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Abstract

Over the past few decades we have been experiencing an explosion of information
generated by large networks of sensors and other data sources. Much of this data is
intrinsically structured, such as traffic evolution in a transportation network, tempera-
ture values in different geographical locations, information diffusion in social networks,
functional activities in the brain, or 3D meshes in computer graphics. The represen-
tation, analysis, and compression of such data is a challenging task and requires the
development of new tools that can identify and properly exploit the data structure.

In this thesis, we formulate the processing and analysis of structured data using the
emerging framework of graph signal processing. Graphs are generic data representation
forms, suitable for modeling the geometric structure of signals that live on topologically
complicated domains. The vertices of the graph represent the discrete data domain,
and the edge weights capture the pairwise relationships between the vertices. A graph
signal is then defined as a function that assigns a real value to each vertex. Graph
signal processing is a useful framework for handling efficiently such data as it takes into
consideration both the signal and the graph structure. In this work, we develop new
methods and study specific applications related to the representation and structure-
aware processing of graph signals in both centralized and distributed settings.

First, we study a novel yet natural application of the graph signal processing frame-
work for the representation of 3D point cloud sequences. We exploit graph-based trans-
form signal representations for addressing the challenging problem of compression of
data that is characterized by dynamic 3D positions and color attributes. As temporally
successive point cloud frames are similar, motion estimation is key to effective com-
pression of these sequences. Performing motion estimation and compensation in this
type of data is however challenging as the point cloud frames have varying numbers of
samples without explicit correspondence information. We represent the time-varying
geometry of these sequences with a set of graphs, and we then cast motion estimation
as a feature matching problem between successive graphs. The estimated motion is
successfully used for removing the temporal redundancy in the predictive coding for the
3D positions and the color characteristics of point cloud sequences.

Next, we depart from graph-based transform signal representations to design new
overcomplete representations, or dictionaries, which are adapted to specific classes of
graph signals. In particular, we address the problem of sparse representation of graph
signals residing on weighted graphs by learning graph structured dictionaries that incor-
porate the intrinsic geometric structure of the irregular data domain and are adapted to
the characteristics of the signals. We then model the graph signals as processes evolv-
ing on networks and we extend our dictionary learning framework to signals living on
different graphs. The structural properties of the proposed dictionaries lead to com-
pact representations that can be implemented in a computationally efficient manner in
different signal processing tasks.
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Then, we move to the efficient processing of graph signals in distributed scenarios,
such as sensor or camera networks, which brings important constraints in terms of
communication and computation in realistic settings. In particular, we study the effect
of quantization in the distributed processing of graph signals that are represented by
graph spectral dictionaries and we show that the impact of the quantization depends
on the graph geometry and on the structure of the spectral dictionaries. Motivated by
that observation, we propose a new dictionary learning solution that permits to control
robustness to quantization noise in the distributed sparse representation of graph signals.

Finally, we focus on a widely used graph process, the distributed average consen-
sus algorithm, which is typically addressed through the successive application of local
graph filtering operators. We consider in particular the problem of distributed aver-
age consensus in a sensor network where sensors exchange quantized information with
their neighbors. We propose a novel quantization scheme that depends on the graph
topology and exploits the increasing correlation between the values exchanged by the
sensors throughout the iterations of the consensus algorithm. A low complexity uni-
form quantizer is implemented in each sensor, and refined quantization is achieved by
progressively reducing the quantization intervals along with the convergence of the con-
sensus algorithm to a very smooth graph signal. The proposed quantization scheme is
simple to implement in practical systems.

In summary, we address in this thesis several important problems in the processing
of structured data that lives on networks or other irregular domains. We provide novel
solutions for processing and analyzing graph signals in both centralized and distributed
settings. We focus in particular in the theory of sparse graph signal representation and
its applications and we bring some insights towards better understanding the interplay
between graphs and signals on graphs. We hope that the research efforts in this thesis
would benefit modern data processing applications such as inference in social networks,
analysis of medical data or transmission and compression of high dimensional signals in
vision sensor networks.

Keywords: signal processing on graphs, sparse representation, dictionary learning,
distributed processing in sensor networks, quantized communication, 3D point cloud
compression.
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Résumé

Les derniéres décennies ont vu une explosion de la quantité d’information générée
par de grands réseaux de capteurs ou de multiples autres sources de données. Une grande
partie de ces données sont naturellement structurées, comme par exemple ’évolution
du trafic sur le réseau routier, les valeurs de températures a différentes positions géo-
graphiques, la diffusion d’information dans les réseaux sociaux, l'activité fonctionnelle
dans le cerveau ou les maillages 3D en infographie. La représentation, I'analyse et la
compression de telles données est une tache difficile qui requiert le développement de
nouveaux outils pour identifier et exploiter correctement le structure de I'information
d’intérét.

Dans cette thése, nous regardons le traitement et 'analyse de données structurées
du point de vue du domaine émergent du traitement de signal sur graphes. Les graphes
sont des formes génériques pour la représentation de données, qui sont adaptés a la
modélisation de la structure de signaux qui vivent dans des domaines topologiquement
compliqués. Les nceuds du graphe représentent le domaine discret du signal, et les poids
des liens du graphe caractérisent la relation entre des nceuds voisins. Un signal graphique
est ensuite défini comme une fonction qui attribue une valeur réelle & chaque noceud
du graphe. Le traitement de signal sur graphes est un cadre théorique trés utile pour
manipuler efficacement de telles données puisqu’il permet de prendre en considération &
la fois le signal et la structure irréguliére définie par le graphe. Nous développons dans
ce travail de nouvelles méthodes et nous étudions des applications particuliéres liées a la
représentation et a I’analyse géométrique de signaux graphiques dans des configurations
centralisées et distribuées.

Tout d’abord, nous étudions une application nouvelle et pourtant naturelle du trai-
tement du signal sur graphes pour la représentation de séquences de nuages de points
3D. Nous exploitons des représentations basées sur des transformées sur graphes pour
résoudre le probléme non-trivial de la compression de données dynamiques qui corres-
pondent & des positions 3D et des informations de couleur. La compression de telles
données repose sur I'estimation efficace de la redondance temporelle par estimation de
mouvement. Il est toutefois difficile d’effectuer de 'estimation et de la compensation
de mouvement pour ce type de données, parce que les ensembles de points & différents
instants sont de tailles différentes et n’ont pas de relations de correspondance expli-
cites. Nous représentons la géométrie temporellement variable de ces séquences avec
un ensemble de graphes, et nous formulons ensuite I'estimation de mouvement comme
un probléme de mise en correspondance de caractéristiques des graphes successifs. Le
mouvement ainsi estimé est ensuite utilisé avantageusement pour réduire la redondance
temporelle dans le codage prédictif des positions des points et de leur couleur dans les
séquences de nuages de données 3D.

Ensuite, nous quittons les représentations basées sur des transformées sur graphes
pour construire des nouvelles représentations redondantes, aussi appelées dictionnaires,



qui sont adaptées a des classes spécifiques de signaux graphiques. En particulier, nous
nous intéressons au probléme de la représentation parcimonieuse de signaux graphiques
qui résident sur des graphes pondérés en apprenant des dictionnaires graphiques struc-
turés qui incorporent la structure géométrique intrinséque des domaines de données
irréguliers, et qui sont adaptés aux caractéristiques des signaux. Nous modélisons en-
suite les signaux graphiques comme des processus qui évoluent sur des réseaux et nous
étendons notre cadre théorique pour 'apprentissage de dictionnaires & des signaux qui
vivent sur des graphes différents. Nous montrons finalement que les dictionnaires appris
avec les algorithmes proposés contiennent des atomes localisés sur le graphe, et qu’ils
peuvent étre implémentés de fagon efficace dans des taches de traitement de signal telles
que la compression, le débruitage ou la classification.

Ensuite, nous continuons notre étude avec le traitement efficace de signaux gra-
phiques dans des scénarios distribués, tels que les réseaux de capteurs ou de caméras,
qui aménent en pratique des contraintes importantes en termes de calcul et de commu-
nication. En particulier, nous étudions les effets de la quantification des données sur le
traitement distribué de signaux graphiques qui sont représentés par des dictionnaires
graphiques et nous montrons que I'impact de la quantification dépend de la géométrie
du graphe et de la structure des dictionnaires graphiques. Motivés par cette observation,
nous proposons une nouvelle solution pour 'apprentissage de dictionnaires qui permet
de controler la robustesse au bruit de quantification dans la représentation distribuée
et parcimonieuse de signaux graphiques.

Finalement, nous nous concentrons sur un processus communément utilisé sur les
graphes, 'algorithme distribué de consensus moyen, qui est généralement implémenté
par I'application successive d’opérations locales de filtrage sur graphe. Nous considérons
en particulier le probléme de consensus moyen distribué dans un réseau de capteurs, ot
les capteurs échangent de I'information quantifiée avec leurs voisins. Nous proposons un
nouvel algorithme de quantification qui dépend de la topologie du graphe et exploite la
corrélation croissante entre les valeurs échangées par les capteurs au long des itérations
de l'algorithme de consensus. Un quantificateur uniforme simple est implémenté dans
chaque capteur, et un raffinement de la quantification s’opére en réduisant progressive-
ment les intervalles de quantification au fur et & mesure que 'algorithme de consensus
moyen converge vers un signal graphique trés lisse. L’algorithme de quantification pro-
posé est trés simple a déployer en pratique.

En résumé, nous avons étudié dans cette thése plusieurs problémes importants liés
au traitement de données structurées qui vivent sur des réseaux ou d’autres domaines
irréguliers. Nous fournissons des solutions nouvelles pour le traitement et ’analyse de
signaux graphiques dans des environnements centralisés ou distribués. Nous nous fo-
calisons en particulier sur la théorie de la représentation parcimonieuse de signaux
graphiques et ses applications, et nous apportons un éclairage sur les relations entre
les graphes et les signaux graphiques. Nous espérons que la recherche proposée dans
cette theése va contribuer au développement d’applications modernes de traitement de
données, telles que I'inférence dans des réseaux sociaux, I'analyse de données médicales
ou la transmission et la compression de signaux de grandes dimensions dans des réseaux
de capteurs d’images.



Mots clés : traitement de signal sur graphe, représentation parcimonieuse, appren-
tissage de dictionnaire, traitement distribué de données dans les réseaux de capteurs,
communication quantifiée, compression de nuages de points 3D.
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Chapter 1

Introduction

1.1 Motivation

Over the past few decades, we have witnessed a deluge of information generated by numerous
data sources, in a large variety of applications. For example, sensor networks have been widely
deployed to measure a plethora of physical entities like temperature and solar radiation, traffic
volumes in transportation networks, brain activities in biological networks. Online social networks
such as Twitter, Facebook have turned into a significant means of communication and contain
a lot of information. 3D depth cameras are yet becoming more powerful and widely used to
capture dynamic 3D scenes in emerging applications such as gaming, immersive communication
and virtual reality. Such data is usually very complex for different reasons. First, it is extremely
high-dimensional and occupies a large amount of storage space. For example, 3D depth cameras
provide rich information about the environment, that consists of 3D models with millions of points.
Second, most data is intrinsically and possibly irregularly structured. For instance, wireless sensor
networks are irregularly deployed in space and their measurements depend on their geographical
positions. Third, the data and the structure may be generated by different sources of information.
For example, the information spread in social networks may be influenced by the relationships
between the entities, as well as the type of data itself. The representation, analysis, and compression
of such data is a challenging task that requires the development of new tools that can identify and
properly exploit data structures.

In this thesis, we study the representation and analysis of structured data in the context of the
emerging graph signal processing framework. Graphs are generic data representation forms that
are suitable for modeling the geometric structure of signals that live on topologically complicated
domains. These signals are either intrinsically discrete (e.g., attributes of entities in social networks)
or sampled from a continuous process (e.g., heat diffusion on a manifold). Typically, the vertices
of the graph represent the discrete data domain and carry the data values. The edge weights of
the graph capture the pairwise relationships between the vertices, like geographical distance or
biological connections, for example. A graph signal is then defined as a function that assigns a real
value to each vertex. Examples of graphs and signals on graphs are illustrated in Fig. 1.1.

Graph representations lead to rich data description on irregular domains and, if properly ex-
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(d) (e)

Figure 1.1: Examples of graphs and signals on graphs: (a) traffic bottlenecks on the transportation graph,
(b) average temperature on a geographical graph, (¢) fMRI brain signal in a structural, anatomical graph,
(d) gender attributes on a social network graph, and (e) 3D color attributes on a mesh graph. The size and
the color of each disc in (a)-(c) indicate the value of the signal at the corresponding vertex. The red and
the blue square lines in (d) correspond to female and male respectively.

ploited, permit to efficiently capture the evolution of signals in a priori complex high-dimensional
data sets. Signals and graphs are usually defined using different types of information which, if com-
bined properly, can be quite helpful in analyzing or inferring information in the datasets. Moreover,
graph signal representations provide a natural way to handle signals that cannot be easily processed
with classical tools due to their irregular structure. The price to pay for this flexibility is the fact
that one has to develop new tools and algorithms that handle efficiently the graph structure, pos-
sibly by leveraging intuition from classical signal processing in Euclidean spaces. Although the
foundations of graph theory date back to the 18" century with the celebrated problem of the
Seven Bridges of Konigsberg, most of the research in the machine learning and computer science
community has so far focused in understanding and analyzing the graph structure, without paying
particular attention to signals residing on the vertices of those graphs. Adapting classical signal
processing tools to signals defined on graphs has however raised significant interest in the last few
years 9], [10]. It requires the combination of different fields such as algebraic and spectral graph
theory, harmonic analysis, and application domain expertise. Even if this research area looks highly
promising because it provides a framework for modeling complex and irregularly structured discrete
datasets, the challenges are many and the field is still in its infancy.



1.1 Motivation 3

(a) Graph signal

Figure 1.2: Decomposition of a graph signal (a) in four localized simple components (b), (c), (d), (e).
Each component is a heat diffusion process (e~7%) at time 7 that has started from different network nodes

(0n)-

A first challenge consists in properly using the graph-based signal representations in problems
that cannot be easily solved with classical signal processing tools. For example, graph representa-
tions have recently started to gain some attention in the computer graphics and computer vision
communities, where they have been used for representing and organizing the irregular geometry
of 3D models captured with 3D depth sensors. These 3D point clouds are not regularly organized
and even have little explicit spatial structure, which prevents the use of classical signal processing
tools. Graphs seem to be a promising framework for processing and compressing this new type of
data. Then, the analysis of data that lives on networks is certainly a very good fit for graph signal
processing. For example, the graph structure and a proper signal representation on the graph are
expected to provide two useful sources of information for mining and inferring typical behaviors
or patterns in social networks, detecting the spread of a disease in biological networks, predicting
physical changes in the environment, or reducing the energy consumption in energy networks.

One of the fundamental challenges when dealing with graph signals actually amounts to the
design of signal representations and appropriate signal models that incorporate the graph structure
and can be efficiently implemented. Representing graph signals using classical signal processing
transforms such as DCT and wavelets, or data-driven and structure-agnostic dictionaries, is defi-
nitely suboptimal as it ignores key data dependencies and geometry arising from the irregular graph
domain. Graph signal representations have definitely to be adapted to the graph structure. This
can be done by either adapting traditional signal models such as smoothness and sparsity to the
graph setting or by designing new models that can reveal particular characteristics of the graph
signals. An example is given in Fig. 1.2 that shows a graph signal that is a linear combination of
a sparse set of localized components on the graph generated by a heat diffusion process starting at
four different network nodes. A good data representation should therefore be able to identify the
core components of the graph signals i.e., the underlying processes evolving on the graph and their
localization on the network.

Finally, the effective implementation of graph signal processing operators represents another
important research challenge. In particular, as a natural application of graph signal processing lies
in the vast field of sensor networks, it is important that signal processing methods can be effectively
distributed. In such networks, each sensor typically communicates short messages only with a small
number of neighbor nodes due to energy constraints. As a result, the information exchanged by
the network nodes is quantized prior to transmission, which poses further challenges in terms
of the proper convergence of the distributed graph signal processing algorithms. An illustration
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A

Figure 1.3: A wireless sensor network where the graph captures the communication pattern in the network.
Each sensor exchanges information only with its one-hop neighbors. The exchanged messages are quantized
i.e., they are transmitted only using a limited number of bits.

of quantized communication in a sensor network is given in Fig. 1.3 where sensor nodes have
to exchange their information with only a limited number of bits. Topology-aware quantization
algorithms could increase the accuracy of the exchanged messages given a limited bit budget.

The above research questions are only some of the numerous open theoretical and application
challenges in the promising field of signal processing on graphs. From the theoretical point of view,
there is a need for novel signal representation methods that can reveal the main characteristics
of the graph signals, and at the same time, can be efficiently implemented. From an application
perspective, the main challenge consists in using appropriately the graph signal representations
for handling and analyzing complex dataset. In this thesis, we study various problems related
to the representation and processing of graph signals in both centralized and distributed settings
and provide new solutions to the design of effective graph signal representation methods and their
implementation in various illustrative applications.

1.2 Thesis outline

The goal of this thesis is to present solutions as well as in-depth analyses of a few of the most
important issues that arise in the emerging field of graph signal processing.

Initially, we review in Chapter 2 the current state-of-the-art methods for graph signal represen-
tations and their applications in both centralized and distributed settings. First, we give the basic
definitions and notation used in this thesis for graphs and signals on graphs, and we review the
generalization of classical transforms such as Fourier and wavelets to the irregular graph domain.
Then, we give an overview of the use of graph-based regularizers in solving ill-posed inverse problems
such as graph signal denoising and inpainting in centralized and distributed settings. The related
work chapter concludes with applications of graph signal processing in visual data representation,
processing and compression.

Chapter 3 studies a novel yet natural application of graph signal processing in the represen-
tation of 3D point cloud sequences and exploits graph-based transform signal representations for
addressing the challenging problem of the compression of data that is characterized by dynamic
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3D positions and color attributes. As temporally successive point cloud frames are similar, motion
estimation is key to effective compression of these sequences. This however represents a challenging
problem as the point cloud frames have varying numbers of points without explicit correspondence
information. We design a new solution to this problem by building on the interesting properties of
the graph signal processing framework. We represent the time-varying geometry of these sequences
with a set of graphs, and consider 3D positions and color attributes of the point clouds as signals on
the vertices of the graphs. We then cast motion estimation as a feature matching problem between
time consecutive graphs. The motion is estimated on a sparse set of representative vertices using
new spectral graph wavelet descriptors. A dense motion field is eventually interpolated at every
vertex by solving a graph-based regularization problem. The estimated motion is finally used for
removing the temporal redundancy in the predictive coding of the 3D positions and the color char-
acteristics of the point cloud sequences. Experimental results demonstrate that our novel method
is able to accurately estimate the motion between consecutive frames. Moreover, motion prediction
is shown to bring significant improvement in terms of the overall compression performance. To
the best of our knowledge, this is the first work that exploits both the spatial correlation inside
each frame (through the graph-based transform) and the temporal correlation between the frames
(through the graph-based motion estimation) to effectively compress the color and the geometry of
3D point cloud sequences.

Next, in Chapter 4, we depart from the graph-based transform signal representations used in
Chapter 3 to new overcomplete representations, or dictionaries, that are adapted to both the graph
structure and the signals at hand. In particular, we study the notion of sparsity in the graph settings
and propose a novel parametric dictionary learning algorithm to design data-adapted parametric
dictionaries that can sparsely represent graph signals. More specifically, we model graph signals
as combinations of overlapping local patterns on graph. We impose the constraint that the global
dictionary is a concatenation of subdictionaries, where each subdictionary is constructed on a
polynomial of the graph Laplacian matrix and represents a single pattern translated to different
areas of the graph. The learning algorithm adapts the patterns to a training set of graph signals.
We further extend our algorithm to the effective representation of graph signals that live on different
graph topologies. We exploit the Laplacian polynomial form to learn dictionaries that provide sparse
representations for classes of signals that share common spectral characteristics but reside on the
vertices of different graphs. Experimental results on both synthetic and real datasets demonstrate
that the dictionaries learned by the proposed algorithm are competitive with and often better
than unstructured dictionaries learned by state-of-the-art numerical algorithms in terms of sparse
approximation of graph signals. We then perform experiments on graph signals that represent
common processes on different graphs and show that our dictionary learning method is able to
recover the actual components of these signals. Importantly, in contrast to the structure-agnostic
dictionaries, the dictionaries learned by the proposed algorithm feature localized atoms and can be
implemented in a computationally efficient manner in different signal processing tasks.

We move to the problem of processing graph signals in distributed settings under communi-
cation rate constraints in Chapter 5. We study in particular the distributed processing of graph
signals that are well represented by graph spectral dictionaries. We first analyze the impact of
quantization noise in the distributed computation of polynomial dictionary operators that are com-
monly used in various signal processing tasks. We show that the impact of quantization depends
on the graph geometry and on the structure of the spectral dictionaries. Then, we focus on the
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problem of distributed sparse signal representation that can be solved with an iterative soft thresh-
olding algorithm. We define conditions on the dictionary structure to ensure the convergence of the
distributed algorithm and finally propose a new dictionary learning solution that permits to control
the robustness of the distributed signal processing tasks to quantization noise. Experimental results
for reconstruction and denoising of both synthetic and realistic signals illustrate the tradeoffs that
exist between accurate signal representation and robustness to quantization error in the design of
dictionary operators for distributed processing.

Finally, in Chapter 6, we focus on the distributed average consensus problem, which has been
typically addressed in the literature through the successive application of local graph filtering
operators. We consider in particular the problem of distributed average consensus in a sensor
network where sensors exchange quantized information with their neighbors. We propose a novel
quantization scheme that exploits the increasing correlation between the values exchanged by the
sensors throughout the iterations of the consensus algorithm. A low complexity, uniform quan-
tizer is implemented in each sensor, and refined quantization is achieved by progressively reducing
the quantization intervals along with the convergence of the consensus algorithm. We propose a
recurrence relation for computing the quantization parameters that depend on the network graph
topology, the graph process itself, and the communication rate. We further show that the recurrence
relation can lead to a simple exponential model for the value of the quantization step size over the
iterations. Finally, simulation results demonstrate the effectiveness of the progressive quantization
scheme that leads to the consensus solution even at low communication rate.

In summary, we address in this thesis several important problems related to the emerging field
of signal processing on graphs, and provide novel solutions for processing and analyzing graph
signals in both centralized and distributed settings. We focus in particular on the theory of sparse
graph signal representation and its applications and bring some insights towards understanding
the interplay between graphs and signals on graphs. Moreover, the research effort presented in
this thesis provides evidence of the usefulness and the relevance of the graph signal processing
framework in solving a broad category of real science and engineering problems.

1.3 Summary of contributions
The main contributions of this thesis are summarized below.

e We propose a novel graph-based algorithm for solving the challenging problem of motion
estimation and compensation on 3D point cloud sequences. The estimated motion is used
to design a new compression framework that is based on removing the temporal redundancy
and performing predictive coding of the 3D positions and the color attributes. The proposed
framework is tested and validated in real 3D point cloud sequences and is shown to provide
significant gain with respect to intra frame coding.

e We introduce a new dictionary learning algorithm for constructing flexible forms of graph
structured dictionaries, which sparsely represent graph signals and are adapted to the signals
at hand. The novel algorithm is tested in the approximation of signals representing (i) Flicker
users that have been taking photos in the geographical area of London, (ii) bottleneck dura-
tion in the transportation network of California, and (iii) fMRI signals in the brain network
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acquired on different subjects.

e We extend the proposed dictionary learning framework to signals that live on different graph
topologies but share some common spectral characteristics. We show that our dictionary
learning method is able to recover the common characteristics and core components of these
signals.

e We study the distributed processing of graph signals that are well represented by graph
spectral dictionaries, and the effect of quantization on different distributed processing tasks
performed with such dictionaries. Furthermore, we propose a new dictionary learning solu-
tion for the sparse representation of graph signals that permits to control the robustness of
distributed processing tasks to quantization noise.

e We propose a novel quantization scheme for distributed average consensus that exploits the
increasing correlation between the values exchanged by the sensors throughout the successive
application of the local graph filtering operator. Our quantization scheme is driven by the
characteristics of the graph topology and the communication rate, and is shown to provide
significant gain in terms of rate distortion performance.






Chapter 2

Graph Signal Processing Overview

2.1 Introduction

In order to represent efficiently graph signals, one needs to account for the intrinsic geometric
structure of the underlying graph. Signal characteristics such as smoothness depend on the irregular
topology of the graph on which the signal resides. Classical signal processing tools that have been
designed for regular signal structures are therefore inappropriate for the irregular structures in the
graph setting. A lot of effort has been recently dedicated to designing new tools and algorithms
that can handle efficiently the new challenges arising from the irregular nature of networks or other
graph supports. These tools are based on a combination of computational harmonic analysis with
algebraic and spectral graph theoretical concepts [9].

In this chapter, we review principal graph signal processing methods from the literature, which
are related to the problems studied in this thesis. First, we give the basic definitions and notation
for graphs and signals on graphs, that will be used in the rest of the thesis. Next, we review
the generalization of classical transforms such as Fourier and wavelet transforms to the irregular
graph domain. In the sequel, we focus on the use of graph-based signal processing tools in different
applications. In particular, we review the use of graph-based regularizers in solving inverse problems
such as graph signal denoising and inpainting. We also provide an overview of tools for processing
graph signals in a distributed fashion. Finally, we quickly review the use of graph-based signal
processing tools for image and 3D data, which represent a popular application area for this emerging
framework.

