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To measure enthalpy densities, respectively overall specific heats, frequently the differential 

scanning thermal analysisis (DSC) is applied. Other useful methods are also available, but all 

of them have disadvantages. Therefore, an alternative measurement procedure - the online 

enthalpy measurment method - which was presented six years ago, has now been further im-

proved. The quality of the results can be essentially increased by evaluating the experimental 

data according to a specially developed method. It is analogous to a method of numerical 

mathematics. The new evaluation procedure is presented and applied to measurements of the 

enthalpy density of two different phase change slurries, an ice slurry and a water suspension 

containing micro-encapsulated paraffin wax.  

 

 

 

1. INTRODUCTION 

 

To measure enthalpy densities of phase change materials (PCM) and phase change slurries 

(PCS) usually the differential thermal analysis (DTA) or the differential scanning calorimetry 

(DSC) is applied [1]. Problems occurring, e.g. in the DSC method, are the following: 

 

1) To obtain quasi-steady thermal conditions (approximately constant temperature fields in 

the interior of the sample) by slowly increasing the temperature over the melting range 

(scanning) - because of the very high enthalpy densities of PCM’s and PCS’s - hardly ad-

justable scanning velocities result. 
 

2) The samples are small, with a mass of a few milligramms. Because of nonlinear behaviour 

the results depend on the boundary conditions and therefore also on the sample size. The 

discrepancy in the results, determined with small samples in experimental apparatuses, 

which are mainly applied in chemistry, and large quantities of PCS, utilized in practical 

energy storage systems, can lead to an inappropriate application of the experimentally 

determined results. 

 

Recently another measuring technique to determine the heat of fusion - the T-history method - 

was presented [2]. This method is still under development and the evaluation procedure is 

further improved to increase its accuracy. 

 



2. AN ALTERNATIVE METHOD 

 

In Ref’s [3] and [4] a further alternative method was introduced, which has numerous advan-

tages, but can only be applied to pumpable suspensions (PCS). A small piping circuit contains 

a pump and a heat exchanger. The circuit must be very well insulated. Temperatures are 

measured in the cross sections of the inlet and the outlet of the heat exchanger, which very 

slowly increases the mean temperature of the fluid. This online procedure has the advantage 

that no samples have to be removed from the well-insulated device. An extraction of material 

for calometric purposes is a source of errors, when it is applied to melting materials. The 

related evaluation procedures are described in chapters 4 and 5. 

 

 

 

3. EXPERIMENTAL SET-UP 

 

The experimental set-up, with which the enthalpy density of the ice slurry (presented in chap-

ter 7) had been determined, was published in Ref. [4]. The apparatus, described in detail in 

this chapter, was used to obtain the enthalpy density and specific heat of a PCS with micro-

capsules (see schematic drawing, FIG. 1, and photography, FIG. 2). The PCS is specified in 

detail in chapter 8. 

 

 

 

 

Figure 1: The experimental set-up for the measurements of the enthalpy density and the 

overall specific heat of a PCS. It contains two heat exchangers, one for heating and one for 

cooling.  

MT

1

2
3

4

5

6

7
8



m

9



V



q



q

10

11

1 Storage tank

2 Mixing device

3 Peristaltic pump

4 Bypass

5 Heat exchanger for heating

6 Heating elements

7 Heat exchanger for cooling

8 Mass flow meter

9 Refrigeration unit

10 Bypass

11 Mass flow meter

Temperature

sensor

T

M

T

T

T

T

T

Valve

Direction of flux

Pump

mass flow meter

Electric Motor



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The device with the storage tank (1), the peristaltic pump (2,) and the two heat 

exchangers for heating and cooling (3) - with removed parts of the insulation – are shown. 

  

 

 

 

Figure 3: A cross section of the heat exchangers with an aluminium tube (1) are presented. 

The heating elements are built into the tube and the PCS flows through a concentric slit 

(2). This has the advantage that the total amount of energy transferred to the heating 

elements is absorbed by the PCS. Positions of temperature measurements in the wall with 

thermocouples (3) and  on the surface of the fluid domain (4) are shown. 
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The components of the experimental device are described in FIG. 1. The apparatus is compo-

sed by a storage tank (1), containing 115 liters Phase Change Slurry (PCS), which yields the 

test fluid. A mixing element (2) in the storage tank guarantees a mixing of the suspension, so 

that the small microcapsules are homogeneously distributed throughout the fluid. The 

transport of the fluid is performed by a peristaltic pump (3). It is assumed that this kind of 

pump does not destruct the microcapsules. Escaping adhesive paraffin wax leads to a cluster-

ing of a fraction of capsules. A bypass (4) allows to control the mass flow in the circuit and to 

adapt it to optimal thermal conditions (see also in chapter 5). In this installation two heat 

exchangers were mounted. A first one heats the fluid (5) with electrical heating elements (6), 

and a second was mounted for cooling purposes (7). A cross section of the heat exchanger is 

shown in FIG. 3. A refrigeration device of type Unistat, containing a refrigerant, is responsi-

ble for the cooling of the test suspension. Its small circuit is named secondary circuit. The 

mass flow in the primary circuit is measured with a mass flow meter Endress and Hauser, 

Promass 63 F, and in the secondary circuit with a mass flow meter Endress and Hauser, 

Promag 33. The temperature sensors of type Pt 100 are placed in the fluids at the inlet and 

outlet of each heat exchanger. Small cylindrical mixing elements are placed in front of each 

measuring sensor to obtain an uniform temperature profile in the pipe cross section. 

 

 

 

 

4. THE BASIC AND SIMPLE EVALUATION TECHNIQUE 

 

Analogous to a method of numerical mathematics the temperature interval, in which the ent-

halpy density is measured, is discretisized. The lowest temperature is denoted T0 and the 

highest Tn. In an experiment a temperature interval is defined by 
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with the temperatures measured at the inlet and the outlet of the heat exchanger (see FIG. 4). 

We define 
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The corresponding difference of the enthalpy density at the inlet and outlet is determined with 

the heating power and mass flow measured at temperature Ti 
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The derivative of the enthalpy density at temperature Ti is approximated by the difference 

quotient determined with (1) and (3) 
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This is identical with the specific heat at position Ti (math. and not thermodyn. notation) 
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Modern data acquisition systems allow measurements in very short time intervals. But this 

leads to two kinds of problems: 

1) The temperature intervals iT   and 1 iT
 
will overlap (see FIG. 4b) 

2) The errors of the temperature sensors may lead to large (relative) deviations of the 

temperature differences, in the cases that the temperature increments are small. For 

example, in the heating case some Ti’s may become erraneously zero or even nega-

tive. 

 

Therefore, the first procedure is to sort the results with the following rule 
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The enthalpy density is found by integration 
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An overlapping is avoided by only proceeding forward with the reduced step size  
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a)       b) 

 

 

Figure 4 : The enthalpy density curve of a mixture is a continuous function, which qualita-

tively is shown in a). Some physical quantities introduced in the model are shown in b).
  

A recursive relation is obtained 

T

h

T

T

0

n

        T

T
i

T
i+1

h

h
i+1

h
i

T
 i

T
i+1

T
i T

 i+1

h
 i

h 
i

h
 i+1

h
 i+1

(out)

(in)

(out)

(out)

(in)

(in)

(in)

(out)

'

T
i

'

h
i

'

'



 

i

i

i
iipiiii T

T

h
hTchhhh

i








1       (9a-c)
 

 
by substituting (4) and (5b). The integration in the discrete version is a summation process 
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Equations (3c,e) were applied to derive (10b,c). Equation (10c) is only valid, if the ratio R of 

heat flux to mass flux is a constant.  

 

The difficulty to obtain a good quality in the resulting enthalpy density function is to choose 

an accurate heat and mass flux in the heat exchanger. To optimize the evaluation procedure, in 

the following chapter a theory is presented. 

