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ABSTRACT

We study a phase retrieval problem in the Poisson noise model. Mo-
tivated by the PhaseLift approach, we approximate the maximum-
likelihood estimator by solving a convex program with a nuclear
norm constraint. While the Frank-Wolfe algorithm, together with the
Lanczos method, can efficiently deal with nuclear norm constraints,
our objective function does not have a Lipschitz continuous gradi-
ent, and hence existing convergence guarantees for the Frank-Wolfe
algorithm do not apply. In this paper, we show that the Frank-Wolfe
algorithm works for the Poisson phase retrieval problem, and has a
global convergence rate of O(1/t), where t is the iteration counter.
We provide rigorous theoretical guarantee and illustrating numerical
results.

Index Terms— Phase retrieval, Poisson noise, PhaseLift,
Frank-Wolfe algorithm, non-Lipschitz continuous gradient

1. INTRODUCTION

Phase retrieval is the problem of estimating a complex-valued signal
from intensity measurements, which arises in many applications
such as X-ray crystallography, diffraction imaging, astronomical
imaging, and many others [29].

We focus on the Poisson noise case in this paper. Formally
speaking, we are interested in estimating a signal x\ ∈ Cp, given
a1, . . . , an ∈ Cp and measurement outcomes y1, . . . , yn, modeled
as independent random variables following the Poisson distribution:

P {yi = y} =
exp (−λi)λyi

y!
, y ∈ {0} ∪ N

where λi :=
∣∣〈ai, x\〉∣∣2 for all i. In practice, each yi represents the

number of photons detected by the sensor [15].
The corresponding maximum-likelihood (ML) estimation yields

a non-convex optimization problem which is difficult to solve. A
recent approach to circumvent this computational issue is PhaseLift
[7, 11]. The PhaseLift approach casts the phase retrieval problem
as a low rank matrix recovery problem, and then we can apply any
convex optimization-based estimator, such as the basis pursuit like
estimator [27], the nuclear-norm penalized estimator [10], and the
Lasso like estimator [13].

This work was supported in part by ERC Future Proof, SNF 200021-
146750 and SNF CRSII2-147633.

Following the PhaseLift approach, we show in Section 2 that we
can recover x\ by solving

X̂ ∈ arg min
X

{f(X) : X ∈ X} , (1)

where

f(X) :=

n∑
i=1

{−yi log [Tr (AiX)] + Tr (AiX)} , (2)

X :=
{
X ≥ 0, ‖X‖∗ ≤ c, X ∈ Cp×p

}
. (3)

for some c > 0, Ai := aia
H
i . A rule of thumb for choosing c can be

found in Section 3. We then find an eigenvector associated with the
largest eigenvalue of X̂ as our estimate of x\.

It is easy to check that (1) is a convex optimization problem. Ex-
isting convex optimization tools, however, are not directly applicable
to solving (1) due to two issues.

1. Most existing algorithms, such as [30], are computationally
expensive for nuclear norm constraints, as they require com-
puting the eigenvalue decomposition of a matrix in Cp×p at
each iteration.

2. While Frank-Wolfe-type algorithms can be relatively scalable
for nuclear norm constraints [21], existing theoretical conver-
gence guarantees for these Frank-Wolfe-type algorithms are
not valid for our loss function in (1).

We will address the issues in detail in Section 4.
In this paper, we show that the standard Frank-Wolfe algorithm

works for the optimization problem (1), with a properly chosen pa-
rameter to be explicitly specified in Theorem 5.1. Our theorem guar-
antees that the Frank-Wolfe algorithm converges at the rate O(1/t)
globally, where t is the iteration counter. Numerical experiments
show that the empirical convergence rate can be even faster. The
algorithm shares the same merit of the standard Frank-Wolfe algo-
rithm, in the sense that it is scalable when dealing with a nuclear
norm constraint.

To the best of our knowledge, this is the first theoretical guar-
antee for the Frank-Wolfe algorithm applied to a non-Hölder (and
hence non-Lipschitz) continuous gradient objective function.



2. POISSON PHASE RETRIEVAL BY CONVEX
OPTIMIZATION

For the Poisson noise model, the ML estimator of x\ is given by

x̂ML ∈ arg min
x
{L(x) : x ∈ Cp} (4)

where L is the negative log-likelihood function (under a constant
shift):

L(x) :=

n∑
i=1

[
−yi log

(
|〈ai, x〉|2

)
+ |〈ai, x〉|2

]
.

The function L, unfortunately, is non-convex, and currently there
does not exist a well-guaranteed algorithm for solving the optimiza-
tion problem.

Motivated by the PhaseLift approach [7, 11], we can reformulate
the non-convex optimization problem (4) as follows. Define Ai :=
aia

H
i for all i, and X\ := x\(x\)H . Then we have∣∣∣〈ai, x\〉∣∣∣2 = Tr

(
AiX

\
)

i = 1, . . . , n

where Tr (·) denotes the trace function, and hence we can rewrite
the original optimization problem as

x̂ML ∈ arg min
x

{
f(X) : X = xxH , x ∈ Cp

}
where f is given in (2). This is equivalent to the optimization prob-
lem

X̂ML ∈ arg min
X

{
f(X) : X ≥ 0, rank(X) = 1, X ∈ Cp×p

}
.

Note that given X̂ML, x̂ML can be recovered via the relation X̂ML =
x̂MLx̂

H
ML.

As the variable X is always of rank 1, we can consider the con-
vex relaxation given in (1). We then find an eigenvector associated
with the largest eigenvalue of X̂ as our estimate of x\.

It is easy to verify that (1) is a convex optimization problem.

3. A RULE OF THUMB FOR SETTING THE CONSTRAINT

In the convex optimization formulation (1), we leave one parameter
c unspecified. The ideal setting should be c =

∥∥X\
∥∥
∗ =

∥∥x\∥∥2

2
.

While this setting may not be practically feasible, we need c >∥∥x\∥∥2

2
to ensure that X\ is in the constraint set X .

The following theorem shows that choosing c = (1/n)
∑n
i=1 yi

suffices, if the sampling scheme satisfies an isometry property with
high probability.

Proposition 3.1. Let A ∈ Cn×p, whose i-th row is given by aHi .
Assume that there exists some ε > 0 such that

(1− ε)
∥∥∥x\∥∥∥2

2
≤
∥∥∥∥ 1√

n
Ax\

∥∥∥∥2

2

≤ (1 + ε)
∥∥∥x\∥∥∥2

2
(5)

with probability at least 1− pε. Then we have, for any t > 0,

ȳ :=
1

n

n∑
i=1

yi > (1 + ε)
∥∥∥x\∥∥∥2

2
+ t

with probability at least 1− pε − pt, where

pt := exp

[
−nt

4
log

(
1 +

t

2(1 + ε) ‖x\‖22

)]
.

If x\ is sparse, then the isometry condition (5) can be implied by
the restricted isometry property (RIP) ofA [6, 16, 28]. Even without
sparsity, if n is significantly larger than p, a matrixA of independent
and identically distributed (i.i.d.) subgaussian random variables can
also satisfy (5) with high probability [16].

While the isometry property of the Fourier measurement with a
coded diffraction pattern is unclear currently, we show via numerical
experiments in Section 6 that this rule of thumb works well on both
synthetic and real-world data.

4. REVIEW OF CONVEX OPTIMIZATION TOOLS

We address why several existing convex optimization algorithms are
not applicable to (1) in this section.

We note that (1) is a constrained convex minimization problem
with a smooth loss function, and there are many well-known al-
gorithms for solving such a problem. State-of-the-art choices for
large-scale applications include the proximal gradient-type meth-
ods [1, 2, 12, 23, 25, 30], alternating direction method of multipli-
ers (ADMM) [14], and Frank-Wolfe-type algorithms (a.k.a. condi-
tional gradient methods) [17, 18, 19, 21, 24, 31, 32]. There are also
well-developed MATLAB packages available on the Internet [3, 30].
Those seemingly ready-to-use convex optimization tools, however,
are not desirable for solving our problem (1) for two issues.

The first issue is scalability. When applied to the problem (1),
both proximal gradient-type methods and the ADMM require com-
puting the prox-mapping given by

prox(X) := arg min
S
{ω(S −X) : S ∈ X}

for a given strongly convex “distance generating function” (DGF)
ω. A standard choice of DGF for matrix variables is ω(X) :=
(1/2) ‖X‖2F , where ‖·‖F denotes the Frobenius norm. For a pos-
itive semi-definite matrix X ∈ Cp×p, whose eigenvalue decompo-
sition is X = Udiag(v)UH , we have prox(X) = Udiag(ṽ)UH ,
where ṽ is the Euclidean projection of v onto the standard simplex
in Rp scaled by c. While the prox-mapping is simple to describe,
the eigenvalue decomposition renders the algorithm slow when the
parameter dimension p is large, as its computational complexity is
in general O(p3). Similar issues exist when we choose other DGFs.

