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Abstract—This paper presents a non-asymptotic upper
bound for the estimation error of the constrained lasso, under
the high-dimensional (n < p) setting. In contrast to existing
results, the error bound in this paper is sharp, is valid when
the parameter to be estimated is not exactly sparse (e.g., when
it is weakly sparse), and shows explicitly the effect of over-
estimating the /;-norm of the parameter to be estimated on
the estimation performance. The results of this paper show
that the constrained lasso is minimax optimal for estimating
a parameter with bounded ¢;-norm, and also for estimating a
weakly sparse parameter if its /;-norm is accessible.

I. INTRODUCTION

A. Problem Formulation

Consider the linear regression problem. The goal is to
estimate an unknown parameter 5* € RP, given the design
matrix X € R"*P_ and the sample

y=Xp"+oweR",

for some o > 0, where ow denotes the additive noise. We
will mainly focus on the case when the parameter dimension
p may scale with the sample size n and n < p, the so-called
high-dimensional setting.

If the parameter 5* is known to be sparse, a widely-used
estimator is the constrained lasso (which we will simply call
as the lasso in this paper) [21], defined as

B € arg;nin{fn(ﬁ) : B € B}, (1)

for some ¢ > 0, where f, is the normalized squared error
function

1
FalB) i= 5 lly = X1,

and By denotes the unit £;-norm ball in RP.
This paper studies the estimation error of the lasso in the
linear regression model, under the high-dimensional setting.
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B. Related Work

If ¢ = ||B8*|l1, and the noise w has independent and
identically distributed (i.i.d.) standard normal entries, the
lasso is known to satisfy

A 1
18, — B7ll2 < Loy ‘;gp, ®)

with high probability for some constant L > 0, where s is
the number of non-zero entries in 8* [5]. The bound (2)
shows the lasso automatically adapts to §*—the sparser 5*
is, the smaller the estimation error bound.

This error bound (2), however, is not true in general
when ¢ # ||8* 1. While (2) provides an O((62n"'logp)?)
error decaying rate, the minimax result in [18] shows that,
with respect to the worst case of where §* lies in ¢By,
no estimator can achieve an error decaying rate better than
O((0*n~1logp)3). This gap is due to the possibility that
B* may lie strictly in ¢8B; or, in other words, ¢ > ||8*||1.

Therefore, a more general estimation error bound for the
lasso is needed. Especially, a satisfactory estimation error
bound for the lasso should be 1) sharp enough to recover (2)
that varies with the sparsity of 5*, and 2) able to characterize
the effect of the quantity ¢ — ||3*||; on the estimation error.

Existing results, unfortunately, cannot provide such a
satisfactory error bound. The proof in [5] for (2) fails when
¢ is strictly larger than ||8*|;. While the results in [16],
[24] are valid as long as ¢ > ||5*||1, the derived bounds are
independent of 3%, and hence not sharp enough to recover
(2). The small-ball approach yields an estimation error bound
that depends on S* [10, Theorem 4.6], but the dependence
is implicit, and even whether it can recover (2) is unclear.
The results in [7], [15] recover (2) when ¢ = ||3*||1; the
dependence on ¢ — ||3*||1, however, is also vague.

The paper [18] assumed 3* lies in an £,-norm ball B,, ¢ €
[0, 1], and derived an estimation error bound for a lasso-like
estimator, for which the ¢;-norm constraint in (1) is replaced
by the corresponding ¢,-norm constraint. In contrast to [18],
this paper will also consider the same assumption on 5*, but
analyze the estimation performance of the lasso defined by
(1) where an ¢; norm constraint is used (cf. Corollary 2).

The authors are not aware of any existing work that
discusses the estimation error of the lasso when ¢ < ||8*||1,
though the analysis in [7] can be easily extended to this
case, and yield an estimation error bound that is implicitly
dependent on ||3*||1. Note that in this case, the lasso cannot
be consistent, i.e., the estimation error is always bounded
away from zero no matter how large the sample size n is,
because 3* is not a feasible solution of the optimization
problem (1).




We note that while there are many well-studied estimators
closely related to the constrained lasso, such as the penalized
lasso, Dantzig selector, square-root lasso, and basis pursuit-
type estimators [1], [2], [4], [12], [22], the analysis tech-
niques in the cited works cannot be directly applied to study
the constrained lasso when ¢ > ||5*||1. See Section III-B for
a detailed discussion.

C. Contributions

The main result of this paper, Theorem IV.1, provides a
non-asymptotic estimation error bound that is valid for any
¢ > ||8*|l1, and for the case when 5* is not exactly sparse. It
is sharp as it recovers (2) when ¢ = ||*||1 (cf. Corollary 1).
For the general case, it shows the following (cf. Corollary
2).

e For estimating any 5* € cBj, the lasso is minimax

optimal as long as ¢ > ||8*|l1. The worst case (with
respect to where 0* lies in ¢B31) error decaying rate is

||Bn _ﬂ*||2 -0 <<0210gp>4> .
n

« For estimating any weakly sparse §* € cB that is to
mean it has bounded ¢,-norm for some ¢ € (0, 1], the
lasso is minimax optimal if ¢ = ||3*||;. The worst case
error decaying rate is

3-14
n

Formal statements can be found in Section IV.

The results in this paper are non-asymptotic, i.e., the error
bounds (and the corresponding probability bounds) are valid
for all finite values of the sample size n, parameter dimension
p, sparsity level s, and other parameters that will be specified
in Section IV.

II. NOTATION AND BASIC DEFINITIONS

Fix a vector v € RP for some p € N. Let S C {1,...,p}.
The notation vs denotes the sub-vector of v indexed by
S, and to lighten notation, v; denotes Viiy for any ¢ < p.
Similarly, fix a matrix X € R"*?; X, ; denotes the (4, j)-th
entry of X. Let u € RP. The inner product (u,v) denotes
Zi U;V;.

Fix I € R? and A € R. The notations K — v and A\
denote the sets {u —v : w € K} and {\u : v € K},
respectively. The notation K denotes the conic hull of K,
ie.,

K:={p:veK,p>0}

The notation |K| denotes the cardinality of K.

The £,-norm of v, denoted by [|v||4, is defined by [|v|[] :=
> |vil?, for any ¢ € [0, 00) (although rigorously speaking,
I - I is a norm only when ¢ > 1). The {y-norm is defined
as ||vljo := [{¢ : v; # 0}], and the {s,-norm is defined as
lv|loo = max{|v;| : 1 <4 < p}. The unit ¢;-norm ball is
denoted by B,.

Some relevant notions about random variables (r.v.’s) and
random vectors are provided below for completeness.

Definition IL.1. A r.v. ¢ is subgaussian, if there exists a
constant K > 0 such that (E |¢[P)!/? < K/p for all p > 1.
The subgaussian norm of a subgaussian r.v. £ is defined as
the smallest K, i.e.,

I€lly, == sup{p~2(E[E[")/7: p > 1)

Definition II.2. A random vector 17 € RP is isotropic, if for
any v € R?,

E (1, v)* = ||vl}3.

Definition II.3. A random vector n € R? is subgaussian, if
the r.v. (n,v) is subgaussian for all v € RP. The subgaussian
norm of a subgaussian random vector 7 is defined as

11y, = sup{ll(m, )]y, : v € R, [Jo]l2 = 1}.

Remark. For example, both the standard normal r.v. and the
Rademacher r.v. (random sign) are subgaussian, and a vector
of either i.i.d. standard normal or i.i.d. Rademacher r.v.’s is
a subgaussian random vector.

The Gaussian width is useful when studying a collection
of subgaussian r.v.’s indexed by a subset in the metric space
(R, || - |2) [20, Theorem 2.4.1].

