Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Use of Wavelet-Based Damage-Sensitive Features for Structural Damage Diagnosis Using Strong Motion Data
 
research article

Use of Wavelet-Based Damage-Sensitive Features for Structural Damage Diagnosis Using Strong Motion Data

Young Noh, Hae
•
Krishnan Nair, K.
•
Lignos, Dimitrios  
Show more
2011
Journal of Structural Engineering

This paper introduces three wavelet-based damage-sensitive features (DSFs) extracted from structural responses recorded during earthquakes to diagnose structural damage. Because earthquake excitations are nonstationary, the wavelet transform, which represents data as a weighted sum of time-localized waves, is used to model the structural responses. These DSFs are defined as functions of wavelet energies at particular frequencies and specific times. The first DSF (DSF 1) indicates how the wavelet energy at the original natural frequency of the structure changes as the damage progresses. The second DSF (DSF 2) indicates how much the wavelet energy is spread out in time. The third DSF (DSF 3) reflects how slowly the wavelet energy decays with time. The performance of these DSFs is validated using two sets of shake-table test data. The results show that as the damage extent increases, the DSF 1 value decreases and the DSF 2 and DSF 3 values increase. Thus, these DSFs can be used to diagnose structural damage. The robustness of these DSFs to different input ground motions is also investigated using a set of simulated data. © 2011 American Society of Civil Engineers.

  • Details
  • Metrics
Type
research article
DOI
10.1061/(ASCE)ST.1943-541X.0000385
Author(s)
Young Noh, Hae
Krishnan Nair, K.
Lignos, Dimitrios  
Kiremidjian, Anne S.
Date Issued

2011

Published in
Journal of Structural Engineering
Volume

137

Issue

10

Start page

1215

End page

1228

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
RESSLAB  
Available on Infoscience
February 1, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/122935
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés