
Globally Optimal Cell Tracking using Integer Programming

Engin Türetken∗

CSEM, Switzerland
engin.tueretken@alumni.epfl.ch

Xinchao Wang∗

CVLab, EPFL, Switzerland
xinchao.wang@epfl.ch

Carlos J. Becker
CVLab, EPFL, Switzerland
carlos.becker@epfl.ch

Carsten Haubold
HCI, University of Heidelberg, Germany
carsten.haubold@iwr.uni-heidelberg.de

Pascal Fua
CVLab, EPFL, Switzerland

pascal.fua@epfl.ch

Abstract

We propose a novel approach to automatically track-
ing cell populations in time-lapse images. To account for
cell occlusions and overlaps, we introduce a robust method
that generates an over-complete set of competing detec-
tion hypotheses. We then perform detection and tracking
simultaneously on these hypotheses by solving to optimal-
ity an integer program with only one type of flow variables.
This eliminates the need for heuristics to handle missed de-
tections due to occlusions and complex morphology. We
demonstrate the effectiveness of our approach on a range
of challenging sequences consisting of clumped cells and
show that it outperforms state-of-the-art techniques.

1. Introduction

Detecting and tracking cells over time is key to un-
derstanding cellular processes including division (mitosis),
migration, and death (apoptosis). Modern microscopes
produce vast image streams making manual tracking te-
dious and impractical. High-throughput automated sys-
tems are therefore increasingly in demand and several cell
tracking competitions have recently been organized to at-
tract Computer Vision researchers’ interest and speed up
progress [28, 38]. These competitions have shown that
state-of-the-art methods are still error-prone due to occlu-
sions, imaging noise, and complex cell morphology.

Cell tracking is an instance of the more generic multi-
target tracking problem with the additional difficulties that
cells, unlike for example pedestrians, can either divide or
wither away and disappear in mid-sequence. In its generic
form, the problem is often formulated as a two-step process
that involves first detecting potential objects in individual
frames and then linking these detections into complete tra-

∗ The authors contributed equally.

jectories. This approach is attractive because spurious de-
tections, such as false positives due to imaging noise and
artifacts, can be eliminated by imposing temporal consis-
tency across many frames, which is more difficult to do in
recursive approaches.

Many of the most successful algorithms to both peo-
ple [12, 3, 41, 40] and cell tracking [24, 20, 36] follow
this two-step approach by first running an object detector
on each frame independently and building a graph whose
nodes are the detections and edges connect pairs of them.
They then find a subgraph that represents object trajectories
by considering the whole graph at once. However, to han-
dle missed detections, these methods often rely on heuris-
tic procedures that offer no guarantee of optimality. This
is of particular concern for cell tracking because detections
are often unreliable due to the complex morphology of cell
populations. For example, in Fig. 1, groups of cells that
appear clumped together in some frames can only be told
apart when considering the sequence as a whole.

The approach proposed in [35] addresses this issue by
introducing a factor graph for joint cell segmentation and
tracking. Inference is then achieved by solving a rela-
tively complex integer program that involves several types
of variables and constraints. The algorithm starts from a
watershed-based oversegmentation that is sensitive to inac-
curacies in pixel probability estimates. It is therefore sub-
ject to errors when the cells are clumped together and hard
to distinguish from each other.

In this paper, we formulate joint detection and tracking
in terms of constrained Bayesian inference. This lets us
cast the problem as an integer program expressed in terms
of a single type of flow variables. To explicitly account
for the often ambiguous output of cell detectors, we de-
vised a robust ellipse-fitting algorithm to generate multiple
and potentially conflicting initial hypotheses from the out-
put of a foreground-background segmentation algorithm,
as depicted by Fig. 2. We then model critical cell events,

1

Source Images Segmentation CT [36] JST [35] KTH [25] OURS Ground Truth
t=

76
t=

77
t=

78

Figure 1: Three images from a typical sequence; the original segmentations produced by a pixel-based classifier; the results
of [36](CT), [35](JST), [25](KTH), and our method (OURS); the manually annotated tracking ground truth in red dots and
the optimal ellipse-tracks obtained using this ground truth. The track identities are encoded in colors. Our approach correctly
tracks the cells in spite of long-term segmentation failures, and produce results that are very similar to the ground truth. In
the CT, JST and KTH columns, the white-colored numbers indicate the tracker-inferred numbers of cells that are contained
by the segments beneath them, and the yellow-colored numbers show the ground truth. Best viewed in color.

such as migration and division, using flow variables and re-
solve the conflicts by solving the resulting integer program,
which is conceptually much simpler than those of earlier
approaches [20, 36, 16, 35]. It also features fewer variables
and constraints, which implies better scaling properties.

Although network flow formulation has been used in this
context before, existing approaches [31, 32] focus on cell
tracking in consecutive image pairs, while our approach ag-
gregates image evidences from the whole sequence and con-
ducts global optimization over all potential cell locations
at all time frames. Furthermore, we handle competing hy-
potheses within the same optimization framework instead
of having to decide at detection time.

We show that this improves trajectories and yields su-
perior detection performance on various datasets compared
to the recent approaches of [36, 1, 26, 35], which includes
the technique that performed best on the above-mentioned
cell-tracking challenges [28, 38].

2. Related Work

Current tracking approaches can be divided into Track-
ing by Model Evolution and Tracking by Detection [28]. We
briefly discuss state-of-the-art representatives of these two
classes below and refer the interested reader to the much
more complete recent surveys [29, 28].

Friday, November 14, 14

(a) Image (b) Segmentation (c) Contourlets (d) Hierarchy

(e) Level 1 (f) Level 2 (g) Level 3 (h) Level 4

Figure 2: Hierarchy of detection hypotheses. (a) An image
region containing three HeLa cells clumped together. (b)
Applying a pixel classifier results in under-segmentation, in
which the three cells appear as a single connected compo-
nent. (c) Automatically extracted contourlets for this com-
ponent. Each one is overlaid in a different color. They are
used to fit ellipses using a hierarchical agglomerative clus-
tering algorithm. (d) The resulting hierarchy of 10 hypothe-
ses. We show only the first four levels for simplicity. (e-h)
Individual levels with one, two, three and four hypotheses.

2

2.1. Tracking by Model Evolution

Most algorithms in this class simultaneously track and
detect objects greedily from frame to frame. This means
extrapolating results obtained in earlier frames to process
the current one, which can be done at a low computational
cost and is therefore fast in practice. Such methods have
attracted attention both in the cell tracking field [9, 8, 7, 27]
as well as in the more general object tracking one [43,
18, 30, 42, 11]. Common techniques in the cell tracking
category involve evolving appearance or geometry models
from one frame to the next, typically done using active con-
tours [9, 8, 7, 27] or Gaussian Mixture Models [1]. Though
these methods are attractive and mathematically sound, per-
formance suffers from the fact that they only consider a
restricted temporal context and therefore cannot guarantee
consistency over a whole sequence.

This limitation has been addressed by more global active
contour methods [23, 33] that consider the whole spatio-
temporal domain to segment the cells and recover parts of
their trajectories. Although this provides improved robust-
ness at the cost of increased computational burden, these
approaches do not provide global optimality either.

2.2. Tracking by Detection

Approaches in this class have proved successful at both
people [12, 5, 3, 41, 40, 15] and cell tracking [24, 20, 36].

They involve first detecting the target objects in individ-
ual frames and then linking these detections to produce full
trajectories. This is typically computationally more expen-
sive than Tracking by Model Evolution. However, it also
tends to be more robust because trajectories are computed
by minimizing a global objective function that enforces con-
sistency of appearance, disappearance, and division over
time. This can be seen in the benchmark of [28] in which
these methods tended to dominate.

One way to perform tracking-by-detection is to reason in
the full spatio-temporal grid formed by stacking up all pos-
sible spatial locations over time [4, 2, 34, 14, 22]. This can
be done optimally in polynomial time for non-dividing ob-
jects such as pedestrians and has made this approach com-
petitive despite the large size of the graphs involved. How-
ever, for dividing objects, the resulting optimization prob-
lem is NP-Hard, which is why this dense spatio-temporal
approach has not been explored for cell tracking.

Instead, practical tracking-by-detection algorithms for
cells rely on a small number of strong detections that can
be later linked into complete trajectories. Recent efforts
have focused on solving two main challenges specific to
cell-tracking, which we discuss below.

Division and disappearance. Cells can divide or die and
disappear. While rule-based approaches have been used
to handle this, most recent ones formulate tracking as a
global IP [20, 36]. This makes it possible to use priors for

cell migration, division and disappearance between adjacent
frames. One notable exception is the method of [25] that
relies on the Viterbi algorithm to sequentially add trajecto-
ries to a cell lineage tree. Motion, division, and disappear-
ance are encoded through a scoring function that quantifies
how well the lineage tree explains the data. This algorithm
scored highest in one of the benchmarks [28] and we will
use it as one of our baselines in Section 4.

Clumped cells. There is no guarantee that individual
cells will be detected as separate entities in any given frame
because two or more cells can clump together, producing
under-segmentation errors. Many heuristics have been pro-
posed to solve this problem. One is to assume that clumped
cells are unlikely to happen for a specific modality or that
they do not pose a problem for the tracker [24, 20, 25].
While this is appropriate in some cases, it is clearly invalid
for certain modalities such as the one shown in Fig. 1. Other
heuristics involve splitting segmentations using the Radon
and watershed transforms [9, 28]. Unfortunately, they are
still relatively prone to over- and under-segmentation that
complicate the tracking task. The approach of [21] gen-
erates oversegmentation by fitting ellipses on Hessian Im-
ages. However, this approach focuses on developing em-
bryo and relies on strong assumptions, such as assuming
that the number of cells do not decrease from time t to t+1.

An ingenious approach is that of [36], which first finds
trajectories by treating segmentations in each frame as
clumps of one or more cells, with the exact number be-
ing initially unknown, and then uses a factor graph to re-
solve this ambiguity. However, since the final linking is
decoupled from the cell cluster tracking, the cell count in-
accuracies may propagate to the final trajectories. To over-
come this problem, [35] introduces a set of hypotheses, gen-
erated by over-segmenting the image into superpixels and
subsequently merging them to create competing explana-
tions. Similarly, [17] generates the hypotheses using com-
ponent trees and graph cut. However, neither method uses
spatially overlapping hypotheses and may result in irrecov-
erable segmentation errors. By contrast, our approach natu-
rally handles such cases, as depicted by Fig. 2. Furthermore,
as we will discuss in Section 3.2, our formulation provides
a more compact integer program with much less constraints
and variables.

3. Method
Our approach involves building a spatio-temporal graph

of conflicting detection hypotheses and then finding the
globally optimal trajectories in it. More specifically, we first
produce a binary image of the underlying cell populations
using a classifier trained on a few hand-annotated segmenta-
tions. For each connected component, we produce multiple
hypotheses by hierarchically fitting a varying number of el-
lipses to it. This results in a directed graph, such as the one

3

(a) (b)
Figure 3: Spatio-temporal graph of hypotheses for 3 consecutive time frames. (a) Each black circle is a hypervertex cor-
responding to a connected component of the segmentation and is connected to neighboring ones at the next time step. The
special vertices s (source, in green), t (sink, in red) and d (division, in blue) allow respectively for cell appearance, disap-
pearance and division. (b) Each hypervertex, such as x and z, contains a hierarchical set of hypotheses (vertices) such as
those depicted by Fig. 2. These hypotheses are shown as gray circles and connected to nearby ones in the following frame
via directed edges. We only show three of these edges to avoid clutter. On each hypervertex, we define an exclusion set for
each leaf vertex. For example, we define three exclusion sets on x: Sn = {l, k, n}, Sm = {l, k,m} and Su = {l, i, u}. We
allow the tracker to select at most one vertex within each one. Best viewed in color.

depicted by Fig. 3. Its nodes are individual ellipses and its
edges connect nearby ones in consecutive frames. Full tra-
jectories can then be obtained by solving an integer program
with a small number of constraints that exclude incompati-
ble hypotheses and enforce consistency while allowing for
cell-division, migration and death.

In the following, we first describe our approach to seg-
menting cell images and building hypotheses graphs from
them. We then formulate the simultaneous detection and
tracking problem on these graphs as a constrained network
flow problem, and discuss how we compute the various en-
ergy terms of its objective function.

3.1. Building Hierarchy Graphs

Our algorithm, like those of [24, 20, 36], starts by seg-
menting cells using local image features. To this end, we
first train the binary random forest pixel classifier of [37]
for each evaluation dataset on a few partially annotated im-
ages. We use four different types of low-level features:
pixel intensities, gradient and hessian values, and difference
of Gaussians, all of which are computed by first Gaussian
smoothing the input image with a range of sigma values.

Applying the resulting classifier to the full image se-
quences results in segmentations which often contain
groups of clumped cells, such as the ones shown in Fig. 1.
Therefore, each connected component of the segmentation
potentially contains an a priori unknown number of cells.

We produce a hierarchy of conflicting detection hypothe-
ses for each such component by fitting a varying number of
ellipses to its contours. More specifically, we first identify
all the contour points that are local maxima of curvature
magnitude. This is done iteratively by selecting the max-
imum curvature points and suppressing their local neigh-
borhoods. We then break the contour into short segments at

these points, which yields a number of contourlets as shown
in Fig. 2(c). We cluster them in a hierarchical agglomerative
fashion and fit ellipses to each resulting cluster using the
non-iterative least squares approach of [6]. In all our exper-
iments, we set the size of the suppression neighborhood to
seven pixels because this is the minimum number of points
required to reliably fit an ellipse using this approach.

Let C denote the set of all contourlet clusters for a con-
nected component. Given a pair of clusters Ci ∈ C and
Cj ∈ C, we define their distance to be

[∑
Cl∈{Ci∪Cj}

h(Cl, e) +
∑

Cl∈C\{Ci∪Cj}

g(Cl, e)

]
c(e)

√
1

1 + ec2(e)
, (1)

where e is the ellipse obtained by fitting to the points of
Ci∪Cj , and c(e) and ec(e) are its circumference and eccen-
tricity respectively. h(Cl, e) denotes the Hausdorff distance
between the points of Cl and the ellipse e. The function
g(Cl, e) is defined in a similar way but without considering
the points of Cl that are outside e.

The first term in the product captures image evidence
along the contours of the entire connected component while
the last two ones act as a shape regularizer to prevent im-
plausible ellipse geometries from appearing in the solution.
We use this distance measure to compute an ellipse hierar-
chy, such as the one of Fig. 2, for every connected compo-
nent in the temporal sequence.

Given these over-complete hierarchies, we then build a
graph, whose vertices are the ellipses and the edges link
pairs of them that belong to two spatially close connected
components in consecutive frames. The resulting graph has
a hierarchical dimension that allows for finding the globally
optimal cell detections and trajectories in a single shot.

4

3.2. Network Flow Formalism

The procedure described above yields a directed graph
G′ = (V ′, E′), which we then augment with three distin-
guished vertices; namely the source s, the sink t and the
division d as depicted by Fig. 3. We connect these three ver-
tices to every other vertex in G′ to allow accounting for cell
appearance, disappearance and division in mid-sequence.

Let G = (V,E) be the resulting graph obtained after the
augmentation. We define a binary flow variable fij for each
edge eij ∈ E to indicate the presence of any one of the
following cellular events:

• Cell migration from vertex i to vertex j,
• Appearance at vertex j, if i = s,
• Division at vertex j, if i = d,
• Disappearance at vertex i, if j = t.

Let f be the set of all fij flow variables and F = {Fij}
be the set of all corresponding hidden variables. Given an
image sequence I = (I1, . . . , IT) with T temporal frames
and the corresponding graph G, we look for the optimal
trajectories f∗ in G as the solution of

f∗ = argmax
f∈F

P (F = f | I) (2)

≈ argmax
f∈F

∏
eij∈E

P (Fij = fij | It(i), It(j)) (3)

= argmax
f∈F

∏
eij∈E

P (Fij = 1 | It(i), It(j))fij ×

P (Fij = 0 | It(i), It(j))(1−fij) (4)

= argmax
f∈F

∑
eij∈E

log

(
P (Fij = 1 | It(i), It(j))
P (Fij = 0 | It(i), It(j))

)
fij (5)

= argmax
f∈F

∑
eij∈E′

log

(
ρij

1−ρij

)
fij+

∑
j∈V

log

(
ρa

1−ρa

)
fsj

+
∑
i∈V

log

(
ρd

1−ρd

)
fit +

∑
j∈V

log

(
ρj

1−ρj

)
fdj , (6)

where It(i) is the temporal frame containing vertex i, and F
denotes the set of all feasible cell trajectories, which satisfy
linear constraints. In Eq. 3, we assume that the flow vari-
ables Fij are conditionally independent given the evidence
from consecutive frame pairs. Eqs. 4 and 5 are obtained
by using the fact that the flow variables are binary and by
taking the logarithm of the product. Finally, in Eq. 6, we
split the sum into four parts corresponding to the four events
mentioned above.

The appearance and disappearance probabilities, ρa and
ρd, are computed simply by finding the relative frequency
of these events in the ground truth cell lineages of the train-
ing sequences. On the other hand, the migration and the
division probabilities, ρij and ρj , are obtained using a clas-
sification approach as described in the next section.

We define three sets of linear constraints to model cell
behavior and exclude conflicting detection hypotheses from
the solution, which we describe in the following.

Conservation of Flow: We require the sum of the flows
incoming to a vertex to be equal to the sum of the outgo-
ing flows. This allows for all the four cellular events while
incurring their respective costs given in Eq. 6.∑
eij∈E′

fij + fsj + fdj =
∑

ejk∈E′

fjk + fjt , ∀j ∈ V ′ . (7)

Prerequisite for Division: We allow division to take
place at a vertex j ∈ V ′ only if there is a cell at that lo-
cation. We write this as∑

eij∈E′

fij + fsj ≥ fdj , ∀j ∈ V ′ . (8)

Exclusion of Conflicting Hypotheses: Given a hierarchy
tree of detections, we define an exclusion set Sl for each
terminal vertex l ∈ V ′ of this tree. For instance, in the ex-
ample of Fig. 2(d), the four exclusion sets are {a, b, d, g},
{a, b, d, h}, {a, b, e, i} and {a, c, f, j}. Let S be the collec-
tion of all such sets for all the connected components in the
sequence. We disallow more than one vertex from each set
to appear in the solution, and express this as∑

j∈Sl,

eij∈E′

fij +
∑
j∈Sl

fsj ≤ 1, ∀Sl ∈ S . (9)

We solve the resulting integer programs within an optimal-
ity tolerance of 1e−3 using the branch-and-cut algorithm
implemented in the Gurobi optimization library [13].

Note that our integer program contains only a single set
of variables and three sets of linear constraints, and there-
fore it is more compact than those of the recent approaches
of [35] and [36] that are similar to ours. Formally, let N ,
C, and K denote the total number of detections, total num-
ber of exclusion sets and average number of neighbors per
detection. The total number of constraints for ours and [35]
are C +2N and C +2N +2NK; the total number of vari-
ables are N(3 +K) and N(1 +K + 2(K+1)) respectively.
The term 2(K+1) comes from the fact that [35] includes in-
dicator variables for higher order factors.

3.3. Cell Migration and Division Classifiers

Given two adjacent vertices i, j ∈ V ′, and their asso-
ciated ellipses ei and ej in consecutive time frames, we
train a classifier to estimate the likelihood that both be-
long to the same cell. More specifically, we use a Gradi-
ent Boosted Tree (GBT) classifier [10] to learn a function
ϕmigr(ei, ej) ∈ R, based on both appearance and geometry
features including the distance between the ellipses, their

5

eccentricities and degree of overlap, hierarchical fitting er-
rors and ray features. Once ϕmigr(ei, ej) is learned, we ap-
ply Platt scaling to compute the probability ρij that the two
ellipses belong to the same cell, and plug it into Eq. 6.

Similarly, the likelihood of ellipse ej at time t dividing
into two ellipses ek and el at t + 1 is learned with another
GBT classifier, trained on features such as the orientation
and size differences among the ellipses. We present a de-
tailed list of both the migration and division features in the
Supplementary Material.

For prediction, we compute the division score for ellipse
ej at time t as

ϕdiv(ej) = max
ejk∈E′, ejl∈E′:

k 6=l

ϕdiv(ej , ek, el) , (10)

where ϕdiv(·, ·, ·) is the scoring function learned by the clas-
sifier, and (ek, el) is a pair of ellipses corresponding to two
potential daughter cells at time t + 1. We obtain the divi-
sion probability ρj of Eq. 6 from ϕdiv(ej), again using Platt
scaling.

4. Experiments
In this section, we first introduce the datasets and state-

of-the-art methods we use as baselines for evaluation pur-
poses. We then demonstrate that our approach significantly
outperforms these baselines, especially when the cells di-
vide or are not well separated in the initial segmentations.
Our software can be downloaded from an URL to be speci-
fied in the final version of the paper and the corresponding
tracking videos are available as supplementary material.

4.1. Test Sequences

We used 10 image sequences from three datasets of
the cell tracking challenge [38]. They involve multiple
cells that migrate, appear, disappear, and divide. Difficul-
ties arise from low contrast to the background, complex
cell morphology, and significant mutual overlap. We used
the leave-one-out training and testing scheme within each
dataset to train the classifiers of Section 3.3 and to learn the
appearance and disappearance probabilities of Eq. 6.

• HeLa Dataset: It comprises two 92-frame sequences
from the MitoCheck consortium. Cell divisions are
frequent, which produces a dense population with se-
vere occlusions.

• SIM Dataset: It comprises six 50- to 100-frame se-
quences. They simulate migrating and dividing nuclei
on a flat surface.

• GOWT Dataset: It comprises two 92-frame se-
quences of mouse stem cells. Their appearance varies
widely and some have low contrast against a noisy
background.

4.2. Baselines

We compared our algorithm (OURS) against the follow-
ing four state-of-the-art methods

• Gaussian Mixture-based Tracker (GMM) [1]: We
ran the Gaussian Mixture Models approach of [1],
originally designed to track cell nuclei, whose code is
publicly available. We manually tuned its parameters
to the ones that yield the best results on each sequence.