Definition II.4 (Gaussian width). The Gaussian width of a
set I C RP? is given by

w(K) :=E sup{(g,v) : v € K},

where ¢ is a vector of i.i.d. standard normal r.v.’s.

By Proposition II1.2 below, the Gaussian width of a set of
the form C N By, where C C RP is a closed convex cone,
characterizes the sample size required for the lasso to have
a small estimation error. We always have w(C N Ba) < /p.
By Proposition III.2 and Theorem IV.1, this implies the
possibility of doing estimation when n < p.

Proposition I1.1. We have the following:
1) If K1 C Ky, then w(Ky) < w(ks).
2) If K =RP, then w(K N Bz) = \/p.

Proof. The first assertion is obvious by definition. The
second assertion is because

w(R? N By) = w(Br) = (1/vP)Ellgl3 = Vb,

where ¢ is a vector of i.i.d. standard normal r.v.’s. O

III. RELAXED RESTRICTED STRONG CONVEXITY
CONDITION

The key notion for deriving the results in this paper
is the relaxed restricted strong convexity (RSC) condition
introduced in the authors’ unpublished work [7]. This section
provides a brief discussion on the relaxed RSC condition,
specialized for the lasso.



A. Definition of the Relaxed RSC Condition

Conventionally, linear regression is solved by the least-
squares (LS) estimator, which works as long as the Hessian
matrix H,, := V2f,(8*) = n~1 X7 X is non-singular. Under
the high-dimensional setting where n < p, however, the
Hessian matrix H,, is always singular, and the LS approach
fails, as illustrated by [3, Fig. 1].

The idea of the relaxed RSC condition is to require, only
in some directions, that the Hessian matrix H,, behaves like
a non-singular matrix.

Definition III.1 (Feasible Set). The feasible set is defined
as

Fi=cBy—p"={p—-p0":8€cBr}.
That is, the feasible set is the set of all possible error vectors.

Definition IIL.2 (Relaxed RSC [7]). The (u, t,,)-relaxed RSC
condition holds for some p > 0 and ¢, > 0, if and only if
for all v € F \ t,,Ba,

<an(6* + U) - an(ﬁ*),v> 2> /J'HUH%

Remark. The parameter ¢, in general can scale with the
sample size n; therefore the subscript n is added.

Proposition IIL.1. The (u,t,)-relaxed RSC condition is
equivalent to requiring

T
. [v'Hyv
mm{g v € f\tnt} > U,
[oll3
i.e., it requires the smallest restricted eigenvalue of H,, with

respect to F \ t,Ba is bounded below by p.
Proof. By direct calculation, we obtain
(VB +v) = VI n(8),v) = v Hyo.
O

The validity of assuming the relaxed RSC condition is
verified by the following proposition, which shows as long
as the sample size n is sufficiently large (while it can be still
less than p), the relaxed RSC condition can hold with high
probability.

Proposition IIL.2. Suppose that the rows of the design matrix
X are iid., isotropic, and subgaussian with subgaussian
norm o > 0. There exist constants cy,co > 0 such that for

any § € (0,1), if
Vin 2 daPw(F\ 1By N By), 3)

for some t > 0, the (1 — 0,t)-relaxed RSC condition holds
with probability at least 1 — exp(—co6°n/a’).

Proof. Assume that (3) is satisfied. By [11, Theorem 2.3],
with probability at least 1 — exp(—c2d?n), we have

| Xv||3 B vTH,v
n

2
: > (1 5)vl3 @

for any v € F \ tBB2. The proposition follows by Proposition
IIL.1. O

B. Discussions

One interesting special case of Proposition III.2 is when
B* has only s < p non-zero entries and ¢ = ||3*||;. In this
case, we can simply choose t,, = 0; then F \ ¢,B2 reduces
to F, called the tangent cone in [4]. By [4, Proposition 3.10],
the inequality (3) can be guaranteed, if

Vn > cla?y/2slog (g) + 28.