 

 

 

5. A SOPHISTICATED EVALUATION METHOD 

 

In numerical mathematics it is known that the calculation of a derivative of a function f(x) 

with a simple forward differencing scheme can be performed with an optimal increment xopt 

of the basic variable x, which depends on the function f(x) 5. If f is nonlinear and the incre-

ment x too large, the difference quotient is a bad approximation to the differential quotient. 

Because of this reason small increments seem to be ideal. But different as in pure mathe-

matics, in a numerical analysis a number is always represented by a finite number of digits. 

Therefore, if the increment x is decreasing, at some stage it looses its significance and the re-

sult will becomes also erraneous. From these arguments it can be concluded, that an optimal 

increment size xopt exists. And as in step size regulation procedures the optimal increment is 

dependent on the function f(x). This means it also varies with x. 

 

 

 

Quantity Numerical mathematics Enthalpy measuring method 

   

Function f(x) h(T) 

Variable x T 

Increment x T 

Optimal value xopt Topt 

Error toward small increments Finite number of digits Errors of temp. measurements 

Error toward large increments Nonlinearity of f(x) Nonlinearity of h(T) 

 

 

Table 1: Analogy between the forward differencing scheme to approximate a differential 

quotient in numerical mathematics and the online enthalpy measuring method. 

 



These ideas can be directly applied to optimally evaluate the enthalpy density function. In-

stead of the finiteness of the number of digits, now, the errors of the temperature measure-

ments lead to a loss of significance of small temperature increments (see also Table 1).  

  

Let us assume that the error of a measurement, which is performed with a temperature sensor, 

is denoted by Te . Then a measured temperature increment has the following numerical value 
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The following abbreviation 
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is introduced. The following relation for the error of the overall specific heat is obtained 
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If we assume that the errors of the heat and mass flux measurements are negligible, then no 

error must be taken into consideration in the enthalpy density. With equation (11b) and (12) it 

follows that 
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After a division of the nominator and denominator with the temperature increment it follows  
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With the condition 
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the following relation for the error of the overall specific heat is obtained 
 

   
iT

i

i

i

i

i
i

dT

dh
TO

T

e

T

h
T 






















 




















2

1  .         (17) 

 

The principle law of differential calculus (the law of the mean) states that 
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with  
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From equation (18) it follows that 
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Combining equations (17) and (20a,b), the result is      
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The maximal error of the temperature mesurements is denoted by 
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because of the definition of 


 ie  (equation (12)). Now, with the knowledge of the inequality 

of Schwarz, from (21) the following upper bound is derived 
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Up to first order the enthalpy density increment is 
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Substituted into (23) leads to 
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because the temperature intervals are assumed to be very small, and one can set 
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In FIG. 5, for the PCS which is described in chapter 8, the error  is shown. The function has 

a minimum, which defines the optimal temperature difference optT   for the evaluation of the 

enthalpy density function. It is calculated with the derivative of the error (equation (25)) 
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This condition leads to the optimal value 
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Figure 5: The upper bound for the error of a 

measurement of the specific heat of a PCS at 

25 °C. 

 

In FIG. 5, for the PCS at a temperature 

of 25 °C, an upper bound of the error  
is shown. The maximal error of the 

temperature sensor is assumed to be T = 

0.05 K. In this particular case the opti-

mal value is approximately 



optiT = 

0.44 K. For each single temperature T 

another optimal value results (see chap-

ter 8). 

 

In the pure solid and liquid phases the 

enthalpy function is linear and the se-

cond derivative zero. It is clear that in 

these regions large temperature incre-

ments lead to the best results. This is in 

agreement with the main result (28). In 

the melting region smaller temperature 

increments are required. 

 

 

If the simple evaluation method, with an ideal choice of the mass and heat flow, respectively a 

ratio 

  

iR  constant                              (29a,b) 

 

is applied, then the requirement (28) is approximately fulfilled. In the melting range the heat 

absorption of the material is much higher and the temperature increases slower. This causes de- 
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Figure 6: Flux diagram for the iterative experimental determination of the enthalpy density 

with a loop with index j for an optimization of the results. In this diagram further loops 

with counting index i have been neglected. 