Scalability is a major reason why Frank-Wolfe-type algorithms
have been attracting attention in recent years. We summarize the
standard Frank-Wolfe algorithm (when applied to (1)) in Algorithm
1, where (τt)

T
t=1 is a sequence of real numbers in the interval (0, 1]

to be specified.
Here we have a slight abuse of notations. When applied to our

specific problem (1), the variables x0, . . . , xt and∇f(xt) should be
understood as their matrix counterparts X0, . . . , Xt and ∇f(Xt),
respectively.

Algorithm 1 (The standard Frank-Wolfe algorithm)
Choose an arbitrary x0 ∈ X
for t = 0, . . . , T do

Compute vt ∈ arg mins {〈s,∇f(xt)〉 : s ∈ X}
Update xt+1 = (1− τt)xt + τtvt

end for

The only computational bottleneck is in computing vt (or its
matrix counterpart Vt). For the specific constraint set X given in (3)
and any positive semi-definite matrixXt, it can be easily verified that
Vt is a scaled rank-one approximation of∇f(Xt), and hence can be



efficiently computed by the Lanczos method [21]. More precisely,
let ut ∈ Cp be an eigenvector of∇f(Xt) associated with the largest
eigenvalue. We have Vt = c(utu

H
t ).

Unfortunately, the second issue arises: none of the existing the-
oretical convergence guarantees for Frank-Wolfe-type algorithms,
to the best of our knowledge, is valid for the specific loss func-
tion (2). The result in [21] requires a bounded curvature condition;
[17, 18, 19] require the gradient of the objective function to be Lip-
schitz continuous; [24] requires a weaker condition that the gradient
is Hölder continuous; the Frank-Wolfe like algorithm in [31, 32] re-
quires the gradient of the conjugate of the objective function to be
Hölder continuous. All of the conditions mentioned above implicitly
presumes X ⊆ dom(f), but this is not the case for (1), since 0 ∈ X
but 0 /∈ dom(f).

The second issue also exists for proximal gradient-type methods
and the ADMM, as [1, 2, 12, 14, 23, 25] also require the Lipschitz
continuity of the gradient. The only exception is the composite self-
concordant minimization algorithms proposed in [30]—the logarith-
mic function is a typical example of self-concordant functions.

There are some works on noiseless phase retrieval by non-
convex optimization techniques [7, 26], and provide theoretical
convergence guarantees. The convergence guarantees do not extend
to the Poisson noise case.

5. CONVERGENCE GUARANTEE

In this section, we provide convergence guarantee of the standard
Frank-Wolfe method in Algorithm 1 for the prototype constrained
convex optimization optimization problem:

g? := min
X∈C
{g(X) : X ∈ C} (6)

where C is a nuclear norm ball in Rp×p, and

g(X) := Tr(ΨX)−
n∑
i=1

ηi log Tr(ΦiX) (7)

for some Ψ ∈ Rp×p, non-negative integers η1, . . . , ηn, and positive
semi-definite matrices Φ1, . . . ,Φn ∈ Rp.

We start with some definitions. Let ‖·‖ be the spectral norm on
Rp×p, and ‖·‖∗ be the nuclear norm. Define dC as the diameter of
C, i.e.,

dC := max
X,Y
{‖X − Y ‖ : X,Y ∈ C} .

Let dΦ := maxi ‖Φi‖ and dΨ := ‖Ψ‖. Furthermore, we define

µ̄ := max
i,x
{Tr(ΦiX) : 1 ≤ i ≤ n,X ∈ C}

µ := min
i
{Tr(ΦiX0) : 1 ≤ i ≤ n} .

Notice that we need to choose X0 such that µ > 0, due to the pres-
ence of logarithmic functions in g.

Our main theoretical result is the following theorem:

Theorem 5.1. Consider the optimization problem (6). The iterates
(Xt)t≥0 given by Algorithm 1 with

τt :=
2

t+ 3

satisfies

g(Xt)− g? <
8γ2d2

Φd
2
C

t+ 2
+

2dC ‖∇g(X0)‖
µ(t+ 1)(t+ 2)

The quantity γ := max {γ1, γ2, γ3} is a constant independent of t,
where

γ1 :=
2dΨdC
µ

, γ2 := 2
ndη
µ

(
4nµ̄dη
µ

+ 1

)2

,

γ3 :=
64n2µ̄2d2

η

µ3

(
4nµ̄dη
µ

+ 1

)
.

Consequently, we have g(Xt)− g? = O(1/t).

Theorem 5.1 establishes the validity of using the standard Frank-
Wolfe algorithm to solve (1). We note that this theorem is a worst
case guarantee for all loss functions of the form (7). As we will see in
the next section, empirically, both the constant and the convergence
rate can be much better.

Our choice of τt is slightly different from the standard one in
[21, 24], where τt := 2/(t + 2). This is due of technical concerns
in the proof.

As a short sketch, the key idea is to show the boundedness of
‖∇g(Xt+1)−∇g(Xt)‖ for all t, where ‖·‖ denotes the spectral
norm. This bound, by the framework in [24], is sufficient to establish
the convergence guarantee. This is simple if the gradient is Hölder
continuous, since then

‖∇g(Xt+1)−∇g(Xt)‖ ≤ Lν ‖Xt+1 −Xt‖ν∗ ≤ Lνd
ν
C

for some ν ∈ (0, 1] and Lν > 0. For the optimization problem (1)
we consider, this issue can be reduced to the boundedness of

Ct :=

n∑
i=1

ηi
Tr(ΦiXt)

for all t. We complete the proof by showing that Ct is bounded
above by a constant for all t, if we choose τt = 2/(t+ 3).

6. NUMERICAL RESULTS

In this section, we present numerical evidence to assess the con-
vergence behaviour and the scalability of the proposed Frank-Wolfe
algorithm.

Our numerical experiment is based on coded diffraction pattern
measurements with the octonary modulation, which were considered
in [9, 31] for the noiseless model. A similar setup was also consid-
ered also in [8] for the Poisson noise model.

In [8], the MATLAB package TFOCS [3] was used to solve a
convex optimization problem similar to (1). The algorithm, how-
ever, is not guaranteed to converge for the problem under our con-
sideration (cf. Section 4). Therefore, we compare the Frank-Wolfe
algorithm with the proximal gradient method in the Self-Concordant
OPTimization toolbox (SCOPT) [30]. Recall that our loss function
is self-concordant, and hence the algorithms in [30] are applicable.

In our first experiment, we consider the random Gaussian signal
model: We generate a random complex Gaussian vector x\ ∈ Cp
with i.i.d. entries, where the real and the imaginary parts of the each
entry of x\ are independent and sampled from the standard Gaussian
distribution.

We run both algorithms starting from the same Gaussian initial
iterate, sampled from the same distribution as x\. We keep track
of the objective value and the elapsed time over the iterations, and
compute the approximate relative objective residual (|f − f∗|/|f∗|)
as the performance measure, where the actual optimum value f?

is approximated by f∗, the minimum objective value obtained by
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Fig. 1. Convergence behaviour of the algorithms for different data sizes: The three plots on the left correspond to the first experiment. Solid
lines show the average performance over 10 random trials, and the two dashed lines show the best and the worst performances, respectively.
The two plots on the right correspond to the second experiment. Each color (blue, green, red) represents one color channel.

running 200 iterations of the SCOPT and/or 10000 iterations of the
Frank-Wolfe algorithm.

In the second experiment, we test the scalability of the Frank-
Wolfe approach, by recovering a real image as in [9, 31]. We choose
the EPFL campus image of size 1323 × 1984 as the signal to be
measured, which corresponds to a signal dimension p = 2624832.
We apply the Frank-Wolfe algorithm to recover three color channels
separately, and stop the algorithm when 10−2 recovery error (‖x −
x\‖F /‖x\‖F ) is reached.

In both experiments, we set the constraint parameter c to the
mean of the measurements, following the rule of thumb in Section 3,
and we set the number of different modulating waveforms L to 20.

Fig. 2. An EPFL image of size 1323 × 1984, reconstructed by 75
iterations of the Frank-Wolfe algorithm: PSNR = 44.92 dB.

We implement Algorithm 1 in MATLAB and use the built-in
eigs function, which is based on the Lanczos algorithm, with 10−3

relative error tolerance, to perform the minimization step of the
Frank-Wolfe algorithm. In the weighting step, we adapt the efficient
thin singular value decomposition updating method of [5] under
low rank modifications, as explained in [31], in order to tame the
memory growth.

We time our experiments on a computer cluster, and restricting
the computational resource to 8 CPU of 2.40 GHz and 32 GB of
memory space per simulation.

Figure 1 illustrates the convergence behaviour of the algorithms
for different data sizes.

The first three plots on the left correspond to the first experiment.
Solid lines show the average performance over 10 random trials, and
the two dashed lines show the best and the worst instances, respec-
tively. In the first two plots, we observe that the empirical rate of
convergence is about O(t−1.89), which is better than the theoreti-
cally guaranteed rate O(t−1). In the third plot, we show the time
required to reach a predefined accuracy level of 10−5 in terms of the
relative objective residual, for different data sizes.

The last two plots of Figure 1 correspond to the second experi-
ment, which also provides an empirical evidence for the estimation
quality using the constraint parameter c. Each color (blue, green,
red) represents one color channel.

Finally, Figure 2 shows the estimate xt, after 75 iterations of
the Frank-Wolfe method. The PSNR of the reconstructed image is
44.92dB.

Notice that, considering the lifted dimensions p2 in the second
experiment, even the generation of a simple iterateXt would require
approximately 7 TB of memory space, for a single color channel,
when using the prox-mapping-based solver in SCOPT. By avoiding
the computation of the prox-mapping, and adapting the efficient low
rank updates, the Frank-Wolfe algorithm keeps a low memory foot-
print, and hence is more scalable compared to the self-concordant
optimization method in SCOPT.

7. DISCUSSION

While we focus on the Poisson phase retrieval problem in this pa-
per, our main contribution is in verifying the validity of applying
the standard Frank-Wolfe algorithm to optimization problems of the
form (1). Therefore, the application of our result is not restricted
to Poisson phase retrieval. One interesting application is ML es-
timation for quantum state tomography [20], where the parameter
dimension grows exponentially fast with the number of qubits, and
the physical model naturally imposes a nuclear norm constraint.

8. PROOFS

8.1. Proof of Proposition 3.1

Notice that, conditioning on a1, . . . , an, nȳ is a Poisson random
variable with mean

∑n
i=1 λi. By the tail bound for Poisson random

variables [4, 22], conditioning on a1, . . . , an, we have for any t > 0,

P {ȳ − E ȳ > t} ≤ exp

[
−nt

4
log

(
1 +

t

2λ

)]
,



where λ := (1/n)
∑n
i=1 λi.

Recall that λi :=
∣∣〈ai, x\〉∣∣2. By the assumption on A, we have

(1 − δ) ‖x‖22 ≤ λ ≤ (1 + δ) ‖x‖22 with probability at least 1 − pδ .
Moreover, on this event, we have

P
{
ȳ − (1 + δ)

∥∥∥x\∥∥∥2

2
> t

}
≤ P {ȳ − λ > t}

≤ exp

[
−nt

4
log

(
1 +

t

2(1 + δ) ‖x\‖22

)]
.

This proves the theorem.

8.2. Proof of Theorem 5.1

Let (αt)t≥0, α0 6= 0 be a sequence of non-negative real numbers.
We consider step sizes of the form

τt = αt+1/St+1, (8)

where St :=
∑t
k=0 αt. Unless otherwise stated, (Xt)t≥0 refers

to the sequence of iterates generated by Algorithm 1, with the step
size chosen as in (8). Notice that then the convergence rate of the
algorithm can depend on the sequence (αt)t≥0.

By the convexity of C, it is obvious that Xt ∈ C for all t. Due to
the presence of the logarithmic function, we also need to verify that
Xt ∈ dom(g) for all t.

Proposition 8.1. The following hold.

1. Tr(ΦiVt) ≥ 0 for all i and t.

2. If Tr(ΦiX0) > 0, then Tr(ΦiXt) > 0 for all i and t.

Proof. See Section 8.3.

Now we show the boundedness of Ct for all t, as stated in Sec-
tion 5. Recall that Ct :=

∑n
i=1(ηi/Tr(ΦiXt)).