2.2 Graphs and signals on graphs

In this section, we briefly recall a few basic definitions for signals on graphs. We generally consider
a weighted and undirected graph G = (V, £, W) where V and &£ represent the vertex and edge sets
of the graph, and W represents the matrix of edge weights, with W,,,,, = W,,;, denoting the positive
weight of an edge connecting vertices n and m; W, = 0 if there is no edge between vertices m and
n. The degree of a node n is defined as the sum of the degree of the incoming edges, that can be
computed as the sum of the weight values in the n‘* row of the matrix W. We assume that the graph
is connected and that it consists of N nodes. The j-hop neighborhood N ,, = {v € V : d(v,n) < j}
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of node n is the set of all nodes that are at most j-hop away from node n.

The combinatorial graph Laplacian operator is defined as
L=D-W, (2.1)

where D is the diagonal degree matrix whose n'" diagonal element is equal to the sum of the weights
of all the edges incident to vertex n [11]. Tt is a positive semi-definite matrix that has a complete
set of real orthonormal eigenvectors with corresponding nonnegative eigenvalues. We denote its
eigenvectors by x = [x0, X1, ---» XN—1], and the sorted spectrum of eigenvalues by

U(,C) = {0 =X <A <A< < >\N—1}-

The smallest eigenvalue of the combinatorial Laplacian is always zero, and the corresponding eigen-
vector is a constant vector. The largest eigenvalue depends on the maximum degree of the graph.
Moreover, the combinatorial Laplacian is associated with the incidence matrix, as shown in [11].

For connected graphs, the normalized graph Laplacian is closely related to the combinatorial
Laplacian and is defined as

1 1

L=D LD i=[-D WDz, (2.2)

where [ is the identity matrix. As in the case of the combinatorial Laplacian, the eigenvalues are
non-negative, with the smallest one corresponding to zero. A nice property of the eigenvalues of
the normalized Laplacian is that they are contained between the interval [0, 2], which makes it
easier to compare the distribution of the eigenvalues between different graphs, especially if there
is a large difference in the number of vertices. Furthermore, its eigenvalues are consistent with
the eigenvalues in the spectral geometry and in stochastic processes, such as random walks [11].
The combinatorial and the normalized graph Laplacians are both examples of generalized graph
Laplacians [12] and they are both popular in many graph related applications. In general, when
the graph is almost regular, the combinatorial and the normalized Laplacian have similar spectra.
Although the combinatorial Laplacian has been widely used in the literature, in applications that
have a random walk or diffusion interpretation, or in those where weighting vertices by their degrees
is more natural, the normalized Laplacian can give in general better results. For these reasons, in
this thesis, we mainly use the normalized graph Laplacian. We focus only on undirected graphs.
For the sake of completeness though, we note that the definition of the Laplacian can be easily
extended to directed graphs [13].

A graph signal y in the vertex domain is a real-valued function defined on the vertices of the
graph G, such that y(n) is the value of the function at vertex n € V. An example of a graph and
a signal on the graph is given in Fig. 2.1. In this particular example, vertices that are connected
by an edge have similar signal values. Thus, the variation of the signal on the graph depends on
the graph connectivity. It is therefore important to process graph signals by considering both the
signal values and the irregular graph support.

Different frameworks have been developed for processing signals on the graph. The first one [9]
relies on spectral graph theory [11], and is based on the spectral decomposition of the eigenvalues
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Figure 2.1: A randomly generated graph of 30 vertices, with edges connecting geographically nearby
vertices. The illustrative signal on the graph is represented by black and blue bars, whose height represents
the signal value at each vertex, with blue denoting the positive values and black negative ones.

of the graph Laplacian matrix. The second one relies on the algebraic signal processing theory, and
builds upon graph shift operators that are based on the adjacency matrix of the graph [10]. Its main
advantage is that it can be easily generalized to directed graphs. Recently, the authors in [14] build
on the first framework and provide a probabilistic interpretation for signals and operators on graphs,
by modeling the graph signals as Gaussian Markov Random Fields. In the rest of this thesis, we
adopt the spectral graph theory framework, which provides direct connections with the framework
of harmonic analysis in regular signal domains. By analogy to the continuous Laplacian operator
whose eigenfunctions are the classical Fourier modes and its eigenvalues are the frequencies, the
eigenvectors and the eigenvalues of the graph Laplacian are related to the graph Fourier notion of
frequency. We present it in details in the next section.

2.3 Signal representation on graphs

2.3.1 Spectral graph representation

The fundamental analogy between traditional signal processing and graph signal processing is es-
tablished through the spectral graph theory [11]. In particular, the generalization of the classical
Fourier transform to graph settings has been established through the eigenvectors and the eigen-
values of the graph Laplacian matrix [3], which carry a notion of frequency for graph signals. In
particular, the graph Laplacian eigenvectors associated with small eigenvalues correspond to signals
that vary slowly across the graph, hence they can be associated with the notion of low frequency.
In other words, if two vertices are connected by an edge with a large weight, the values of the low
frequency eigenvectors at those locations are likely to be similar. The eigenvectors associated with
larger eigenvalues take values that change more rapidly on the graph; they are more likely to have
dissimilar values on vertices connected by an edge with high weight. The eigenvectors of the graph
Laplacian are therefore considered to represent a Fourier basis for graph signals. For any function
y defined on the vertices of the graph, the graph Fourier transform g()\s) at frequency Ay is thus



12 Chapter 2. Graph Signal Processing Overview

defined as the inner product with the corresponding eigenvector x, [3]

9§ (M) =, xe) =Y _y(n)x;(n), (2.3)

where the inner product is conjugate-linear in the first argument, and xj(n) is the conjugate value
of the eigenvector x; at node n. The inverse graph Fourier transform is

—1
:Z )\ng , Vn € V.
=0

The Fourier bases can be chosen as the eigenvectors of either the combinatorial or the normalized
graph Laplacian matrices!. Both spectrums have a frequency-like interpretation [9]. We notice
that, as in the classical Euclidean settings, the spectral domain representation provides important
information about the graph signals. For example, analogously to the classical case, the graph
Fourier coefficients of a smooth signal decay rapidly. Such signals are compressible as they can be
closely approximated by just a sparse set of Fourier coeflicients [15]. As we will see, this property

is used in many applications such as compression or regularization of graph signals.

Besides its use in spectral analysis, the graph Fourier transform is also useful in generalizing
traditional signal processing concepts such as convolution, translation, or modulation to graph
settings. In particular, the relation between the vertex and the spectral graph domain has been used
to define the convolution on the graph. Given two graph signals y, h the result of the convolution
of these two signals on vertex n is defined as [16, 3]

N-1

(y+h)(n) = G(A)h(Ae)xe(n), (2.4)

=0

which imposes the property that the convolution in the vertex domain is equivalent to a multipli-
cation in the graph spectral domain. The generalized translation operator of a graph signal y to a
node n can be defined as a generalized convolution with a Kronecker § function centered at vertex
n [17, 16, 3]:

N—-1
Ty = VN(y 6,) ()\FZ (Ae)xz (n)xe, (2.5)

=0

where the normalizing constant v/N ensures that the translation operator preserves the mean of
the signal?. The Kronecker function §,, is an N-dimensional signal that is zero everywhere on the
graph except from node n, where it takes the value of one. Moreover, the equality (a) follows from
Eq. (2.4). An example of the translation of a signal y in different nodes of the graph is illustrated

'For the sake of simplicity we use the same notation x = [xo, X1, ..., x~—1] for the vectors of both the combinatorial
and the normalized Laplacian matrix. However, in each chapter we specify the Laplacian matrix that this notation
refers to.

2When the Fourier basis is formed by the eigenvector of the normalized Laplacian, v/N is substituted by ||+/d||,
where d is a vector containing as elements the degree of each node.
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(a) (b) (c)

Figure 2.2: Translation of the same signal y to three different nodes on the graph. The size and the color
of each disk represent the signal value at each vertex. Due to the irregular topology, the translated signals
appear different but contain the same graph spectral information.

in Fig. 2.2. We notice that the classical shift in the classical definition of the translation does not
apply on graphs.

Filtering is another fundamental operation in graph signal processing. Similarly to classical
signal processing, the outcome 1,,; of the filtering of a graph signal y with a graph filter h is
defined in the spectral domain as the multiplication of the graph Fourier coefficient §(Ay) with the
transfer function A(\¢) such that

Jout(Ne) = 1(M)R(Ne), YA € o(L). (2.6)

The filtered signal y,,; at node n is given by taking the inverse graph Fourier transform of Eq.
(2.6), such that

N—

Your(n) = Y §(A)h(Ae)xe(n). (2.7)

=0

Ju

Eq. (2.7), can be expressed in matrix notation as follows

Yout = ;L(,C)y, (28)
where .
h(Xo) 0
0 h(An=1)

is a graph filter or kernel defined in the spectral domain of the graph.

Interestingly, when the graph filter is a polynomial of order K with coefficients {oy}X ) such
that

K
h(he) = adf, (2.9)
k=0

filtering in the spectral domain of the input signal y(n) at node n can be interpreted as a linear
combination of the components of the input signal at vertices that are within a K-hop neighborhood
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of n. Combining Egs. (2.8), (2.9), we obtain that

N-1 A
Yout(n) = > GJ(Ae)h(Ae)xe(n)

ak(‘ck)n,mv (210)

where (L¥),, ., = 0 if the shortest-path distance between vertices n and m is greater than k [3].
This property can be quite useful for designing signals that are localized in the vertex domain of
the graph. A detailed overview of these basic operations can be found in [9].

2.3.2 Localized graph transforms

The graph Fourier transform is global as most of the eigenvectors of the graph Laplacian are not
localized on the vertices of the graph. However, there exist many applications such as analysis
of graph signals, source localization, detection, where localization is a desired property. A lot of
research has been dedicated to developing localized transform methods specifically designed for
analyzing graph signals. In particular, the authors in [16] have extended the classical short-time
Fourier transform to a windowed graph Fourier transform, which enables vertex-frequency analysis.
Wavelet-like transforms have also received particular attention mainly due to their multiresolution
properties that are obtained with the definition of translation and dilation operators on the graph.
They can thus be used to analyze graph signals at different vertices and scales. These wavelet
construction methods can be divided into two types, the vertex domain designs and the graph
spectral domain designs.

The vertex domain designs of graph wavelet transforms are based on the spatial features of
the graph, such as the k-hop connectivity between the nodes. Such examples are the multiscale
wavelets of [18], which are Haar-like bases for tree graphs; the critically sampled generalized tree-
based wavelets transform [19] that extends the transform of [18| to general wavelet filters, and its
extension to a redundant wavelet transform [20] that exploits the tree structure of the data to
represent signals defined on weighted graphs. In all these methods the construction of the tree is
a difficult design problem. In addition, the graph wavelets proposed in [21] have been specifically
designed in the vertex domain to analyze computer network traffic by relying on the geodesic or the
shortest path distance on the graph. The algorithm however applies only to unweighted graphs.
The wavelets on unidirectional routing trees proposed in [22] are extensions of the lifting wavelets,
and have been used for distributed data gathering in wireless sensor networks.

The graph spectral domain designs of graph wavelets are based on the spectral features of the
graph, which are encoded in the eigenvalues and eigenvectors of the graph Laplacian. Their goal is
to design bases that are localized in both the vertex and the graph spectral domain. Examples such
as diffusion wavelets [23], spectral graph wavelets [3], and critically sampled two-channel wavelet
filter banks [24] target piecewise-smooth graph signals. In particular, the diffusion wavelets [23]
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are based on compressed representations of the powers of a diffusion operator to capture different
resolutions. To make the transform orthogonal, the localized basis functions at each resolution are
downsampled and orthogonalized. The spectral graph wavelet [3] is a redundant transform that is
designed in precise analogy to the classical continuous time wavelet transform, with the translation
and the dilation of band-pass filters defined in the graph spectral domain. The graph wavelet
filter banks [24] are inspired by the traditional multiresolution analysis based on filter banks in
the Euclidean domain, and they result, under some conditions, in orthogonal filter banks that are
critically sampled. While the spectral graph wavelets form a frame, the authors in [25] propose the
design of filters that are adapted to the actual distribution of the graph Laplacian eigenvalues and
lead to a tight frame. Similar ideas has been used in [26] to design filters that extend the spectral
graph wavelets to a tight frame on multilayer graphs. Finally, a multiscale pyramid transform for
graph signals that outputs both a multiresolution representation of the graph and a graph signal
multiresolution decomposition is proposed in [27]. The algorithm is based on the four fundamental
steps of the Laplacian pyramid transform for signals in the Euclidean domain that are graph
downsampling, graph reduction, filtering and interpolation of graph signals.

The above transforms feature pre-defined structures merely derived from the graph and some
of them can be efficiently implemented; however, they are generally not adapted to the signals at
hand. Some exceptions are the diffusion wavelet packets of [28], the wavelets on graphs via deep
learning [29], and the tree-based wavelets [19, 20|, which feature extra adaptivity. In particular, the
diffusion wavelet packets consist of a large number of bases, each adapted to represent functions
with different space and frequency localization properties. The choice of the basis from the bases
library depends on the task at hand. The authors in [29] introduce a machine learning framework
to design a lifting scheme that resembles a deep auto encoder network. Desired properties of the
transform are introduced in the training of the neural network. In both works however training
signals living on the graph are not taken into account. The definition of the tree in [19, 20| captures
the geometry and the structure of the input data and the adaptivity is obtained by permutations
derived from the tree. The performance of the scheme however depends on the tree construction
and the reordering involved. Omne of the objectives of this thesis is exactly to design structured
graph transforms, which can sparsely represent graph signals and can be efficiently implemented.

2.4 Applications of graph-based signal processing

In this section, we present a few applications of graph-based signal processing. First, we review
some of the works from the literature that use graph-based tools to process graph signals in both
centralized and distributed settings. Then, we rely on graphs to model the geometrical structure of
high-dimensional signals and we focus on multimedia applications that use graph-based transforms
in image and video compression, or 3D shape processing.

2.4.1 Processing with graph-based priors

Many of the representation methods of the previous section have been applied to different signal
processing tasks such as denoising, semi-supervised learning, and classification. Similar to the tra-
ditional Euclidean domain, notions such as smoothness and sparsity have been used as regularizers
for solving many inverse graph-based problems in both centralized and distributed settings.
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The smoothness of the signals on the graph has been one of the core assumptions in semi-
supervised learning with applications in classification, link prediction, and ranking problems. A
signal is considered to be smooth on the graph if it exhibits little variations between strongly
connected vertices. Typically, the notion of global smoothness S, (y) of a signal y is defined through
the discrete p-Dirichlet norm of y as [30]

D
2

S =5 S IVl = 53 [ 3 Walyt) )], (2.11)

veY veEY  ueN,

where N, denotes the one-hop neighborhood of node v, and W,,, is the edge weight between nodes
v,u. When p =1, Eq. (2.11) defines the total variation of the signal y on the graph. When p = 2,
we have a widely-used Laplacian based form of smoothness defined as

Sa(y) = > Wuly(v) — y(w)]?

u,weE
N-1
=y Ly=">_ (M) (2.12)
/=0

Eq. (2.12) implies that the signal y is smooth, i.e., S(y) is small only if the graph Fourier coefficients
corresponding to big eigenvalues are small. This definition of smoothness or similar notions have
been imposed as regularizers in the graph-based semi-supervised learning literature, where the goal
is to compute the unknown signal entries by exploiting the assumption that the signal values vary
slowly between nodes that are connected by strong edges [31], [32], [33], [34]. The extension to
more sophisticated regularization techniques has been developed through the definition of kernels
on graphs that are typically of the form of the power series of the graph Laplacian [35]. Recently,
a framework for active semi-supervised learning based on sampling theory for graph signals has
been introduced in [36] and is based on the above notion of smoothness of signals on the graph.
Furthermore, we remark that the authors in [37], introduce the quadratic Laplacian based regu-
larizer of Eq. (2.12) to the dictionary learning problem with the purpose of image classification.
They improve the classification performance by imposing that the obtained sparse coding coeffi-
cients vary smoothly along the geodesics of the manifold that is captured by the graph. Finally,
a smooth regularizer based on Eq. (2.12) has been used in [38] for matrix completion on graphs,
with applications to recommendation systems.

While smoothness priors have been widely employed, the use of sparse prior for graph signals
has been mostly overlooked so far. The reason is that the link between sparsity and signal structure
is not well understood in graph settings. However, there are still some works that try to exploit
sparsity in learning applications. For example, the sparsity of the Fourier coefficients has been
exploited for the reconstruction of bandlimited graph signals in [39]. The authors in [18] construct
multi-scale wavelet-like orthonormal bases on hierarchical trees and relate the smoothness of the
graph signals with the decay of the coefficients in these bases. The proposed bases have been
applied to transductive semi-supervised learning problems. Finally, sparsity of the spectral graph
wavelets coefficients has been used as a regularizer for semi-supervised learning in [40] and [41].

For the sake of completeness, we mention a few more works that use graph-based transforms and
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filters for processing graph signals in a wide range of applications. The authors in [42] have used the
graph Fourier transform for matched signal detection through hypothesis testing. Regularization
through localized graph filters have been proposed in [43] to perform graph signal interpolation with
partial observations. In [44], adaptive graph filtering has been used for multi-resolution classification
with application to health monitoring. Spectral graph wavelets have been successfully applied in
applications such as community detection [45] and inference on graphs [46]. In particular, in [45],
the correlation between wavelets centered at different nodes has been used to define a notion of
correlation, and eventually design a hierarchical clustering scheme that finds the best partitioning
in communities at each scale. Finally, the authors in [46] analyze the characteristics of graph signals
through their spectral representations using wavelets defined on graphs, which enables them to build
efficient classifier of mobility patterns in the spectral domain. While in all these applications graph
transforms have been shown to provide significant benefits, the design of adaptive transforms that
are particularly adapted to the graph signals is expected to improve even more the performance in
such applications.

2.4.2 Distributed processing of graph signals

The processing of graph signals in centralized settings has received considerable attention, but less
work has been devoted to solving similar tasks in distributed settings like sensor networks. Many
distributed processing tasks consider the graph signal to be the result of the application of a linear
graph-based operator to an initial input signal. When the signal can be represented as a filtering
operation in the vertex domain of the graph, distributed processing of the signal is significantly
simplified. More formally, given an initial signal y, every signal y,, that can be expressed as
filtering of y in the graph vertex domain with a graph operator P € RV*¥ such that

Your(n) = Y Pumy(m), (2.13)
meN,

can be computed by local exchange of information only within the neighborhood of node n. P, ,
is the filtering weight corresponding to the edge between nodes n and m. The operator or graph
filter P is then defined according to the model of the signal.

Most of the existing works in such settings focus on reaching distributively an agreement between
sensors, using only local communication. In that case, the operator P is a doubly stochastic weight
matrix that leads to an output g, that is the average value of the components of the initial signal
y. Examples of such operators are the Metropolis and the Laplacian weight matrices [47] defined
respectively as:

e Metropolis weights

1 .
1+max{d(n),d(m)}’ if {’I’L, m} e
Pym=< 1- Z(n,k)es P, ifn=m
0, otherwise,

where d(n),d(m) denotes the degree of the n*" and the m'* sensors respectively.



18 Chapter 2. Graph Signal Processing Overview

e Laplacian weights
P=1—-al

where L denotes the Laplacian matrix of the graph G and the scalar a must satisfy 0 < a <
1/dmaz, where dpq consists of the maximum degree of the graph.

Among the most common applications, distributed consensus algorithms in both synchronous (av-
erage consensus algorithms) [48] and asynchronous versions (gossip algorithms) [49] have been
widely used for performing various aggregations tasks in ad-hoc sensor networks. In particular, the
authors in [50] solve the problem of distributed classification of multiple observations exploiting
average consensus while consensus-based distributed algorithms for SVM training for binary clas-
sification have been proposed in [51]. In addition, [52] solves a distributed field estimation problem
from compressed measurements while [53] introduces an algorithm for distributed subspace estima-
tion based on average consensus. Gossip algorithms find also numerous applications in problems
such as distributed parameter estimation, source localization, distributed compression [49], and
decentralized sparse approximation [54].

Distributed average consensus operators are however only a specific case of the general family
of graph-based operators. In general, distributed processing of graph signals requires the definition
of more sophisticated graph operators P. To that end, the authors in [55] have introduced a special
category of linear graph operators called graph Fourier multipliers, which has been eventually
extended to generalized graph multiplier operators in [56]. Such operators are defined with respect
to a real symmetric positive semi-definite matrix ® = UVU?T, where U and V are the eigenvectors
and the eigenvalues of @, and are expressed as

P=" gV)UL, (2.14)
=0

o~

where ¢g(+) : [0 : Ve (®)] — R is a positive function defined in the spectral domain of the graph.
When the matrix ® is the graph Laplacian matrix then

N-1

P = g(Ae)xexz,
=0

which corresponds to a graph Fourier operator. The union of such operators P =
[xg1 (M) xT xga(A)xT ... xgs(A)x”] represents the graph Fourier multipliers. From Eq. (2.13),
a graph signal y,y is then the result of filtering a set of initial signals y = [y1; y2; ...; ys] in the
spectral domain with each of the graph Fourier multipliers, such that

S
Your = »_ Xgs(A)X" ys. (2.15)
s=1

An example of a union of graph Fourier multipliers is the spectral graph wavelet transform [3|, where
each of the multipliers corresponds to a particular scale. An efficient way to apply graph Fourier
multipliers in distributed settings is by approximating them with Chebyshev polynomials [3], [55].
In that case, the output signal ¥,y is the linear combination of a set of graph filtering operations
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(in the vertex domain) of some initial signals on the graph. Such an approximation permits the
distributed approximation of y,,; from the set of initial signals as well as the implementation of
the forward and adjoint operators, which can be useful in tasks such as distributed denoising and
distributed smoothing, as shown in [55].

A few more distributed processing algorithms of graph signals are based on the above mentioned
ideas of graph filtering in the vertex domain. Recently, a distributed least square reconstruction
algorithm of bandlimited graph signals has been proposed in [57]. The initial observations are sam-
pled only on a subset of nodes and the algorithm is shown to be efficient in tracking the unobserved
data of time-varying graph signals. The distributed graph signal inpainting algorithm of [58] uses
a regularizer that minimizes a metric term related to the variation of the signal on the graph. The
underlying assumption is that the signal is smooth on the graph. The problem of interpolation of
bandlimited graph signals from a few samples is also studied in [43]. The reconstruction is achieved
using iterative graph filtering, which can be approximated by polynomials of the graph Laplacian
matrix and implemented in distributed settings. Graph filters have also been used to accelerate the
convergence of the average consensus algorithm on a sensor graph [59], [60]. Finally, matrix poly-
nomials of a graph-shift operator have been proposed in [61] to design graph filters for distributed
linear network operators such as finite-time consensus or analog network coding. Most of all the
above mentioned works show the potentials of graph signal processing techniques for distributed
tasks, but do not explicitly consider practical aspects such as quantization, which is of significant
importance in real word applications.

2.4.3 Graph-based multimedia processing

Apart from processing signals that live on networks, graphs have been used for modeling structured
signals that live on other irregular domains. In particular, graph signal processing algorithms have
been successfully applied in numerous multimedia applications in order to capture the geometrical
structure of complex high-dimensional signals such as images, videos, and 3D data. This type of
data provides a promising application domain for the emerging field of graph signal processing.

First, we note that graphs and features based on graphs have recently started to gain attention in
the computer vision and shape analysis community mainly due to the fact that the graph Laplacian
has been shown to approximate successfully the Laplace-Beltrami operator on a manifold [62], [63],
[64]. Spectral features defined on the graph have been successfully applied in a wide variety of
shape analysis tasks. The heat kernel signatures [65], their scale-invariant version [66], the wave
kernel signatures [67], the optimized spectral descriptors of [68], have already been used in 3D shape
processing with applications in graph matching [69] or in mesh segmentation and surface alignment
problems [70]. These features have been shown to be stable under small perturbations of the edge
nodes of the graph. In all these works however, the descriptors are defined based only on the graph
structure, and the information about the attributes of the nodes such as color and 3D positions,
if any, is assumed to be introduced in the weights of the graph. Thus, the performance of these
descriptors largely depends on the quality of the defined graph.

Signal compression is a second application domain where graph signal processing tools have
been applied successfully. Analogously to the classical analog case, the graph Fourier coefficients
of a smooth signal decay rapidly [15], making the graph Fourier transform a good candidate for
compression. In particular, the graph Fourier transform has been widely used to compress efficiently
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smooth images. For example, the graph-based Fourier transform has been used in [71] for the
compression of image and video signals, as an alternative to the classical discrete cosine transform
(DCT). The authors in [72| adapted the graph for maximally smooth signals and optimized the
graph Fourier transform for better compression of 3D smooth images. A set of edge-adaptive
transforms was presented as an alternative to the standard DCT and used in depth-map coding
in [73]. A few steps towards the theoretical analysis of the analogy between the graph Fourier
transform and the classical DCT have been taken in [74]. Under a Gaussian Markov Random Field
image model, the graph Fourier transform has been shown to be optimal in decorrelating the signal
and used for predictive transform coding. Graphs have also been used for compressing multiview
images, where the graph is designed by connecting corresponding pixels in different views [75]. In
[76] graph-based transforms have been used to code luminance values in GBR. The problem of
multiview images of asymmetric quality has been studied in [77], where the construction of a graph
from high quality images has led to the enhancement of low quality images. In the same line of
works, a graph regularizer that imposes smoothness has been proposed in [78] to enhance the quality
of quantized depth images. Thus, graph representations are an interesting tool for compression of
image and video signals.

