Chapter 14
MD/FE Multiscale Modeling of Contact

Srinivasa Babu Ramisetti, Guillaume Anciaux and Jean-Francois Molinari

Abstract Limitations of single scale approaches to study the complex physics
involved in friction have motivated the development of multiscale models. We review
the state-of-the-art multiscale models that have been developed up to date. These have
been successfully applied to a variety of physical problems, but that were limited,
in most cases, to zero Kelvin studies. We illustrate some of the technical challenges
involved with simulating a frictional sliding problem, which by nature generates a
large amount of heat. These challenges can be overcome by a proper usage of spatial
filters, which we combine to a direct finite-temperature multiscale approach cou-
pling molecular dynamics with finite elements. The basic building block relies on
the proper definition of a scale transfer operator using the least square minimization
and spatial filtering. Then, the restitution force from the generalized Langevin equa-
tion is modified to perform a two-way thermal coupling between the two models.
Numerical examples are shown to illustrate the proposed coupling formulation.

14.1 Introduction

Traditional friction experiments are particularly difficult to comprehend since they
involve a wide variety of physical mechanisms that interact at several length and
time scales. Amongst those mechanisms, one can list for instance long range elastic
deformations, plasticity, third body interactions, lattice dynamics and heat trans-
fer [1]. An additional difficulty comes from their interactions with surface topology.
Experimental, theoretical and numerical studies have shown that surface roughness
is a key determining factor for friction. Roughness being present at all length scales
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[2], developing a fundamental understanding of how microscopic contact clusters
develop under load remains an important question [3, 4].

In the last few decades, with the development of nanotechnologies and nano
science, interfaces and surfaces have started to dominate over the more classical
and thus better understood bulk mechanisms. This challenges our traditional design
tools and in particular continuum mechanics predictions which can be shown to
break down at atomistic size asperities [5]. On the other hand, novel experimental
techniques such as surface force apparatus, atomic force microscopy, friction force
microscopy and quartz-crystal micro-balance are now extensively used to understand
the atomic origins of friction [6, 7]. These techniques provide new insights and give
renewed hope that we will one day have fully predictive tools for friction.

An essential component of those tools will be numerical modeling. Simulations are
not only a useful complement to experiments as they can answer several experimental
unknowns, but they can be used to explore a range of conditions out of reach of
experiments. While numerical contact mechanics models have traditionally relied
on a macroscopic description with empirical or semi-empirical phenomenological
laws (Coulomb friction law, Archard wear law), recent modeling efforts increasingly
attempt to represent the accurate atomistic mechanisms and capture the statistics of
contact forces at small-scale contact asperities. However, a true separation of scales
does not exist in most applications, and thus it is important to couple the small scale
atomic mechanisms with long-range elastic forces and a proper handling of far field
boundary conditions. This can be achieved with the rapid and recent developments
in multiscale methods paralleled by a continuing expansion of computational power.

This chapter will introduce the reader to current methods in multiscale modeling
of contact. An emphasis will be put on sliding contact and thus we narrow the focus
to methods that couple an atomistic domain (Molecular Dynamics, MD, to capture
atomic mechanisms at contacting asperities) to a continuum domain (Finite Ele-
ments, FE, for an accurate representation of long range elastic forces). Incidentally,
MD/FE multi-scaling is also by far the most researched and versatile approach. The
chapter begins by a review of some of the main variants of FE/MD class of direct
(i.e. fully coupled) multiscale model. Furthermore, the important generation of heat
during sliding friction, due to plastic activity at contacting asperities, will be demon-
strated to challenge most current multiscale approaches. This will show the need for
novel coupling strategies capable of handling heat fluxes through interfaces between
distinct scale models. The last section of this chapter will turn to the description and
validation of a novel thermo-mechanical coupling method, that shows great prospect
for contact simulations.

14.2 Modeling Techniques of Contact at Nanoscale

A large amount of numerical studies of contact problems are based on single scale
approaches. Numerical techniques such as Ab-Initio [8], Discrete Element Method
[9, 101, Discrete Dislocation Dynamics [11], Finite Element Method [12, 13] and
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Molecular Dynamics [14—16] have been used to study contact/friction problems.
Two of the most classical techniques are the Finite Element Method [17, 18] and the
Molecular Dynamics [19]. A large literature has had recourse to the Finite Element
Method, which is a computationally efficient strategy, to model contact at the asperity
level [12, 20-22].