Lemma 8.2. For any T such that 1− 4n(µ̄/µ)dητT > 0, we have
Ct ≤ C, where C is a constant independent of t defined as

C := max

2dΨdC
µ

,C0

T∏
i=0

1

1− τi
,

64n2µ̄2d2
η

µ3
(

1− 4nµ̄dη
µ

τT
)
 .

Proof. See Section 8.4.

The following lemma mimics [24, Lemma 2]. Define

Bt := α0 max {〈∇g(X0), X0 −X〉 : X ∈ X}

+

(
t∑

k=1

α2
k

Sk−1

)
γ,

where γ := C2d2
Φd

2
C .

Lemma 8.3. For any t ≥ 0 and X ∈ X , we have

Stg(Xt) ≤
t∑

k=0

{αk [g(Xk) + 〈∇g(Xk), X −Xk〉]}+Bt

Proof. See Section 8.5.

Set X = X?, a minimizer, in Lemma 8.3, and notice that

g(Xk) + 〈∇g(Xk), X? −Xk〉 ≤ g?

for all k. We immediately obtain a convergence guarantee for any
(at)t≥0.

Corollary 8.4. We have g(Xt)− g? ≤ (Bt/St).

Now we consider the special case where αt = t + 1. As then
St = (t + 1)(t + 2)/2, this choice corresponds to τt = 2/(t + 3)
as in Theorem 5.1.

Proposition 8.5. Choose αt = t+ 1. We have

Bt
St

<
8 (max {γ1, γ2, γ3})2 d2

Φd
2
C

t+ 2
+

2dC ‖∇g(X0)‖
(t+ 1)(t+ 2)

,

where

γ1 :=
2dΨdC
µ

, γ2 := 2
ndη
µ

(
4nµ̄dη
µ

+ 1

)2

,

γ3 :=
64n2µ̄2d2

η

µ3

(
4nµ̄dη
µ

+ 1

)
.

Proof. See Section 8.6.

8.3. Proof of Proposition 8.1

Recall that Vt is always a positive semi-definite matrix of rank 1, as
discussed in Section 4. Since Φi is also positive semi-definite, this
implies Tr(ΦiVt) ≥ 0 for all i and t.

We prove the second claim by induction. The second claim
holds true for t = 0 by assumption. Suppose Tr(ΦiXt) > 0 for
some t ≥ 0 for all i. Because of the assumption that α0 6= 0, we
always have τt < 1 for all t. Then

Tr(ΦiXt+1) = (1− τ)Tr(ΦiXt) + τtTr(ΦiVt)

≥ (1− τ)Tr(ΦiXt) > 0,

where the first inequality is by the first claim.

8.4. Proof of Lemma 8.2

Consider the sequence (Ct)t≥0. Roughly speaking, the idea behind
the proof is to show that there exists some T > 0, such that Ct+1 ≤
Ct for all t ≥ T ; then we can bound Ct from above by CT for
all t ≥ T , a constant independent of t. Notice that, however, the
actual argument in this proof is slightly more delicate (cf. the proof
of Proposition 8.8).

A simple bound on Ct+1 is

Ct+1 =

n∑
i=1

ηi
Tr(ΦiXt+1)

≤ 1

(1− τt)

n∑
i=1

ηi
Tr(ΦiXt)

=
1

1− τt
Ct, (9)

using the fact that Tr(ΦiXt+1) ≥ (1 − τt)Tr(ΦiXt). This yields
the following simple result.

Proposition 8.6. We have Ct ≤ C0

∏t
i=0(1− τt)−1.



However, as 1−τt < 1, the upper bound (9) is not sharp enough
for our purpose.

Notice that for any k, we have

Ct+1 =
∑
i 6=k

ηi
Tr(ΦiXt+1)

+
ηk

Tr(ΦkXt+1)

≤
∑
i6=k

ηi
(1− τt)Tr(ΦiXt)

+
ηk

Tr(ΦkXt+1)

=
Ct

1− τt
− ηk

(1− τt)Tr(ΦkXt)
+

ηk
Tr(ΦkXt+1)

=
Ct

1− τt
− ηkτtTr(ΦkVt)

[(1− τt)Tr(ΦkXt)] Tr(ΦkXt+1)

≤ Ct
1− τt

− ξk (10)

where

ξk :=
τtTr(ΦkVt)

[(1− τt)Tr(ΦkXt)] Tr(ΦkXt+1)
;

the last inequality is due to the fact that either ηk = 0 or ηk ≥ 1 in
the Poisson phase retrieval problem. This bound is sharper than (9),
as ξk is always non-negative.

