Snowmelt as a driver of ecosystem response in water limited mountain forests of the Western U.S.

Recent large-scale changes in snow cover over Western North America associated with climate warming may have widespread impacts on water availability. These changes have potentially varied impacts on water availability as snowmelt influences, soil moisture, streamflow, and evapotranspiration. These changes may significantly alter runoff production and gross primary productivity in mountain forests. Analysis of remotely sensed and in situ soil moisture data indicate strong sensitivities of the timing of peak soil moisture to the timing of snowmelt. Observations of vegetation greenness indicate strong forest and understory growth dependencies associated with snow accumulation, snowmelt, and soil moisture with peak snow water equivalent explaining 40-50% of inter-annual greenness variability in the Rocky Mountains. Examples of these dependencies will be presented based on the 2012 drought in the Southwestern US whereby near record low snow accumulation and record high potential evapotranspiration have resulted in record low forest greening as evident in the 30+ year satellite record. Forest response to aridity in 2012 was exacerbated by forest disturbance with greenness anomalies 90% greater in magnitude in Bark Beetle and Spruce Budworm affected areas versus undisturbed areas and 182% greater in magnitude in areas impacted by fire. Greenness sensitivities to aridity showed seasonal dependencies with record high Normalized Difference Vegetation Index (NDVI) values in April (14% above average) and record low NDVI values in July (7% below average). Gross primary productivity estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) and from the Niwot Ridge, Colorado Ameriflux tower indicate record high April GPP (30% and 90% above average for MODIS and the tower, respectively) and record low July GPP (19% and 30% below average, respectively). These energy, water, ecosystem relationships indicate that the sensitivity of ecosystems to changes in climate is heavily dependent on snowpack processes. Given potential future changes in land cover of mountainous regions, the results of these measurements may identify tipping points regarding hydrologic sensitivities across gradients in physiography.

Presented at:
AGU Fall Meeting, San Francisco, CA, USA, December 14-18, 2015

 Record created 2016-02-01, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)