Nevertheless, recent Finite Element Method simulations [23] as well as atomistic
studies [5] show that contact mechanics is dominated by nanoscale asperities. Con-
tinuum mechanics is unable to capture the details of force profiles at this scale. In
order to represent efficiently the atomic organization and forces at contact clusters,
one can resort to Molecular Dynamics (MD).

Classical MD is a well-established numerical approach that is used to simulate
materials at nanoscales. According to the Born-Oppenheimer approximation [24,
25], atomic nuclei are treated as point particles, because they are much heavier than
surrounding electrons. Therefore, classical MD consists in driving N particles with
the following Newtonian equation of motion:

d?r; N
miﬁ =fi = > F; (14.1)
i

where m; is the mass of the ith atom, r; is its position and F;; is the force acting
on atom i exerted by atom j. The forces perceived by particles are described by an
inter-particle potential, since the force f; acting on atom i is equal to the gradient of
the total potential energy of the system with respect to the ith atom position:

f; = —V,&(r1,ra,....rN) (14.2)

MD simulations are used to investigate nanoscale mechanisms at the origin of
adhesive and friction forces [7, 14—-16, 26-34]. Besides the refined mechanical
description achieved by MD models, severe limitations should be noted. First, the
stable timestep is usually of the order of a femtosecond which restricts long (>100ns)
simulation runs. Secondly, the number of atoms to materialize a small chunk of matter
is restricted by the computational time [35].

The limitations of purely atomistic or purely continuum simulations, which make
extremely difficult the link of simulations and experiments, have motivated research
in multi-scale simulations that bridge atomistic and continuum modeling [36—44].
In these multiscale approaches, atoms can be used at contacting asperities to capture
in great details contact forces, whereas Finite Elements (FE) are used away from
the interface to accurately represent elastic forces. The main purpose of the coarse
domain is to reduce significantly the number of unknowns to handle.
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14.3 Multiscale Coupling Applied to Contact

Multiscale modeling has captured tremendous attention from different fields such as
materials science, mechanics and high performance computing, which is due to its
potential to perform numerical simulations that were impossible or difficult with the
full atomistic simulations. Thus, during the past decades several multiscale methods
have been developed to investigate material problems.

A broad classification of multiscale approaches is done in [45], which separates
the field in two categories. The first contains hierarchical methods which model the
different scales separately but with information flow between fine and coarse scales.
While this approach avoids the technical difficulty of direct coupling between scales,
which explains the reason for its wide usage, the necessary scale separation assump-
tion can be a too strong approximation for real applications. The second category
considers direct/concurrent multiscale approaches which simulate simultaneously
the different length scale models. Atomistic models are used in critical regions to
capture atomistic processes, while coarser models are used in regions away from
complex behavior. The coherency between the atomistic and the coarser models is
enforced in an interface or overlap region as illustrated on Fig. 14.1.

Concurrent approaches are relevant for sliding friction simulations where complex
deformations occur at the contacting interface, while coarser scales handle long
range elastic interactions and provide boundary conditions. There exist different
concurrent coupling methods such as finite element atomistics method (FEAt) [50],
quasicontinuum method (QC) [46, 47], coupling of length scales (CLS) [36], coupled
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Fig. 14.1 Illustration of coupling interfaces between molecular dynamics and finite elements. a
Typical interface zone in a seamless coupling such as the Quasi-Continuum [46, 47], or the Coupled
Atomistic and Discrete Dislocation [48] methods. b Typical bridging/overlapping zone employed
in methods such as the Bridging Domain [49]. It should be noted that in both cases, the introduction
of coarser elements leads to distinct dispersion relations and spectral decompositions
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atomistic and discrete dislocation (CADD) [48], bridging scale method (BSM) [51]
and bridging domain method (BDM) [49]. This list is not complete and should not
be taken as the only reference. There also exists a good number of review articles,
that one can refer to, which address the different multiscale methods [42, 44] and
their comparison with each other [43]. Nevertheless, in the following section we will
review four methods, which are now classical in the literature.

14.3.1 State of the Art of Multiscale Methods

The Quasicontinuum (QC) method, developed by Tadmor et al. [46], was first used
to investigate two-dimensional quasi-static single crystal deformation problems. In
the atomic/refined region, the energy is computed using interatomic potentials. At
the interface between the atoms and the FE’s, the energy of the interface atoms
is calculated by introducing neighboring atoms (known as pad atoms) which are
deformed accordingly to interpolated FE displacement fields. In the FE region, the
strain energy density W is computed from the atomistic potential using the Cauchy-
Born rule [46]. The total energy of the coupled system is written as:

E = Z E; + z WeE, (14.3)

ieA ec2C

where E; is the energy of atom i, E, is the energy of element e, and w, is a weighting
function to correct an energy unbalance. Indeed, the last free atoms at the interface
and the first FE (pad atoms/nodes) bear an overlapped contribution to the total energy
which is corrected with the weight w,.

During the recent years, various improved versions of the QC method, including
the treatment of multigrains and three-dimensional deformation problems, have been
developed [37, 47, 52-54]. Several finite temperature extensions of the QC method
exists [55-59]. For instance, the hot-QC method [56, 60] uses a temperature depen-
dent Hamiltonian, based on the idea of the potential of mean force, to approximate
the contributions of missing atoms in the continuum region.

The Coupled Atomistic and Discrete Dislocation (CADD) method, developed
by Shilkrot et al. [48, 61], allows the direct coupling of an atomistic region with a
continuum region containing dislocations. The key feature of this method is that it can
pass dislocations from the atomistic region to a continuum region without confining
the plastic deformation to the atomistic region in contrast to the QC method. The
dislocations passed into the continuum region are represented using the discrete
dislocation method [62].

As described in [48, 61], the solution to the boundary value problem is obtained
by dividing it into three problems: an infinite elastic continuum with dislocations, a
linear elastic continuum without any defects and a full atomistic region. The solution
to the first problem is obtained by superposing the analytical elastic fields due to the
network of dislocations. The stress, strain and displacement contributions from the



294 S.B. Ramisetti et al.

discrete dislocations are denoted as o, &, U respectively. The solution to the second
problem is found by using corrective tractions ¢ and displacements u. The corrective
strain field is denoted by &. And the third problem consisting of the atomistic region
is solved by using interatomic potentials. The atoms near the continuum-atomistic
interface are treated in the same way as in the QC method.

The total energy of the boundary value problem is expressed as:

1
E:E/(&+6):(é+é)dV—/t0~udA+EA—fA-uA (14.4)

Q¢ 00¢

where tg is the prescribed traction, u = @ + 1 is the total displacement, E 4 is the
atomistic energy, f4 refers to the atomic forces along the traction boundary and uy
refers to the atomic displacements.

The detection of the dislocations nucleated in the atomistic region and their passing
to the continuum region is accomplished in two steps: (i) In 2D, a detection band of
triangular elements inside region £24 and close to the interface is defined to monitor
the Lagrangian finite strain and to allow the identification of dislocations based on
their recognizable slip strains within the crystal. (ii) After the detection step, the
dislocation is passed to the continuum region by adding the displacement fields
associated with a dislocation dipole. This shifts the dislocation core along its slip
plane from its location in the detection band to a location across the interface in the
continuum region.

Currently, the approach is only validated in two-dimensional case. Extension of
CADD to finite temperature simulations can be found in [63, 64], where the stadium
damping method with a Langevin based thermostat is used to maintain a constant
temperature of the system. However, it is not yet suitable to treat non-isothermal
processes. Extension to three-dimensional systems is the subject of active research.

The Bridging Domain method (BDM) uses the concepts of the Arlequin
approach [65-68] which can intermix energies of several continuum mechanical
models and constrain consistent displacements within an overlaping zone (also
termed as the bridging domain). Xiao et al. applied this strategy for coupling contin-
uum models with molecular dynamics (MD) [49, 69].

The total Hamiltonian of the system is considered to be equal to the sum of the
weighted Hamiltonians of both the atomistic and continuum models:

H=(1-a)E*+aE" (14.5)

where E4 and E€ are the atomic and continuum Hamiltonian contributions and
where « is an arbitrary weighting function. The displacement continuity is enforced
between the two models in the overlap region (£2) by constraining the degrees of
freedom using the Lagrangian multiplier method. The constraints on the velocities
are expressed as:
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g=Ni—-d=0 (14.6)

where g is the vector containing per atom constraints, u is the FE nodal displacement,
d is the atomic displacement and N is the matrix containing FE shape functions
evaluated at all initial atomic positions. The governing equations for degrees of
freedom inside the overlap region are formulated using the Lagrangian multiplier
method. The Lagrange multipliers A (L multipliers, with L the number of coupled
atoms) are obtained by solving the linear system of equations

