored in the users’ caches. During the
delivery phase, the server sends updates through a shared
link so that each user can recover the desired file from the
cache content and the received update message. The goal is
to design the cache contents and the update such that given a
fixed cache memory, the update rate is minimized. For a given
cache size, the maximum update rate required over all possible
requests (the worst case) was studied in [1]. For the case when
the users’ requests follow some probability distribution,the
averaged update rate (the average case) was studied in [2].

For the worst case, Maddah-Ali and Niesen gave an analyt-
ical characterization of the optimal memory–rate tradeoffto
within a multiplicative gap of12 [1, Theorem3]. For the av-
erage case in which the requests are distributed independently
and uniformly (the uniform case), they also gave an analytical
characterization of the optimal memory–rate tradeoff to within
a multiplicative gap of72 [2, Claim 1]. Later on, Zhang,
Lin, and Wang [3] improved their arguments and gave a
universal multiplicative-plus-additive gap (87R⋆+2) for the
general average case. Other improved converse bounds can
be found in [4]–[6].

In this work, we propose an information-theoretic lower
bound for the average case. By comparing with the achievable
memory–rate tradeoff in [7, Theorem 1], we tighten the mul-
tiplicative gap from12 to 4.7 for the worst case (Theorem 3).
Moreover, for the uniform case we tighten the multiplicative
gap from72 to 4.7 (Theorem 4). As an essential lemma for
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Fig. 1. TheK-user caching problem with a database ofN files.

the developed lower bound, and as an independent result of
interest, we prove that caching the most requested files is an
optimal caching strategy for the single-user average case where
the user may requestmultiple files, i.e., any subset of theN
files (Theorem 6).

Notation: We use calligraphic symbols (e.g.,X ) to denote
sets. Denote by| · | the cardinality of a set. Random variables
and their realizations are represented by uppercase letters (e.g.,
X) and lowercase letters (e.g.,x), respectively. The probability
distribution of a random variableX is denoted bypX . We
say thatX ⊸−− Y ⊸−− Z form a Markov chain ifpX,Y,Z =
pY pX|Y pZ|Y .

We denotex+ := max{x, 0} for all x ∈ R and [a] :=
{1, 2, · · ·a} for all a ∈ N. Also, we denote[0 : a] = {0}∪ [a].
Given any sequence or tuple(x1, x2, · · · , xk) and any subset
J ⊂ [k], we use two short-hand notationsxJ andxJ for the
subsequence(xi : i ∈ J ). For the caseJ = [k], x[k] is simply
denoted byxk or by x.

II. PROBLEM STATEMENT

Denote byN the number of files and byK the number
of users. LetW1,W2 · · · ,WN be N random variables in-
dependently and uniformly drawn from[2F ], whereF is a
positive integer. EachWn represents a file of sizeF bits. On
the other hand, we denote bydk the request of userk ∈ [K].
For notational convenience, we denoteW = (W1, · · · ,WN ),
d = (d1, · · · , dK), andR = (Rd : d ∈ [N ]K). TheK-user
caching system is depicted in Figure 1.
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An (M,R) caching scheme consists of
• one cache encoder, which assignsK indices zk(w) ∈
[2⌊FM⌋], wherek ∈ [K], to each tuplew ∈ [2F ]N ;

• one update encoder, which assigns an indexxd(w) ∈
[2⌊FRd⌋] to each tuple(w,d) ∈ [2F ]N × [N ]K ;

• K decoders, where decoderk ∈ [K] maps the received
messages and the requests, i.e.,(zk, xd,d), into an estimate
ŵdk

∈ [2F ].

During the placement phase, the cache encoder maps the files
W1, · · · ,WN into the cache contentsZ1, · · · , ZK and places
Zk in the cache of userk ∈ [K]. Then, during the delivery
phase, the update encoder broadcasts the update messageXd

to all users through the shared link. Finally, each userk ∈ [K]
recovers the desired filêWdk

from the received messages
(Zk, Xd) and the requestsd. The probability of error is
defined as

Pe := max
d∈[N ]K

max
k∈[K]

P(Ŵdk
6=Wdk

).