Finally, graph-based transforms have recently been used in computer graphics where the struc-
tural organization of 3D objects is captured by a graph. In particular, the authors in [79] represent
a moving human body by a sequence of 3D meshes with a fixed and known connectivity represented
by a graph. The geometry and the color information have then been considered as time-varying
signals on a graph, which are compressed using the graph wavelet filter banks [24]. Graph rep-
resentations have been also used in [2] to model the structure of 3D point clouds and connect
nearby points. The graph Fourier transform, which is equivalent to Karhunen-Loéve transform on
such graphs, is adopted to decorrelate and eventually compress the point cloud attributes that are
treated as signals on the graph.

Although graphs and in particular graph-based transforms have been shown to compress ef-
ficiently 2D and 3D signals by removing the spatial correlation across the nodes, the temporal
correlation between graph signals that are changing over time is not taken into consideration. To-
wards that direction, informative graph descriptors could be helpful in determining the variation
of signals in sequence of graphs. The design of features that combine both the graph and the
signal on the graph could result in more informative and discriminative graph features. Exploiting
graphs and well-defined features on graphs for removing temporal redundancy in compression is a
challenging research problem that we study in this thesis.

2.5 Summary

Signal processing on graphs is a new and emerging field that is attracting the attention of many
different research communities. A significant amount of work has been dedicated to the development
of graph-based transforms that can represent and process graph signals. These transforms are
mainly designed by leveraging intuitions from Euclidean settings and at the same time incorporating
the irregular graph structure. The graph Fourier transform or wavelet-like type of transforms have
found applications in different inference problems such as regularization of graph signals for semi-
supervised learning, in both centralized and distributed settings. Finally, these transforms have
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shown some potentials in the efficient storage and compression of high-dimensional graph signals,
such as images, videos, and 3D point clouds.

However, since the field is at its infancy, there are still a lot of open questions and research
challenges. Existing work focuses only on exploiting the graph for capturing pairwise dependencies
between the vertices. The extension of graph-based signal processing tools in capturing temporal
correlation between graph signals could bring significant benefits in applications such as predictive
coding and is definitely an open research question. In addition, the representation of wider and more
complex families of graph signals requires the transition from transformed-based designs that follow
a specific model toward overcomplete graph dictionaries that are adapted to the characteristics of
the signals. To that end, notions such as sparsity and localization on graphs have to be better
understood. There is also room for exploiting signal-adapted representations to solving efficiently
graph-based inverse problems in a distributed fashion. In such settings, the effect of quantization
that is of paramount importance in realistic networks should be taken into consideration. These
are some of the challenges addressed in this thesis.






Chapter 3

Graph-based Compression of Dynamic
3D Point Cloud Sequences

3.1 Introduction

A typical application of graph signal processing relates to 3D data. Dynamic 3D scenes such as
humans in motion can now be captured by arrays of color plus depth (or ‘RGBD’) video cameras [80],
and such data is getting very popular in emerging applications such as animation, gaming, virtual
reality, and immersive communications. The geometry captured by RGBD camera arrays, unlike
computer-generated geometry, has little explicit spatio-temporal structure, and is often represented
by sequences of colored point clouds. Frames, which are the point clouds captured at a given
time instant as shown in Fig. 3.1, may have different numbers of points, and there is no explicit
association between points over time. Performing motion estimation, motion compensation, and
effective compression of such data is therefore a challenging task.

In this chapter, we focus on the compression of the 3D geometry and color attributes and
propose a novel motion estimation and compensation scheme that exploits temporal correlation in
sequences of point clouds'. To deal with the large size of these sequences, we consider that the
point clouds are voxelized, that is, their 3D positions are quantized to a regular, axis-aligned, 3D
grid having a given stepsize. This quantization of the space is commonly achieved by modeling
the 3D point cloud sequences as a series of octree data structures [80], [81], [82]. In contrast to
polygonal mesh representations, the octree structure exploits the spatial organization of the 3D
points, which results in easy manipulations and permits real-time processing of the point cloud
data. In more detail, an octree is a tree structure with a predefined depth, where every branch
node represents a certain cube volume in the 3D space, which is called a voxel. A voxel containing
at least one point is said to be occupied. Although the overall voxel set lies on a regular grid, the set
of occupied voxels are non-uniformly distributed in space. To uncover the irregular structure of the
occupied voxels inside each frame, we consider voxels as vertices in a graph G, with edges between
nearby vertices. Attributes of each voxel n, including 3D position p(n) = [z,y, z](n) and color

'D. Thanou, P. A. Chou, and P. Frossard. Graph-based compression of dynamic 3D point cloud sequences,
Accepted for publication in IEEE Trans. on Image Proc., Dec. 2015.
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Figure 3.1: Sequence of point cloud frames captured at different time instances in the ‘man’ sequence.

components ¢(n) = [r, g,b](n), are treated as signals residing on the vertices of the graph. Such an
example is illustrated in Fig. 3.2. As frames in the 3D point cloud sequences are correlated, the
graph signals at consecutive time instants are also correlated. Hence, removing temporal correlation
implies comparing the signals residing on the vertices of consecutive graphs. The estimation of the
correlation is however a challenging task as the graphs usually have different numbers of nodes and
no explicit correspondence information between the nodes is available in the sequence.

First, we propose a novel algorithm for motion estimation and compensation in 3D point cloud
sequences [83]. We cast motion estimation as a feature matching problem on dynamic graphs. In
particular, we compute new local features at different scales with spectral graph wavelets (SGW)
[3] for each node of the graph. Our feature descriptors, which consist of the wavelet coefficients
of each of the signals placed in the corresponding vertex, are then used to compute point-to-point
correspondences between graphs of different frames. We match our SGW features in different graphs
with a criterion that is based on the Mahalanobis distance and trained from the data. To avoid
inaccurate matches, we first compute the motion on a sparse set of matching nodes that satisfy
the matching criterion. We then interpolate the motion of the other nodes of the graph by solving
a new graph-based quadratic regularization problem, which promotes smoothness of the motion
vectors on the graph in order to build a consistent motion field.

Then, we design a compression system for 3D point cloud sequences, where we exploit the es-
timated motion information in the predictive coding of the geometry and color information [84].
The basic blocks of our compression architecture are shown in Fig. 3.3. We code the motion field
in the graph Fourier domain by exploiting its smoothness on the graph. Temporal redundancy in
consecutive 3D positions is removed by coding the structural difference between the target frame
and the motion compensated reference frame. The structural difference is efficiently described in a
binary stream format as discussed in [1]. Finally, we predict the color of the target frame by inter-
polating it from the color of the motion compensated reference frame. Only the difference between
the actual color information and the result of the motion compensation is actually coded with a
state-of-the-art encoder for static octree data [2]. Experimental results illustrate that our motion
estimation scheme effectively captures the correlation between consecutive frames. Moreover, in-
troducing motion compensation in compression of 3D point cloud sequences results in significant
improvement in terms of rate-distortion performance of the overall system, and in particular in
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Figure 3.2: Example of a point cloud of the ‘yellow dress’ sequence (a). The geometry is captured by a
graph (b) and the r component of the color is considered as a signal on the graph (c). The size and the
color of each disc indicate the value of the signal at the corresponding vertex.
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Figure 3.3: Schematic overview of the encoding architecture of a point cloud sequence. Motion estimation

is used to reduce the temporal redundancy for efficient compression of the 3D geometry and the color
attributes.

the compression of the color attributes where we achieve a gain of up to 10 dB in comparison to
state-of-the-art encoders.

The contribution of the chapter is summarized as follows. The proposed encoder is the first
one to exploit motion estimation in efficient coding of point cloud sequences, without going first
through the expensive conversion of the data into a temporally consistent polygonal mesh. Second,
we represent the point cloud sequences as a set of graphs and we solve the motion estimation
problem as a new feature matching problem in dynamic graphs. Third, we propose a differential
coding scheme for geometry and color compression that provides significant overall gain in terms
of rate-distortion performance.

The rest of the chapter is organized as follows. First, in Section 3.2, we describe the represen-
tation of 3D point clouds by performing an octree decomposition of the 3D space and we introduce
graphs to capture the irregular structure of this representation. The motion estimation scheme
is presented in Section 3.3. The estimated motion is then applied to the predictive coding of the
geometry and the color in Section 3.4 and experimental results are given in Section 3.5. Finally, in
Section 3.6, we review the existing work in the literature that studies the problem of compression
of 3D point clouds.
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(a) Original point cloud (b) Depth 1 (c¢) Depth 2

Figure 3.4: Octree decomposition of a 3D model for two different depth levels. The points belonging to
each voxel are represented by the same color.

3.2 Structural representation of 3D point clouds

3D point clouds usually have little explicit spatial structure. Someone can however organize the 3D
space by converting the point cloud into an octree data structure [80], [81], [82]. In what follows,
we recall the octree construction process, and introduce graphs as a tool for capturing the structure
of the leaf nodes of the octree.

3.2.1 Octree representation of 3D point clouds

An octree is a tree structure with a predefined depth, where every branch node represents a certain
cube volume in the 3D space, which is called a voxel. A voxel containing at least one sample from
the 3D point cloud is said to be occupied. Initially, the 3D space is hierarchically partitioned into
voxels whose total number depends on the number of 3D volume subdivisions, i.e., the depth of the
resulting tree structure. For a given depth, an octree is constructed by traversing the tree structure
in depth-first order. Starting from the root, each node can generate eight children voxels. At the
maximum depth of the tree, all the points are mapped to leaf voxels. An example of the voxelization
of a 3D model for different depth levels, or equivalently for different quantization stepsizes, is shown
in Fig. 3.4.

In contrast to temporally consistent polygonal mesh representations, the octree structures are
appropriate for modeling 3D point cloud sequences as they are easy to obtain. Thanks to the
different depths of the tree, they permit a multiresolution representation of the data that leads to
efficient data processing in many applications. In particular, this multiresolution representation
permits a progressive compression of the 3D positions of the data, which is lossless within each
representation level [1].

3.2.2 Graph-based representation of 3D point clouds

Although the overall voxel set lies on a regular grid, the set of occupied voxels is non-uniformly
distributed in space, as most of the leaf voxels are unoccupied. In order to represent the irregu-
lar structure formed by the occupied voxels, we use a graph-based representation. Graph-based
representations are flexible and well adapted to data that live on an irregular domain [85]. In
particular, we represent the set of occupied voxels of the octree using a weighted and undirected
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graph G = (V,&, W), where V and & represent the vertex and edge sets of G. Each of the N nodes
in V corresponds to an occupied voxel, while each edge in £ connects neighboring occupied voxels.
We define the connectivity of the graph based on the K-nearest neighbors (K-NN) graph, which is
widely used in the literature. We usually set K to 26 as it corresponds to the maximum number
of neighbors for a node that has a maximum distance of one step along any axis of the 3D space.
However, since in general not all 26 voxels are occupied, we extend our construction to the general
K-NN graph. Two vertices are thus connected if they are among the 26 nearest neighbors in the
voxel grid, which results in a connected graph. This property is useful in the interpolation of the
motion vectors, as we see in the following section. The matrix W is a matrix of positive edge
weights, with W;; denoting the weight of an edge connecting vertices 4 and j. This weight captures
the connectivity pattern of nearby occupied voxels and is chosen to be inversely proportional to the
3D distance between voxels.

After the graph G = (V, &, W) is constructed, we consider the attributes of the 3D point cloud
— the 3D coordinates p = [z,v, 2] € R¥>**¥ and the color components ¢ = [r, g,b]7 € R¥>*N — as
signals that reside on the vertices of the graph G. A spectral representation of these signals can be
obtained with the help of the Graph Fourier Transform (GFT), as defined in Chapter 2. The GFT
will be used later to define spectral features and to code effectively data on the graph.

3.3 DMotion estimation in 3D point cloud sequences

As the frames have irregular structures, we use a feature-based matching approach to find corre-
spondences in temporally successive point clouds. We use the graph information and the signals
residing on its vertices to define feature descriptors on each vertex. We first define simple octant
indicator functions to capture the signal values in different orientations. We then characterize the
local topological context of each of the point cloud signals in each of these orientations, by using
spectral graph wavelets (SGW) computed on the color and geometry signals at different resolutions
[3]. Our feature descriptors, which consist of the wavelet coefficients of these signals are then used
to compute point-to-point correspondences between graphs of different frames. We select a subset
of best matching nodes to define a sparse set of motion vectors that describe the temporal correla-
tion in the sequence. A dense motion field is eventually interpolated from the sparse set of motion
vectors to obtain a complete mapping between two frames. The overall procedure is detailed below.

3.3.1 Multi-resolution features on graphs

We define features in each node by computing the variation of the signal values, i.e., geometry and
color components, in different parts of its neighborhood. For each node i belonging to the vertex set
V of a graph G, i.e., i € V, we first define the octant indicator function oy ; € RV, V k = [1,2,...,8],
for the eight octants around the node i. For example, for the first octant it is given as follows

01,i(7) = La()>2() () >u(0),20) ==} (I)

where 1¢4(j) is the indicator function on j € V, evaluated in a set {-} of voxels given by specific 3D
coordinates. The first octant indicator function is thus nonzero only in the entries corresponding
to the voxels whose 3D position coordinates are bigger than the ones of node i. We consider all
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possible combinations of coordinates, which results in a total of 22 indicator functions for the eight
octants around i. These functions provide a notion of orientation of each node in the 3D space
with respect to i, which is given by the octree decomposition.

We then compute graph spectral features based on both geometry and color information, by
treating their values independently in each orientation. In particular, for each node i € V and each
geometry and color component f € RY, where f € {x,y, 2,7, g,b}, we compute the spectral graph
wavelet coefficients by considering independently the values of f in each orientation k& with respect
to node ¢ such that

d)i,S,Ok,i,f =< f : Ok,i7ws,i >, (31)

where k € {1,2,...,8}, s €S = {81, ..., Smaz }, 1S a set of discrete scales, and - denotes the pointwise
product. The function 5 ; represents the spectral graph wavelet of scale s placed at that particular
node i. We recall that the spectral graph wavelets [3| are operator-valued functions of the graph

Laplacian defined as
N-1

Yo = T30 =Y g(she)xi (i)xe,
=0

where x = [X0,X1,--sXN—1), and 0 = Ng < A1 < Ay < ... < A(n—1) are the eigenvectors and
the corresponding eigevalues of the combinatorial graph Laplacian L. The graph wavelets are
determined by the choice of a generating kernel g, which acts as a band-pass filter in the spectral
domain, and a scaling kernel h that acts as a lowpass filter and captures the low frequency content.
The scaling is defined in the spectral domain, i.e., the wavelet operator at scale s is given by
Ty = g(sL). Spectral graph wavelets are finally realized through localizing these operators via the
impulse § on a single vertex i. The application of these wavelets to signals living on the graph results
in a multi-scale descriptor for each node. We finally define the feature vector ¢; at node i as the
concatenation of the coefficients computed in (3.1) with wavelets at different scales, including the
features obtained from the wavelet scaling function, i.e., ¢; = [Gisop..fr Pinog,s] € RECUSHD,
where

Gihopinf =< [+ 0kis h(L)d; > .

To summarize, we note that our spectral features characterize each vertex by computing the
local variation of these signals at different scales. Furthermore, this approach gives us the flexility
to consider the signal values in different orientations as discussed above, and makes the descriptor
of each node more informative.

3.3.2 Finding correspondences on dynamic graphs

We translate the problem of finding correspondences in two consecutive point clouds or frames of
the sequence into finding correspondences between the vertices of their representative graphs. For
the rest of this chapter, we denote the sequence of frames as Z = {Z1, Zo, ..., e} and the set
of graphs corresponding to each frame as G = {G1, G2, ..., Gmaz}- For two consecutive frames
of the sequence, Z;, Z;11, called also reference and target frame respectively, our goal is to find
correspondences between the vertices of their representative graphs G; and Gyy1. The number of
vertices in the respective vertex sets Vy, V11 can differ between the graphs and is denoted as NV
and Ny respectively.
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We use the features defined in the previous subsection to measure the similarity between vertices.
We compute the matching score between two nodes m € Vi, n € V41 as the Mahalanobis distance
between the corresponding feature vectors, i.e.,

U(m>n) = (¢m - ¢n)TP(¢m - ¢n)7 Ym € Vi, n € Vi, (3'2)

where P is a matrix that characterizes the relationships between the geometry and the color feature
components (measured in different units), as well as the contribution of each of the wavelet scales in
the matching performance. As a result, if m € V; corresponds to n € V1, ¢y, is a Gaussian random
vector with mean ¢,, and covariance P~!, while if m does not correspond to n, ¢, comes from a
very flat (essentially uniform) distribution. Hence the matching score o(m,n) can be considered
a log likelihood ratio for testing the hypothesis that m corresponds to n. We learn the positive
definite matrix P by estimating the sample inverse covariance matrix from a set of training features
that are known to be in correspondence. More precisely, we consider two frames Z,, Zg, for which
the correspondences are known. For each m € V, corresponding to n € Vg, we compute the
error obtained from their feature difference, i.e., €mpn = ¢m — ¢n. The error vectors defined by
all the corresponding nodes are then used to estimate the sample covariance matrix of the feature
differences and subsequently the inverse sample covariance matrix P.

For each node in G;1, we then use the matching score of Eq. (3.2) to define the best matching
node in G;. In particular, for each n € V;11, we define as its best match in V;, the node m,, with
the minimum Mahalanobis distance, i.e.,

m, = argmino(m,n). (3.3)
meVt

From the global set of correspondences computed for all the nodes of V;y1, we select a sparse set of
significant matches, namely correspondences with best scores. The objective of this selection is to
take into consideration only accurate matches and ignore others since inaccurate correspondences
are possible in the case of large displacements. We also want to avoid matching points in Z;4, that
do not have any true correspondence in the preceding frame Z;. In order to ensure that we keep
correspondences in all areas of the 3D space, we cluster the vertices of G;41 into different regions and
we keep only one correspondence, i.e., one representative vertex, per region. Clustering is performed
by applying K-means in the 3D coordinates of the nodes of the target frame, where K is usually
set to be equal to the target number of significant matches. In order to avoid inaccurate matches,
a representative vertex per cluster is included in the sparse set only if its best matching distance
given by Eq. (3.3) is smaller than a predefined threshold. This procedure results in detecting a
sparse set of vertices n in V;11, denoted VtSH C V411, and the set of their correspondences m,, in Vy,
Vts C V;. Moreover, our sparse set of matching points tend to represent accurate correspondences
that are well distributed spatially.

3.3.3 Computation of the motion vectors

We now describe how we generate a dense motion field from the sparse set of matching nodes
(Mn,n) € V7 x VEH. Our implicit assumption is that vertices that are close in terms of 3D
positions, namely close neighbors in the underlying graph, undergo a similar motion. We thus use
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the structure of the graph in order to interpolate the motion field, which is assumed to be smooth
on the graph.

In more detail, our goal is to estimate the dense motion field v, = [vy(m)], for all m € G, using
the correspondences (my,,n) € V7 x VtSH. To determine v;(m) for m = m,, € V;, we use the vector
between the pair of matching points (my,,n),

vr(mn|n) £ pria(n) — pe(my,). (3.4)

Here we recall that p; and p,41 are the 3D positions of the vertices of G; and G;41, respectively. To
determine v;(m) for m & V¥, we consider the motion field v; to be a vector-valued signal that lives
on the vertices of G;. Then we smoothly interpolate the sparse set of motion vectors (3.4). The
interpolation is performed by treating each component independently. Given the motion values on
some of the vertices, we cast the motion interpolation as a regularization problem that estimates
the motion values on the rest of the vertices by requiring the motion signal to vary smoothly across
vertices that are connected by an edge in the graph. Moreover, we allow some smoothing on the
known entries. The reason for that is that the proposed matching scheme does not necessarily
guarantee that the sparse set of correspondences, and the estimated motion vectors associated with
them, are correct. To limit the effect of motion estimation inaccuracies, for each matching pair
(mn,n) € V¥ x VEH, we model the matching score in the local neighborhood of m,, € V{ with a
smooth signal approximation. Specifically, for each n € Vfil, we extend the definition (3.4) to all
m € Vi, ie.,
ve(m|n) = pry1(n) — pe(m).

Then, for each node that belongs to the two-hop neighborhood of m,, i.e., m € N,%n, we express
o(m,n) as a function of the geometric distance of p;(m) from p;(my,), using a second-order Taylor
series expansion around p;(m). That is,

o (mn, ) + (pe(m) — pe(mn))" M, (pe(m) — pr(mn))
= o (mn,n) + (ve(mln) — vi(mp|n))" M (vi(mn) — vi(ma|n)). (3.5)

Q

o(m,n)

For each n € Vtsﬂ, we take o(m,n) to be a discrete sampled version of a continuous function o (v, n)
where the second order Taylor approximation is

o(v,n) ~ o(mp,n) + (v — vt(mn|n))TMn_1(v — ve(mp|n))).

Thus for each n € Vi_l, we assume that the matching score with respect to nodes that are in
the neighborhood of its best match m,, € V¥ can be well modeled by a quadratic approximation
function. We estimate M,, of this quadratic approximation as the normalized covariance matrix of
the 3D offsets,

M, =

1 >y (pe(m) — pe(mn)) (pe(m) — pe(mn))"

This is motivated by the fact that if

a(m,n) = o(mn,n) = (v(m) = vi(mn|n))" M (vi(m) = vi(ma|n)),
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then
vi(m) — vi(mp|n)

u =
Voa(m,n) —o(my,n)
satisfies 1 = uTM; L. Hence, w lies in an ellipsoid whose second moment is proportional to M,,.
Although there are other ways for computing M, in (3.5), this moment-matching method is fast

and guarantees that M, is positive semi-definite. Next, we use the covariance matrices of the 3D
offsets to define a diagonal matrix Q € R3Ve*3Nt such that

]\41—1 <+ O3x3

O35 -+ My

where Mrgl = M{l if m = m,, for some n € VEH and M;ll = 033 otherwise. The matrix @Q
captures the second order Taylor approximation of the total matching score as a function of the
motion vectors and the 3D geometry coordinates in the neighborhoods of the nodes in Vts and is

used to regularize the motion vectors of the known entries in v; as shown next.

Finally, we interpolate the dense set of motion vectors v:* by taking into account the covariance
of the motion vectors in the neighborhoods around the points that belong to the sparse set Vts and
imposing smoothness of the dense motion vectors on the graph

3
v* = argmin(v — v9) T Q(v — vo) + 1 Z(Siv)TLt(Siv)7 (3.6)

veR3Nt i—1

where {Si}¢:17273 is a selection matrix for each of the 3D components respectively, and L; is the
Laplacian matrix of the graph G;. The motion field vy = [v¢(1),v¢(2), - -+, v¢(Ny)]T € R3M is the
concatenation of the initial motion vectors, with v,(m) = 03x1, if m ¢ Vts. We note that the
optimization problem consists of a fitting term that penalizes the excess matching score on the
sparse set of matching nodes, and of a regularization term that imposes smoothness of the motion
vectors in each of the position components independently. The tradeoff between the two terms is
defined by the constant p. A small p promotes a solution that is closed to vy, while a big p favors
a solution that is very smooth. The corresponding optimization problem is convex and it has a
closed form solution given by

3
vf = (Q +MzsiTLtSi)_1QU07 (3.7)

i=1

which can be computed iteratively using MINRES-QLP [86] in large systems. With a slight abuse
of notation, we will from now on denote as v; the reshaped motion vectors of dimensionality 3 x N,
where each row represents the motion in one of the three coordinates. Finally, v} (m) € R? denotes
the 3D motion vector of node m € V.
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3.3.4 Implementation details

The proposed spectral features can be efficiently computed by approximating the spectral graph
wavelets with Chebyshev polynomials of degree M, as described in [3]. Given this approximation,
the wavelet coefficients at each scale can then be computed as a polynomial of L applied to a graph
signal f. The latter can be performed in a way that accesses L only through iterative matrix-
vector multiplications. The polynomial approximation can be particularly efficient when the graph
is sparse, which is indeed the case of our K-NN graph. Using a sparse matrix representation, the
computation cost of applying L to a vector is proportional to the number |£]| of nonzero edges in the
graph. The overall computational complexity is O(M|E|+ N (M +1)(|S|+1)) [3], where |S| are the
number of scales. Moreover, this approximation avoids the need to compute the complete spectrum
of the graph Laplacian matrix. Thus, the computational cost of the features can be substantially
reduced.

Regarding the computation of correspondences, we note that the motion between consecutive
frames is expected to be relatively smooth. We can avoid computing pairwise distances with all
the vertices of the reference frame, by only comparing with vertices whose distance in geometry is
smaller than a predefined threshold. Moreover, although in our experiments we have used K-means
clustering, dividing the space into small blocks could be enough for our purposes. An example is the
procedure followed in [7], where for efficiency the octree is divided into smaller blocks containing
k x k x k voxels, where k is relatively small. Thus, in the case when the number of vertices is big
and K-means may not be appropriate for grouping them, the procedure that we describe above
can be very efficient and possibly applied in real time.