• KTH Cell Tracker (KTH) [25]: The code is publicly
available and has been reported to perform best in the
Cell Tracking Challenge [38, 28]. We used the param-
eter settings optimized for each dataset and provided
in the software package.

• Conservation Tracking (CT) [36]: We ran Ilastik
V1.1.3 [39] that implements the method of [36]. We
used the default parameters provided with the tool to
handle appearance, disappearance, division and tran-
sition weights. The CT algorithm, like ours, requires
initial segmentations such as the ones shown in the sec-
ond column of Fig.1. We used the same segmentations
for both algorithms. We trained the division and the
segment count classifiers separately for each dataset on
manually labeled cells.

• Joint Segmentation and Tracking (JST) [35]: We
ran the code of [35] that is publicly available. The
model comprises several parameters for oversegmen-
tation and tracking, which we tuned to achieve the best
possible result on each sequence.

It is worth noting that, in contrast to all the above state-
of-the-art trackers, our tracker does not require any user-
defined parameters.

To demonstrate the importance of individual components
of our approach, we also ran simplified versions of OURS
with various features turned off:

• Classifier Only (OURS-CL): We threshold the output
of our migration and division classifiers at a probabil-
ity of 0.5 and return the resulting ellipse detections.

• Best Hierarchy Only (OURS-BH): For each ellipse
hierarchy tree, we only keep the level that yields the
minimum fitting error, which we define in the Supple-
mentary Material. We then run our IP optimization on
the resulting graphs, which are smaller than the ones
we normally use.

• Linear Programming Relaxation (OURS-LP): We
relax the integrality constraint on the variables and
solve the optimization problem of Eq. 6 using linear
programming. We then round the resulting fractional
values to the nearest integer to obtain the final solution.

6

Division Detection Migration MOTA TRA Time
Rec Pre. F-M. Rec. Pre. F-M. Rec. Pre. F-M.

H
eL

a-
1

GMM 0.56 0.43 0.48 N/A N/A N/A 0.92 0.98 0.95 0.82 N/A 44
KTH 0.65 0.72 0.68 N/A N/A N/A 0.95 0.99 0.97 0.91 0.98 70
CT 0.74 0.79 0.77 0.56 0.89 0.69 0.94 0.99 0.97 N/A N/A 74.85
JST 0.79 0.55 0.65 N/A N/A N/A 0.86 0.92 0.89 0.73 0.80 128.16
OURS 0.92 0.79 0.85 0.96 0.83 0.89 0.97 0.99 0.98 0.94 0.98 88.25

H
eL

a-
2

GMM 0.40 0.18 0.24 N/A N/A N/A 0.95 0.98 0.97 0.43 N/A 74
KTH 0.65 0.72 0.68 N/A N/A N/A 0.94 0.99 0.97 0.90 0.97 336
CT 0.76 0.81 0.78 0.73 0.63 0.67 0.94 0.99 0.96 N/A N/A 79.33
JST 0.69 0.44 0.54 N/A N/A N/A 0.91 0.98 0.94 0.82 0.85 88.79
OURS 0.86 0.83 0.84 0.86 0.78 0.82 0.96 0.99 0.97 0.90 0.97 232.31

G
O

W
T-

2 GMM 0.0 0.0 0.0 N/A N/A N/A 0.16 0.79 0.26 0.02 N/A 37
KTH 0.0 N/A 0.0 N/A N/A N/A 0.94 1.0 0.97 0.94 0.91 16
CT 1.0 0.17 0.29 1.0 0.02 0.03 0.95 1.0 0.97 N/A N/A 0.81
JST 1.0 0.02 0.04 N/A N/A N/A 0.93 0.98 0.95 0.85 0.95 3.87
OURS 1.0 1.0 1.0 1.0 1.0 1.0 0.95 1.0 0.98 0.96 0.95 0.22

SI
M

-4

GMM 0.25 0.33 0.29 N/A N/A N/A 0.91 0.94 0.92 0.81 N/A 23
KTH 0.75 0.75 0.75 N/A N/A N/A 0.97 0.99 0.98 0.96 0.98 5
CT 0.75 0.60 0.67 0.75 0.68 0.72 0.86 0.97 0.92 N/A N/A 1.69
JST 0.75 0.38 0.50 N/A N/A N/A 0.96 0.96 0.96 0.84 0.96 4.33
OURS 1.0 0.80 0.89 1.0 0.79 0.88 0.98 1.0 0.99 0.96 1.0 1.85

Table 1: Comparison of our algorithm against state-of-the-art cell trackers in terms of tracking accuracy and running time. It
yields a significant improvement on the division and detection accuracies and performs either on par or slightly better on the
migration, MOTA and TRA scores.

• No Conflict Set Constraint (OURS-NC): We remove
the conflict set constraints of Eq. 9 and solve the re-
sulting integer program as before.

• Fixed Division Cost (OURS-FD): We set the divi-
sion probability to a constant pd, which we compute
by finding the relative frequency of the division event
in the training sequences.

4.3. Evaluation Metrics

We use precision, recall and the F-Measure, defined as
the harmonic mean of precision and recall, to quantify the
algorithms’ ability to detect cell division, detection, and mi-
gration events. We also use two global metrics, multiple ob-
ject tracking accuracy (MOTA) [19] and tracking precision
(TRA) [38], to evaluate the overall tracking performance.

We follow the same evaluation methodology as in [36],
which uses the connected components of the initial segmen-
tations to compute the division, detection, and migration
accuracies. We consider a cell migration event to be suc-
cessfully detected if both connected components of the cell
at t and t + 1 are correctly identified. Similarly, we con-
sider a division event to be successfully detected if it occurs
at the correct time instant with the connected components
of the parent and both daughter cells correctly determined.
Finally, a detection event is said to be successfully identi-
fied if an algorithm infers the right number of cells within a
connected component.