We say that a rate tuple(M,R) is achievableif for every
ǫ > 0, there exists an(M,R) caching scheme with large
enough file sizeF such thatPe < ǫ. The optimal rate
regionR⋆ is the closure of the set of achievable rate tuples.
Given a fixed memory sizeM ≥ 0, we restrict attention to
the following projections ofR. The first projection is the
maximum of update rates (thus the worst case):

R⋆
worst(M) := min

R:(M,R)∈R⋆

max
d∈[N ]K

Rd. (1)

Denote bypD a probability distribution of users’ requests.
The second projection is the weighted sum of update rates
with weightspD (thus the average case):

R⋆
avg(M) := min

R:(M,R)∈R⋆

∑

d∈[N ]K

pD(d)Rd. (2)

In this work we assume that the requestsD1, . . . , DK are i.i.d.
drawn from the distributionpD, i.e., pD(d) =

∏K
k=1 pD(dk).

When we specialize (2) to the uniform case, i.e.,pD(d) = 1
N

for all d ∈ [N ], we denote the corresponding optimal memory–
rate tradeoff byR⋆

uniform(M). Note that the uniform case
models the scenario where the requests of different users are
independent and the files are equally popular. Clearly, it holds
thatR⋆

uniform(M) ≤ R⋆
worst(M) for all M ≥ 0.

III. M AIN RESULTS

Our first contribution is the following closed-form converse
bound for the average case. Without loss of generality, we
assume thatpD(1) ≥ pD(2) ≥ · · · ≥ pD(N).

Theorem 1:Consider the caching problem for the average
case with request distributionpD. For allM ≥ 0,

R⋆
avg(M) ≥ max

k∈[K]

N
∑

n=1

(sn(k)− sn+1(k))(n− kM)+,

wheresN+1(k) = 0 andsn(k) = 1− (1− pD(n))k, n ∈ [N ].

The proof of this theorem is deferred to Section IV. By setting
pD(n) = 1

N , n ∈ [N ], in Theorem 1, we have the converse

bound for the uniform case which also serves as a converse
bound for the worst case.

Corollary 1: Consider the caching problem for the uniform
case. For allM ≥ 0,

R⋆
uniform(M) ≥ max

k∈[K]

(

1− (1− 1/N)k
)

(N − kM)+. (3)

We will compare the proposed lower bound in Corollary 1
with the decentralized coded caching scheme of Maddah-Ali
and Niesen [7]. The achievable memory–rate tradeoff is stated
in the following theorem.

Theorem 2 (Maddah-Ali–Niesen [7]):Consider the caching
problem for the worst case. It holds thatR⋆

worst(0) ≤
min{K,N}, and for allM ∈ (0, N ],

R⋆
worst(M)

≤ (N −M) ·min

{

1

M

(

1−

(

1−
M

N

)K
)

, 1

}

(4)

=: RMN(K,N,M).

The achievable memory–rate tradeoff described in (4) is not
convex. Thus, by time sharing among the achievable points, the
achievable memory–rate tradeoff can be improved. We denote
by R̆MN(K,N,M) the corresponding convexified bound.

Our second contribution is in showing that given a fixed
memory sizeM ≥ 0, the decentralized coded caching with
time sharing achieves an update rate to within a constant
multiplicative factor from the optimum memory–rate tradeoff
R⋆

worst(M). The main result is the following theorem.
Theorem 3:For all N ≥ 1, K ≥ 1, andM ∈ [0, N),

R̆MN(K,N,M)

R⋆
worst(M)

< 4.7.

Since our information-theoretic converse bound is developed
for the general average case, we can also establish the follow-
ing stronger claim.

Theorem 4:For all N ≥ 1, K ≥ 1, andM ∈ [0, N),

R̆MN(K,N,M)

R⋆
uniform(M)

< 4.7.

Remark 1: In [1], Maddah-Ali and Niesen proposed the
following lower bound for the worst case:

R⋆
worst(M) ≥ max

k∈[min{K,N}]

(

k −
k

⌊N/k⌋
M

)+

, (5)

for all M ≥ 0. Numerical evaluation reveals that not sur-
prisingly, the lower bound (5) (which applies only to the
worst case) is often tighter than the proposed lower bound
(3) (which applies both to the worst and to the uniform case).
Nevertheless, there exist cases where (3) is tighter than (5),
e.g., whenN = K = 5 andM = 1.