3.4 Compression of 3D point cloud sequences

We describe now how the above motion estimation can be used to reduce temporal redundancy in
the compression of 3D point cloud sequences, as shown in Fig. 3.3. The first frame of the sequence is
always encoded using intra-frame coding. For the rest of the frames, we code the motion vectors by
transforming them to the graph Fourier domain. We assume that the reference frame has already
been sent and is known to the decoder. Coding of the 3D positions is then performed by comparing
the structural difference between the target frame (Z;11) and the motion compensated reference
frame (Z; ). Temporal redundancy in color compression is finally exploited by encoding the
difference between the target frame and the color prediction obtained with motion compensation.

3.4.1 Coding of motion vectors

We recall that, for each pair of two consecutive frames Z;, Z;11, the sparse set of motion vectors
is initially smoothed at the encoder side. The estimated dense motion field is then transmitted
to the decoder. We exploit the fact that the graph Fourier transform is suitable for compressing
smooth signals [87], [74], by coding the motion vectors in the graph Fourier domain. In particular,
since the motion v} is estimated in each of the nodes of the graph G;, we use the eigenvectors
Xt = [Xt,00 X¢,1, --» Xt,N,—1] of the graph Laplacian operator corresponding to the graph G; of the
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Figure 3.5: Schematic overview of the motion vector coding scheme. The motion vectors v; between two
consecutive frames of the sequence are transformed in the graph Fourier domain, quantized uniformly, and
sent to entropy coded. The decoder performs the reverse procedure to obtain v;.

reference frame, to transform the motion in each of the 3D directions separately such as

Fv:(Ag) =< ’U;‘,Xt’g >, VﬁzO,l,...,Nt—l.

The transformed coefficients are uniformly quantized as round(%), where A is the quantization
stepsize that is constant across all the coefficients, and round refers to the rounding operation.
The quantized coefficients are then entropy coded independently with the adaptive run-length /
golomb-rice (RLGR) entropy coder [88] and sent to the decoder. The decoder performs the reverse
operations to obtain the decoded motion vectors 1;} Note that given that the decoder already knows
the 3D positions of the reference frame, it can recover the K-NN graph. Thus, the connectivity of
the graph does not have to be sent. A block diagram of the encoder and the decoder is shown in
Fig. 3.5.

3.4.2 Motion compensated coding of 3D geometry

From the reference frame 7; and its quantized motion vectors 12‘ , both of which are signals on Gy,
it is possible to predict the 3D positions of the points in the target frame Z;, 1, which is a signal
on G;41. Since the two graphs are of different size, a vector space prediction of Z;11 from Z; is not
possible. One can however warp Z; to Z; 1 in order to obtain a warped frame 7 ,,,. that is close to
Ti+1. Given that the 3D positions p; and the decoded motion vectors vA;f of Z; are known to both
the encoder and the decoder, the position of node m in the warped frame 7 ,,,. can be estimated
on both sides as R

Ptme(m) = pe(m) + vy (m), VYm e V. (3.8)

Note that the 3D coordinates of the warped frame 7; ,,. remain signals on the graph G;.

Given the warped frame Z; ,,., we use the real-time compression algorithm proposed in [1] to
code the structural difference between the 3D positions of Z; 11 and Z; ,,,.. Specifically, we assume
that the point clouds corresponding to Z; ,,. and Z;41 have already been spatially decomposed into
octree data structures at a predefined depth. By knowing the occupied voxels of the reference frame
7 and the motion vectors 12‘, both the encoder and decoder are able to compute the occupied voxels
of the motion compensated reference frame 7 ,,,. and the representative bit indicator function. The
encoding of the occupied voxels of the target frame Z;41 is performed by computing the exclusive-
OR (XOR) between the indicator functions for the occupied voxels in frames Z ,,,. and Zy4q. This
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Figure 3.6: Illustration of the geometry compression of the target frame (TF) based on the motion
compensated reference frame (RF). (a) Differential encoding of the consecutive frames where structural
changes within octree occupied voxels are extracted during the binary serialization process and encoded
using the XOR operator. The bit stream of the XOR operator is sent to the decoder. The figure is inspired
by [1]. (b) Schematic overview of the overall 3D geometry coding scheme.

can be implemented by an octree decomposition of the set of voxels that are occupied in Z; ,,. but
not in Zy11, or vice versa, as illustrated in Fig. 3.6(a). Thus, motion compensation is expected
to reduce the set difference and hence the number of bits used by the octree decomposition. The
decoder can eventually use the motion compensated reference frame and the bits from the octree
decomposition to recover exactly the set of occupied voxels (and hence the graph and 3D positions)
of the target frame Z;; 1. We note that the first frame of the sequence is coded based on a static
octree coding scheme. A schematic overview of the encoding and decoding architecture is shown in
Fig. 3.6(b). A detailed description of the algorithm can be found in the original paper [1].

3.4.3 Motion compensated coding of color attributes

After coding the 3D positions and the motion vectors, motion compensation is used to predict the
color of the target frame from the motion compensated reference frame. While the 3D positions
Dt.me of the points in the warped frame Z; ;. are based on the 3D positions of the reference frame
7; and the motion field on the graph G; according to (3.8), the colors ¢; . of the warped frame
Zi me can be transferred directly from Z; according to

Ctme(m) = c(m), VYm € V.

Unfortunately, the graphs G, and G;y1 have different sizes and there is no direct correspondence
between their nodes. However, since Z; ;. is obtained by warping Z; to Z;11, we can use the colors
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Figure 3.7: Schematic overview of the predictive color coding scheme. The color residual in each block of
the octree is projected in the graph Fourier domain. The graph Fourier coefficients are uniformly quantized
and entropy coded based on the scheme of [2]. The bit stream is sent to the decoder where the inverse
operations are performed to decode the color of the target frame.

of the points in Z; ,,. to predict the colors of nearby points in Z;11. To be specific, for each n € V41,
we compute a predicted color value ¢;y1(n) by averaging the color values of the nearest neighbors
NN,, in terms of the Euclidean distance of the 3D positions pyy1(n) and pgme, i.e.,

__ 1
Ct-i-l(n) = ‘NN | Z Ct,mC(m)a
" meNN,

where the number of nearest neighbors |[NN,,| is usually set to 3.

Overall, the color coding is implemented as follows. We code the first frame using the coding
algorithm of [2]|. For the rest of the frames, temporal redundancy in the color information is removed
by coding with the graph-based compression algorithm in [2] only the residual of the target frame
with respect to the color prediction obtained with the above method, i.e., Aciy1 = ¢r41 — Crra-
The algorithm in [2| is designed for compressing the 3D color attributes in static frames and it
essentially removes the spatial correlation within each frame by coding each color component in
the graph Fourier domain. The algorithm divides each octree in small blocks containing k x k x k
voxels. In each of these blocks, it constructs a graph and computes the graph Fourier transform. We
adapt the algorithm to point cloud sequences by applying the graph Fourier transform to the color

residual Acgy1. The residuals in each of the three color components are encoded separately. The

. . . . . . T A
graph Fourier coefficients are quantized uniformly with a stepsize A, as round(%), where

round denotes the rounding operator and x;41 are the eigenvectors of the graph Laplacian matrix
of the corresponding block. The quantized coefficients are then entropy coded, where the structure
of the graph is exploited for better efficiency. More details about the color coding scheme are given
in [2] and a schematic overview is given in Fig. 3.7. Finally, we recall that, while the algorithm
was originally used for coding static frames, in this chapter we use it for coding the residual of the
target frame from the motion compensated reference frame. The algorithm however remains a valid
choice as the statistical distributions are carefully adapted to the actual signal characteristics.

3.5 Experimental results

We illustrate in this section the matching performance of our motion estimation scheme and the
performance of the proposed compression scheme. We use three different sequences that capture
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Figure 3.8: Illustrative frames of the upper body sequence.

human bodies in motion, i.e., the yellow dress (see Fig. 3.2) and the man (see Fig. 3.1) sequences,
which have been captured according to [89] and voxelized to resemble data collected by the real-
time high resolution sparse voxelization algorithm [80], and a human upper body sequence, which
has been captured according to [80] (see Fig. 3.8). The first sequence consists of 64 frames, the
second one of 30 frames, and the third one of 63. The latter sequence, illustrated in Fig. 3.8, is
more noisy and incomplete. We voxelize the point cloud of each frame in these sequences to an
octree with a depth of seven. The depth of the octree acts as a sort of quantization of the 3D space.
However, our motion estimation and compression scheme can be applied to any other octree level,
with similar performance.

3.5.1 Motion estimation

We first illustrate the performance of our motion estimation algorithm by studying its effect in
motion compensation experiments. We select two consecutive frames for each sequence, namely
the reference (Z;) and the target frame (Z;11). The graph for each frame is constructed as described
in Section 3.2. We define spectral graph wavelets of 4 scales on these graphs, and for computational
efficiency, we approximate them with Chebyshev polynomials of degree 30 [3]. We select the number
of representative feature points to be around 500, which corresponds to fewer than 10% of the total
occupied voxels, and we compute the sparse motion vectors on the corresponding nodes by spectral
matching. We estimate the motion on the rest of the nodes by smoothing the motion vectors on
the graph according to Eq. (3.6).

In Figs. 3.9(a), 3.9(d), 3.9(g) we superimpose the reference and the target frames for the yellow
dress, the man, and the upper body sequences accordingly in order to illustrate the motion involved
between two consecutive frames. The key points used for spectral matching in each of the two frames
are shown in Figs. 3.9(b), 3.9(e), 3.9(h), and they are represented in red for the target and in green
for the reference frame. For the sake of clarity, we highlight only some of the correspondences
used for computing the motion vectors. We observe that the sparse set of matching vertices are
accurate and well-distributed in space for both sequences. Finally, in Figs. 3.9(c), 3.9(f), 3.9(i) we
superimpose the target frame and the voxel representation of the motion compensated reference
frame. By comparing visually these three figures to 3.9(a), 3.9(d), 3.9(g) respectively, we observe
that in all the cases the motion compensated reference frame is much closer to the target frame
than the reference frame. The result is actually true also for the quite noisy frames of the upper
body sequence. The obtained results confirm that our algorithm is able to estimate accurately the
motion even in pretty adverse conditions.
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Figure 3.9: Example of motion estimation and compensation in the yellow dress, man and upper body
motion sequences. The superimposition of the reference (Z;) and target frame (Z;y1) is shown in (a), (d),
and (g) while in (b), (e), (h) we show the correspondences between the target (red) and the reference frame
(green). The superposition of the motion compensated reference frame (Z; ,,,.) and the target frame (Z;) is
shown in (¢), (f), and (i). Each small cube corresponds to a voxel in the motion compensated frame.

3.5.2 3D geometry compression

We now study the benefits of motion estimation in the compression of geometry in 3D point
cloud sequences. The compressed geometry information includes motion vectors and the geometry
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Figure 3.10: Performance comparison of the average signal-to-quantization noise ratio (SQNR) versus bits
per vertex (bpv) for coding the motion vectors in the graph Fourier domain and in the signal domain.

difference between the target frame and the motion compensated reference frame captured by the
XOR encoded information. We note that the compression is performed on the whole sequence. The
frames of the sequences are coded sequentially in the following way. Only the first frame is coded
independently using a classical octree compression scheme based on children pattern sequence [90],
while all the other frames are coded by using as a reference frame the previously coded frame. We
first code the motion vectors with the proposed coding scheme of Sec. 3.4.1. The motion signal in
each of the 3D directions is coded separately.

In Fig. 3.10 we first show the advantage of transforming the motion vectors in the graph Fourier
domain, in comparison to coding directly in the signal domain, for the man sequence. Different
stepsizes for uniform quantization are used to obtain different coding rates, hence different accu-
racies of the motion vectors. The performance is measured in terms of the signal-to-quantization
noise ratio (SQNR) for a fixed number of bits per vertex. The SQNR is computed on pairs of
frames. Each point in the rate distortion curve corresponds to the average over 64 frame pairs. The
results confirm that coding the motion vectors in the graph Fourier domain results in an efficient
spatial decorrelation of the motion signals, which brings significant gain in terms of coding rate.
Similar results hold for the other two sequences.

We study next the effect of motion compensation in the coding rate of the 3D positions. We
recall that for a particular depth of the tree, the coding of the geometry is lossless. There exists
however a tradeoff between the overall coding rate of the geometry and the coding rate of the
motion vectors as we illustrate next. In particular, we compare the motion compensated dual
octree scheme as described in Sec. 3.4.2, to the dual octree scheme of 1], and the static octree
compression algorithm [90]. In Fig. 3.11, we illustrate the coding rate of the geometry with respect
to the coding rate of the motion vectors, measured in terms of the average number of bits per
vertex (bpv) over all the frames, for each of the three competitive schemes. The coding rate of
the geometry includes the coding rate of the motion vectors. In Fig. 3.11(a), the smallest coding
rate of the geometry (3.3 bpv) for the man sequence is achieved for a coding rate of the motion
vectors of only 0.1 bpv. The latter indicates that coarse quantization of the motion vectors is
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Figure 3.11: Effect of the coding rate of the motion vectors on the overall coding rate of the geometry
for the motion compensated dual octree algorithm. By sending the motion vectors at low bit rate (= 0.1
bpv), the motion compensated dual octree scheme performs slightly better than the static octree and the
dual octree compression algorithm.

enough for an efficient geometry compression. A smaller number of bits per vertex however tends
to penalize the effect of motion compensation, giving an overall coding rate that approaches the
one of the dual octree compression scheme. Of course, a finer coding of the motion vectors increases
the overhead in the total coding rate of the geometry. The corresponding numbers for the static
octree and the dual octree compression scheme are approximately 3.42 and 3.5 respectively. These
results indicate that the temporal structure captured by the dual octree compression scheme is
not sufficient to improve the coding rate with respect to the static octree compression algorithm.
Motion compensation is thus needed to remove the temporal correlation. However, the overall gain
that we obtain is small and corresponds to 3.5% bpv and 5.7% bpv with respect to the static octree
and the dual octree compression algorithm respectively. Moreover, motion compensation does not
seem to bring a significant gain in the coding of the geometry of the upper body sequence in Fig.
3.11(b). As we already mentioned before this sequence contains frames that are quite noisy. As
a result, the performance of motion compensation seems to deteriorate, especially in the case of
consecutive frames with appearing or disappearing nodes.

In order to study the effect of the motion in the compression performance, we perform two
different tests in the yellow dress sequence. In the first test, we compress the entire yellow dress
sequence, which is a low motion sequence. In the second test, we sample the sequence by keeping
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only 10 frames that are characterized by higher motion between consecutive frames. We then com-
press the geometry for this new smaller sequence. In Fig. 3.11(c), we observe that when the motion
is low, the motion compensated dual octree and the dual octree compression algorithms are much
more efficient in coding the geometry in comparison to the static octree compression algorithm.
Moreover, the motion compensated dual octree scheme requires a slightly smaller number of bits
per vertex (2.2 bpv), for a coding rate of the motion vectors of 0.1 bpv. The coding rate for the
dual octree and the static octree compression algorithm are respectively 2.24 and 2.6 bpv. On the
other hand, the static octree compression scheme outperforms the dual octree compression algo-
rithm in the higher motion sequence of 10 frames, with coding rates of 3 and 2.8 bpv respectively.
The motion compensated dual octree compression algorithm can close the gap between these two
methods by achieving a coding rate of 2.8 bpv. We note that this performance is achieved for an
overhead of 0.15 bpv for coding the motion vectors. Due to this overhead, the performance of the
static octree and the motion compensated dual octree compression algorithm are relatively close.

3.5.3 Color compression

In the next set of experiments, we use motion compensation for color prediction, as described in
Section 3.4.3. That is, using the smoothed motion field, we warp the reference frame Z; to the
target frame Z;. 1, and predict the color of each point in Z; 1 as the average of the three nearest
points in the warped frame Z; ,,.. We fix the coding rate of the motion vectors to 0.1 bpv and, for
the sake of comparison, we compute the signal-to-noise ratio (SNR) after predicting the color in the
following three different ways: (i) the colors of points in the target frame are predicted from their
nearest neighbors in the warped frame Z; .., (SNRy,.) (ii) the colors of points in the target frame
are predicted from their nearest neighbors in Z; (SNRpyevious), and (iii) the colors of points in the
target frame are predicted as the average color of all the points in Z; (SNRg.g). The SNR for frame

TZi+1 is defined as SNR = 201og; %, where we recall that ¢;11 and ¢;11 are the actual color
and the color prediction respectively. The prediction error is measured by taking pairs of frames
in the sequence and computing the average over all the pairs. The obtained values are shown in
Table 4.1. We notice that for three sequences motion compensation can significantly reduce the
prediction error, by obtaining an average gain in the color prediction of 2.5 dB and 8-10 dB with
respect to simple prediction based on the color of the nearest neighbors in the reference frame, and

the average color of the reference frame respectively.

Table 3.1: Color Prediction Error (SNR in dB)

Sequence SNRye  SNRyrevious SNRawg

Yellow dress 17 15 6.5
Man 13 10.5 4
Upper body 9.8 7.5 1.2

We finally use the prediction obtained from our motion estimation and compensation scheme to
build a full scheme for color compression, that is based on a prediction path of a series of frames.
Compression of color attributes is obtained by coding the residual of the target frame with respect
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Figure 3.12: Color compression performance (dB) vr. bits per vertex for independent and differential
coding on the three datasets for a quantization stepsize of A = [32, 64, 256, 512, 1024].

to the color prediction obtained with the scheme described in Section 3.4.3. In our experiments,
we code the color in small blocks of 16 x 16 x 16 voxels. We measure the PSNR obtained for
different levels of the quantization stepsize in the coding of the color information, hence different
coding rates, for both independent [2] and differential coding. The results for the three datasets
are shown in Fig. 3.12. Each point on the curve corresponds to the average PSNR of the RGB
components across the first ten frames of each sequence, obtained for a quantization stepsize of
A = [32,64,256,512,1024] respectively. We observe that at low bit rate (A = 1024), differential
coding provides a gain with respect to independent coding of approximately 10 dB for all the three
sequences. On the other hand, at high bit rate, the difference between independent and differential
coding tends to become smaller, as both methods can code the color quite accurately. Examples of
the decoded frames of the yellow dress sequence for A = 32,1024 are shown in Fig. 3.13. Finally,
we note that the gain in the coding performance is highly dependent on the length of the prediction
path. As the number of predicted frames increases, the accumulated quantization error from the
previously coded frames is expected to lead to a gradual PSNR degradation that is more significant
at low bit rate. This can be mitigated by periodic insertion of reference frames, and by optimizing
the number of predicted frames between consecutive reference frames.

3.5.4 Discussion

Our experimental results have shown that motion compensation is beneficial overall in the com-
pression of 3D point cloud sequences. The main benefit though is observed in the coding of the
color attributes, providing a gain of up to 10 dB with respect to coding each frame independently.
The gain in the compression of the 3D geometry is only marginal due to the overhead for coding the
motion vectors. Moreover, from the experimental validation in our datasets, we observe that the
proposed motion compensated geometry compression framework that is based on the differential
coding of consecutive octree graph structures is the most expensive part of the overall compression
system. Only a very coarse quantization of the motion vectors is sufficient to achieve an overall
good compression rate. We expect however the bit rate to increase with the level of the motion.
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(a) (b) ()

Figure 3.13: Rendering results of a point cloud frame from the yellow dress sequence compressed at a
quantization stepsize of A = 1024, and A = 32; (a) original point cloud, (b) voxalized and decoded frame
for A = 1024, and (c) voxalized and decoded frame for A = 32.

Empirically, for each vertex in the man sequence, we need 0.1-0.2 bits to code the motion vectors,
0.1-0.3 bits for the color residual, and 3.3 bits for the geometry compression. Similar observations
hold for the other datasets.

3.6 Related work

The direct compression of 3D point cloud sequences has been largely overlooked so far in the
literature. A few works have been proposed to compress static 3D point clouds. Some examples
include the 2D wavelet transform based scheme of [91], and the subdivision of the point cloud space
in different resolution layers using a kd-tree structure [92]. An efficient binary description of the
spatial point cloud distribution is performed through a decomposition of the 3D space using octree
data structures. The octree decomposition, in contrast to the mesh construction, is quite simple to
obtain. It is the basic idea behind the geometry compression algorithms of [82], [81]. The octree
structure is also adopted in [2], to compress point cloud attributes. The authors construct a graph
for each branch of leaves at certain levels of the octree. The graph transform, which is equivalent to
the Karhunen-Loéve transform, is then applied to decorrelate the color attributes that are treated
as signals on the graph. The proposed algorithm has been shown to remove the spatial redundancy
for compression of the 3D point cloud attributes, with significant improvement over traditional
methods. Sparse representations in a trained dictionary have further been used in [93] to compress
the geometry of 3D point clouds surfaces. Recently, the authors in [94], proposed a novel geometry
compression algorithm for large-scale 3D point clouds obtained by terrestrial laser scanners. In
their work, the point clouds are converted into a range image and the radial distance in the range
image is encoded in an adaptive way. However, all the above methods are designed mainly for static
point clouds. In order to apply them to point cloud sequences, we need to consider each frame of
the sequence independently, which is clearly suboptimal.

Temporal and spatial redundancy of point cloud sequences has been recently exploited in [1].
The authors compress the geometry by comparing the octree data structure of consecutive point
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clouds and encoding their structural difference. The proposed compression framework can handle
general point cloud streams of arbitrary and varying size, with unknown correspondences. It enables
detection and differential encoding of spatial changes within temporarily adjacent octree structures
by modifying the octree data structure without computing the exact motion of the voxels. Motion
estimation in point cloud sequences can be quite challenging due to the fact that point-to-point
correspondences between consecutive frames are not known. While there exists a huge amount of
works in the literature that study the problem of motion estimation in video compression, these
methods cannot be extended easily to graph settings. In classical video coding schemes, motion in
3-D space is mainly considered as a set of displacements in the regular image plane. Pixel-based
methods [95], such as block matching algorithms, or optical and scene flow algorithms, are designed
for regular grids. Their generalization to the irregular graph domain is however not straightforward.
Feature-based methods [96], such as interest point detection, have also been widely used for motion
estimation in video compression. These features usually correspond to key points of images such
as corners or sharp edges [97, 98, 99]. With an appropriate definition of features on graphs, these
methods can be extended to graphs. To the best of our knowledge though, they have not been
adapted so far to estimate the motion on graphs, nor on point clouds. Someone could also apply
classical 3D descriptors such as [100, 101, 102, 103, 104, 105] to define 3D features. However, these
types of descriptors assume that the point cloud represents a surface, which is not well adapted to
the case of graphs. An overview of classical 3D descriptors can be found in [106].

For the sake of completeness, we should mention that 3D point clouds are often converted into
polygonal meshes, which can be compressed with a large body of existing methods. In particular,
there exists literature for compressing dynamic 3D meshes with either fixed connectivity and known
correspondences (e.g., [107, 108, 109, 110, 79]) or varying connectivity (e.g., [111, 112, 113]). A
different type of approach consists of the video based methods. The irregular 3D structure of the
meshes is parametrized into a rectangular 2D domain, obtaining the so called geometry images
[114] in the case of a single mesh and geometry videos [115], [89] in the case of 3D mesh sequences.
The mapping of the 3D mesh surface onto a 2D array, which can be done either by using only the
3D geometry information or both the geometry and the texture information [116], allows conven-
tional video compression to be applied to the projected 2D videos. Within the same line of work,
emphasis has been given to extending these types of algorithms to handling sequences of meshes
with different numbers of vertices and exploiting temporal correlation between them. An example
is the recent work in [117], which proposes a framework for compressing 3D human motion oriented
geometry videos by constructing key frames that are able to reconstruct the whole motion sequence.
Comparing to the mesh-based compression algorithms, the advantage is that the mesh connectivity
information (i.e., vertices and faces) does not need to be sent to the decoder, and the complexity
is reduced by performing the operations from the 3D to the 2D space. All the above mentioned
works however require the conversion process of the point cloud into a mesh in the encoder and the
inverse at rendering, which might be computationally expensive. Finally, marching cubes algorithm
[118] can be used to extract a polygonal mesh in a fast way, but it requires a “filled" volume. Thus,
we believe that octree representations are efficient for modeling temporally changing unorganized
point clouds, where input 3D points correspond to sampling of surfaces. In this chapter, we filled a
gap in the literature by proposing a new compression algorithm that is based on predictive coding
of 3D point cloud sentences modeled as a sequence of octree structures.
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3.7 Conclusions

In this chapter, we have proposed a novel graph-based compression framework for 3D point cloud
sequences that is based on exploiting temporal correlation between consecutive point clouds. We
have first proposed an algorithm for motion estimation and compensation. The algorithm is based
on the assumption that 3D models are representable by a sequence of weighted and undirected
graphs where the geometry and the color of each model can be considered as graph signals. Corre-
spondence between a sparse set of nodes in each graph is first determined by matching descriptors
based on spectral features that are localized on the graph. The motion on the rest of the nodes is
interpolated by exploiting the smoothness of the motion vectors on the graph. Motion compensa-
tion is then used to perform geometry and color prediction. Finally, these predictions are used to
differentially encode both the geometry and the color attributes. Experimental results have shown
that the proposed method is efficient in estimating the motion and it eventually provides significant
gain in the overall compression performance of the system.