Proposition 8.7. If Ct > 2µ−1dΨdC , then there exists some k ≤ n
such that

1

Tr(ΦkXt)
≥

µCt

4nµ̄dη
,

Tr(ΦkVt) ≥
µ

4
.

Proof. We prove by contradiction. By the definition of Vt, we have
〈Vt,∇g(Xt)〉 ≤ 〈X0,∇gXt〉, and hence

n∑
i=1

ηi〈Vt,Φi〉
〈Xt,Φi〉

≥
n∑
i=1

(
ηi〈X0,Φi〉
〈Xt,Φi〉

)
+ 〈Ψ, X0 − Vt〉

≥
n∑
i=1

ηi〈X0,Φi〉
〈Xt,Φi〉

− dΨdC

≥ µCt − dΨdC ≥
µCt

2
.

Let Ω be the set of i’s such that 〈Xt,Φi〉−1 ≥ µCt/(4nµ̄dη).
Suppose the claim of the proposition is false, i.e. for all i ∈ Ω,
〈Vt,Φi〉 < µ/4. Then we have

n∑
i=1

ηi〈Vt,Φi〉
〈Xt,Φi〉

=
∑
i∈Ω

ηi〈Vt,Φi〉
〈Xt,Φi〉

+
∑
i/∈Ω

ηi〈Vt,Φi〉
〈Xt,Φi〉

<
µ

4
Ct + ndηµ̄

µCt

4nµ̄dη
=
µCt

2
,

a contradiction. This completes the proof.

Assume Ct > 2µ−1dΨdC . By Proposition 8.7 and (10), we
have

Ct+1

≤ Ct

 1

1− τt
−

τtµ

4

(1− τt) 4nµ̄dη
µ

[
(1− τt) 4nµ̄dη

µCt
+ τt

µ

4

]
 .

By direct calculation, we obtain Ct+1 ≤ Ct, if

1− 4nµ̄dη
µ

τt > 0, (11)

Ct ≥ κt :=
64(1− τt)n2µ̄2d2

η

µ3
(

1− 4nµ̄dη
µ

τt
) .

Proposition 8.8. Assume that Ct > 2µ−1dΨdC . Choose T such
that (11) holds for t = T . Then we have

Ct ≤ max

C0

T∏
i=0

1

1− τi
,

64n2µ̄2d2
η

µ3
(

1− 4nµ̄dη
µ

τT
)
 .

Proof. Since (τt)t≥0 is a decreasing sequence, the inequality (11)
holds for all t ≥ T .

If t ≤ T , we can apply Proposition 8.6, and obtain

Ct ≤ C0

t∏
i=0

1

1− τi
≤ C0

T∏
i=0

1

1− τi
.

Consider the case when t > T . Suppose CT ≥ κT . We have
Ct+1 ≤ Ct ≤ CT , which can be bounded using Proposition 8.6,
until some t∗ such that Ct∗ < κt∗ . But then Ct+1 ≤ (1− τt)−1κt
for all t ≥ t∗. If CT < κT , similarly, we also obtain Ct+1 ≤
(1− τt)−1κt for all t ≥ T . The proposition follows, as

1

1− τt
κt =

64n2µ̄2d2
η

µ3
(

1− 4nµ̄dη
µ

τt
) ≤ 64n2µ̄2d2

η

µ3
(

1− 4nµ̄dη
µ

τT
) .

If Ct ≤ 2µ−1dΨdC , then this is already a constant upper bound
on Ct. This completes the proof.

8.5. Proof of Lemma 8.3

We prove by induction. The claim is obviously correct for t = 0.
Suppose the claim holds for some t ≥ 0. Then we have

t+1∑
k=0

αk [g(Xk) + 〈∇g(Xk), X −Xk〉] +Bt

≥ Stg(Xt) + αk+1 [g(Xt+1) + 〈∇g(Xt+1), X −Xt+1〉]
= St+1g(Xt+1) + St [g(Xt)− g(Xt+1)]

+ 〈∇g(Xt+1), αt+1(X −Xt+1)〉.
≥ St+1g(Xt+1)

+ 〈∇g(Xt+1), αt+1(X −Xt+1) + St(Xt −Xt+1)〉
= St+1g(Xt+1) + αt+1〈∇g(Xt+1), X − Vt〉
≥ St+1g(Xt+1) + αt+1〈∇g(Xt+1)−∇g(Xt), X − Vt〉,

where the second inequality is due to convexity of g, and the third
inequality is due to the fact that