H)=g* (14.7)

where g* is the constraint vector before correction and H is the L x L constraint
matrix defined as

H=N"M"'N-m! (14.8)

where M = oM with M is a coarse scale lumped mass matrix and where m = om
with m is a diagonal atomic mass matrix. Finally, the discrete governing equations
of the two models are expressed as follows:
Moo _ _ T
I\A/[‘l‘l = af(u) — AN (14.9)
md = (1 —a)f(d) — A

where f(d) and f(u) are the atomic and nodal forces. Details concerning the deriva-
tion of the above equations are presented in [49, 69, 70]. The arbitrary weighting
is remarkably suited to dissipate spurious wave reflections [49, 70] at small temper-
atures (~ 0K) and material problems such as fracture were successfully simulated
using this method [49]. However, the application of this method to simulate finite
temperature problems is difficult [71].

The Bridging Scale method (BSM) was developed by Wagner and Liu to con-
currently couple atomistic and continuum models [51]. The idea of this method is to
decompose the total displacement field u(x) into coarse and fine scales as:

u(x) = u(x) +u'(x) (14.10)

The coarse scale displacement field in matrix form is defined as:
u=Nd (14.11)
where N is the matrix containing FE shape functions evaluated at all initial atomic
positions and d is the FE nodal displacements. The fine scale displacement field is

defined as the projection of MD displacements q on the FE basis functions subtracted
from the total solution q and is expressed as:
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u =q—Pq (14.12)

where P is a projection matrix defined as:
P =NM 'N"M, (14.13)

Here M 4 is a diagonal atomic mass matrix and M = NTM4N is a coarse scale mass
matrix.

The final equations of motion for the MD and FE models are derived using the
Lagrangian form. More details about the derivation of these equations can be found
in [72]. The key equations are:

Mg =f(q) + f"? + R/ (14.14a)
Md =N"f(u) (14.14b)

where £ is an impedance force and R/ is a random force. The impedance force
is defined as:

t

=y Ot —1) x (qj(r) — (1) — Rj?(r)) dr  (14.15)
jeneighbors(i) 0

where ®;(t —7) and R;l () are a time history kernel and a random displacement term

respectively. The purpose of the random force R/ is to restitute the energy dissipated
by the impedance force and thus ensuring energy conservation.

The important point to note in this method is that the impedance force has the role
of dissipating the short wavelengths that cannot be represented by the FE mesh. This
energy dissipation is based on the generalized Langevin equation (GLE) [73-75].
One limitation is that the time history kernel is usually derived for a given lattice
structure which restricts their usage to crystalline materials.

Several other concurrent atomistic-continuum coupled approaches have been
developed using the idea of GLE to dissipate short wavelengths that are reflected at
the MD-FE interface. However, these approaches differ in the way the time history
kernel function @ is derived. For instance, Cai et al. [76] computed & from sev-
eral MD simulations. E and Huang [77, 78] have computed analytically the kernel
coefficients by minimizing the reflection coefficients at each wavenumber. Wagner
et al. [79] have computed & using the Laplace and the Fourier transforms. Most of
these approaches assume the temperature of the coarse scale to be zero to ignore the
random force term R/ and thus are not suitable for thermal transfer applications.
A few methods based on the idea of GLE also exists that are suitable for study-
ing problems with non-equilibrium processes. For instance, Karpov et al. [80] have
developed a concurrent atomistic continuum model by using analytical expressions
for ® and including a random force term to allow the passage of thermal energy
between the atomistic and continuum regions. Mathew et al. [81] have used a time
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dependent friction force and a weighted random force to treat thermal fluxes across
the atomistic-continuum interface. The common feature in all these methods is the
time history kernel function, which is built using different techniques. Recently, a
parametric study focused on the influence of time and spatial kernels on the dynamics
of one-dimensional MD systems was conducted [82] and revealed that spatial filters
present interesting features, when compared to time filters, which can be exploited
as will be demonstrated in a later section.