There are a few directions that can be explored in the future. First, it has been shown in
our experimental section that a significant part of the bit budget is spent for the compression of
the 3D geometry, which given a particular depth of the octree, is lossless. A lossy compression
scheme that permits some errors in the reconstruction of the geometry could bring non-negligible
benefits in terms of the overall rate-distortion performance. Second, the optimal bit allocation
between geometry, color and motion vector data stays an interesting and open research problem,
due mainly to the lack of a suitable metric that balances geometry and color visual quality. Third,
the estimation of the motion is done by computing features based on the spectral graph wavelet
transform. Features based on data-driven dictionaries, such as the ones proposed in the next
chapter, are expected to increase significantly the matching, and consequently the compression
performance.



Chapter 4

Learning Parametric Dictionaries for
Signals on Graphs

4.1 Introduction

In Chapter 3, we applied graph-based transform representations to extract core features of graph
signals, and we used them to perform motion estimation and sequentially efficient compression of
temporally correlated 3D signals. In this chapter, we move toward more flexible and data-adapted
representations or dictionaries!. In particular, we are interested in finding meaningful graph signal
representations that (i) capture the most important characteristics of the graph signals, and (ii)
are sparse. That is, given a weighted graph and a class of signals on that graph, we want to
construct an overcomplete dictionary of atoms that can sparsely represent the graph signals as
linear combinations of only a few atoms in the dictionary. An important challenge in the design of
dictionaries for graph signals is to account for the intrinsic geometric structure of the underlying
weighted graph. This is because important signal characteristics such as smoothness depend on the
actual topology of the graph on which the signal resides (see, e.g., [9, Example 1]).

For signals in Fuclidean domains as well as signals on irregular data domains such as graphs,
the choice of the dictionary often involves a tradeoff between two desirable properties — the ability
to adapt to specific signal data and a fast implementation of the dictionary [119]. In the dictionary
learning or dictionary training approach for signals in Euclidean domains, numerical algorithms
such as K-SVD [4] and the Method of Optimal Directions (MOD) [120] (see [119, Section IV] and
references therein) learn a dictionary from a set of realizations of the data (training signals). The
learned dictionaries are highly adapted to a given class of signals and therefore usually exhibit good
representation performance. Such approaches can certainly be applied to graph signals, which
can be viewed as vectors in RY. However, the learned dictionaries will neither feature a fast
implementation, nor explicitly incorporate the underlying graph structure. On the other hand,

!Parts of this chapter have been published in :
D. Thanou, D. I Shuman, and P. Frossard. Learning parametric dictionaries for signals on graphs, IEEE Trans. on
Signal Proc., vol. 62, no. 15, pp. 3849-3862, Aug. 2014.
D. Thanou and P. Frossard. Multi-graph learning of spectral graph dictionaries, in Proc. of IEEE Inter. Conf. on
Acoustics, Speech and Signal Proc. (ICASSP), Brisbane, Australia, Apr. 2015
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Figure 4.1: Illustrative example: The three signals on the graph are the minutes of bottlenecks per day
at different detector stations in Alameda County, California, on three different days. The detector stations
are the nodes of the graph and the connectivity is defined based on the GPS coordinates of the stations.
The size and the color of each ball indicate the value of the signal at each vertex of the graph. Note that
all signals consist of a set of localized features positioned on different nodes of the graph.

analytic dictionaries based on signal transforms such as the graph Fourier transform, the windowed
graph Fourier transform [16], or wavelet-like transforms such as the spectral graph wavelets 3] and
the diffusion wavelets [23], have pre-defined structures that are derived from the graphs; some of
them can even be efficiently implemented. However, they are generally not adapted to the signals
at hand. Therefore, their ability to efficiently represent the data depends on the accuracy of the
mathematical data model.

The work in [5] tries to bridge the gap between the graph-based transform methods and the
purely numerical dictionary learning algorithms by proposing an algorithm to learn structured graph
dictionaries. The learned dictionaries have a structure that is derived from the graph topology,
while their parameters are learned from the data. However, it does not necessarily lead to efficient
implementations as the obtained dictionary is not necessarily a smooth matrix function (see, e.g.,
[121] for more on matrix functions) of the graph Laplacian matrix.

In this chapter, we capitalize on the benefits of both numerical and analytical approaches by
learning a dictionary that incorporates the graph structure and can be implemented efficiently [122],
[123]. We model the graph signals as combinations of overlapping local patterns, describing localized
events or causes on the graph, which can appear in different vertices. That could be the case in
graph signals for traffic data (see Fig. 4.1), brain data, or other type of networks. We incorporate
the underlying graph structure into the dictionary through the graph Laplacian operator, which
encodes the connectivity. In order to ensure that atoms are localized in the graph vertex domain, we
impose the constraint that our dictionary is a concatenation of subdictionaries that are polynomials
of the graph Laplacian [3]. We then learn the coefficients of the polynomial kernels via numerical
optimization. As such, our approach falls into the category of parametric dictionary learning [119,
Section IV.E]. The learned dictionaries are adapted to the training data and have computationally
efficient implementation. Experimental results demonstrate the effectiveness of our scheme in the
approximation of both synthetic signals and graph signals collected from real world applications.
The localization property of the atoms in the graph domain further leads to an easier interpretation
of the data from their atomic representations.
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Then, we extend our dictionary learning algorithm to graph signals that live on different
weighted graphs [124]. The underlying assumption is that, although the signals lie on different
topologies, they share some common characteristics, which are expected to be captured by the
atoms of the dictionary which are polynomial functions of the graph Laplacian. Under this as-
sumption, the polynomial coefficients define continuous kernels in the spectral domain that can
generate signals on different graph topologies. We propose a new algorithm to learn these atoms
from signals across all the topologies. We then perform experiments on graph signals that repre-
sent common processes on different graphs and show that our dictionary learning method is able to
recover the core components of these signals. We finally confirm the performance of our algorithm
on traffic data, where the learnt dictionary is shown to provide better sparse approximations than
non-adaptive representations or graph-structured representations that are optimized on each graph
independently.

The structure of the chapter is as follows. We describe the polynomial dictionary structure
and the dictionary learning algorithm in Section 4.2. Next, in Section 4.3, we discuss the benefits
of the polynomial structure. In Section 4.4, we evaluate the performance of our algorithm on
the approximation of both synthetic and real world graph signals. Finally, the extension of the
algorithm to multiple graphs and the corresponding experimental results are presented in Section
4.5.

4.2 Parametric dictionary learning on a single graph

Our objective is to learn a structured dictionary that can sparsely represent a set of training signals
on a weighted graph. We consider a general class of graph signals that are linear combinations
of (overlapping) graph patterns positioned at different vertices on the graph. The latter implies
that the signal model is not necessarily the same across all the vertices but it can differ across
the different neighborhoods. We aim to learn a dictionary that is capable of capturing all possible
translations of a set of patterns. We use the definition of generalized translation on the graph, and
we learn a set of polynomial generating kernels (i.e., patterns) that capture the main characteristics
of the signals in the spectral domain. Learning directly in the spectral domain enables us to detect
components such as atoms that are supported on specific frequency components. In this section,
we first introduce translation of polynomial kernels on the graph. Then, we describe in detail the
structure of our dictionary and the learning algorithm.

4.2.1 Translation of polynomial graph kernels

Before introducing the structure of our dictionary, we first need to recall the definition of translation
on the graph. As discussed in Chapter 2, the generalized translation operator can be defined as a
generalized convolution with a Kronecker ¢ function centered at vertex n [17, 16, 3]:

N-1

Tog=VN(g=5,) = VN Y g(Ae)xi(n)xe, (4.1)

=0

where x = [x0, X1, -, Xn—1], and 0 = Ag < A1 < Ay < ... < Ay_1 are respectively the eigenvectors
and the eigenvalues of the graph Laplacian. The right-hand side of (4.1) allows us to interpret the
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generalized translation as an operator acting on the kernel g(-), which is defined directly in the
graph spectral domain. The localization of T),¢g around the center vertex m is controlled by the
smoothness of the kernel g(-) [3, 16]. One can thus design atoms T}, g that are localized around n in

the vertex domain by taking the kernel g(-) in (4.1) to be a smooth polynomial function of degree
K:

G(M) = agAj, £=0,..,N-1 (4.2)

Combining (4.1) and (4.2), we can translate a polynomial kernel g to a vertex n in the graph as

N 1

K
Tog = VN(g*dn) D arXixi(n

£=0 k=0
K _
=VNY o Z XX (n)xe = \/NZ g (L), (4.3)
k=0 =0 k=0

where (L), denotes the n'" column of the matrix £¥. The concatenation of N such columns allows
us to generate a set of N localized atoms, which are the columns of

K
Tg=VNy(L) = VNxg(Mx" =VN>_ aLF, (4.4)

k=0

where A is the diagonal matrix of the eigenvalues. In short, if §(-) is a polynomial of degree K,
then (7,,9)(i) = 0 for all vertices ¢ more than K hops away from the center vertex n; that is, in the
vertex domain, the support of the kernel translated to the center vertex n is contained in a ball of K
hops from vertex n |3, Lemma 5.2|, [16, Lemma 2|. Furthermore, within this ball, the smoothness
properties of the polynomial kernel can be used to estimate the decay of the magnitude |(T},g)(%)|
as the distance from n to i increases [16, Section 4.4]. Note that throughout this chapter, we use
the normalized graph Laplacian eigenvectors as the Fourier basis in order to avoid some numerical
instabilities that arise when taking large powers of the combinatorial graph Laplacian.

4.2.2 Dictionary structure

We use the definition of translation to design a structured graph dictionary D = [Dy, Do, ..., Dg]
that is a concatenation of a set of S subdictionaries of the form

K K
Dy =gs(L) = x (Z ozskAk> XT = Zozskﬁk, (4.5)
k=0 k=0

where g,(-) is the generating kernel or pattern of the subdictionary Ds. Note that the atom given
by column n of subdictionary Dy is equal to angs It is a polynomial gs(-) of order K that
is translated to the vertex n. The polynomial structure of gs(-) ensures that the atom given by
column n of subdictionary Dy has its support contained in a K-hop neighborhood of vertex n [3,
Lemma 5.2].
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The polynomial constraint guarantees the localization of the atoms in the vertex domain, but
it does not provide any information about the spectral representation of the atoms. In order to
control their frequency behavior, we impose two constraints on the spectral representation of the
kernels {gs(")}4_1 o g First, we require that the kernels are nonnegative and uniformly bounded
by a given constant c¢. In other words, we impose that 0 < g5(\) < ¢ for all A € [0, Apax], or,
equivalently,

0 <Dy <cl, Vse{l,2,..,5}, (4.6)

where [ is the N x N identity matrix, and the inequality =< refers to the eigenvalues of the matrix.
Each subdictionary D, has to be a positive semi-definite matrix whose maximum eigenvalue is
upper bounded by ¢, a pre-defined constant.

Second, since the classes of signals under consideration usually contain frequency components
that are spread across the entire spectrum, the learned kernels {gs(-)},_; 5 g should also cover the

full spectrum. We thus impose the constraint ¢ — e; < Zsszl Js(A\) < ¢+ e, for all A € [0, Ayaxl,
or equivalently

S
(c—e)l 2> Dy=(c+e)l, (4.7)
s=1

where €1, €2 are small positive constants. Note that both (4.6) and (4.7) are quite generic and
do not assume any particular prior on the spectral behavior of the atoms. If we have additional
prior information, we can incorporate that prior into our optimization problem by modifying these
constraints. For example, if we know that our signals’ frequency content is restricted to certain
parts of the spectrum, by choosing €; close to ¢, we relax the constraint on the coverage of the
entire spectrum, and we give the flexibility to our learning algorithm to learn filters covering only
part of it.

Finally, from the constants ¢, €; and €3, we can derive frame bounds for D, as shown in the
following proposition.

Proposition 1. Consider a dictionary D = [D1, Da, ..., Dg|, where each Dy is of the form of Dy =
Zf:o aspLF. If the kernels {95(-)}s=10. 5 satisfy the constraints 0 < gs(\) < c and ¢ — e <
Zle Gs(A) < c+ e, for all X € [0, Anax] then the set of atoms {d;}
a frame. Namely, for every signal y € R,

s=1,2,....8,n=1,2,....N of D form

9 N S
C— €1
Co A < 33 . da) < e+ 0?0l

n=1 s=1

Proof: From |25, Lemma 1|, which is a slight generalization of [3, Theorem 5.6], we have

n=1 s=1 s=1

N N—-1 S
SN Ky den) P =D [HODPD 1G(M)?, YA€ a(L). (4.8)
/=0
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From the constraints on the spectrum of kernels {gs(-)},_, 5 ¢ we have

s s 2
S GO < (Zgzw) <le+e, VAeo(o) (49
s=1 s=1

Moreover, from the left side of (4.7) and the Cauchy-Schwarz inequality, we have

2
s & s
ar (Ea0) S
< < SN2, VA€ o(L). 4.10
e R L UL (4.10)
Combining (4.8), (4.9) and (4.10) yields the desired result. O

To summarize, the polynomial dictionary D is a parametric dictionary that depends on the pa-
rameters {Qskts_ 19 g k19, x+and the constraints (4.6) and (4.7) can be viewed as constraints

on these parameters. They provide some control on the spectral representation of the atoms and
the stability of signal reconstruction with the learned dictionary.

4.2.3 Dictionary learning algorithm

c RNXM
RNXNS

Given a set of training signals Y = [y1, 2, ..., ym] , all living on the weighted graph
G, our objective is to learn a graph dictionary D € with the polynomial structure de-
scribed in Section 4.2.2, which can efficiently represent all the signals in Y as linear combinations
of only a few atoms. Since D has the form (4.5), this is equivalent to learning the parameters
{@sk}ts—12..5. k=12, x that characterize the set of generating kernels, {gs(-)},_; o 5. We denote
these parameters in vector form as a = [a1;...; ag], where ay is a column vector with (K +1)
entries.

Therefore, the dictionary learning problem can be cast as the following optimization problem:

argmin  {||Y = DX|[% + ullal3} (4.11)

aER(K+1)S, XeRSNxM

subject to 1X™ o < Ty, ¥Yme{l,..,M},

K
D, = Zaskﬁk,VS €{1,2,..,5}
k=0
0 <Dy =cl, Vsec{l,2,..5}
S
(c—e)] 2D Di=(c+e)l,

s=1

where X™ corresponds to column m of the coefficient matrix X, D = [Dy, Ds, ..., Dg]|, and Tj is the
sparsity level in the coding of each signal. Note that, in the objective of the optimization problem
(4.11), we penalize the norm of the polynomial coefficients « in order to (i) promote smoothness in
the learned polynomial kernels, and (ii) improve the numerical stability of the learning algorithm.
In practice, a small value of the corresponding weight factor i is enough to guarantee the stability of
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the solution while preserving large values in the polynomial coefficients. The value of the parameter
¢ does not affect the frequency behavior nor the localization of the atoms. It simply scales the
magnitude of the kernel coefficients. Finally, the values of €;, €2 are generally chosen to be arbitrarily
small, unless prior information like frequency spread information, imposes other choices.

The optimization problem (4.11) is not convex, but it can be approximately solved in a compu-
tationally efficient manner by alternating between the sparse coding and dictionary update steps.
We analyze next each of these two steps.

4.2.3.1 Sparse coding step

In the first step, we fix the parameters o (and accordingly fix the dictionary D via the structure of
Eq. (4.5)) and solve

argmin||Y — DX||% subject to || X™|lo < To, (4.12)
X

for all m € {1, ..., M}, using orthogonal matching pursuit (OMP) [125], [126], which has been shown
to perform well in the dictionary learning literature. Before applying OMP, we normalize the atoms
of the dictionary so that they all have a unit norm. This step is essential for the OMP algorithm
in order to treat all of the atoms equally. After computing the coefficients X, we renormalize the
atoms of our dictionary to recover our initial polynomial structure [127, Chapter 3.1.4] and the
sparse coding coefficients in such a way that the product DX remains constant.

The success of the OMP in the sparse coding step and its relation with the graph structure is
analyzed in the Appendix A. However, the computational complexity of OMP increases with the
size of the graph. In applications where the computational time is crucial and the graph is sparse, it
would be interesting to employ an optimized OMP implementation, or rely on first order methods
such as the iterative soft thresholding, by exploiting the polynomial structure of the dictionary. For
the numerical examples in this chapter, we generally use OMP to solve the sparse coding step.

4.2.3.2 Dictionary update step

In the second step, we fix the coefficients X and update the dictionary by finding the vector of
polynomial coefficients, «, that solves

argmin_{|[Y — DX % + a3} (4.13)
aER(K+1)S
K
subject to Ds = Zaskﬁk, Vs € {1,2,..,5}
k=0
0 <Ds=<cl, Vse{l,2,...5}
S

(c—e)l =< ZDS < (c+e)l.

s=1
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The optimization problem (4.13) is a quadratic program [128] as it consists of a quadratic objective
function and a set of affine constraints. In particular, the objective function is written as

N M
Y = DX|[% + pllal; =D Y (Y = DX)2,, + pa’a
n=1m=1
N o 9 (4.14)
= Z Z (Y — ZZaskE XS> + ,LLaTa,
n=1m=1 s=1 k=0 nm

where X, € RV*M denotes the rows of the matrix X corresponding to the atoms in the subdic-
tionary Ds. Let us define the column vector P2, € R+ a5

Ps =1L ) Xsm): (L) ) Xsomyi 3 (L5) (0 Xs (my s

where (ﬁk)(n’:) is the n'" row of the k" power of the Laplacian matrix and Xs(:ym) 1s the m' column

of the matrix X,. We then stack these column vectors into the column vector P, € RS(KH), which
is defined as Py = [PL,; P2, ..; Po]. Using this definition of Py, (4.14) can be written as

nm’ - nm? "

N M
1Y =DX|F + a3 =D Y Yom — Pia)® + pa’a

n=1m=1
= Z Z Y"2/m - 2YnmP§m,a + OCTanPng‘ + NOCTCY
N M N M
= YllE -2 (Z YnmPEm) atal (Z Prm P + MIS(K+1)> a,

n=1m=1 n=1m=1

where Ig(x 1) is the S(K +1) x S(K + 1) identity matrix. The matrix Zivzl Z%:l Pum P+ ul
is positive definite, which implies that our objective is quadratic.

Finally, the optimization constraints (4.6), (4.7) can be expressed as affine functions of o with
0<Is® Ba<cl,

(c—e)1<1T®@Ba<(c+e)l,

where the inequalities are component-wise inequalities, 1 is the vector of ones, ® is the Kronecker
product, Ig is the S x S identity matrix, and B is the Vandermonde matrix

1 X DY IS
I\ MK
B=| . :

1 Ay A% oAk

Thus, the coefficients of the polynomials can be found by solving the following quadratic optimiza-
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tion problem:

N M

N M
argmin ol (Z Z Pun Pl + MIS(K+1)> a—2 (Z YnmPgm> a (4.15)

aeRE+1D)S n=1m=1 n=1m=1
subject to 0<Ig® Ba<e¢l, Vse{l,2,...5}
(c—e)1 <17 ® Ba < (c+e)l.

The quadratic problem can be efficiently solved in polynomial time using optimization techniques
such as interior point methods [128] or operator splitting methods (e.g., Alternating Direction
Method of Multipliers [129]). The former methods lead to more accurate solutions, while the latter
are better suited to solve large scale problems.

Algorithm 1 contains a summary of the basic steps of our complete dictionary learning algorithm.
We can initialize the dictionary either by generating a set of polynomial kernels that satisfy the
constraints imposed in the learning or simply by generating for each kernel gs, a set of discrete
values g5(Mo), gs(A1), - ., Gs(Ay—1) uniformly distributed in the range between 0 and c.

Since the optimization problem (4.11) is solved by alternating between the two steps, the polyno-
mial dictionary learning algorithm is not guaranteed to converge to the optimal solution; practically,
we observed in most of our experiments that the total representation error ||Y — DX||% either re-
duced or remained constant over the iterations, which implies that the algorithm tends to converge
to a local optimum.

Finally, we note here that for the design of the dictionary, we have used the normalized graph
Laplacian eigenvectors as the Fourier basis. Given the polynomial structure of our dictionary, the
upper bound of A\y_1 < 2 on the spectrum of the normalized Laplacian makes it more appropriate
for our framework. The unnormalized Laplacian contains eigenvectors that have similar interpre-
tation in terms of frequency. However, its eigenvalues can have a large magnitude, causing some
numerical instabilities when taking large powers in the solution of the optimization problem. Re-
garding the spectral constraints, we remark that if we alternatively impose that 32 [g3(A)[? is
constant for all A\ € [0, Apax], the resulting dictionary D would be a tight frame. However, such a
constraint leads to a dictionary update step that is non-convex and requires optimization techniques
that are different from the one described in this section.

4.3 Computational efficiency of the learned polynomial dictionary

The structural properties of the proposed class of dictionaries lead to compact representations and
computationally efficient implementations, which we elaborate on briefly in this section. First, the
number of free parameters depends on the number S of subdictionaries and the degree K of the
polynomials. The total number of parameters is (K +1)5, and since K and S are small in practice,
the dictionary is compact and easy to store. Second, contrary to the unstructured dictionaries
learned by algorithms such as K-SVD and MOD, the dictionary forward and adjoint operators
can be efficiently applied when the graph is sparse, as is usually the case in practice. Recall from
Eq. (4.5) that DI'y = ZkK:o s LFy. The computational cost of the iterative sparse matrix-vector
multiplication required to compute {£¥y}r—02 . r is O(K|E|), where || is the cardinality of the
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Algorithm 1 Parametric Dictionary Learning on Graphs

1: Input: Signal set Y, initial dictionary D;,;, target signal sparsity Tp, polynomial degree K,
number of subdictionaries S, number of iterations iter

2: Output: Sparse signal representations X, polynomial coefficients «

3: Imitialization: D = D;,;;

4: for v =1,2,...,iter do:

Sparse Approximation Step:
(a) Scale each atom in D to a unit norm
(b) Update X using (4.12)
(c) Rescale X, D to recover the polynomial structure

Dictionary Update Step:

10: Compute the polynomial coefficients « by solving (4.15), and update the dictionary ac-
cording to (4.5)

11: end for

edge set of the graph. Therefore, the total computational cost to compute Dy is O(K ||+ NSK).
We further note that, by following a procedure similar to the one in [3, Section 6.1], the term
DDTy can also be computed in a fast way by exploiting the fact that DDTy = Zle 552(£)y. This
leads to a polynomial of degree K " = 2K that can be efficiently computed. Both operators DTy
and DDTy are important components of most sparse coding techniques. In turn, these efficient
implementations are therefore useful in numerous signal processing tasks, and comprise one of
the main advantages of learning structured parametric dictionaries. For example, to find sparse
representations of different signals with the learned dictionary, rather than using OMP, we can
use iterative soft thresholding [130] to solve the lasso regularization problem [131]. The two main
operations required in iterative soft thresholding, DTy and D7Dz, can both be approximated by
the Chebyshev approximation method of [3], as explained in more detail in [55, Section IV.C]. The
same procedure could be applied to compute efficiently the forward and adjoint operators of the
dictionary learned in [5]. In that case however, we need to first approximate the discrete values
of the kernel with a polynomial function, which as we will see in the experimental section, can
deteriorate the approximation performance.

4.4 Experimental results

In the following experiments, we quantify the performance of the proposed dictionary learning
method in the approximation of both synthetic and real data. First, we study the behavior of our
algorithm in the synthetic scenario where the signals are linear combinations of a few localized atoms
that are placed on different vertices of the graph. Then, we study the performance of our algorithm
in the approximation of graph signals collected from real world applications. In all experiments,
we compare the performance of our algorithm to the performance of (i) graph-based transform
methods such as the spectral graph wavelet transform (SGWT)|3]|, (ii) purely numerical dictionary
learning methods such as K-SVD [4] that treat the graph signals as vectors in RY and ignore the
graph structure, and (iii) the graph-based dictionary learning algorithm presented in [5]. The kernel
bounds in (4.11), if not otherwise specified, are chosen as ¢ = 1 and €; = e = 0.01, and the number



4.4 Experimental results 55

of iterations in the learning algorithm is fixed to 25. Moreover, we set u = 10~* and we initialize
the dictionary by generating for each kernel gs, a set of discrete values g5(Ag), gs(A1), - -+, gs(An_1)
uniformly distributed in the range between 0 and c¢. Each subdictionary is then set to D; =
x7s(A)x?. The sparsity level in the learning phase is set to Ty = 4 for all the synthetic experiments.
We use the sdpt3 solver [132] in the yalmip optimization toolbox [133] to solve the quadratic problem
(4.13) in the learning algorithm (line 10 of Algorithm 1). In order to directly compare the above
methods, we always use orthogonal matching pursuit (OMP) for the sparse coding step in the
testing phase, where we first normalize the dictionary atoms to a unit norm. Finally, the average

normalized approximation error is defined as ‘Yist‘ th:fl 1Yo — DX l|3/]|Yinl|?, where |Yiest| is
the cardinality of the testing set.

4.4.1 Synthetic signals

We first study the performance of our algorithm for the approximation of synthetic signals. We
generate a graph by randomly placing N = 100 vertices in the unit square. We set the edge weights

_ ldist(i,))?

based on a thresholded Gaussian kernel function so that W(i,j) = e 202 if the physical
distance between vertices ¢ and j is less than or equal to x, and zero otherwise. We fix 6 = 0.9 and
k = 0.5 in our experiments, and we keep only connected realizations of the graph.