 

sired smaller temperature increments in temperature regions, where the enthalpy density curve 

is steeper (see also chapter 7).  

 

Furthermore, it follows 
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From equation (10b) and (30c,d) one concludes that     
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A serious problem remains, namely that an evaluation of the enthalpy density curve has to be 

performed with an optimal heat to mass flow relation. But to determine the optimal value the 

enthalpy density curve already must be known. Therefore, an iterative process - as shown in 

FIG. 6 - is the solution. One starts with a guess of a ratio R, which is kept constant during the 

first measurement. Then a first approach to the enthalpy curve is obtained. From this the opti-

mal value 



optiT and Riopt are calculated. Now the experiment is repeated, but by adjusting it 

to the calculated function Ropt(T). The process will converge toward a definite enthalpy 

density curve after a low number of experimental iteration processes. 

 

The applied smoothing process is described by the following formula 
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The following procedures were performed for the first and second derivative  
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and with a smoothing operation S as defined in equation (32). 
 

 

7. ENTHALPY DENSITY OF AN ICE SLURRY 

 

In FIG. 7a the experimentally determined enthalpy density curve of a ten mass percent talin/ 

water ice slurry, as it was measured by the EUREKA FIFE group 4, is presented. These 

results are in good agreement with a physical-properties model published in this reference. 
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Figure 7: The enthalpy density of an ice slurry (a) and the ratio R applied by Egolf and 

Frei in 1999 (b). The remaining curves show the optimal functions, evaluated with the pres-

ent theory for three maximal sensor errors (parameter T) in the figure. 



The ratio R of the experiments of Egolf and Frei [4] was evaluated and is shown in FIG. 7b. It 

can be seen that they, after repeating their measurements several times, intuitively increased R 

in the melting domain toward an optimal evaluation as proposed in this article. The best pos-

sible ratio R, as calculated with the present theory, is also shown for comparison. The results 

depend on the choice of the quality of the temperature sensors, respectively on their meas-

uring errors T. For large values condition (16) may be violated. It is seen that Egolf and Frei 

increased the heating power to a slightly too high value at low temperatures (-6.5°C,-5.0°C). 

On the other hand the quantity of approximately 5000 J/kg was a quite good choice above the 

temperature -5.0 °C and the reduction at –4.3 °C was a correct guess. If the experiment had 

been repeated a second time, it should have been performed by following for example one of 

the three R(T) relations, which are proposed in this figure. This then would lead to an even 

better evaluation of the enthalpy density curve. But there remains a problem. At the inflection 

point, at approximately -4.7 °C, the curvature of the enthalpy density curve vanishes. Locally, 

namely at this single temperature, the curve has some properties of linearity. This leads to a 

vanishing upper boundary in the optimization process, and the result for Topt and Ropt is infi-

nite. For  practical applications it is proposed to restrict Ropt at this point. 

 

The evaluation procedure of the results Ropt were the following. First a sorting process, 

similar to equation (6) was applied. To sort the intervals, here the arithmetic mean tempera-

tures were calculated 
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and then the criteria 
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was applied. Because a very high sampling rate was performed, the smoothing was also 

applied with a large number m=100. 

 

 

 

8. ENTHALPY DENSITY OF A SUSPENSION WITH MICROCAPSULES 

 

In an experimental work of Schneider and Sari a PCS with thirty five mass percent microen-

capsulated paraffin wax (octadecane) was experimentally investigated 6. The experimental 

data sets of the enthalpy density were taken as a basis for the following evaluations. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Microencapsulated technical 

grade Paraffin (Octadecane Type TH 

83). The shells are produced with poly-

oxymethylene urea, the water content is 

less than four percent, the content of 

formaldehyd less than 0.01 % and the 

volatile behaviour less than 2%. The 

diameters of the spheres are between 10 

and 35 micrometers. Cyclic tests of 

melting freezing were performed with 

200 000 periods. 