Unlike the above measures, MOTA and TRA are defined

on individual cell tracks rather than connected components
that potentially contain multiple clumped cells. They there-
fore provide a global picture of tracking performance. The
main difference between TRA and MOTA is, TRA defines
different penalties for different types of errors, while MOTA
treat all errors equally.

4.4. Comparing against the Baselines

We ran our algorithm and the baselines discussed above
on all the test sequences introduced in Section 4.1. Table 1
summarizes the results for a representative subset and the
remainder can be found in the supplementary material.

Some numbers are missing because the publicly-
available implementation of CT [36] we use does not pro-
vide the identities of individual cells in under-segmentation
cases. We therefore cannot extract the complete tracks
required to compute the MOTA and TRA scores. For
our method and that of CT, we computed the detection
scores by using the same segmentations obtained from the
pixel classification approach of Section 3.1. By contrast,
GMM [1], KTH [25] and JST [35] trackers take only raw
images as input and do not accept external segmentations to
be used. Therefore, we cannot compute their accuracy for
the detection events. Finally, in some cases, GMM gener-
ates non-consecutive cell tracks, which is not accepted by
the TRA evaluation software.

Table 1 shows that our tracker consistently yields a sig-
nificant improvement on the division and detection events.

7

Division Detection Migration MOTARec Pre. F-M. Rec. Pre. F-M. Rec. Pre. F-M.

H
eL

a-
1

OURS-CL 0.95 0.06 0.11 N/A N/A N/A 0.98 0.47 0.64 N/A
OURS-NC 0.48 0.14 0.22 0.0 0.0 0.0 0.96 0.93 0.94 -0.61
OURS-FD 0.78 0.81 0.80 0.96 0.85 0.90 0.97 0.99 0.98 0.93
OURS-BH 0.88 0.73 0.80 0.81 0.87 0.84 0.97 0.99 0.98 0.94
OURS-LP 0.92 0.80 0.86 0.95 0.81 0.87 0.97 0.99 0.98 0.93
OURS 0.92 0.79 0.85 0.96 0.83 0.89 0.97 0.99 0.98 0.94

H
eL

a-
2

OURS-CL 0.91 0.10 0.18 N/A N/A N/A 0.92 0.60 0.72 N/A
OURS-NC 0.73 0.31 0.43 0.06 0.02 0.02 0.95 0.96 0.95 0.35
OURS-FD 0.77 0.82 0.80 0.84 0.78 0.81 0.96 0.98 0.97 0.90
OURS-BH 0.84 0.77 0.81 0.78 0.77 0.77 0.95 0.99 0.97 0.90
OURS-LP 0.85 0.83 0.84 0.84 0.78 0.81 0.95 0.99 0.97 0.90
OURS 0.86 0.83 0.84 0.86 0.78 0.82 0.96 0.99 0.97 0.90

G
O

W
T-

2

OURS-CL 0.0 0.0 0.0 N/A N/A N/A 0.94 0.94 0.94 N/A
OURS-NC 1.0 0.20 0.33 1.0 0.02 0.03 0.96 1.0 0.98 0.93
OURS-FD 1.0 0.25 0.40 1.0 1.0 1.0 0.96 1.0 0.98 0.96
OURS-BH 0.0 N/A 0.0 1.0 1.0 1.0 0.91 1.0 0.95 0.91
OURS-LP 1.0 0.50 0.67 1.0 0.50 0.67 0.96 1.0 0.98 0.96
OURS 1.0 1.0 1.0 1.0 1.0 1.0 0.96 1.0 0.98 0.96

SI
M

-4

OURS-CL 0.75 0.27 0.40 N/A N/A N/A 0.92 0.56 0.70 N/A
OURS-NC 0.75 0.21 0.33 0.37 0.19 0.25 0.97 0.98 0.98 0.58
OURS-FD 0.75 0.75 0.75 0.98 0.78 0.87 0.98 1.0 0.99 0.95
OURS-BH 1.0 0.80 0.89 1.0 0.78 0.87 0.98 1.0 0.99 0.96
OURS-LP 1.0 0.80 0.89 1.0 0.79 0.88 0.98 1.0 0.99 0.96
OURS 1.0 0.80 0.89 1.0 0.79 0.88 0.98 1.0 0.99 0.96

Table 2: Tracking results with various features turned off. OURS-CL does not impose temporal consistency and suffers
from low precision. OURS-NC imposes temporal consistency in the optimization but allows multiple conflicting hypotheses
to appear in the solution, which yields a low precision. OURS-FD eliminates competing hypotheses but uses a fixed cost
for the division event. OURS-BH performs non-maxima suppression on the hierarchical dimension and hence suffers from
mis-detection errors. OURS-LP yields fractional flows and the rounding stage eliminates some cell tracks, which leads to a
slight drop in performance. With all its features turned on, OURS achieves the best overall performance.

Even on the migration events for which the baselines al-
ready perform very well, we do slightly better. However,
because the division and detection events are rare compared
to migrations, the significant improvements on these two
events only have a small impact on MOTA and TRA.

The comparatively poor performance of GMM can be
partially ascribed to the fact that it relies on a simple hand-
designed appearance and geometry model to detect individ-
ual cells. KTH relies on a richer appearance model that
improves performance but requires tuning more parameters
for each sequence. CT employs several cell-event clas-
sifiers and solves the tracking problem using integer pro-
gramming, resulting in an overall higher division accuracy.
Finally, the performance of JST is negatively impacted by
the fact that it depends on a watershed-based oversegmenta-
tion that is sensitive to inaccuracies in pixel probability es-
timates. By contrast, our ellipse-fitting approach to generat-
ing competing hypotheses is robust to the ambiguous image
evidence. Given the same initial segmentation as CT, our
method achieves the best overall performance, thanks to the
simultaneous detection and tracking.