4.4.1.1 Polynomial generating dictionary

In our first set of experiments, we construct a set of synthetic training signals consisting of localized
patterns on the graph, by using a generating dictionary that is a concatenation of S = 4 subdic-
tionaries that comply with the constraints of our dictionary learning algorithm. Each subdictionary
is a fifth order (K = 5) polynomial of the graph Laplacian according to (4.5) and captures one
of the four constitutive components of our signal class. The generating kernels {gs(")},_1 0 s
of the dictionary are shown in Fig. 4.2(a). We generate the graph signals by linearly combining
To < 4 random atoms from the dictionary with random coefficients. We then learn a dictionary
from the training signals, and we expect this learned dictionary to be close to the actual generating
dictionary.

We first study the influence of the size of the training set on the dictionary learning outcome.
Collecting a large number of training signals can be infeasible in many applications. Moreover,
training a dictionary with a large training set significantly increases the complexity of the learning
phase, leading to intractable optimization problems. Using our polynomial dictionary learning
algorithm with training sets of M = {400,600,2000} signals, we learn a dictionary of S = 4
subdictionaries. To allow some flexibility into our learning algorithm, we fix the degree of the
learned polynomials to K = 20. Comparing Fig. 4.2(a) to Figs. 4.2(b), 4.2(c), and 4.2(d),
we observe that our algorithm is able to recover the shape of the kernels used for the generating
dictionary, even with a very small number of training signals. However, the accuracy of the recovery
improves as we increase the size of the training set. To quantify the improvement, we define the
mean SNR of the learned kernels as %25:1 —201log(]|gs(A) — @,(A)Hg), where g5(A) is the true

pattern of Fig. 4.2(a) for the subdictionary D, and g’;/ (A) is the corresponding pattern learned with
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Figure 4.2: Comparison of the generating kernels {gs(-)},_; 5 5 (shown in (a)) with the kernels learned
by the polynomial dictionary learning algorithm for M = 400, M = 600 and M = 2000 training signals.

our learning algorithm. The SNR values that we obtain are {4.9, 5.3, 14.9} for M = {400, 600, 2000},
respectively.

Next, we generate 2000 testing signals using the same method as for the construction of the
training signals. We then study the effect of the size of the training set on the approximation
of the testing signals with atoms from our learned dictionary. Fig. 4.3 illustrates the results for
three different sizes of the training set and compares the approximation performance to that of
other learning algorithms. Each point in the figure is the average of 20 random runs with different
realizations of the training and testing sets. We first observe that the approximation performance
of the polynomial dictionary is always better than that of SGWT, which demonstrates the benefits
of the learning process. The improvement is attributed to the fact that the SGWT kernels are
designed a priori, while our algorithm learns the shape of the kernels from the data.

We also see that the performance of K-SVD depends on the size of the training set. Recall
that K-SVD is blind to the graph structure, and is therefore unable to capture translations of
similar patterns. In particular, we observe that when the size of the training set is relatively



4.4 Experimental results 57

s 0.5 —4— Polynomial Dictionary s 05 —4— Polynomial Dictionary s 05 —#— Polynomial Dictionary

o —e— Structured Graph Dictionary [5] | & —— Structured Graph Dictionary [5] | & —— Structured Graph Dictionary [5]

H —o—K-SVD [4] S —e—K-SVD [4] 5 —o—K-SVD [4]

"3 0.4r —m—SGWT [3] "=u 0.4 ~#—SGWT [3] '.‘T‘; 0.4 ~m—SGWT [3]

T T T

o Q Q

] ] ]

5 0.3r 5 0.3 503

o ] o

° o °

o [ o

= o0.2f = 0.20 2 0.2f

© © ©

E E E

5] ] S

c c c

o 0.1 o 0.1 o 0.1

o o j=2]

g g o

© © o

2 Zo, =

% I REAAE MG IRBAS A py o t % P % S AOARF AARRFAARES AAL A
Number of atoms used in the representation Number of atoms used in the representation Number of atoms used in the representation

(a) M=400 (b) M=600 (¢) M=2000

Figure 4.3: Comparison of the learned polynomial dictionary to the SGWT [3], K-SVD [4] and the graph
structured dictionary [5] in terms of approximation performance on test data generated from a polynomial
generating dictionary, for different sizes of the training set.

small, as in the case of M = {400,600}, the approximation performance of K-SVD significantly
deteriorates. It improves when the number of training signals increases (i.e., M = 2000). Our
polynomial dictionary however shows much more stable performance with respect to the size of
the training set. We note three reasons that may explain the better performance of our algorithm,
as compared to K-SVD. First, we recall that the number of unknowns parameters for K-SVD is
N2S = 40000, while for the polynomial dictionary this number is reduced to (K + 1)S = 84.
Thus, due to the lack of structure, the number of training signals needed for K-SVD usually grows
linearly with the size of the dictionary, and is greater than the number needed to effectively train
the polynomial dictionary. This fact explains the improved performance of K-SVD with M = 2000
training signals. Second, due to the limited size of the training set, K-SVD tends to learn atoms
that sparsely approximate the signal on the whole graph, rather than to extract common features
that appear in different neighborhoods. As a result, the atoms learned by K-SVD tend to have a
global support on the graph, and K-SVD shows poor performance in the datasets containing many
localized signals. Third, even when K-SVD does learn a localized pattern appearing in the training
data, it does not take into account that similar patterns may appear at other areas of the graph.
Of course, as we increase the number of training signals, translated instances of the pattern are
more likely to appear in other arecas of the graph in the training data, and K-SVD is then more
likely to learn atoms containing such patterns in different areas of the graph. On the other hand,
our polynomial dictionary learning algorithm learns the patterns in the graph spectral domain,
and then includes translated versions of the patterns to all locations in the graph in the learned
dictionary, even if some specific instances of the translated patterns do not appear in the training
set. Thus, for a smaller number of training examples, our polynomial dictionary shows significantly
better performance with respect to K-SVD due to reduced overfitting.

The algorithm proposed in [5] represents some sort of intermediate solution between K-SVD and
our algorithm. It learns a dictionary that consists of subdictionaries of the form ygs(A)x”, where
the specific values g5(Ao), gs(A1), - .-, gs(An—_1) are learned, rather than learning the coefficients of
a polynomial kernel gi(-) and evaluating it at the N discrete eigenvalues as we do. Thus, the
overall number of unknowns of this algorithm is N.S, which is usually larger the number required
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Figure 4.4: Kernels {g;(")},_; 3, learned by the polynomial dictionary algorithm for (a) K =5, (b)
K =10, and (c) K = 20.

by the polynomial dictionary ((K + 1)S) and smaller than that of K-SVD (N2S). The obtained
dictionary is adapted to the graph structure and it contains atoms that are translated versions of
the same pattern on the graph. However, the obtained atoms are not in general guaranteed to be
well localized in the graph since the learned discrete values of gs are not necessarily derived from
a smooth kernel. Moreover, the unstructured construction of the kernels in the method of [5] leads
to more complex implementations, as discussed in Section 4.3.

4.4.1.2 Non-polynomial generating dictionary

In the next set of experiments, we depart from the idealistic scenario and study the performance of
our polynomial dictionary learning algorithm in the more general case when the signal components
are not exactly polynomials of the Laplacian matrix. In order to generate training and testing
signals, we divide the spectrum of the graph into four frequency bands, defined by the eigenvalues
of the graph: [Ag : Aaa], [(A25 : A39) U (Ago @ Aag)], [Mao : Aea], and [Ag5 : Agg]. We then construct a
generating dictionary of J = 400 atoms, with each atom having a spectral representation that is
concentrated exclusively in one of the four bands. In particular, the atom j is of the form

~

dj = hyi(L£)8, = xhj(A)x 6. (4.16)

Each atom is generated independently of the others as follows. We randomly pick one of the four
bands, randomly generate 25 coefficients uniformly distributed in the range [0, 1], and assign these
random coefficients to be the diagonal entries of ﬁ;(A) corresponding to the indices of the chosen
spectral band. The rest of the values in ﬁ\J(A) are set to zero. The atom is then centered on a
vertex n that is also chosen randomly. Note that the obtained atoms are not guaranteed to be well
localized in the vertex domain since the discrete values of hAJ(A) are chosen randomly and are not
derived from a smooth kernel. Therefore, the atoms of the generating dictionary do not exactly
match the signal model assumed by our dictionary design algorithm, but rather are closer to the
signal model assumed by [5]. Finally, we generate the training signals by linearly combining (with
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Figure 4.5: Learned atoms centered on vertex n = 1, from each of the subdictionaries.

random coefficients) Ty < 4 random atoms from the generating dictionary.

We first verify the ability of our dictionary learning algorithm to recover the spectral bands that
are used in the synthetic generating dictionary. We fix the number of training signals to M = 600
and run our dictionary learning algorithm for three different degree values of the polynomial, i.e.,
K = {5,10,20}. The kernels {gs(-)},_; 934 obtained for the four subdictionaries are shown in
Fig. 4.4 and the boundaries between the different frequency bands are indicated with the vertical
dashed lines. We observe that for higher values of K, the learned kernels are more localized in the
graph spectral domain and each kernel approximates one of the four bands defined in the generating
dictionary, similarly to the behavior of classical frequency filters

In Fig. 4.5, we illustrate the four learned atoms centered at the vertex n = 1 (one atom
for each subdictionary), with K = 20. We can see that the support of the atoms adapts to the
graph topology. The atoms can be either smoother around a particular vertex, as for example
in Fig. 4.5(c), or more localized, as in Fig. 4.5(a). Comparing Figs. 4.4, and 4.5, we observe
that the localization of the atoms in the graph domain depends on the spectral behavior of the
kernels. Note that the smoothest atom on the graph (Fig. 4.5(c)) corresponds to the subdictionary
generated from the kernel that is concentrated on the low frequencies (i.e., g3(-)). This is because
the graph Laplacian eigenvectors associated with the lower frequencies are smoother with respect
to the underlying graph topology, while those associated with the larger eigenvalues oscillate more
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Figure 4.6: Comparison of the average approximation performance of our learned dictionary on test signals
generated by the non-polynomial synthetic generating dictionary, for K = {5, 10, 20, 25}.

rapidly [9]. Apart from the polynomial degree, a second parameter that influences the support of
the atoms on the graph is the sparsity level Ty imposed in the leaning phase. A large T{ implies
that the learning algorithm has the flexibility to approximate the signals with many atoms. In the
extreme case where Tj is very large, the atoms of the dictionary tend to look like impulse functions.
On the other hand, if Tj is chosen to be small, the algorithm learns a dictionary that approximates
the signals with only a few atoms. It implicitly guides the algorithm to learn atoms that are more
spread on the graph, in order to cover it fully.

Next, we test the approximation performance of our learned dictionary on a set of 2000 testing
signals generated in exactly the same way as the training signals, for four different degree values of
the polynomial, i.e., K = {5,10,20}. Fig. 4.6 shows that the approximation performance obtained
with our algorithm improves as we increase the polynomial degree. There are two main reasons for
this improvement: (i) by increasing the polynomial degree, we allow more flexibility in the learning
process; (i) a small K implies that the atoms are localized in a small neighborhood and thus more
atoms are needed to represent signals with support in different areas of the graph. However, we
have empirically observed that, in practice, the improvement in the performance saturates as the
value of K increases (K = 20 is usually enough to capture the frequency characteristics of the
signals).

In Fig. 4.7, we fix K = 20, and compare the approximation performance of our learned dictio-
nary to that of other dictionaries, with exactly the same setup as we used in Fig. 4.3. We again
observe that K-SVD is the most sensitive to the size of the training data, and it clearly achieves
the best performance when the size of the training set is large (M = 2000). Since the kernels used
in the generating dictionary in this case do not match our polynomial model, the structured graph
dictionary learning algorithm of [5] has more flexibility to learn non-smooth generating kernels
and therefore generally achieves better approximation. For a fairer comparison of approximation
performance, we fit an order K = 20 polynomial function to the discrete values g learned with the
algorithm of [5]. We observe that our polynomial dictionary outperforms the polynomial approxi-
mation of the dictionary learned by [5] in terms of approximation performance. An example of the
atomic decomposition of a graph testing signal with respect to the K-SVD dictionary, the struc-
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Figure 4.7: Comparison of the learned polynomial dictionary to the SGWT [3], K-SVD [4] and the
graph structured dictionary [5] in terms of approximation performance on test data generated from a non-
polynomial generating dictionary, for different sizes of the training set.

tured graph dictionary of [5] and the polynomial graph dictionary is illustrated in Fig. 4.8. Note
that the K-SVD atoms have a more global support in comparison to the other two graph dictio-
naries, while the polynomial dictionary atoms are the most localized in specific neighborhoods of
the graph. Nonetheless, the approximation performance of our learned dictionary is competitive,
especially for smaller training sets.

4.4.2 Approximation of real graph signals

After examining the behavior of the polynomial dictionary learning algorithm for synthetic signals,
we illustrate the performance of our algorithm in the approximation of localized graph signals from
real world datasets. In particular, we examine the following three datasets.

Flickr Dataset: We consider the daily number of distinct Flickr users that took photos at
different geographical locations around Trafalgar Square in London, between January 2010 and
June 2012 [46]. Each vertex of the graph represents a geographical area of 10 x 10 meters and it
corresponds to the centroid of the area. We measure the pairwise distance between the nodes and
we set the cutoff distance of the graph to 30 meters. We assign an edge between two locations when
the distance between them is smaller than the cutoff distance, and we set the edge weight to be
inversely proportional to the distance. By following this procedure, we obtain a sparse graph. The
number of vertices of the graph is N = 245. The signal on the graph is the total number of distinct
Flickr users that have taken photos at each location during a specific day. We have a total of 913
signals, and we use 700 of them for training and the rest for testing. We set S =2 and K = 10 in
our learning algorithm.

Traffic Dataset: We consider the daily bottlenecks in Alameda County in California between
January 2007 and May 2013. The data are part of the Caltrans Performance Measurement Sys-
tem (PeMS) dataset that provides traffic information throughout all major metropolitan areas of
California [134].2 In particular, the nodes of the graph consist of N = 439 detector stations where

2The data are publicly available at http://pems.dot.ca.gov.
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(c) Structured graph dictionary (d) Polynomial dictionary

Figure 4.8: (a) An example of a graph signal from the testing set and its atomic decomposition with
respect to (b) the K-SVD dictionary, (c) the dictionary learned by [5] and (d) the learned polynomial graph
dictionary.
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Table 4.1: Parameters of Real Graph Signals

Dataset N S K Training set Testing set

Flickr 245 2 10 700 213
Traffic 439 2 10 1459 882
Brain 88 2 15 2580 3870

bottlenecks were identified over the period under consideration. The graph is designed by con-
necting stations when the distance between them is smaller than a threshold of # = 0.08, which
corresponds to approximately 13 kilometers. The distance is set to be the Euclidean distance of
the GPS coordinates of the stations and the edge weights are set to be inversely proportional to
the distance. A bottleneck could be any location where there is a persistent drop in speed, such as
merges, large on-ramps, and incidents. The signal on the graph is the average length of the time in
minutes where a bottleneck is active for each specific day. In our experiments, we fix the maximum
degree of the polynomial to K = 10 and we learn a dictionary consisting of S = 2 subdictionaries.
We use the signals in the period between January 2007 and December 2010 for training and the
rest for testing. For computational issues, we normalize all the signals with respect to the norm of
the signal with maximum energy.

Brain Dataset: We consider a set of fMRI signals acquired on five different subjects [135],
[136]. For each subject, the signals have been preprocessed into timecourses of N = 88 brain
regions of contiguous voxels, which are determined from a fixed anatomical atlas, as described
in [136]. The timecourses for each subject correspond to 1290 different graph signals that are
measured while the subject is in two different states, either completely relaxing, in the absence of
any stimulation, or passively watching small movie excerpts. For the purpose of this chapter, we
treat the measurements at each time as an independent signal on the 88 vertices of the brain graph.
The anatomical distances between regions of the brain are approximated by the Fuclidean distance
between the coordinates of the centroids of each region, the connectivity of the graph is determined
by assigning an edge between two regions when the anatomical distance between them is shorter
than 40 millimetres, and the edge weight is set to be inversely proportional to the distance. We
then apply our polynomial dictionary learning algorithm in order to learn a dictionary of atoms
representing brain activity across the network at a fixed point in time. We use the graph signals
from the timecourses of two subjects as our training signals and we learn a dictionary of S = 2
subdictionaries and a maximum polynomial degree of K = 15. We use the graph signals from
the remaining three timecourses to validate the performance of the learned dictionary. As in the
previous dataset, we normalize all of the graph signals with respect to the norm of the signal with
maximum energy. A summary of the main parameters of the three datasets is shown in Table 4.1.

Fig. 4.9 shows the approximation performance of the learned polynomial dictionaries for the
three different datasets, for a sparsity constraints in the learning phase of Ty = 6. The behavior is
similar in all three datasets, and also similar to the results on the synthetic datasets in the previous
section. In particular, the data-adapted dictionaries clearly outperform the SGWT dictionary in
terms of approximation error on test signals, and the localized atoms of the learned polynomial
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Figure 4.9: Comparison of the learned polynomial dictionaries to the SGWT, K-SVD, and graph structured
dictionaries [5] in terms of approximation performance on testing data generated from the (a) Flickr, (b)
traffic, and (c) brain datasets, for Ty = 6.

dictionary effectively represent the real graph signals. It can even achieve better performance than
K-SVD when sparsity increases. In particular, we observe that K-SVD outperforms both graph
structured algorithms for a small sparsity level as it learns atoms that can smoothly approximate
the whole signal. Comparing our algorithm with the one of [5], we observe that the performance
of the latter is comparable. Apart from the differences between the two algorithms that we have
already discussed in the previous subsections, one drawback of [5] is the way the dictionary is
updated. Specifically, the update of the dictionary is performed block by block, which leads to a
local optimum in the dictionary update step. This can lead to worse performance when compared
to our algorithm, where all subdictionaries are updated simultaneously.

In Fig. 4.10, we illustrate the six most used atoms after applying OMP for the sparse decom-
position of the testing signals from the brain dataset in the learned K-SVD dictionary and our
learned polynomial dictionary. Note that in Fig. 4.10(b), the polynomial dictionary consists of lo-
calized atoms with support concentrated on small neighborhoods of vertices. These atoms capture
the activation of particular regions of the brain. Interestingly, we observe that one of the most
frequently chosen atoms is the one capturing the visual cortex, which is found in the back of the
brain (second figure in the third row). The result of the sparse coding in this case is consistent with
the pattern that we expect to appear in the brain, as the visual cortex is activated during visual
stimuli. The price to pay for the interpretability and the localization of the atoms, is the poor
approximation performance at low sparsity levels. However, as the sparsity tolerance increases, the
localization property clearly becomes beneficial. Detecting the activated patterns in the brain using
our polynomial dictionary is a very promising research direction.

4.5 Parametric dictionary learning from multiple graphs

We now extend our algorithm to graph signals that reside on the vertices of different topologies. In-
deed, in many applications, one has to deal with signals that live on different graphs but share some
common spectral characteristics. In such cases, a good representation dictionary should contain
graph atoms that are adapted to the representations of the signals on each graph independently, and
simultaneously allow to capture the spectral similarities across the signals on the different topolo-
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0.2

(a) K-SVD (b) Polynomial Dictionary

Figure 4.10: Examples of atoms learned from training data from the brain dataset with (a) K-SVD and (b)
the polynomial dictionary. The six atoms illustrated here are the ones that were most commonly included
by OMP in the sparse decomposition of the testing signals.

gies. The signal model and in particular the polynomial dictionary structure defined in Section
4.2.2 captures a wide class of signals that are defined as processes on the graph. In particular, one
can think of the polynomial dictionary D as a concatenation of S graph filters {gfs()]»f:1 defined
in the spectral domain of the graph, which act on some initial graph signals {:vs}sszl defined by the
sparse codes, through the successive application of local graph operators i.e.,

S N-1
y(n) = > &A)gs(Ae)xe(n)
s=1 (=
S ZNO K N-1
=D D as(m) Y aw Y Aixe(m)xe(n)
s=1m=1 k=0 =0
S N
=D w(m) > aw(LF)pm. (4.17)
s=1 m=1 k=0

Thus, the graph signal can be considered as the combination of the output of a set of diffusion
processes, which start from different nodes and evolve according to the connectivity pattern defined
by the graph topology. The polynomial coefficients become then parameters that control the rate of
the diffusion. When a diffusion process evolves in different topologies, the connectivity pattern and
the initial signals vary according to the topology while the rate of the diffusion i.e., the polynomial
coefficients, are constant over the topologies.

In what follows, we exploit the polynomial structure of the graph dictionaries, and we capture
the spectral components of the signals through the computation of kernels that are similar across
all the graph topologies. Given a set of training signals Y; = [y, %2, ..., year,] € RVXMe ¢ =
{1,2,..,T}, living on the weighted graphs G;,t = {1,2,..., T}, our objective is to learn a common
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structure for the different graph dictionaries D! € RV*NS that can efficiently represent all the
signals in G; as linear combinations of only a few atoms. For each graph G; and the corresponding
training signals Y}, we want to design a structured graph dictionary D' = [D}, D}, ..., DL] that is a
concatenation of a set of S' subdictionaries of the form

K K
D} = gs(Ls) = x (Z askAf> Xt =) awld, (4.18)
k=0 k=0

where L£; denotes the Laplacian of G;, and y, A¢, are the corresponding eigenvectors and eigenvalues
respectively. We thus impose a dictionary structure that consists of polynomial functions of the
Laplacian and the coefficients of the polynomials, i.e., the generating kernels, capture the common
information across the graphs in the spectral domain. The polynomial coefficients are learned
jointly from the set of training signals on all graphs. Therefore, the dictionary learning problem
can be cast as the following optimization problem:

T
) 1
arg min { E M||YZ—DtXt||%’+M|a||%}

(XER(K+1)S, XtERSNXIWt i—1

subject to 1X o < Tor, VYm e {1,..., M},

K
D= aglf, Vse{l,2,..S}, Vie{l2..T}
k=0
0l <D! <cl, Vse{l,2,..,5}, Vie{l,2,..,T} (4.19)

S
(c—e)I XY DLz (c+e)l, Vi1e{l,2,..,T}
s=1

where X} corresponds to column m of the coefficient matrix X;, and 7o is the maximum spar-
sity level of the coefficients of each training signal in graph G;. Since D' has the form (4.18), the
optimization problem is equivalent to learning the parameters {asr},_1 o g5 k—19.  x that char-
acterize the set of generating kernels, {gs(-)};_; 5 g, and are the same across all the graphs. We
denote these parameters in a vector form in Eq. (4.19) with a = [aq;...; ag], where a; is a column
vector with (K +1) entries. The constraints on the spectrum of the kernels are similar to the one in
the optimization problem (4.11). One, however, can omit the last constraint that defines the frame
bounds, and achieve a better fitting of the data at the cost of obtaining a less structured dictionary
that is more sensitive to the set of training signals. The optimization problem (4.19) is not jointly
convex, but it can be approximately solved by alternating between the sparse coding and dictionary
update steps, as done in the optimization problem of (4.11). Similarly, the sparse coding step is
solved by applying OMP to the training signals of each graph independently as follows

argmin  ||Y; — D' Xy||%
Xt
subject to || X;"|lo < To, (4.20)

where X/" is the m! column of the matrix X;. In the second step, the polynomial coefficients are
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Algorithm 2 Parametric Dictionary Learning on Multiple Graphs

1: Input: Signal sets {Y1, Y, ..., Y7}, initial dictionaries {D}.,, D2 ;. ..., DL ..}, target signal spar-
sity {To1,To2, ---» Tor}, polynomial degree K, number of subdictionaries S, number of iterations
iter

2: Output: Sparse signal representations { X7, Xs, ..., X7}, polynomial coefficients «

3: Imitialization: D' =D, , . D*=D? . ... DT =DI .

4: for v =1,2,...,iter do:

fort=1,2,...,T do:

Sparse Approximation Step:

(a) Scale each atom in D! to a unit norm

(b) Update X; using (4.20)

(c) Rescale Xy, D! to recover the polynomial structure

end for

10:  Dictionary Update Step:

11: Compute the polynomial coefficients « by solving (4.21), and update the dictionary ac-
cording to (4.18)

12: end for

updated by solving the following quadratic program

T
. 1
arg min { E M||Yt—DtXt||2F+N|04”%}

a€R<K+1)S =1

K
subject to DL =Y " aglf, Vse{1,2,..,S}, Vie{1,2,..,T}
k=0
0=<D.'<e¢, Vse{l,2,..,S}, Vie{1,2,.,T} (4.21)

S
(c—e)I =Y DL (c+e), Vie{l,2,..,T}

s=1

The main steps of the optimization algorithm are shown in Algorithm 2.

Finally, we note that above formulation provides a way to learn continuous graph kernels in the
spectral domain. The accuracy of the approximation of the continuous kernels, definitely depends
on the spectrum of the graph topologies. In particular, if the graph topologies from which the
training signals are generated contain eigenvalues that are well-distributed samples of the continuous
spectral domain, the obtained kernels are good approximations of the continuous ones. Thus, they
could potentially be applied to generate dictionaries from other graph topologies that are not
included in the training set. The discussion in the Appendix B gives us some intuition about the
relationship between the accuracy of the approximation of the continuous kernels and the sampling
of the spectrum. Of course, the exact relationship between the sampling distribution and the
approximation accuracy depends on the sparse coding step and the optimality of the solution. Since
the optimization problem is non-convex, such analysis however requires more involved optimization
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techniques, which would be interesting to explore in the future.