The enthalpy density of the PCS shown in FIG. 8, measured in the two heat exchangers, are 

presented in FIG. 9. The two obtained functions are very similar. The first and second deriva-

tives are shown. They were numerically calculated by an application of the smooting 

procedure according to equations (33a,b) with m=30. FIG. 10 shows the evaluated 

temperature increments T  in the first step, obtained with a constant ratio R. Then after the 

smooting procedure was applied to the first and second derivative of the enthalpy density with 

equation (28) the optimal values Ti’opt were calculated. These calculations were performed 

for three different temperature sensor errors. 

 

a)        b) 

 

-1.5 10
5

-1 10
5

-5 10
4

0

5 10
4

1 10
5

1.5 10
5

22 23 24 25 26 27 28

h (J/kg)

h  (J/kg K)

h  (J/kg K  )

T (°C)

2

Heating

'

''

 

-1.5 10
5

-1 10
5

-5 10
4

0

5 10
4

1 10
5

1.5 10
5

22 23 24 25 26 27 28

h (J/kg)

h  (J/kg K)

h  (J/kg K  )

T (°C)

2

Cooling

'

''

 
 

Figure 9: The enthalpy density function h and its first h’ and second derivative h’’ as a 

function of the temperature are shown. After the first and second derivative were 

numerically calculated a data smooting process was applied. The enthalpy density 

determined with heating (a) and cooling (b) are almost  identical. 
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Figure 10: The temperature increments T’ as obtained with a constant ratio R. Further-

more, the optimal temperature differences T’opt are shown for different sensor errors T, 

which vary between 0.01 K and 0.1 K. These errors are indicated in parentheses. 
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In FIG. 11, by applying equation (30d), 

the ratio Ropt was calculated. It is seen 

that when the errors of the temperature 

sensors are small, the adjusted heat flow 

in a second experiment can be chosen 

smaller. A second run (improvement) of 

the experiment was not performed yet. 

 

 

Figure 11: The first calculations of Ropt 

which defines the heat and mass flow 

ratio as a function of T for a second 

improved enthalpy density measure-

ment. 

 

 

 

 

9. CONCLUSIONS AND OUTLOOK 
 

To measure enthalpy densities the “Online method” has great advantages, e.g. no material 

probes have to be removed from the well-insulated testing device. To obtain results of reason-

able quality in the piping system, a constant heat and mass flow may be chosen. But a basic 

understanding of the procedure is necessary to improve the results. This is given by a small 

theory, which is presented in this article and named sophisticated evaluation method (see 

chapter 5). With simple numerical calculation schemes for differentiation and smoothing of 

data sets of a PCS with microencapsulated paraffin wax, the heat and mass flow ratio R for an 

improved measurement series is determined. In future experiments - with a product which is 

produced by BASF Ludwigshafen - the enthalpy density measurements shall be iteratively re-

peated till convergence occurs. This will lead to the highest possible quality of results obtain-

able with this measuring technique. For the evaluation of the data a Delphi program was 

developed, which performs the derivatives and smooting operations. It is distributed free to 

interested scientists. 
 

 

 

NOMENCLATURE 
 

Standard 

 

cp   specific heat       (J/kg K) 

D   operator for derivation     (K-1)  

e   maximal error       (K) 

f   mathematical function  C 
2     (-) 

h   enthalpy density      (J/kg)  

m    mass flow       (kg/s) 

Q    heat flow       (W) 

R   ratio of heat to mass flow     (J/kg) 

S   smoothing operator      (-) 

T   temperature       (°C) 

Ti   discretisized temperature     (°C) 

x   space co-ordinate downstream    (m) 



Greek 

 

   increment       - 

   error        (J/kg K) 

   intermediate value      (K) 

 

 

Indices 

 

i   discretization index 

in   inlet 

j   number of experiment  

opt   optimal value 

out   oulet 
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