14.3.2 Sliding Friction and Heat Generation

Sliding friction between rough surfaces generates intense heat fluxes because of the
large plastic deformations. This can put to the test any direct multiscale method [83].
For instance, when rough surfaces carved from two cubic-like copper crystals at
zero Kelvin with self-affine fractal [84] generated with a Voss [85, 86] algorithm (as
presented in Fig. 14.2) are pressed against each other and sled, a temperature rise is
to be expected. In order to demonstrate the artificial impact of the Bridging Domain
algorithm on sliding contact dynamics, three different models are compared:

e Full MD model (the continuum zone is replaced by atoms and serves as a reference)
e Coupled model (as described in Fig. 14.2)
e Reduced MD model (the continuum zone is eliminated).

To quantify the effect of the coupling with regards to phonon emission, the kinetic
energy of the top zone of the deformable body is measured. This zone contains the
energy close to the asperities, without any contribution of the overlap region atoms.

These measures are presented in Fig. 14.3. The coupled approach always leads to a
minimal residual kinetic energy, while the reduced case stores a lot more vibrational
energy in the contacting zone. It is noteworthy that the coupling scheme fails in
recovering the full MD behavior: the kinetic energy profile remains almost flat and
at a low value.

Interestingly, most work in the literature has sought to prevent wave reflections
without necessarily considering that the damping of the problematic (high frequency)
waves could impact the uncoupled zones. Indeed, the Bridging Domain method, when
handling properly the undesired high frequency waves incoming from the molecular
domain, is damping a part of the kinetic energy in an ad hoc way [70, 87]. Here,
with an initial state of zero Kelvin, and with asperities of various sizes and shapes,
colliding and scratching at contact points, thermal vibrations are being generated
at an important rate. The resulting heat increase is an integral part of the contact
problem and for some problems should not be damped entirely by the coupling zone.
Thus, the sliding friction problem calls for a thermo-mechanical multiscale model
with the potential to address heat fluxes.
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14.4 Finite Temperature Coupling

This section begins with the description of a novel multiscale model coupling MD and
FE. A scale transfer operator using a spatial filter is described. Then the coupling
formulation, which uses GLE to damp selective frequency modes in the coupling
region, is presented. Later on, the thermal coupling formulation to treat thermal
fluxes across the MD-FE interface is introduced.

In order to illustrate the geometry of the coupling zone needed for this strategy, a
schematic is presented in Fig. 14.4. 24 and £2€ are used to refer to the pure atomistic
and the pure continuum regions, while £2¢) and 24(©) represent the coupling and
boundary regions respectively [49, 88].

While the dynamics of an atom in region £24 follow the classical Newtonian equa-
tion, the mechanical and thermal fields within the continuum model are represented
with two different partial differential equations: the evolution of the displacement
field is described using the equations of motion combined with a linear elastic law,
while Fourier’s thermal conductivity equations are called upon to represent the tem-
perature field. It should be noted that the heat propagation within the system is
assumed to be only due to conduction without taking into account convection and
radiation. The dynamics inside the coupling £24(© and the boundary £2¢4) regions,
where both atoms and finite elements coexist, need three components such as a scale
transfer operator, a selective thermostat and a heat balance equation, which are
presented in the following sections.

14.4.1 Scale Transfer Operator

In the boundary region £24(©) the atomic displacements and velocities are simply
computed from the interpolated FE fields, whereas the coupling is more complex
when information has to pass from the fine to the coarse scale. For this operation,
a scale transfer operator is used to define the transmission of information, such as

Fig. 14.4 Illustration of the Atomic zone )4
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displacement and velocity, from one length scale to another without corrupting the
system dynamics in either of the scales.

For example, Fackeldey et al. [89, 90] have developed an atomistic-continuum
coupled approach using a weighted least square projection as a scale transfer operator
to decompose the atomic displacements into low and high frequency components.
They provided numerical examples demonstrating the seamless transmission of dis-
placements from MD to FE at zero Kelvin. However, it can be shown that the least
square projection has poor filtering properties [91].