4.5.1 Experimental results for multi-graph dictionary learning
4.5.1.1 Learning of common graph processes

In this section, we quantify the performance of the proposed algorithm on learning dictionaries
for synthetic data models that represent well-known processes. We build synthetic graph signals
by choosing different graphs and computing the results of common diffusion processes on each
of these graphs. We then learn dictionaries for these synthetic graph signals and show that our
algorithm is able to recover the core components of the signals, which can be sparsely represented
as combinations of few graph atoms.

We first construct three different types of graphs with 500 vertices, namely, a graph whose edges
are determined based on Euclidean distances between vertices, and two graphs that follow the forest
fire model [137] and the Barabasi-Albert model [138], respectively. For the first graph, we generate
the coordinates of the vertices uniformly at random in the unit square, and compute the edge weights
between every pair of vertices using the Euclidean distances between them and a Gaussian radial
basis function (RBF) exp (—d(i,5)?/20?), with the width parameter ¢ = 0.04. We then remove
all the edges whose weights are smaller than 0.09. Next, we use the forest fire (FF) model with
forward burning probability 0.1 to generate a random graph, and backward burning ratio 0.005.
Finally, we use the Barabasi-Albert (BA) model to generate a scale-free random graph. Then, we
consider three data models that have been extensively used in the literature for applications such
as classification [139], 3D shape analysis [70], and graph matching [69], for example. These models
are the following:

1. Heat diffusion kernel: It is defined by choosing the kernel to be an exponential function of
the eigenvalues of the Laplacian [139]:

Gr(\) = e ™M, (4.22)

The application of different powers 7 of the heat diffusion operator to an initial signal describes
the flow of the heat over the graph with the rates of the flows being proportional to the edge
weights of the graph. Due to the exponential function of the kernel, this process mainly acts
as a low frequency filtering, revealing information about the smooth parts of the signal.

2. Wave kernel: By selecting the kernel

o (r—log )\2)2

Gr(N)=e 27 | (4.23)

the process is equivalent to a physical model that evaluates the average probability of a
quantum particle with a certain energy distribution to be located at a particular vertex [67].
This model, in contrast to the heat diffusion process, has a natural notion of scale defined by
T, since it is a function of the energy levels that are directly related to the scales. Thus, it is
more appropriate for capturing localized information.
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3. Spectral graph wavelet kernel: By selecting

gr(/\f) = g(T/\Z)a (4'24)

with g(-) properly chosen band pass filter defined in the spectral domain, the polynomial
dictionary becomes the spectral graph wavelet frame [3]. The different values of 7 represent
the different scales of the transform.

With the above models, we then construct graph signals as follows. For each graph, we generate
a synthetic dictionary consisting of S = 3 subdictionaries, i.e., 1500 atoms, of the form (4.18),
generated by the following kernels: (i) a heat kernel, with 7 = 5, (ii), a wavelet kernel for a fixed
scale of 7 = 4.1, which is set to be a cubic spline as defined in [3, Section 8.1, Eq. (65)], with
a=p=2 21 =1, 29 =2, and (iii) a wave kernel, with 7 = 0.01 and ¢ = 1/v/2. The training
signals are generated by linearly combining 7Ty = 4 atoms, chosen randomly from the corresponding
dictionary, with randomly generated coefficients. We use these training signals to learn graph
dictionaries built on polynomial functions of degree K = 15 of the three graph Laplacians using
our dictionary learning algorithm. In all our experiments, we use the sdpt$ solver [132] in the
yalmip optimization toolbox [133] to update the polynomial coefficients for fixed sparse codes in
the learning algorithm. For the sparse coding step in the testing phase, we use OMP, where we
first normalize the dictionary atoms to a unit norm. In all the experiments, we set the values of
the parameters of the optimization problem (4.19) to ¢ = 10, u = 1074, €1 = ¢, €9 = 2¢, and the
maximum number of iterations of the alternating optimization algorithm to 50.

The original and the learned kernels are illustrated in Fig. 4.11 as a function of the eigenvalues
of the Laplacian, for a training size of M = 400. We observe that the learned kernels capture the
spectral characteristics of the original three data models used to construct the training signals. It
confirms that the polynomial atoms are able to correctly approximate the processes represented by
the graph signals, despite the fact that these signals live on different graphs.

Then, we test the approximation performance of the learned dictionary on a set of 2000 testing
signals from each graph, generated in the same way as the training signals. We further consider
two different sizes for the training data: the training set in the first one consists of M = 400 signals
per graph, while in the second one, it consists of M = 1000 signals per graph. We compare the
approximation performance of our algorithm to that obtained with (i) the spectral graph wavelet
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Figure 4.12: Comparison of multi-graphs learning, with SGWT and single-graph learning in terms of SNR
in the synthetic data.

transform (SGWT) [3] and (ii) a polynomial graph dictionary, learned in each graph separately. In
Fig. 4.12, we plot the signal-to-approximation noise ratio (SNR) in dB, for different sparsity levels.
The SNR for each sparsity level is the average over the three graph topologies. We observe that
learning on multiple graphs can significantly improve the SNR with respect to both SGWT, and
dictionaries learnt on different graphs independently. In particular, the results indicate that the
dictionaries resulting from joint learning are more stable with respect to the size of the training set.
Learning on multiple graphs can thus be more efficient than learning dictionaries independently in
each graph, especially when the training set is quite small (M = 400). In this case, the informa-
tion obtained from the different graphs compensates for the lack of training signals in each graph
separately and can be combined in order to learn the true dictionary.

4.5.1.2 Learning on different graph models

In the next set of experiments, we illustrate the effect of the distribution of the eigenvalues in the
learning phase and in particular in the recovery of the continous spectral kernels. We generate
random graphs using the following four different methods, i.e., (i) Gaussian kernel, (ii) preferen-
tial attachment, (iii) Erds Renyi, and (iv) forest fire model. The distribution of the spectrum
is different in each case. We generate T' = 4 graphs, one from each model, of N = 100 vertices
each. For each graph, we use a generating dictionary D', ¢ = {1,2,3,4} that is a concatena-
tion of S = 3 subdictionaries, each representing a heat diffusion kernel of the form of (4.22) i.e.,
Dt = [e7T1Et 72kt 7L We choose T = {1,3,15} and we plot in Fig. 4.13 the samples of the
generating kernels in each graph. We generate 400 graph signals per topology by linearly combin-
ing Ty < 4 random atoms from the dictionary with random coefficients. The random coefficients
represent the initial values of the diffusion process. During the learning phase, we train the dictio-
naries with signals from two topologies and we apply the polynomial coefficients to approximate the
kernels from the spectrum of the remaining two topologies. We then choose ¢ =4, €1 = ¢, e = 2c,
and 1 = 1075 and we learn jointly the parameters of the dictionary by solving the optimization
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Figure 4.13: Generating kernels of the four graph models

problem (4.19).
In particular, we consider the following two scenarios:

e First, we learn a dictionary from training signals living on a random graph with Gaussian
weights and a randomly generated preferential attachment graph. We then apply the learned
polynomial coefficients on an Erdgs Renyi and a forest fire graph. The corresponding kernels
are shown is Fig. 4.14. We observe that the sampling of the spectrum in the topologies used
for training is good enough to provide a good approximation of the continuous kernels in all
the four topologies.

e Second, we learn a dictionary from training signals living on a random graph with Gaussian
weights and a Erdés Renyi graph. We then apply the learned polynomial coefficients on an
preferential attachment and a forest fire graph. In Fig. 4.15, we observe that the learned
kernels approximate the continuous ones only for the discrete values of the spectrum that
are contained in the training graphs. We notice that if we apply the polynomial coefficients
learned in the training phase to the preferential attachment graph, we are not able to ap-
proximate the continuous function. This is due to the fact that this graph has eigenvalues
in higher frequencies (Ajmq. close to 2) that do not appear in the graphs that we used for
learning.



72 Chapter 4. Learning Parametric Dictionaries for Signals on Graphs

Gaussian weights Preferential attachment

——ai(X)
——7(A)
—3(A)

=16 = 1.6

)

Generating kernels §(\)
Generating kernels §(

N

0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.5 1 1.5
Eigenvalues of the Laplacian (A ) Eigenvalues of the Laplacian (A )
(a) Random graph with Gaussian weights (b) Preferential attachment model
Forest Fire Erdos-Renyi
N ——()
1.8 ——ga(A)
~1s —— )

Generating kernels §(

0 0.5 1 15 o 05 1 15
Eigenvalues of the Laplacian (A ) Eigenvalues of the Laplacian (A )

(c) Forest Fire model (d) Erdés Renyi

Figure 4.14: Learned kernels of the four graph models. Learning is based on (a) and (b).

These results confirm the intuitive conclusion that the approximation of the continuous kernel
depends on the sampling of the spectrum of the topologies included in the training phase.

4.5.1.3 Sparse representation of traffic data

Finally, we illustrate the performance of our algorithm in the representation of localized graph
signals related to the traffic information in different counties in the state of California. In particular,
we consider the daily bottlenecks in San Francisco, Alameda, and Santa Barbara counties between
January 2007 and August 2014. A bottleneck could be any location where there is a persistent
drop in speed, such as merges, large on-ramps, and incidents. The data are part of the Caltrans
Performance Measurement System (PeMS) dataset that provides traffic information throughout all
major metropolitan areas of California [134].> For each of the counties we design a graph whose
nodes consist of N = 75, N = 559, and N = 62 detector stations respectively where bottlenecks
were identified over the period under consideration. We have thus in total three different graphs,
and each of them is designed by connecting stations separated by a distance smaller than a threshold
of 6 = 0.04. For two stations A, B, the distance d4p is set to be the Euclidean distance of the

3The data are publicly available at http://pems.dot.ca.gov.
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GPS coordinates of the stations and the edge weights are computed using the exponential kernels
such that Wup = e %B. The signal on the graph is the duration in minutes of bottlenecks
for each specific day. We remove the signal instances where no daily bottleneck is identified; for
computational reasons, we further normalize each signal to a unit norm. The final number of signals
is 2766, 2772, and 894 for San Francisco (Gy), Alameda (G2), and Santa Barbara (Gs) respectively.
For each graph, we use half of the signals for jointly learning a polynomial graph dictionary and the
rest for testing the performance of the learned dictionary. In our experiments, we fix the maximum
degree of the polynomial to K = 15 and we learn a dictionary with S = 3.

In Fig. 4.16, we illustrate the sparse approximation performance of our dictionary representation
by studying the reconstruction performance in SNR on the set of testing signals for different sparsity
levels. The performance is compared to that obtained by learning separately a dictionary on each
graph [123], and the one obtained by the sparse decomposition in the graph wavelet dictionary
[3]. We observe that multi-graph learning improves significantly the performance in comparison
to SGWT. Moreover, it outperforms the single-graph learning algorithm in all the graphs. In the
latter case however, the gain is more evident when representing signals from the Santa Barbara
graph Gs. In this particular graph, jointly learning a dictionary compensates for the relatively small
number of available training signals for this graph in comparison to the other two graphs.
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Figure 4.16: Comparison of multi-graphs learning, with SGWT and single-graph learning in terms of SNR
in the traffic delay dataset for three different counties.

4.6 Conclusion

We have introduced a parametric family of structured dictionaries — namely, unions of polynomial
matrix functions of the graph Laplacian — to sparsely represent signals on a given weighted graph,
and an algorithm to learn the parameters of a dictionary belonging to this family from a set of
training signals on the graph. When translated to a specific vertex, the learned polynomial kernels in
the graph spectral domain correspond to localized patterns on the graph. Translating each of these
patterns to different areas of the graph leads to sparse approximation performance that is clearly
better than that of non-adapted graph wavelet dictionaries such as the SGWT, and comparable
to or better than that of dictionaries learned by state-of-the art numerical algorithms such as K-
SVD. The performance of our learned dictionaries is also more stable with respect to the size of
training data. Furthermore, the polynomial structure permits to extend the proposed framework
to signals that live on different graph topologies but share some common spectral characteristics.
These characteristics are reflected in a common dictionary structure that is constructed to be a
polynomial function of the graph Laplacian matrix, and the coefficients of the polynomials are
jointly learned from all graph signals on all graph instances. Experimental results showed the
effectiveness of our joint dictionary learning method in sparse representation of graph signals and
significant benefit with respect to independent learning in the case when the size of the training set
is small.

Although we have provided some preliminary results in signal approximation, the potential of
the proposed dictionary structure in both the single and multi-graph case is yet to be explored
in other applications (see Appendix C for an illustrative example). We believe that the simple,
efficient, and at the same time informative polynomial structure can be applied in other graph
signal processing and data analysis tasks such as classification, clustering, community detection, or
source localization where we expect that the localization properties of our polynomial dictionary
can be beneficial. In particular, in the multi-graph learning case, as our algorithm permits to
learn an effective graph signal representation from training signals living on different graphs, it
could surely provide important benefits in data mining tasks, where the goal is the detection of
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commonalities across different datasets. In practice, it is common to have graph signals that live
on different topologies or on graphs that do no have exactly the same number of nodes. Then,
it might be necessary to segment large graphs into smaller graphs for complexity reasons, or for
augmenting the number of training data. Another extension of our multi-graph framework could
be in settings where the number of nodes is the same across different graphs but each connectivity
captures a different source of information i.e., in multilayer graphs. In that case, the graph structure
of each layer could allow us to learn atoms with different orientations similar to edgelets in classical
settings. In all these cases, our algorithm is expected to be helpful as it goes beyond the limitations
of traditional learning solutions that require training signals to live on a fixed topology. Finally,
because our learned dictionaries are unions of polynomial matrix functions of the graph Laplacian,
they can be efficiently stored and implemented in distributed signal processing tasks. This is exactly
the focus of our next chapter.






Chapter 5

Distributed Graph Signal Processing
with Quantization

5.1 Introduction

In the previous chapter, we proposed a method for constructing polynomial graph dictionaries that
sparsely represent graph signals. In this chapter, we study the application of these dictionaries
in distributed settings in the framework of wireless sensor networks. Such networks are widely
deployed, with applications such as surveillance, weather monitoring, or automatic control that are
often supported by distributed signal processing methods. In such settings, the sensors are gener-
ally represented by the vertices of a graph, whose edge weights capture the pairwise relationships
between the vertices. A graph signal is defined as a function that assigns a real value to each vertex,
which corresponds to the quantity measured by the sensor, such as the current temperature or the
road traffic level at a particular time instance.

Graph representations are certainly powerful and promising tools for representing signals in the
irregular structured domain defined by sensor networks [9]. As studied in the previous chapter,
graph signals can be modeled as the linear combinations of a small number of constitutive com-
ponents in a polynomial graph dictionary [123|. Such dictionaries, which can also be seen as a set
of spectral filters on graphs, incorporate the intrinsic geometric structure of the irregular graph
domain into the atoms and are able to capture different processes evolving on the graph. Due to
their polynomial structure, they can be implemented distributively and therefore represent ideal
operators for graph signal processing in sensor networks.

In wireless sensor networks, each sensor node typically communicates only with a small num-
ber of neighbor nodes due to energy constraints and limited communication range. In addition,
the information exchanged by the network nodes is quantized prior to transmission because of
limitations in communication bandwidth and computational power. The quantization process in-
duces some noise that impacts the performance of sensor network applications and requires careful
consideration to ensure the proper convergence of the distributed signal processing algorithms.

In this chapter, we study the effect of quantization in distributed graph signal representations’.

!Part of this chapter has been published in: D. Thanou and P. Frossard. Distributed signal processing with graph
spectral dictionaries, in Proc. of Annual Allerton Conf. on Comm., Control, and Computing, IL, USA | Oct. 2015.
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In particular, we first derive the quantization error that appears in the distributed computation of
different operators defined on graph spectral dictionaries with polynomial structures. Our analysis
is quite generic and can be applied to every graph spectral dictionary that can be approximated by
polynomials of the graph Laplacian (e.g., spectral graph wavelets approximated with Chebyshev
polynomials) [55], [56]. We then consider the problem of sparse representation of graph signals that
is implemented in a distributed way with an iterative soft thresholding algorithm. We analyze the
convergence of the algorithm and show how it depends on the quantization noise, whose influence is
itself governed by the characteristics of the dictionary. We then propose an algorithm for learning
polynomial graph dictionaries that permits to control the robustness of distributed algorithms to
quantization noise. Experimental results illustrate the dictionary design tradeoffs between accurate
signal representation and robustness to quantization errors. They show in particular that it is
necessary to sacrifice on signal approximation performance for ensuring proper convergence of
distributed algorithms in low bit rate settings.

The chapter is organized as follows. In Section 5.2, we model the sensor network with a graph,
and we recall the use of polynomial graph dictionaries for distributed processing of graph signals.
We study the quantization error that appears in the distributed computations with polynomial
graph dictionaries in Section 5.3, and in Section 5.4 we analyze the more specific case of the sparse
approximation of graph signals. In Section 5.5, we propose an algorithm for learning polynomial
graph dictionaries that are robust to the quantization noise. Finally, in Section 5.6 we evaluate the
performance of our algorithm in both synthetic and real world signals.

5.2 Polynomial graph dictionaries for distributed signal represen-
tation

For the sake of completeness, we recall some of the basic concepts and we introduce notations that
are needed for the rest of this chapter. First, we model the sensor network topology as a weighted
graph, whose connectivity indicates the communication pattern. Moreover, we recall briefly the
sparse signal model of the previous chapter that is based on polynomial dictionaries of the graph
Laplacian. Finally, we show the benefits of such dictionaries in distributed processing. As an
illustrative example, we focus on the basis pursuit denoising algorithm.

5.2.1 Distributed sensor network topology

We consider a sensor network topology that is modeled as a weighted, undirected graph G =
(V,E, W), where V € {1,...,N} represents the set of sensor nodes and N = |V| denotes the
number of nodes. An edge denoted by an unordered pair {i,j} € &, represents a communication
link between two sensor nodes ¢ and j. Moreover, a positive weight W;; > 0 is assigned to each
edge if {i,j} € &€, whose value is dependent on the distance between the nodes i and j. D is a
diagonal degree matrix that contains as elements the sum of each row of the matrix W. The set
of neighbors for node 7 is finally denoted as N; ={j|{i,j} € £}. The normalized graph Laplacian
operator is defined as L =T — D~3WD™3. We denote its eigenvectors by x = [x1, x2, ---, Xn], and

the spectrum of the eigenvalues by A := {0 =X <A <A< <Awn-p < 2}
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We borrow the signal model from the previous chapter and we model the sensor signals as
sparse linear combinations of (overlapping) graph patterns g(-), defined in the spectral domain
of the graph, and positioned at different vertices. We recall that each pattern captures the local
form of the signal in the neighborhood of a vertex, and it can be considered as a function whose
values depend on the local connectivity around that vertex. A graph dictionary is then defined as a
concatenation of subdictionaries in the form D = [§1(£), §2(£), ..., gs(L)], where each subdictionary

is defined as
K K
9(L) =x (Z akAk> X! = Zakﬁk. (5.1)
k=0 k=0

Finally, a graph signal y can be expressed as a linear combination of a set of atoms generated from
different graph kernels {gs(-)},_1 0 s>

S
Y= Zi@(‘c)xs = Zpsxsa
s=1

where we have set Dy = §5(L£), and z, are the coefficients in the linear combination. In applications
where sparsity is required, one can typically learn the polynomial coefficients numerically from
a set of training signals that live on the graph as shown in Chapter 4. Another example of the
dictionary D is the spectral graph wavelet dictionary [3], or more generally the union of graph
Fourier multipliers that can be efficiently approximated with Chebyshev polynomials [56].

5.2.2 Distributed computation of the graph operators

An important benefit of polynomial graph dictionaries is the fact that they can be efficiently
stored and implemented in distributed signal processing tasks. Each polynomial dictionary can be
constructed locally, i.e., by exchanging only information between nodes that are connected by an
edge on the graph. For the sake of completeness, we recall here the distributed computation of
some of these operators. More details can be found in [55].

The distributed computation of DTy requires first the computation of the different powers
of the Laplacian matrix, i.e., {£%, L'y, L%y, ..., LKy}, in a distributed way. The latter can be
done efficiently by successive multiplications of the matrix £ with the signal y over K iterations.
We introduce a new variable z, € RY in the computation of DTy, which represents the value
transmitted during the k' iteration, with zy = y. Initially, each node transmits its component of
zp only to its one-hop neighbors on the graph. After receiving the values from its neighbors, it
updates its component as a linear combination of its own value in zg and the values received from
its neighbors as follows

zZ1 = ;CZ(). (5.2)

At the next iteration, the values of z; are exchanged locally in the network. The procedure is
repeated over K iterations, and the exchanged messages are computed based on the previous
recursive update relationship. After knowing {z9(n), z1(n), ..., 2K (n)}, each node n can compute
the n* component of Dyy by a simple linear combination with the polynomial coefficients i.e.,
(Dsy)(n) = Zszl askzk(n). The same can be done for the different subdictionaries and their
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Figure 5.1: Distributed computation of Dyy in a sensor network. Sensor n exchanges messages with its one-
hop neighbors for K iterations. After each iteration, the received messages are filtered with weights defined
by the graph Laplacian i.e., zi(n) = (Lz5—1)(n), and are transmitted locally in the network. (Dsy)(n) is
computed as a linear combination of the messages exchanged during the K iterations.

polynomial coefficients. An illustration of the process is shown in Fig. 5.1. The main steps are
given in Algorithm 3.

Following the same reasoning, the forward operator Dz can be computed in a distributed
way. We recall that Dz = ZleDsms, where x = (21, x2, ... ,Tg) is a vector containing as
entries the sparse codes s corresponding to subdictionary Ds. Each of the components in the
summation is computed by sending iteratively the powers of the Laplacian as follows. For each of
the subdictionaries, we define a new variable z5 o = z,. The transmitted value of this variable by
sensor n at iteration k is

2k (n) = (L2s g—1)(n).

Each sensor can then compute its component in Dz, which can be expressed as follows in a vector
form

S

S K
Dx = ZDS@"S = Z Zaskzs,k.
s=1

s=1 k=0

The main steps of the distributed algorithm for the computation of Dz are shown in Algorithm 4.
Finally, the operator DT Dz can be implemented in distributed settings by first computing Dz and
sequentially D7Dz by following Algorithms 4 and 3 respectively.

Such operators are particularly useful in the distributed implementation of signal processing
tasks related to learning or regularizing on the graph, such as denoising [55], semi-supervised
learning [40], signal reconstruction [123|, interpolation and reconstruction of band limited graph
signals [39]. These types of applications typically require the computation of quantities such as
the forward application of the dictionary and its adjoint to be computed only by local exchange of
information. In the next section, we give an illustrative example of the use of such operators in the
distributed sparse representation of graph signals.
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Algorithm 3 Distributed computation of DTy

1: Input at node n: y(n), L, ., o = [a1;...; ag]

2: Output at node n: (D7y)((s —1)N +n) for all s = {1,..., 5}
3: Transmit zp(n) = y(n) to all neighbors in N,

4: Receive zo(m) = y(m) from all neighbors in N,

5: for k=2,...,K do:

6:  Transmit z_1(n) = (L7 2;_2)(n) to all the neighbors

7:  Receive z;,_1(m) = (L 2,_2)(m) from all the neighbors m € N,,.
8: end for

9: Compute zx(n) = (Lzx_1)(n)

10: for s ={1,...,5} do

11:  Compute (DTy)((s — 1)N +n) = SO o sz ()

12: end for

5.2.3 Tllustrative application of distributed graph signal processing

We consider the distributed processing scenario where each node n of the graph computes the sparse
decomposition in a polynomial dictionary by solving a sparse regularization problem of the form

2* = argminlly — Da|f} + ]|, (5.3)
T

where k is a parameter that controls the sparsity level. The above problem is also called LASSO
[131] or basis pursuit denoising [140] and is used to perform denoising with sparse prior. We thus
start with the underlying assumption that the signal y is sparse in a polynomial graph dictionary,
whose coefficients are known to all the sensors. Moreover, node n knows its own component of a
signal y € RY (i.e., y(n)) and the n'® row of the corresponding Laplacian matrix £,,.. The above
problem can be solved by an iterative soft thresholding algorithm (ISTA) [141], in which the update
of the estimated coefficients is given by

M =8,.. (x(t_l) + QTDT(y — Dm(t_l))), t=1,2,.. (5.4)
where 7 is the gradient stepsize and Sir is the soft thresholding operator

Senl2) = { 0, if |z| < kT

z —sgn(z)kT, otherwise,
which corresponds to the proximal operator of the k||z||; function. Thus, the whole algorithm is
a particular instance of the general family of proximal gradient methods [142]. By combining the
distributed computation of the operations DTy, DT Dz, Dz, as described in the previous subsection,
each iteration of ISTA can be solved in a distributed way [55]. In particular, in the first iteration,
each node n must compute (D;y)(n) for all the subdictionaries, via Algorithm 3. In each iteration
(t +1), it must compute first (Dz®)(n), and sequentially apply D7 Dz® via Algorithms 4 and 3,
respectively. The solution of (5.3) is found after a stopping criteria is satisfied (e.g., a fixed number
of iterations is executed). The estimate of the signal at each node is then given by computing
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Algorithm 4 Distributed computation of Dz

1: Input at node n: x((s — 1)N+n), for all s = {1,...,5}, L., @ = [oq;...; ag], quantization
stepsize A

2: Output at node n: (Dz)(n)

3t Set z50(n) = z((s — 1)N +m) for all s = {1,..,5}.

4: for k=2,..., K do:

5:  Transmit zs z—1(n) = (Lzsk—2)(n) to all the neighbors, for all s ={1,2,...,S}.