Notice that the right-hand side can be much smaller than /p.

This observation is the main idea behind existing works
on high-dimensional sparse parameter estimation in [1], [2],
[4], [12], [22], to cite a few. Roughly speaking, the approach
in the cited works can be summarized as follows.

1) Identify a convex cone C (possibly with a controlled
small perturbation [12], [17]) in which the error vector
Bn — [B* lies, where Bn denotes the estimator under
consideration.

2) Derive a lower bound on the sample size n, such that
the RSC (relaxed RSC with t,, = 0, not necessary with
respect to the fo-norm [22]) with respect to /C holds
with high probability.

3) Given that the RSC condition holds, the Hessian H,, =
n !XT X behaves like a non-singular matrix with
respect to the error vector, and classical approaches
for analyzing the estimation error for the LS estimator
applies.

While this existing approach is valid for analyzing the
penalized lasso, Dantzig selector, square-root lasso, and basis
pursuit-type estimators as shown in [1], [2], [4], [12], [22],
it is not applicable to the constrained lasso. When ¢ >
[[8*||1, the conic hull of all possible error vectors of the
constrained lasso, ¢B3; — 8*, is the whole space RP, and
hence requiring the relaxed RSC condition with ¢,=0 is
equivalent to requiring the non-singularity of the Hessian
H,,, which cannot hold when n < p.

The next section shows that the relaxed RSC condition
with a non-zero ¢, suffices for deriving minimax optimal
estimation error bounds for the lasso.

IV. MAIN RESULT AND ITS IMPLICATIONS

The main theorem requires the following assumptions to
be satisfied.

Assumption 1. The noise w is a vector of i.i.d. mean-zero
subgaussian r.v.’s of unit subgaussian norm.

Assumption 2. The design matrix X is normalized, i.e.,
Zj Xf)j <nforali<p.

Assumption 3. The (1, t,,)-relaxed RSC condition holds for
some [i,t, > 0.

The first assumption on the noise is valid in the standard
Gaussian linear regression model, where w is a vector of
i.i.d. standard normal r.v.’s, and the persistence framework in
[10], where w is a vector of i.i.d. mean-zero bounded r.v.’s.
The second assumption on the design matrix is standard as



in, e.g., [2] and [25]; without this assumption, the effect of
noise can be arbitrarily small (when the entries of X are large
compared to o). Recall that we had discussed the validity of
the third assumption in Section III.

Theorem IV.1. If Assumptions 1-3 are satisfied, then there
exists a constant cs > 0 such that, for any 7 > 0 and S C

{1,...,p},

- . cavV1l+T1 lo N
18n — 8 ||2gmax{tn, -y fpwn;ﬁ,&}

T

with probability at least 1 — ep™7, where

2] 4 sl le= 1)

Proof. See Section V-A. O

V(tn; B, 8) =

Theorem IV.1 immediately recovers the well-known result
(2) up to a constant scaling.

Corollary 1. Suppose that 3* has s non-zero entries, and
¢ = ||8*||1 in (1). Then if Assumptions 1-3 are satisfied,
there exists a constant cg > 0 such that, for any T > 0, we

have
. . 2c3v/1+ 7 slogp
1Bn = 8l < == o/ ==,

T

with probability at least 1 —ep™7.

Proof. Recall that in this case (cf. Section III), the relaxed
RSC can hold with ¢t,, = 0, as discussed in Section III.
Choosing ¢, = 0 and S as the support set of §* in Theorem
IV.1 completes the proof. O

In general, 5* may not be exactly sparse, and in practice,
¢ can hardly be chosen as exactly ||*||.

Definition IV.1 (Weak sparsity [12]). A vector v € RP is g-
weakly sparse for some g € [0, 1], if and only if there exists
some C; > 0 such that [[v]|g := 7, [v;[? < Cy.