Our tracker runs relatively fast even though we use a
large number of variables. We show in Tab. 1 the running
time of all trackers given the detections. In the SIM-4 case,
the number of flow variables is around 1.1 million but the

integer programming optimization takes only 2 seconds. In
the HeLa-2 case, the number of variables is around 8 mil-
lion and the optimization takes about 232 seconds.

4.5. Evaluating Individual Components

To produce the results summarized by Table 1, we used
our full approach as described in Section 3. In Table 2, we
show what happens when we turn off some of its compo-
nents to gauge their respective impacts.

OURS-CL relies on local classifier scores and does not
impose temporal consistency. That is why, it produces a
large number of spurious cell tracks. OURS-NC addresses
this by imposing temporal consistency but it allows multiple
conflicting hypotheses to be active simultaneously. There-
fore, it still suffers from spurious detections, which leads to
low precision. OURS-FD disallows conflicting detections
but relies on a fixed division probability, which is why it
gives low division performance. OURS-BH uses division
classifier costs but collapses the hierarchical dimension of
our graphs and results in mis-detections. Finally, OURS-
LP removes the integrality constraints on the flow variables.
This gives a similar performance to OURS on most of the
sequences suggesting that the integrality constraints are sel-
dom helpful. However, in the case of HeLa-2, where divi-
sion events are frequent, we observed that around 3% of the

8

non-zero flow variables are fractional, which explains the
2% drop in recall compared to OURS.

5. Conclusion
We have introduced a novel approach to automatically

detecting and tracking cell populations in time-lapse im-
ages. Unlike earlier approaches that rely either on heuris-
tics to handle mis-detections due to occlusions, or on com-
plex integer programs with large sets of variables and con-
straints, our approach yields a simple integer program for
simultaneously detecting and tracking cells over time. Fur-
thermore, we present a robust algorithm for generating over-
complete detection hypotheses based on fitting ellipses hi-
erarchically. This results in more accurate trajectories and
improved detection of mitosis events.

Furthermore, the formalism is very generic. In future
work, we plan to apply it to people tracking and, in particu-
lar, modeling how groups can form and unform.

References
[1] F. Amat, W. Lemon, D. Mossing, K. McDole, Y. Wan,

K. Branson, E. Myers, and P. Keller. Fast, Accurate Recon-
struction of Cell Lineages from Large-Scale Fluorescence
Microscopy Data. Nat. Methods, 2014. 2, 3, 6, 7

[2] A. Andriyenko and K. Schindler. Globally Optimal Multi-
Target Tracking on a Hexagonal Lattice. In ECCV, pages
466–479, 2010. 3

[3] A. Andriyenko, K. Schindler, and S. Roth. Discrete-
Continuous Optimization for Multi-Target Tracking. In
CVPR, 2012. 1, 3

[4] J. Berclaz, F. Fleuret, E. Türetken, and P. Fua. Multiple Ob-
ject Tracking Using K-Shortest Paths Optimization. PAMI,
33(11):1806–1819, September 2011. 3

[5] R. Collins and P. Carr. Hybrid Stochastic / Deterministic
Optimization for Tracking Sports Players and Pedestrians.
In ECCV, 2014. 3

[6] D. K. Prasad and M. K. H. Leung and C. Quek. ElliFit: An
Unconstrained, Non-Iterative, Least Squares-based Geomet-
ric Ellipse Fitting Method. PR, 46(5):1449–1465, 2013. 4

[7] R. Delgado-gonzalo, N. Chenouard, and M. Unser. Fast
Parametric Snakes for 3D Microscopy. In ISBI, pages 852–
855, 2012. 3

[8] A. Dufour, R. Thibeaux, E. Labruyere, N. Guillen, and J.-C.
Olivo-Marin. 3D Active Meshes: Fast Discrete Deformable
Models for Cell Tracking in 3D Time-Lapse Microscopy.
TIP, 20(7):1925–1937, 2011. 3

[9] O. Dzyubachyk, W. V. Cappellen, J. Essers, W. Niessen, and
E.Meijering. Advanced Level-Set-Based Cell Tracking in
Time-Lapse Fluorescence Microscopy. TMI, 2010. 3

[10] J. Friedman. Stochastic Gradient Boosting. Computational
Statistics & Data Analysis, 2002. 5

[11] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky.
Hough Forests for Object Detection, Tracking, and Action
Recognition. PAMI, 2011. 3

[12] W. Ge and R. T. Collins. Multi-Target Data Association
by Tracklets with Unsupervised Parameter Estimation. In
BMVC, September 2008. 1, 3

[13] Gurobi. Gurobi Optimizer, 2012. http://www.gurobi.com/.
5

[14] H. Heibel, B. Glocker, M. Groher, M. Pfister, and N. Navab.
Interventional Tool Tracking Using Discrete Optimization.
TMI, 32(3):544–555, 2013. 3

[15] H. Jiang, S. Fels, and J. Little. A Linear Programming Ap-
proach for Multiple Object Tracking. In CVPR, 2007. 3

[16] F. Jug, T. Pietzsch, D. Kainmüller, and G. Myers. Tracking
by Assignment Facilitates Data Curation. In MICCAI IMIC
Workshop, 2014. 2

[17] F. Jug, T. Pietzsch, D. Kainmller, J. Funke, M. Kaiser, E. van
Nimwegen, C. Rother, and G. Myers. Optimal Joint Seg-
mentation and Tracking of Escherichia Coli in the Mother
Machinen. In MICCAI BAMBI Workshop, 2014. 3

[18] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-Learning-
Detection. PAMI, 34(07), July 2012. 3