IV. CONVERSEBOUND FOR THEAVERAGE CASE

In this section, we present the average case converse bound.
When attributing a distributionpD on the requests, we further
assume thatW andD are independent.

Forn ∈ [N ], we denote by(Bn1, Bn2, · · · , BnF ) the binary
representation ofWn. SinceWn is uniformly distributed over
[2F ], Bn[F ] are i.i.d. Bernoulli(1/2) random variables. For
notational convenience, we denoteB = (B1, · · · , BN ), where
the entries are i.i.d. Bernoulli(1/2) random variables. Then,
we have the following converse bound.

Theorem 5:Consider the caching problem for the average
case with request distributionpD. For allM ≥ 0,

R⋆
avg(M) ≥ min max

A⊆[K]
H(BDA

|VA,D),

whereBDA
= (BDk

: k ∈ A) and the minimum is over all
conditional pmfspV[K]|B such thatV[K] ⊸−− B ⊸−− D form
a Markov chain and

I(B;VA) ≤ |A|M,

for all subsetsA ⊆ [K].
Proof: Consider any subsetA ⊆ [K]. Recall thatBF is

the binary representation ofW . DenoteVki = (Zk, B
i−1), k ∈

[K], i ∈ [F ]. SinceW andD are independent by assumption,
the Markov chainV[K]i ⊸−− Bi ⊸−− D holds for alli ∈ [F ].
Then, sinceH(Zk) ≤ FM for all k ∈ [K], we have

|A|FM ≥
∑

k∈A

H(Zk)

≥ H(ZA)

= I(W ;ZA)

= I(BF ;ZA)

=
F
∑

i=1

I(Bi;ZA|B
i−1)

=

F
∑

i=1

I(Bi;VAi).

Next, we have

F
∑

d∈[N ]K

pD(d)Rd

≥
∑

d∈[N ]K

pD(d)H(Xd|D = d)

= H(XD|D)

≥ H(XD|ZA,D)

= H(WDA
, XD|ZA,D)−H(WDA

|XD, ZA,D)
(a)

≥ H(WDA
|ZA,D)− FǫF

= H(BF
DA

|ZA,D)− FǫF

=

F
∑

i=1

H(BDAi|B
i−1
DA

, ZA,D)− FǫF

≥

F
∑

i=1

H(BDAi|VAi,D)− FǫF

where (a) follows from the data processing inequality and
Fano’s inequality, andǫF tends to zero asF → ∞. The rest
of the proof follows from the standard time sharing argument
and then lettingF → ∞.

Now let us restrict attention to the case of i.i.d. requests,
i.e., pD(d) =

∏K
k=1 pD(dk) for some distributionpD defined

on [N ]. Then, by symmetry, the bound in Theorem 5 only
depends on the cardinality ofA. Furthermore, to facilitate the
analysis, we relax the lower bound by swapping the positions
of minimum and maximum. Then, we have the following
corollary.

Corollary 2: Consider the caching problem for the average
case withpD(d) =

∏K
k=1 pD(dk) for some distributionpD.

For all M ≥ 0,

R⋆
uniform(M) ≥ max

k∈[K]
minH(BD[k]

|Vk,D), (6)

where given a fixedk ∈ [K], the minimum is over all
conditional pmfspVk|B such thatVk ⊸−− B ⊸−− D form
a Markov chain andI(B;Vk) ≤ kM .

Next, we give a closed-form expression of (6) by relating
it to a single-user caching problem. The caching network that
we consider for this task is a generalization of our caching
problem withK = 1. In particular, we formulate a single-user
caching system in which the user may requestmultiple files,
namely, any subset of theN files, with request distribution
pY , whereY is an element of the power setP([N ]). We refer
to this caching network as the single-user multiple request
caching network.