Remark. A 0O-weakly sparse parameter is exactly sparse.

Corollary 2. Assume that B* is q-weakly sparse for some
q € 10,1], logp < n, and Assumptions 1-3 are satisfied with

2 %—iq
o (vey (e ) e,

ty, = 1 )
@(‘ch(“ﬂ{g;m)“) if e > 18" s

(6)

where § := c—||3*[|1 and Cy := ||3*||. Then we have, with

probability at least 1 — ep™7,

18 = 8% 1|2 = O(tn)
for any T € (0,1).
Proof. See Section V-B. O

Remark. If t, converges too fast to zero with respect to
increasing n, the sample complexity bound (3) may not hold,

and the validity of Assumption 3 in Corollary 2 would be in
question. However, since

w(mm&):lwm:@(l),

t’ﬂ n
the sample complexity bound (3) can hold as long as ¢,, =
Q(n~'/2), which is satisfied in Corollary 2.

The minimax error bound in [18, Theorem 3] shows that
no estimator can achieve a better error decaying rate than

o2logp) 21
o<~ﬁ0q< =

with probability larger than 1/2 in the worst case, for esti-
mating a g-weakly sparse parameter, ¢ € (0, 1]. According
to Corollary 2, this implies:

e The lasso with ¢ > ||8*||1 is minimax optimal (up
to a constant scaling) for estimating a parameter with
bounded ¢;-norm.

o The lasso with ¢ = ||3*[|; is minimax optimal (up to
a constant scaling) for estimating a g-weakly sparse
parameter, ¢ € (0, 1].

Note that the error decaying rates in the two assertions

are for the worst case. It is possible to have a better error
decaying rate in special cases, as shown by Corollary 1.

V. PROOFS

A. Proof of Theorem IV.1

Define A, := Bn — * for convenience.

By definition, A,, lies in either ¢,B2 or F \ t,B2. In the
former case, it holds trivially that ||A,[2 < ¢,. We now
consider the latter case.

Proposition V.1. If the (u,t,)-relaxed RSC condition holds
Sor some p,t >0, and if A,, € F \ tBs, then we have

l HAn”l <—an(5*)7 An> )

Ayll2 < (7
1Bl < A 1A,
Proof. By the relaxed RSC condition, we have

(Vfu(Br) = VIa(B7), An) = pl An2- ®)

Since (1) defines a convex optimization problem, we have,
by the optimality condition of 3,, [13],

(=Vfa(Bn), An) > 0. ©)
Summing up (8) and (9), we obtain
(=Vfa(B%), An) = pl| Anll3,
which implies

l HAnHI <—an(5*), An> )
11 Al [An]lx
This completes the proof. O

[Anlle <

The rest of this subsection is devoted to deriving an upper
bound of the right-hand side of (7), which is independent of
A,

We first derive a bound on (||A,]|1/[|Ax]2)-



Proposition V.2. The estimation error satisfies

[Anlln < 2(1(AR)sllt + 185 l11) + (e = 1871,
forany S C{1,...,p}, where S :={1,...,p}\ S.
Proof. By definition, we have Bn € ¢B;, and hence

cz ||Bn||1 = ||(ﬁ* + An)S + (6* + An)S“”1
> 185 + (An)sell1 — 185 + (An)slh

= [1Bsllt + l[(An)selly = [|Bsells = l[(An)sll1
=187 = 2[5l + [1Anll = 2[1(An)s |1,

which proves the proposition. O

By Proposition V.2, we obtain

[Anlls _ o [1(An)slly | 20185l + (¢ = (1871
<2 +
||AnH2 HAnHZ ||An||2
[(An)slls | 20185l + (¢ = [I8"]l1)
<2 +
[(An)sll2 tn

tn
if A, € F\ t,Ba.
Now we bound the term (—V f,,(8%), Apn) /|| An|l1-

Proposition V.3. If the design matrix X is normalized, i.e.,

Zj ij < n for all © < p, there exists a universal constant

cs > 0 such that for any T > 0, we have

(=Vfu(B%), An) < 30 (1+7)logp
[ Anllx B n ’

with probability at least 1 —ep™7.
Proof. We note that

(=V/fu(8), An)