In order to improve this scale transfer operator, a least-square projection can be
combined [91] with a spatial filter to define an improved scale transfer operator. The
continuum displacement U; of any node J in the coupling region £2¢™ is then
formally obtained with:

Up=2 AL D i Ni(X (14.16)
1

ieQC@)

with Aj ;= Z Ni(Xi)Ny(X;)

ieQC@)

where A; ; is the least square projection matrix [40], N; is the shape function
described by alinear polynomial for node I and #; is the spatially filtered displacement
of any atom i inside the £2¢4) region defined by:

= D> v(Xi—XjDu; (14.17)
Jj €eneighbors(i)

where y is a spatial filter (memory kernel) function, which can be chosen so that the
finite elements receive only waves for which they have enough degrees of freedom
to represent. The continuum velocity field is defined in a similar manner. The scale
transfer operator hence defined allows to transmit precisely the band of frequencies
that the mesh can handle with its coarser representation. The waves not mechani-
cally transmitted have to be transformed into thermal energy which would allow the
coupling of heat fluxes. This is the role of the selective thermostat presented below.

14.4.2 Selective Thermostat

The presented method stands on the generalized Langevin equation (GLE) [73-75].
The dynamics of atoms inside the coupling region is described using the GLE which
incorporates spatial filters as expressed by the following equations:

my— —ve — V=Y e (14.18)
o
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where m is the mass, v is the velocity, v is the acceleration, ¥ is the spatially filtered
velocity and @ is the potential function. The second term on the right side of equation
(14.18) is the frictional force, « is a damping parameter to decide the strength of
the frictional force, and R is a random or fluctuating force which is correlated in
both space and time. The purpose of the random force is to balance both the energy
dissipation of the friction force and the heat exchange with the continuum model. For
instance the random force R(x, t) can be derived analytically for a one-dimensional
mono-atomic lattice:

R(x,1) = é,/ zmjli/BT Zcos(a)(k)t +kx + ¢k)) (14.19)
k

where k g is the Boltzmann constant, T is the desired temperature, N is the number of
restitution modes, ¢ (k) is a random phase sampled in the interval [0, 27 ] and w (k)
is the angular frequency associated with the wave vector &, taken from the dispersion
relation. In the restitution, a temperature 7 has to be defined.

In the case of thermal equilibrium, the temperature 7 can be taken as a constant.
However, in the non-equilibrium case, this temperature is given by the continuum
model and ensures that the continuum can exchange heat with the atomic region. As
an additional component, the energy balance presented in next section allows heat
fluxes to be introduced in the continuum.

14.4.3 Heat Balance Equation

The governing equation used to describe the thermal transfer assuming Fourier’s law
(q = —« VT) within the finite-element model is given by:

pC, T =V -&VT)+ 0 (14.20)

where p is the mass density, C, is the specific heat capacity, 7" is the temperature
rate, « is the thermal conductivity, T is the temperature and Q is the volumetric heat
source per unit time. Classically [17, 18], the finite element resolution of (14.20)
leads to:

CiyT;+KiyTy = 0; (14.21)

with C the capacity matrix, K the conductivity matrix and Q the heat rate associated
with node I which is described as:

Q) = / Ny Qd¢ (14.22)

0CA)
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where Ny is the shape function associated with node /. The balance of the thermal
energy inside the 2¢) region is achieved from the difference between the heat rate
of the atomistic and the continuum models as described by:

oW = D @ —afHstr—x) (14.23)

ieQCA)

where §(x — x;) is the Dirac delta function equal to infinity at the position x; of an
atom i and zero elsewhere, ti and qiR are the per atom heat rate due to the friction
and random forces respectively, which are expressed as:

1 N
qf = _m v—Dvi  qf =Riv (14.24)
Thus, the heat rate QO associated with node / is expressed as:

0/= [ mioia®= ¥ MG -af)  a429)

e ieC(A)

Because of the shape functions scope, only interface nodes will receive a flux coming
from the MD model, which turns out to be a boundary condition for the FE region.

14.5 Validation and Application

In this section, three different numerical examples illustrate the method. In the first
example, the method is validated by passing a mechanical wave pulse while main-
taining the system at a constant finite temperature. The second example includes a
mechanical wave propagation from the FE region into the MD region in addition to
transient heat propagation. Finally, the case of a dynamic contact is shown.

In what follows, the material is a FCC aluminum crystal thin sheet which has a
hexagonal lattice corresponding to the (111) plane of bulk aluminum. We resort to
a simple harmonic potential with first neighbor interactions to prevent any plastic
deformation. For the continuum model, the equations of motion described by an
elastic orthotropic material law and the Fourier’s heat conduction law are used to
describe mechanical and thermal fields respectively. The parameters for both MD
and FE models are found in Tables 14.1 and 14.2.