[19] R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar,
J. Garofolo, M. Boonstra, V. Korzhova, and J. Zhang. Frame-
work for Performance Evaluation of Face, Text, and Vehicle
Detection and Tracking in Video: Data, Metrics, and Proto-
col. PAMI, 31(2):319–336, February 2009. 7

[20] B. Kausler, M. Schiegg, B. Andres, M. Lindner, U. Koethe,
H. Leitte, J. Wittbrodt, L. Hufnagel, and F. Hamprecht. A
Discrete Chain Graph Model for 3D+ T Cell Tracking with
High Misdetection Robustness. In ECCV, pages 144–157,
2012. 1, 2, 3, 4

[21] A. Khan, S. Gould, and M. Salzmann. A Linear Chain
Markov Model for Detection and Localization of Cells in
Early Stage Embryo Developmenty. In WACV, pages 526–
533, 2014. 3

[22] J. Kim, A. Bartoli, T. Collins, and R. Hartley. Tracking
by Detection for Interactive Image Augmentation in La-
paroscopy. Biomedical Image Registration, pages 246–255,
2012. 3

[23] H. Li, R. Sumner, and M. Pauly. Global Correspondence
Optimization for Non-Rigid Registration of Depth Scans.
In Symposium on Geometry Processing, pages 1421–1430,
2008. 3

[24] K. Li, E. D. Miller, M. Chen, T. Kanade, L. E. Weiss, and
P. G. Campbell. Cell Population Tracking and Lineage Con-
struction with Spatiotemporal Context. MIA, 12(5):546–566,
2008. 1, 3, 4

[25] K. Magnusson and J. Jalden. A Batch Algorithm Using It-
erative Application of the Viterbi Algorithm to Track Cells
and Construct Cell Lineages. In ISBI, 2012. 2, 3, 6, 7

[26] K. Magnusson, J. Jalden, P. Gilbert, and H. Blau. Global
Linking of Cell Tracks Using the Viterbi Algorithm. TMI,
2014. 2

[27] M. Maška, O. Daněk, S. Garasa, A. Rouzaut, A. Munoz-
barrutia, and C. O. de solorzano. Segmentation and Shape
Tracking of Whole Fluorescent Cells Based on the Chan-
Vese Model. TMI, 32(6):995–1006, 2013. 3

[28] M. Maška, V. Ulman, D. Svoboda, P. Matula, P. Matula,
C. Ederra, A. Urbiola, T. España, S. Venkatesa, D. Balak,

9

et al. A Benchmark for Comparison of Cell Tracking Algo-
rithms. Bioinf., 30(11):1609–1617, 2014. 1, 2, 3, 6

[29] E. Meijering, O. Dzyubachyk, and I. Smal. Methods for Cell
and Particle Tracking. Methods in Enzymology, 504(9):183–
200, 2012. 2

[30] S. Oron, A. Bar-hillel, and S. Avidan. Extended Lucas-
Kanade Tracking. In ECCV, 2014. 3

[31] D. Padfield, J. Rittscher, and B. Roysam. Coupled
Minimum-Cost Flow Cell Tracking. In IPMI, 2009. 2

[32] D. Padfield, J. Rittscher, and B. Roysam. Coupled
Minimum-Cost Flow Cell Tracking for High-Throughput
Quantitative Analysis. MIA, 15(4):650–668, 2011. 2

[33] D. Padfield, J. Rittscher, N. Thomas, and B. Roysam. Spatio-
Temporal Cell Cycle Phase Analysis Using Level Sets and
Fast Marching Methods. MIA, 13(1):143–155, 2009. 3

[34] H. Pirsiavash, D. Ramanan, and C. Fowlkes. Globally-
Optimal Greedy Algorithms for Tracking a Variable Number
of Objects. In CVPR, June 2011. 3

[35] M. Schiegg, P. Hanslovsky, C. Haubold, U. Koethe, L. Huf-
nagel, and F. A. Hamprecht. Graphical Model for Joint Seg-
mentation and Tracking of Multiple Dividing Cells. Bioinf.,
2014. 1, 2, 3, 5, 6, 7

[36] M. Schiegg, P. Hanslovsky, B. Kausler, L. Hufnagel, and
F. Hamprecht. Conservation Tracking. In ICCV, pages 2928–
2935, December 2013. 1, 2, 3, 4, 5, 6, 7

[37] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig,
M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld,
and B. Schmid. Fiji: an open-source platform for biological-
image analysis. Nat. Methods, 9(7):676–682, 2012. Code
available at http://pacific.mpi-cbg.de. 4

[38] C. O. Solorzano, M. Kozubek, E. Meijering, and A. M. noz
Barrutia. ISBI Cell Tracking Challenge, 2014. 1, 2, 6, 7

[39] C. Sommer, C. Straehle, U. Koethe, and F. Hamprecht.
ilastik: Interactive Learning and Segmentation Toolkit. In
ISBI, 2011. 6

[40] C. Wojek, S. Walk, S. Roth, , K. Schindler, and B. Schiele.
Monocular Visual Scene Understanding: Understanding
Multi-Object Traffic Scenes. PAMI, 2013. 1, 3

[41] B. Yang and R. Nevatia. An Online Learned CRF Model for
Multi-Target Tracking. In CVPR, 2012. 1, 3

[42] J. Zhang, S. Ma, and S. Sclaroff. MEEM: Robust Tracking
via Multiple Experts Using Entropy Minimization. In ECCV,
2014. 3

[43] K. Zhang, L. Zhang, Q. Liu, D. Zhang, and M.-H. Yang.
Fast Tracking via Dense Spatio-Temporal Context Learning.
In ECCV, 2014. 3

10