1A < sup{(=V £ (B8%),v) : |[v]1 = 1}

= H - vfn(ﬁ*)‘loo
By direct calculation, we obtain

(Vin(B8%))i = % > X jw;
i=1

for all 7+ < p, and hence, by a Hoeffding-type inequality [23,
Proposition 5.10], there exists a universal constant L > 0
such that for any € > 0,

2n
B{(V£,(B))i] 2 £} < e exp (_Lj; ) |

By the union bound, this implies

P{IVfn(B87)lloo > €} <Y P{(Vful(B7))il = €}
i=1

Le?n
<e-exp|— o2 +logp | .

Choosing
(1+7)logp
Ln

completes the proof. O

Theorem IV.1 follows by combining (10) and Proposition
V3.

B. Proof of Corollary 2

Define S, := {i : | 3| > pn} for some p,, > 0. Then we
have |S,,| < Cyp;, %, as

Co = D 18717 = |Sulp-
1€Sy

Moreover, we have

1B Mx =D 1B 1B 1< > 1B 190" < Copy?.

i€Se i€Se

Applying Theorem IV.1 with S = §,;, we obtain

3 * C \/m(f lo
|6 — B%[]2 < max{t, 3 m \/?%l}

csvV1+ 7o [lo
<ty + = u \/ ipvn,

T

Y

with probability at least 1 — ep™", where

_ 2C,pL~ % + (¢ — ||8*]1h)
n = 21/C.pn? arn .
v \V Capn” + t

The corollary follows by optimizing over t,, and p, by
the inequality for arithmetic and geometric means on (11).
Specifically, the best possible error decaying rate can be
achieved when

B (1+71)o%logp 3
Pn - 6 << /J/2n 9

and t,, is chosen as in (6).

VI. DISCUSSIONS

This paper focuses on the case where the design matrix
X has subgaussian rows and the noise w has subgaussian
entries. This is simply for convenience of presentation, and
the analysis framework can be easily extended to more
general cases.

Proposition II1.2, which shows the validity of the relaxed
RSC condition, can be easily extended for design matrices
whose rows are not necessarily subgaussian, with a possi-
bly worse sample complexity bound compared to (3). The
interested reader is referred to [6], [14], [19] for the details.

Theorem IV.1 can be easily extended for possibly non-
subgaussian noise. One only needs to replace the Hoeffding-
type inequality in the proof of Proposition V.3 by Bernstein’s
inequality [9] or other appropriate concentration inequalities
for sums of independent r.v.’s. Note that the obtained esti-
mation error bound may be worse, as shown in [8].

Finally, we remark that by Proposition III.2 and the union
bound, Theorem IV.1 also implies an estimation error bound
for the random design case, where the design matrix X
is a random matrix independent of the noise w. Such an
error bound can be useful for compressive sensing, where



the design matrix is not given, but can be chosen by the
practitioner.

Corollary 3. Suppose the rows of the design matrix X are
i.i.d., isotropic, and subgaussian with subgaussian norm o >
0, and X is independent of the noise w. Then there exist
constants c1,ca,cg > 0 such that, if (3) and Assumptions 2
and 3 are satisfied, for any 7 > 0 and S C {1,...,p}, we
have

3 * csvV1+70 [logp .
|6n — B"[]2 < max{ ty, — \/Tw(tn;ﬂ 5

with probability at least 1 — ep™™ — exp(—c202n/a*) (with
respect to the design matrix X and the noise w), where

Y(tn; B*,8) is defined as in (5).

Corollary 2 can be extended for the random design case
in the same manner.
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