The relation between the multi-user single request caching
network (our primary problem of interest) and the single-
user multiple request caching network is as follows. In the
multi-user single request setup, users1, · · · ,K wish to recover
files WD1 , · · · ,WDK

, respectively. Following a cut-set based
argument in which we assume that users in some subsetA ⊆
[K] cooperate, the cache memories are combined resulting
in a single cache of size|A|M . Moreover, the (cooperative)
decoder wishes to recover multiple files(WDk

: k ∈ A).
Thus, the optimal memory–rate tradeoff for the single-user
multiple request network with memory size|A|M and request
Y = (Dk : k ∈ A) serves as a lower bound on the multi-
user single request network with memory sizeM and requests
(D1, · · · , DK).

A. Single-user multiple request caching

For eachn ∈ [N ], we denote

sn := P(Y ∋ n) =
∑

y∈P([N ])
s.t.n∈y

pY (y). (7)

Without loss of generality, we assume thats1 ≥ s2 ≥ · · · ≥
sN . We establish the following theorem for the single-user
multiple request caching network.



Theorem 6: Consider the single-user multiple request
caching problem with request distributionpY . The optimal
memory–rate tradeoff for the average case is

R⋆
avg(M) =

N
∑

n=1

(sn − sn+1) (n−M)
+
,

wheresn is defined in (7) for alln ∈ [N ] andsN+1 = 0.
The proof of Theorem 6 is deferred to Appendix.

Remark 2:Theorem 6 indicates that an optimal caching
strategy for the single-user multiple request caching network
is to cache the most popular files, where the popularity is
measured by how often they are requested.

B. Proof of Theorem 1

Next, we observe that given any fixedk ∈ [K], it holds that
for all n ∈ [N ],

sn = P(n ∈ {D1, · · · , Dk})

= 1− P(n /∈ {D1, · · · , Dk})

= 1−

k
∏

j=1

P(Dj 6= n)

= 1− (1− PD(n))k.

Finally, by applying Theorem 6 to Corollary 2, we have the
closed-form converse bound in Theorem 1.

V. THE GAP ANALYSIS: PROOF OFTHEOREMS3 AND 4

If N = 1, it can be easily checked that̆RMN(K, 1,M) =
1−M = R⋆

uniform(M). ForN ∈ {2, 3, 4}, we have

R̆MN(K,N,M)

R⋆
uniform(M)

≤
N −M

maxk∈[K](1 − (1− 1/N)k)(N − kM)

k=1
≤

N −M

(1− (1− 1/N))(N −M)
= N < 4.7.

For the rest of analysis, we assume thatN ≥ 5. To facilitate
the gap analysis, we consider the following relaxed upper
bound of Theorem 2:

Rworst(M) ≤ (N −M) ·min

{

1

M
, 1

}

=: Rupper(K,N,M),

for all M ∈ (0, N ], and we defineRupper(K,N, 0) :=
min{K,N}. We remark thatRupper(K,N,M) is quite sub-
optimal as an upper bound and is not continuous atM = 0
whenK < N . However, the corresponding convexified bound
R̆upper(K,N,M) is sufficient for our analysis. On the other
hand, we consider the following relaxed lower bound

R⋆
uniform(M)

≥ max
k∈[min{K,⌈N/4⌉}]

(1− (1 − 1/N)k)(N − kM)+

=: Rlower(K,N,M).
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Fig. 2. Plots of various bounds for(K,N) = (15, 10) andM ∈ [0, 5].

Since Rlower(K,N,M) ≤ R⋆
uniform(M) ≤ R⋆

worst(M) ≤
R̆upper(K,N,M), it suffices to show

R̆upper(K,N,M)

Rlower(K,N,M)
< 4.7, M ∈ [0, N).

For notational convenience, we denoteK = min{K, ⌈N/4⌉}
andκ = min{K,N/4}.

The lower boundRlower(K,N,M) is an intersection of half
planes. The corner points ofRlower(K,N,M) are character-
ized by the setΩ = {(ωk, Rlower(K,N, ωk)) : k ∈ [0 : K]},
where

ωk =















N if k = 0,
N(1− 1

N )
k

N+(k+1−N)(1− 1
N )k

if k ∈ [K − 1],

0 if k = K.