〈∇g(Xt), X − Vt〉 ≥ 0

for any X ∈ C, as Vt minimizes 〈∇g(Xt), ·〉 on C.
To complete the proof, we need to show that

αt+1〈∇g(Xt+1)−∇g(Xt), X − Vt〉 ≥ Bt −Bt+1 = −α
2
t+1

St
γ,



or
〈∇g(Xt+1)−∇g(Xt), X − Vt〉 ≥ −

αt+1

St
γ. (12)

By Hölder’s inequality, we have

|〈∇g(Xt+1)−∇g(Xt), X − Vt〉|
≤ ‖∇g(Xt+1)−∇g(Xt)‖ ‖X − Vt‖∗
≤ ‖∇g(Xt+1)−∇g(Xt)‖ dC,

where ‖·‖ denotes the spectral norm.
Now we bound the quantity ‖∇g(Xt+1)−∇g(Xt)‖. By direct

calculation, we obtain

‖∇g(Xt+1)−∇g(Xt)‖

=

∥∥∥∥∥
n∑
i=1

ηi〈Xt −Xt+1,Φi〉
〈Xt,Φi〉〈Xt+1,Φi〉

Φi

∥∥∥∥∥
≤ dΦ

n∑
i=1

ηi |〈Xt −Xt+1,Φi〉|
〈Xt,Φi〉〈Xt+1,Φi〉

= τtdΦ

n∑
i=1

ηi |〈Xt − Vt,Φi〉|
〈Xt,Φi〉〈Xt+1,Φi〉

≤ τtdΦ

n∑
i=1

ηi ‖Xt − Vt‖∗ ‖Φi‖
〈Xt,Φi〉〈Xt+1,Φi〉

≤ τtd2
ΦdC

n∑
i=1

ηi
〈Xt,Φi〉〈Xt+1,Φi〉

.

Since either ηi = 0 or ηi ≥ 1, we have

‖∇g(Xt+1)−∇g(Xt)‖

≤ τtd2
ΦdC

n∑
i=1

η2
i

〈Xt,Φi〉〈Xt+1,Φi〉

≤ τtd
2
ΦdC

1− τt

n∑
i=1

(
ηi

〈Xt,Φi〉

)2

≤ τt
1− τt

d2
ΦdC

(
n∑
i=1

ηi
〈Xt,Φi〉

)2

≤ αt+1

St
d2

ΦdC

(
n∑
i=1

ηi
〈Xt,Φi〉

)2

.

By Lemma 8.2,

‖∇g(Xt+1)−∇g(Xt)‖ ≤
αt+1

St
d2

ΦdCC
2.

Hence it suffices to choose γ ≥ C2d2
Φd

2
C .

8.6. Proof of Proposition 8.5

By Hölder’s inequality, the first term in the definition of Bt can be
bounded above by ‖∇g(X0)‖ dC . The second term can be bounded
as (

t∑
k=1

α2
k

Sk−1

)
γ = γ

t∑
k=1

(
2 +

2

k

)
≤ 4tγ.

Then we obtain

Bt
St
≤ 8tγ

(t+ 1)(t+ 2)
+

2dC ‖∇g(X0)‖
(t+ 1)(t+ 2)

<
8γ

t+ 2
+

2dC ‖∇g(X0)‖
(t+ 1)(t+ 2)

≤ 8C2d2
Φd

2
C

t+ 2
+

2dC ‖∇g(X0)‖
(t+ 1)(t+ 2)

.

The definition of C in Lemma 8.2 also involves τt. We no-
tice that choosing T = 8n(µ̄/µ)dη − 1 suffices to ensure 1 −
4n(µ̄/µ)dητT ≥ 0. Then we obtain

T∏
k=0

1

1− τk
=

(T + 2)(T + 3)

2

<
(T + 3)2

2
= 2

(
4nµ̄dη
µ

+ 1

)2

.

The quantity C0 can be easily bounded as C0 ≤ nµ−1dη . Finally,
we have

64n2µ̄2d2
η

µ3
(

1− 4nµ̄dη
µ

τT
) =

64n2µ̄2d2
η

µ3

(
4nµ̄dη
µ

+ 1

)
.
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