As previously stated, the dispersion relation between the angular frequency
w(ky, ky, b) and the wave vector K is called upon to construct the random force
R(x, t). In the case of the considered two-dimensional hexagonal lattice it follows:
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Table 14.1 Parameters of the

Parameters Value
MD model
m 26.98 g.mol ™!
€ 1.36 Kcal.mol ™!
o 2.54 A
70 2.016+v/2 A
r1 \/gro A
Teur 3.89 A
Table 14.2 Parameters of the Parameters Value
FE model -
P 3.83 g.mol~!. A2
E1l 9.78 Kcal.mol"1.A—3
E2 9.78 Kcal.mol~1.A—3
v12 0.33
G12 3.67 Kcal.mol1.A—3
C, 1.47¢~* Kcal.g=' . K~!
K 1.23¢=3 Kcal.mol ' A~! fs~1.K~!

c
@? (ky, ky, b) = — [3 — cos(ky) — 2¢
m

+ (=D | (cos (ke) — £)* + 3sin® (%x) sin2(“/§ky ):|

(14.26)

ke V3ky ) .
where ¢ = cos > cos 2 , b is the acoustic branch number, k = (k,, ky)

is the wave vector and m is the mass of each atom.

14.5.1 Mechanical Wave Propagation at Finite Temperature

The coupled model is shown in Figure 14.5. The dimensions of the MD region (£24)

is400rg x 40r, where rq is the inter-atomic spacing and r; = ‘/Tgro. Two FE meshes
each with 3520 linear triangular elements with a characteristic size h = 5.0rg, as
shown in Fig. 14.5, are used on either side of the MD region. Periodic boundary
conditions are imposed along the y-direction for both models. Along the x-direction
the size of the coupling region £2¢“) is 20ro. Each coupling region contains 4 and 16
finite elements along x and y directions respectively. A boundary region with 8 finite

elements along x direction on both ends of 24 is used. For the initial condition, a
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C=Q%W): 207 x 401, B = QA©): 40rq x 40r,
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Fig. 14.5 Tllustration of the coupled model. A uniform FE mesh with linear triangle elements is
used on either side of the MD region

displacementmagnitude( A)
1

FullMD

Fig. 14.6 Comparison of the displacement field in the coupled model (Left) with the full MD
simulation (Right) at time ¢t = 4, 8, 12, 16 and 20 ps. The temperature of the system is maintained
at 50 K. The overlap region in the coupled model is indicated using the triangle marks in red color.
For the sake of visualization, only 50 % of the complete mesh on either side of the MD region is
shown

low frequency wave packet is introduced in the region £24, while the high frequency
modes in the MD region are only due to the injected temperature which is set to 50 K.
The energy dissipated in the coupling region due to the damping is balanced by the
random force.

The displacement profiles extracted from the coupled simulation with those
obtained from the full MD results are compared in Fig. 14.6 and show a good agree-
ment.

As expected the small wavelengths are damped and restituted in the coupling
region with the help of a spatial filter. This ensures that the energy of the entire model,
i.e. the sum of kinetic, potential and thermal energies, remains constant during the
entire simulation [91].

14.5.2 Thermo-Mechanical Wave Propagation
In this example, a transient heat problem superposed with an impulse wave is con-

sidered to validate the coupling approach in the case of non-equilibrium processes.
Figure 14.7, shows the MD-FE coupled model used in this example.
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C = Q%M@: 200 x 40r; B = QD) 407y x 40r,

200rq 80070

o

oo
CB

Ed
T (thermostat)

Fig. 14.7 Setup of the coupled model with a thermostat at 200 K imposed on a group of atoms on
the left side of the MD region

displacementmagnitude( A)
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Fig. 14.8 Comparison of the displacement field in the coupled model (Left) with the full MD
simulation (Right) at time ¢t = 0, 10, 20, 30 and 40 ps. The overlap region in the coupled model is
indicated using the triangle marks in red color

The size of the MD region 24 is 200rg x 40ry, composed of 16,000 atoms.
Similarly to the previous example, triangular finite elements (h = 5r) are used to
represent the coarse scale model. Furthermore, the coupling and boundary regions
share similar sizes with the previous example.

An initial temperature of 10K is imposed everywhere in the model. Then, a
Langevin thermostat of temperature 200K is applied on a group of 3200 atoms on
the left side of the MD region. The thermostat creates a thermal flux within the entire
system which initiates transient heat propagation from the MD to FE region. At
the same time, an impulse wave is imposed on the right side of the FE region. The
dynamics of the entire system is allowed to evolve for a total time of 50 ps.