It can be checked that for allk ∈ [K − 1], the two lines

y = (1− (1− 1/N)k)(N − kx),

y = (1− (1− 1/N)k+1)(N − (k + 1)x)

intersect atx = ωk.
Next, we relax the upper bound̆Rupper(K,N,M) by the

following piecewise-linear bound resulting from{ωk : k ∈
[0 : K]}:

R′
upper(K,N,M)

:= (1− θ)Rupper(K,N, ωk) + θRupper(K,N, ωk−1),

whereM = (1− θ)ωk + θωk−1 for someθ ∈ [0, 1), k ∈ [K].
Note thatR′

upper(K,N,M) = Rupper(K,N,M) for all M ∈

{ωk : k ∈ [0 : K]}. In Figure 2 we provide an example with
(K,N) = (15, 10) summarizing the various bounds used in
the analysis.

Then, for each segment[ωk, ωk−1), k ∈ [K], the ratio
R′

upper(K,N,M)

Rlower(K,N,M) is a linear-fractional function with respect toM ,
and thus it is quasiconvex [8]. A quasiconvex function has the
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(
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(
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N
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(

1− 1
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(
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+
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N

(

1− 1
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+
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property that the value of the function on a segment does not
exceed the maximum of its values at the endpoints. That is to

say, it suffices to check whether
R′

upper(K,N,M)

Rlower(K,N,M) < 4.7 for all
M ∈ {ω0, ω1, · · · , ωK}.

First, it is clear that we have

lim
M↑N

R′
upper(K,N,M)

Rlower(K,N,M)
= 1.

Next, we have

R′
upper(K,N, 0)

Rlower(K,N, 0)
=

min{K,N}

(1− (1− 1/N)K)N

≤
4κ/N

1− (1− 1/N)κ

(a)

≤ 4 ·
κ/N

1− e−κ/N

(b)

≤
1

1− e−1/4
≈ 4.521,

where(a) follows since(1 − 1/z)z ≤ e−1 for all z > 1 and
(b) follows sinceψ(z) = z

1−e−z is an increasing function and
κ/N ≤ 1/4.

As for k ∈ [K − 1], we have

R′
upper(K,N, ωk)

Rlower(K,N, ωk)

≤

N−ωk

ωk

(1 − (1− 1/N)k)(N − kωk)
= (see the top of the current page)

≤
1

(

1− 1
N

)k

(

1 +
k
N

(

1− 1
N

)k

1−
(

1− 1
N

)k

)2

(a)
= ez

(

1 +
1

ln(1− 1/N)−N

z

ez − 1

)2

(b)

≤ ez
(

1 +
z

ez − 1

)2

(c)

≤ ez
(

1 +
z

ez − 1

)2
∣

∣

∣

∣

∣

z=−N

4 ln(1−1/N)

,

where (a) follows by a change of variablez = −k ln(1 −
1/N), (b) follows sincez ≥ 0 and (1 − 1/N)−N ≥ e for

all N > 1, (c) follows sinceφ(z) = ez
(

1 + z
ez−1

)2

is an

increasing function§ and z ≤ −N
4 ln(1 − 1/N) (sincek ≤

K−1 ≤ N/4). Finally, since−N ln(1−1/N) is a decreasing
function ofN andN ≥ 5, we have

R′
upper(K,N, ωk)

Rlower(K,N, ωk)
≤ ez

(

1 +
z

ez − 1

)2
∣

∣

∣

∣

∣

z=− 5
4 ln(1−1/5)

= νν
(

1 +
ν ln ν

νν − 1

)2
∣

∣

∣

∣

∣

ν= 5
4

≈ 4.607.

APPENDIX: PROOF OFTHEOREM 6

For the single-user caching problem, a single-letter charac-
terization of the optimal memory–rate tradeoff for the average
case can be found in [9, Chapter 3.7.3]. For the considered
setup in Theorem 6, the optimal memory–rate tradeoff can be
expressed as

R⋆
avg(M) = minH(BY |V, Y ),

where the minimum is over all conditional pmfspV |B such that
V ⊸−− B ⊸−− Y form a Markov chain andI(B;V ) ≤M .

(Converse.)Let M ≥ 0 be fixed. Consider any conditional
pmf pV |B such thatV ⊸−− B ⊸−− Y form a Markov chain
andI(B;V ) ≤M . Recall thatB = (B1, · · · , BN ). Then, for
all n ∈ [N ], we have

M ≥ I(B;V )

≥ I(B[n];V |B[n+1:N ])

= H(B[n])−H(B[n]|V,B[n+1:N ])

= n−H(Bn|V,B[n+1:N ])−H(B[n−1]|V,B[n:N ]). (8)

Now we show that

H(BY |V, Y ) ≥

N
∑

n=1

(sn − sn+1) (n−M)
+
.

§ It can be verified that the functionφ(z) = ez
(

1 + z

e
z−1

)

2

, z ≥ 0, is
an increasing function by showing that its first derivative is nonnegative.



First, we have

H(BY |V, Y )

=
∑

y∈P([N ])

pY (y)H(By|V )

(a)

≥
N
∑

n=1

snH(Bn|V,B[n+1:N ]),

where(a) follows by recursively applying the inequality

∑

y∈P([N ])

pY (y)H(By|V,B[n+1:N ])

≥ snH(Bn|V,B[n+1:N ])

+
∑

y∈P([N ])

pY (y)H(By|V,Bn, B[n+1:N ]),

in the orderN,N−1, · · · , 1. Next,H(BY |V, Y ) can be further
lower bounded as

H(BY |V, Y )

≥

N
∑

n=1

snH(Bn|V,B[n+1:N ])

= sNH(BN |V ) +

N−1
∑

n=1

snH(Bn|V,B[n+1:N ])

(a)

≥ sN
(

N −M −H(B[N−1]|V,BN )
)+

+

N−1
∑

n=1

snH(Bn|V,B[n+1:N ])

(b)

≥ sN (N −M)
+
− sNH(B[N−1]|V,BN )

+
N−1
∑

n=1

snH(Bn|V,B[n+1:N ])

= sN (N −M)+ +
N−1
∑

n=1

(sn − sN )H(Bn|V,B[n+1:N ])

= sN (N −M)
+
+ (sN−1 − sN )H(BN−1|V,BN )

+

N−2
∑

n=1

(sn − sN )H(Bn|V,B[n+1:N ])

(c)

≥ sN (N −M)
+

+(sN−1 − sN )
(

N − 1−M −H(B[N−2]|V,B[N−1:N ])
)+

+

N−2
∑

n=1

(sn − sN )H(Bn|V,B[n+1:N ])

(d)

≥ sN (N −M)
+
+ (sN−1 − sN ) (N − 1−M)

+

−(sN−1 − sN )H(B[N−2]|V,B[N−1:N ])

+
N−2
∑

n=1

(sn − sN )H(Bn|V,B[n+1:N ])

= sN (N −M)+ + (sN−1 − sN ) (N − 1−M)+

+

N−2
∑

n=1

(sn − sN−1)H(Bn|V,B[n+1:N ]),

where(a) and(c) follow from (8) andH(Bn|V,B[n+1:N ]) ≥
0 with n = N andn = N − 1, respectively, and(b) and (d)
follow since(u− v)+ ≥ (u)+− v for all v ≥ 0. At this point,
it is clear that we can apply the same argument for another
N − 2 times and arrive at

H(BY |V, Y ) ≥

N
∑

n=1

(sn − sn+1) (n−M)
+
, (9)

wheresN+1 = 0.
(Achievability.)Note that the lower bound (9) is equivalent

to saying that

1) if M ≥ N , thenH(BY |V, Y ) ≥ 0, and
2) if n− 1 ≤M < n for somen ∈ [N ], then

H(BY |V, Y )

≥ sn (n−M) +
N
∑

j=n+1

sj

=
∑

y∈P[N ]
s.t.n∈y

pY (y) (n−M) +
∑

y∈P[N ]

pY (y)H(By|B[n]).

Therefore, for allM ∈ {0}∪ [N ], settingV = (B1, · · · , BM )
makes (9) hold with equality. Since the rest of the memory–
rate tradeoff can be achieved by time sharing, the achievability
is established.
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