The snapshots of the displacement profile of the coupled MD-FE model and of
the full MD simulations are shown in Fig. 14.8. A smooth transition of the large
wavelength from the FE to the MD region can be observed. In addition to the dis-
placements, the time averaged temperature profiles for both the coupled and the full
MD models at time ¢+ = 50ps are shown in Fig. 14.9a. Also, the total energy of the
coupled model is compared with the full MD simulation and found to be in good
agreement (see Fig. 14.9b).
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Fig.14.9 a Comparison of the temperature profile of the coupled model with the full MD simulation
at time ¢ = 50 ps. The overlap region is indicated with a light gray background. b Comparison of
the total energy of the coupled model with the full MD simulation. The total energy increases with
time as it is a non-equilibrium process

Fig. 14.10 Tllustration of the Indent 1+
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14.5.3 Application to Dynamic Contact

Once again, the aluminum material from the previous two examples is considered to
model the deformable substrate, which is subjected to an impact by a rigid circular
indenter of radius 50r¢. The schematic of the coupled MD-FE model is shown in
Fig.14.10. An initial temperature of 7 = 20K is set within the MD-FE model.
After reaching thermal equilibrium, the indenter impacts the substrate at a velocity
of 5A.ps!.

The displacement profile of the MD-FE model is extracted at various timesteps
and compared with the displacement profile of a full MD model as shown in
Fig. 14.11. Again, a good agreement with the reference full MD is achieved. During
the impact, the indenter tip creates waves propagating into the substrate. Waves with
large wavelengths propagate through the FE mesh, while high frequency waves that
cannot be represented by the FE mesh are transmitted as a thermal flux. Thus, the
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displacement magnitude (A)

“0 'i'ﬁz

Fig. 14.11 Snapshots of the displacement field in the coupled model (Left) and the full MD model
(Right) at time t = 6, 9 and 12ps. The overlap region in the coupled model is shown using a
transparent rectangle
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Fig. 14.12 a Total energy comparison between the coupled model and the full MD simulation and
b Temperature in the MD region (£24) in the coupled and the full MD models

total energy of the coupled model is found to be in good match with the full atomistic
solution as shown in Fig. 14.12a. The atomistic temperature in region (£24) is also
measured for the coupled and the full MD models, which is found to have a reason-
able agreement as shown in Fig. 14.12b. Thus, the proposed coupling approach can
be applied to a dynamic contact problem and produce satisfactory results.

14.6 Conclusion

This chapter discussed modeling techniques of contact at the nanoscale with a spe-
cial emphasis on molecular dynamics. The limitations of single scale approaches
motivated the development of multiscale methods. A review on the state-of-the-art
multiscale methods was presented, which was followed by a discussion brought by
a rough-on-rough sliding problem simulated using a now classical coupling method
(Bridging Domain method). The influence of the coupling scheme was quantified
by measuring the kinetic energy of atoms close to the asperities and was compared
with a full MD and a reduced MD models. The results show clearly that an ad-hoc
damping of high frequency waves changes the dynamics of sliding friction. This is
an important limitation of most current multiscale approaches, and prevents their
wide usage in sliding contact simulations, in which one expects large thermal fluxes
to be generated.

Consequently, an alternative multiscale approach was proposed to concurrently
couple molecular dynamics and a finite element model at finite temperatures. The pro-
posed approach is based on the generalized Langevin equation and resorts to
spatial filters. The thermal coupling that handles the heat flux between the atomistic
and continuum models was presented. The fundamental idea is that the high fre-
quency waves that are not represented by the finite elements are damped by the fric-
tion force through spatial filtering. The balance with the damped energy is performed
through the random force. Finally, we presented two-dimensional numerical exam-
ples: i) wave propagation at constant finite temperature, ii) thermo-mechanical wave



14 MD/FE Multiscale Modeling of Contact 309

propagation, and iii) a dynamic contact problem. In all cases the coupled simulations
were compared with full MD simulations and found to be in good agreement. While
finite-temperature multiscale approaches show great prospect for friction simula-
tions, it is important to emphasize that more research is needed to improve the
computing performance (especially in three dimensions), and to explore the thermo-
mechanical mechanisms contributing to friction within this new framework.
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