6:  Receive zg_1(m) from all m € Ny, for all s = {1,2,...,S}.

7: end for

8: Compute 2z g (n) = (Lzs x—1)(n), for all s ={1,...,S}.

9: Compute and output (Dz)(n) = Zsszl Ef:o QsZs jo(1).

= Dx* via Algorithm 4.

<>

5.3 Distributed processing with quantization

We now study the effect of quantization in distributed signal processing with polynomial dictionaries
by modeling the propagation of the quantization error in the different dictionary-based operators.
Given a graph signal y, and the representation of the signal in a polynomial graph dictionary D,
i.e., y = Dz, we study the computation of three basic operators i.e., the forward operator Dz,
the adjoint operator DTy, and the operator DT Dz in distributed settings when sensors exchange
quantized messages. Although our main focus is on graph dictionaries that are given directly in a
polynomial form, we note that the following results hold for every graph spectral dictionary that
can be approximated by a polynomial of the graph Laplacian matrix.

5.3.1 Distributed computation of D’y with quantization

As we already saw in Section 5.2.2, the distributed computation of DTy requires first the computa-
tion of the different powers of the Laplacian matrix, i.e., {£%, Lly, £%y, ..., LXy}, in a distributed
way. The latter can be done efficiently by successive multiplications of the matrix £ with the signal
y over K iterations, which as we will see next contains some noise that is accumulated over the
iterations. We introduce a new variable z;, in the computation of D7y, which captures the sensors’
values at the k' iteration, with 2y = y. Before the sensors exchange information, the value of this
variable at sensor n and iteration k, i.e., zi(n), is quantized such that

Zp(n) = zp(n) + ex(n), (5.5)

where €;(n) is the quantization error in &, zx(n) is the value of the sensor before quantization and
Zp(n) is the quantized value that the sensor n sends to its neighbors. Then, each node updates the
local value of the variable z as a linear combination of its own quantized value and the quantized
values received from its neighbors Z; (i) with i € A, based on the recursive update relationship in
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Zep1 = L3

Zee1 = Qlan1) I

Figure 5.2: Distributed computation of Dyy with quantization in a sensor network. Sensor n exchanges
quantized messages with its one-hop neighbors for K iterations. After each iteration k — 1, the received
messages Z_1 are filtered with weights defined by the graph Laplacian (i.e., zx(n) = (£Zk_1)(n)), quantized
(i.e., Zk(n) = Q(zk(n))), and finally transmitted locally in the network. (Dsy)(n) is computed as a linear
combination of the messages exchanged during the K iterations.

a vectorized form
2p+1 = L(2k + €x). (5.6)

By taking into consideration the quantization error from the previous iterations, Eq. (5.6) can be
re-written as

k
Zpr1 = Lz + Z Lchti=te, (5.7)
1=0
We observe that the quantization process involved in the transmission of the different powers of

the Laplacian, induces some quantization noise that is accumulated over the K iterations and is
represented by the second term of Eq. (5.7).

We now compute D'y, the quantized vector corresponding to DSTy, by applying the polynomial
coefficients on the values generated by the sequence {zg, 21, ..., zx } given by Eq. (5.7). It reads

K K K -1
DIy = e = awlly+ 3 [S aute]
k=0 k=0 =1 j=1

K K-1 K-l }

= Z askﬁky + Z [Z as(l+j)£]] €l (5.8)
k=0 =0 = j=1

=Dly+ E(Dly),

where Eq. (5.8) is obtained after some simple matrix manipulations. Note that

K- -1

E(Dly) = Z [ O‘s(l—i—j)ﬁj}ela
= 1

=

.
Il
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Algorithm 5 Distributed computation of D’y with quantization

Input at node n: y(n), L, ., a = [a1;...; ag], quantization stepsize A

—

Output at node n: (DTy)((s — 1)N +n) for all s = {1,..., 5}
Quantize and transmit g(n) = y(n) + eo(n) to all m € N,,.
Receive g(m) from neighbors in N,.
Set z0(n) = y(n), Zo(n) = y(n).
for k =2,..., K do:
Compute z;_1(n) = (LT Z,_2)(n).
Quantize and transmit Zx_1(n) = zx_1(n) + €x_1(n) to all the neighbors.
Receive Z,_1(m) from all the neighbors m € N,,.
: end for
: Compute zg(n) = (LZx_1)(n).
: for s ={1,...,S} do
Compute (DTy)((s — 1)N +n) = ST aszi(n).
: end for

DD 000N U AW =

—_
[N

— =
W

is the overall accumulated quantization noise that occurs in the distributed computation of DIy.

Finally, the operation ISFy = {DTy}Y_,| can be written as
DTy = D"y + B(D"y).

where E(DTy) = {E(DI'y)}5_, is an error vector in RV that contains as entries the error obtained
by applying the S different sets of polynomial coefficients to the accumulated quantization noise. An
illustration of the overall procedure is given in Fig. 5.2. The distributed algorithm for computing

DTy is summarized in Algorithm 5.

5.3.2 Distributed computation of Dz with quantization

We recall that Dz = Zle Dsxs, where x = (11, T2, ... ,xg) is a vector containing as entries
the sparse codes xs corresponding to subdictionary Ds. Each of the components in the summation
is computed by sending iteratively the powers of the Laplacian as described in Section 5.2.2. The
quantization effect though in the iterative process is significant. To elaborate on that, for each of
the subdictionaries, we define a new variable z;,9 = 5. The transmitted value of this variable at
sensor n and iteration k is

gs,k (TL) = Zs,k (TL) + Cs,k(n)a (59)

where (, (n) is the quantization error, z, ;(n) is the value of the sensor before quantization that is
computed as

zs k(1) = (L5 5-1) (1),

and Zg (n) is the quantized value that sensor n sends to its neighbors. By taking into consideration
the quantization error components from the previous iterations, the values of the sensors at iteration
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Algorithm 6 Distributed computation of Dz with quantization

1: Input at node n: z((s — 1)N +n) for all s = {1,..., S}, Ly:, @ = [a1;...; avg], quantization
stepsize A
2: Output at node n: (D x)( )

3: Quantize and transmit Z((s — 1)N +n) = z((s — 1)N +n) + (s (n), for s = {1,..., S}, to all
m e N,,.

4: Receive Z((s — 1)N +n), for all s = {1,..., S}, from m € N,.

5: Set z50(n) =&((s — 1)N +n), for all s = {1,..., S}.

6: for k=2,..., K do:

7:  Compute z_1(n) = (LT Z; x_2)(n), for all s = {1,2,...,S}.

8:  Quantize and transmit Z, ;—1(n) = 25 x—1(n) + (s x—1(n) to all the neighbors, for all

s=1{1,2,..,5}.
9:  Receive Zs ;_1(m) from all m € Ny, for all s = {1,2,...,S}.
10: end for

11: Compute zs g(n) = (LZ5,x—1)(n), for all s = {1,...,5}.
12: Compute and output (Dx)(n) = Zle Zszo Qs jo(1).

k + 1 are defined as

k
ok = Lz + > LFG (5.10)

Using Eq. (5.10), we obtain the operator Dz with quantization

S K
=22 sz
s=1 k=0

=l
It
Mm

s? K K-1 K-l 4
- Z { Z g Ll + Z [ as(lJrj)Ej} Cs,z} (5.11)
s=1 k=0 =0 j=1

I
NE

[Dsxs + E(Dsxs)],

@
Il
—_

where the accumulated quantization noise corresponding to subdictionary Dj is defined as

K-1 K-
E(Dsxs) Z [Z s(145) L7 :|€sl

The main steps of the distributed algorithm for the computation of Dz with quantized messages
are shown in Algorithm 6.
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5.3.3 Distributed computation of D' Dx with quantization

Finally, we illustrate the distributed computation of DT D with quantization, which follows the
same reasoning as the previous two operators. In particular, we assume that the operator Dz has
already been sent and the corresponding entries of Dz are known to the sensors. Thus, the new
variable in this case is defined as zyg = Dx. The sensors’ values at iteration k + 1 are

Zpp1 = LF 20 + Zﬁ’“*l le, (5.12)
=0

where ¢ is the quantization error vector § = (§(1),£(2), ...,&§(N)) that occurs after transmitting
%. By combining Egs. (5.8), (5.11), (5.12), for each subdictionary Ds, we can compute DI Dz with
quantization as follows,

K
DIDy = Z s LF 2
k=0

K -1 ‘
= Zaskﬁ 20 + Z [ o lﬁl_]fj}
=1 j=1
 K-1 K-l
= Z aSkEkDa: + [ Ozs(l_,_J)Ej}
k=0 =0 j=1
K-1 K- ' K-1 K-l 4
= ZO{S}C,C Z { Z Oéslk/,c :175 Z |: Z as/(l/Jrj’)'c] ] S/ l’} + [ as(l+j)£]i|§l
s'=1  k'= =0 j'=1 =0 j=1
=DI'Dy + Z aLVE(Dz) + E(DI'Da), (5.13)
k=0
where we have set
S K-1 K-U }
B0 =3 3 [ vt e
s'=11U=0 j'=
K-1 K-l ‘
E(DIDz) =) [Z s(l—&-j)‘cj}fl-
=0 j=1
Finally, the operation D7Dz = {DIDz}3_, can be written as
DTDx = DDz + DTE(Dx) + E(D'Dx),
where E(DTDz) = {E(DI'Dx)}5_,. Again, we observe that there is an error accumulated from the

computation of both steps Dx and DTDx that depends on the quantization noise and the structure
of the dictionary through the coefficients {ozsk}ss’zli p—o- Lhe main steps of the algorithm are shown
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Algorithm 7 Distributed computation of DT Dz with quantization

1: Input at node n: (Dit)(n),ﬁmw a = [aq;...; ag], quantization stepsize A
Output at node n: (DTDz)((s — 1)N +n) for all s = {1,.., S}
Set zg(n) = ﬁgj(n)
Quantize and transmit Zo(n) = zo(n) + &(n) to all m € N,,.
Receive Zp(m) from neighbors in N,,.
for £k =2,..., K do:
Compute z;_1(n) = (LT Zx_5)(n).
Quantize and transmit Zx_1(n) = zx_1(n) + &—1(n) to all the neighbors.
Receive Z_1(m) from all the neighbors m € N,,.
: end for
: Compute zg(n) = (LZx—1)(n).

12: for s ={1,..,5} do
13:  Compute (DTDz)((s — 1)N +n) = S akszi(n).
14: end for

in Algorithm 7.

5.4 Distributed sparse graph signal regularization with quantiza-
tion

In the following, we use the above operators for the sparse distributed representation of a signal y
with respect to a dictionary D, under communication constraints. The sparse representation in a
dictionary D can be found by solving a lasso minimization problem [143] of the form of Eq. (5.3).
The first step of ISTA requires the computation of the gradient of the fitting term of Eq. (5.3)
i.e.,|ly — Dx|?, which implies the computation of the operations DTy, DTDz in each iteration of
the algorithm. When the messages exchanged by the sensors are quantized, the quantization noise
induced by each of these operations introduces an error in the gradient, such that

it =S,, (x(t_l) +27(DTy — DDtV 4 e(t_l))), (5.14)

where e(*=1) is the total gradient error, which according to Egs. (5.8), (5.11), (5.13) can be expressed
as

et~ = =1 (pTy) - pTED(Dz) — ECD(DT D).

The convergence of the sparse graph signal representation by the ISTA algorithm then depends
on the sequence of errors over the iterations. It can be characterized by the following result from
[144] that applies to the general family of proximal gradient methods such as ISTA.

Theorem 1 ([144]). Let f a differentiable with Lipschitz continuous gradient function on some
compact set with Lipschitz constant L, g a lower semi-continuous and convex function, and {7} a
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sequence of gradient stepsizes that satisfy the conditions:
0<f<m<min(l,2/L— B), with0 < j < %
Then, the sequence generated by the iterates
) = proxn_lg(x(tfl) — 1 V(D) 4 r_1eltD) (5.15)

converges to a stationary point x* if, given a fixed 7 the following condition on the gradient error
holds
V1 € (0,7], Tle| <€ for some€> 0.

The above result indicates that the proximal gradient method converges to an approximate sta-
tionary point if the norm of the gradient error is uniformly bounded. Furthermore, if the number
of perturbed gradient computations is finite, or if the gradient error norm converges towards 0,
then the sequence limit point is the exact solution of the initial problem. Therefore, we have to
make sure that the error in the gradient is bounded so that the distributed sparse graph signal
representation algorithm converges.

Assume that we use a uniform quantizer in our distributed signal processing algorithm which is
widely used and simple to implement. Let us further assume that our quantizer has a quantization
stepsize A for the magnitude and one bit for the sign. With such a quantizer, an upper-bound on
the norm of the error is given by the following lemma.

Lemma 1. Let e*™Y be the error due to quantization in the computation of the gradient at
iteration t — 1 as defined in Eq. (5.14) and A the quantization stepsize of a uniform quantizer.
Then, the quantization error is bounded as

S K-1 K-U

A S K-1 —
letD) < VNS Y- {2 > Zasuﬂ Flleed 2| Z eI} (5.16)
s=1 Jj=

/ 1l/

Proof: For ease of notation, we ignore the iteration index and we bound the error norm as follows

lell = 1E(DTy) — D" E(Dw) ~ E(D"Da)|
< |B(DTy)|| + /D" E(Dx) | + | E(D"Da)|
S
<> {IEDLy)| + DT ED)| + | EDI Do)}, (5.17)
s=1

where we have used the standard Cauchy-Schwarz inequality. For the sake of simplicity, we work
with each term of the summation separately. After some basic operations with matrix norms, we
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can write the first term as follows

K-1 K-l
E(Dly)| = LI
IEDIy)ll =11 asrp L el
=0 j=1
K-1 K-I 4
<) [Z as(lJrj)‘C]} all
=0 j=1
K-1 K-l '
< DD asarp Ll (5.18)

l

Il
o

1

J

Similarly, the second and the third term can be written as

=

-1
DY E(D)|| = |

M

asaﬂ-)ﬁf}zzn
l
K—

~
=)

K-l

Zas(l—}—j)‘chHSl”v (519)
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and

S K-1 K-l

|E(DT D) = | Zaskck )P [ Z gy [ Cou|
I 1l/

S K—-1 K-
<| Zawn XXl Z ayin 7 Mo r]
=11l=
S K-1 K-U

<ed. Z I Z ag e £ ¢ ol (5.20)

/ ll/

where the last inequality comes from the assumption that 0/ < Dy < I, which is generally true for
the class of spectral graph dictionaries that we are considering. Combining Eqgs. (5.17)-(5.20), and
using the assumption that the quantization noise is uniformly distributed with magnitude smaller
than A/2, we obtain the upper bound of (5.16). O

The above inequality shows that the error at each iteration of the gradient is upper-bounded
by the quantization error norms ||¢/], [|&]], [|¢s 17|, multiplied by a matrix polynomial of the graph
Laplacian £. The quantization errors depend on the number of bits, i.e., the rate constraints on
data exchanged in the sensor network. For a uniform quantizer, the magnitude of the quantization
error is upper-bounded by the quantization stepsize. In particular, if the norm || Z]K:El as(lﬂ)ﬁj I
is bounded by a constant n > 0 i.e., || Zfi_ll agup L < forle{l,..K -1}, s €{1,..,5},
Eq. (5.16) becomes:

A
eV < \/NESK@ + ). (5.21)
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Thus, the error of the gradient at each iteration is bounded, which implies that ISTA converges to a
stationary point of the iteration (5.15) according to Theorem 1. When A — 0, i.e., the bit rate tends
to infinity, and the quantization noise tends to zero, |le!*~1)| — 0, independently of 1. However,
when the number of bits is limited and fixed, the quantization noise depends on the characteristics
of the dictionary. In particular, as || Zf;ll g1+ L7 || tends to 0 (i.e., n — 0), the error also tends

to 0 (ie., [|e* V| — 0). Finally, the upper-bound on the error due to quantization in Eq. (5.21)
indicates that the higher the degree K of the polynomial, the more the error is accumulated over
the iterations. This is quite intuitive as higher polynomial degree requires more information to be
exchanged between the sensors, at the cost of more propagation of the quantization noise. A large
value of K at the same time guarantees that the polynomial functions can better approximate the
underlying spectral kernels and thus the graph signals. It indicates that there is a tradeoff in the
design of the dictionary, between the representation performance of the polynomial dictionary and
the propagation of the quantization noise.

5.5 Polynomial dictionary learning with quantization

We use the study of the previous section to include the quantization parameter in the dictionary
design and we introduce an algorithm to learn polynomial dictionaries that are robust to quanti-
zation noise. Our approach consists in controlling the norm of the total error in each step of the
gradient computation when solving ISTA-based algorithms in a distributed way. When the quan-
tization step size and the graph are given, the total error due to quantized communication can be
controlled by choosing the proper values for the polynomial coefficients {O‘sk}fg,kzo such that the
gradient error stays bounded. From Eq. (5.16), the polynomial coefficients need to be computed in
such a way that the spectral norm || Zf:_ll g )L, for 1€ {1,..., K —1}, is bounded for a fixed

A. We recall that the spectral norm is defined as || Z]K:El s Ll = )\max(ZJK:]l as(lﬂ-)ﬁj).

Since the matrix Zf;ll oes(lﬂ)ﬁj is symmetric, the spectral norm is simply its largest eigenvalue.
Therefore, constraining the spectral norm becomes equivalent to constraining the eigenvalues of the
corresponding matrix.

Based on the above analysis, we propose here to control the maximum eigenvalue of the matrix

Z]K;ll as(l+j)£j for constructing dictionaries that are robust to the quantization noise. Namely, we

choose the polynomial coefficients such that the spectral norm of ZJK:_ll Qs (145) L7 is bounded and
small. We modify the learning algorithm of the previous chapter to have explicit control on the
propagation of the quantization error. In details, given a set of training signals Y = [y1, y2, ..., ym] €
RNXM " a]] living on the weighted graph G, our objective is to learn a polynomial graph dictionary
D € RVXNS which can efficiently represent all of the signals in Y as linear combinations of only
a few of its atoms and at the same time be robust to the quantization error, when applied to
distributed setting with rate constraints. Since D has the form (5.1), our problem is equivalent
to learning the parameters {asp}o_1 o g p—12. x that characterize the set of generating kernels,
{95(:)} 19 g We denote these parameters in vector form as a = [aq;...; 5|, where oy is a
column vector with (K +1) entries. The optimization problem is formulated similarly to the one in
Eq. (4.11). However, in order to take into account the effect of the quantization noise, we impose

an additional constraint on the original problem of Eq. (4.11), which bounds the eigenvalues of the
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matrix ZJK:_ll a4y for e {1,.., K —1} and s € {1, ..., 5}.
Formally, the dictionary learning problem can be cast as the following optimization problem:

arg min {||Y—DX||%+NHO‘||§}

aER(K'H)S, XERSNxM

subject to lzmllo < To, Yme{l,.., M},

K
Do=Y aulh Vse{1,2,..,5} (5.22)
k=0
0l <Dy <cl, Vse{l,2,..,5}
S
(c—e)l =< ZDS =< (c+e)l,
s=1
K—I ‘
=l 2> oyqepn L 2nI, VIe{l,.,K -1}, Vs € {1,.., 5},
j=1

where D = [Dy,Ds,...,Dg], m, corresponds to column m of the coefficient matrix X, Tp is the
sparsity level of the coefficients of each signal, and I is the identity matrix. The additional con-
straints provide some control over the spectral representation of the atoms and the stability of signal
reconstruction with the learned dictionary as discussed in Chapter 4. The optimization problem
(5.22) is not convex, but it can be approximately solved in a computationally efficient manner by
alternating between the sparse coding and dictionary update steps, as described in the previous
chapter. In the first step, we fix the parameters o (and accordingly fix the dictionary D) and solve
the sparse coding step using orthogonal matching pursuit (OMP) [125]. In the second step, we fix
the coefficients X and update the dictionary by finding the vector of parameters, «, that solves the
polynomial coefficient update step using interior point methods [128].

We notice that the parameter 7 is a design parameter that intuitively should be chosen inversely
proportional to the quantization stepsize according to Eq. (5.21). In particular, a small value of
1 penalizes the propagation of the quantization noise when the dictionary is used in distributed
settings, at the cost however of a reduced flexibility in the search space of the polynomial coefficients.
The latter implies a loss in the accurate recovery of the underlying spectral kernels that generate the
true dictionary atoms. A large value of 1 gives more flexibility for the algorithm of (5.22) to learn
a set of polynomial coefficients that are good for approximating the kernels in ideal communication
settings, without though restricting the accumulated quantization noise. The effect of this tradeoff
is studied in the experimental section.

5.6 Experimental results

We first study the performance of our dictionary learning algorithm for the distributed approxi-
mation of synthetic signals. We generate a graph by randomly placing N = 500 vertices in the

unit square. We set the edge weights based on a thresholded Gaussian kernel function so that
Wi; = e 207 if the physical distance dist(i,j) between vertices i and j is less than or equal
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Figure 5.3: Distributed approximation performance (SNR) versus sparsity level, achieved with different
polynomial graph dictionary learned with different values of 1 in distributed settings, with a bit rate of 6
bits per message.

to k, and zero otherwise. We fix # = 0.04 and x = 0.09 in our experiments, and ensure that the
graph is connected. In our first set of experiments, we construct a set of synthetic training signals
consisting of localized patterns on the graph, drawn from a dictionary that is a concatenation of
S = 3 subdictionaries. Each subdictionary is a polynomial of the graph Laplacian of degree K = 15
and captures one of the three constitutive components of our synthetic signal class. We generate
the graph signals by linearly combining Ty < 10 random atoms from the dictionary with random
coefficients. We then learn a dictionary from a set of 1000 training signals for different values of
the parameter n that controls the robustness to quantization error in distributed signal processing.

First, we study the distributed approximation of testing signals using the iterative soft thresh-
olding algorithm with iterations defined by Eq. (5.14). The testing signals are generated in the
same way as the training ones. We assume that the messages exchanged by the sensors are uni-
formly quantized before transmission. In particular, for each message we send one bit for the sign
and quantize the magnitude of the data to be transmitted to neighbor sensors. For each signal y,
the quantization range of the transmitted messages is defined to be [0, ||y||oo], and it is known by
all the sensors. We fix the bit rate to 6 bits per message and we run ISTA for 300 iterations, and
different values of the sparsity parameter x in Eq. (5.14). We learn different polynomial dictionaries
by solving the optimization problem (5.22) for different values of n. For the sake of comparison,
we show also the approximation performance obtained with the spectral graph wavelet dictionary
approximated by a Chebyshev polynomial of order K = 30. In Fig. 5.3, we illustrate the approxi-
mation performance in terms of SNR obtained for different numbers of atoms in the representation.
The number of atoms is measured by counting the number of non-zero elements in the sparse codes
for a particular value of k. Interestingly, we observe that the best representation performance is
obtained when 7 is very small. As we increase 7, the effect of the quantization noise becomes sig-
nificantly high, which leads to a dramatically low SNR in the distributed approximation algorithm.
The worst performance is obtained when 1 = oo, which is equivalent to ignoring the robustness
constraint in the dictionary learning algorithm. This confirms that the robustness constraint can
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Figure 5.4: Illustration of the kernels recovered for different values of 7 in the dictionary learning problem.
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Figure 5.5: Polynomial coefficient values, for each of the dictionary kernels, for different values of 7 in
solving the optimization problem (5.22).

indeed reduce the effect of the quantization noise. However, comparing to the performance obtained
in the case of infinite bit rate (red curve in Fig. 5.3), we observe a saturation in the maximum
SNR that is significantly lower than the one in ideal communication conditions. This is the price
to pay for introducing the quantization constraint and reducing the search space in the dictionary
learning problem of (5.22).

We look in more details on the effect of n on the dictionary learning outcome and study the
effect of this parameter in the learned kernels. In Fig. 5.4(a), we illustrate the original kernels
of the underlying dictionary, and in Figs. 5.4(b)-5.4(d), we plot the ones recovered by solving the
dictionary learning algorithm of Eq. (5.22) for different values of 1. As expected, we observe that,
as we increase the value of 7, the recovered kernels become closer to the original ones. The effect of
the parameter 7 is more obvious in Fig. 5.5, where we plot the values of the polynomial coefficients.
We observe that, when 7 is small, the polynomial coefficients become small in magnitude. As a
result, the dictionary learning algorithm is not able to capture relatively complicated kernels, which
seems to be the cost for improved robustness to quantization as shown in Section 5.5.

In the next set of experiments, we quantify the loss in the approximation performance by
focusing on centralized settings without rate constraints. We approximate 1000 testing signals,
generated in the same way as the training signals, by computing the sparse approximation in
the learned dictionaries with OMP, for different sparsity levels. For the sake of comparison, we
also compute the approximation performance achieved by applying OMP on the spectral graph
wavelet dictionary [3]. The obtained results are illustrated in Fig. 5.6. Each point in the curve
corresponds to the signal to approximation noise ratio (SNR in dB) for different sparsity levels,
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Figure 5.6: Approximation performance (SNR) versus sparsity level, achieved with the polynomial graph
dictionary for different values of 7 in centralized settings.

and it is computed as the average value over all the testing signals. As we reduce the values
of the parameter n in the dictionary learning algorithm, the approximation performance in the
ideal scenario of infinite bit rate deteriorates significantly. It can become even worse than the one
achieved with the spectral graph wavelet dictionary, which is not learned to efficiently represent
the training signals. This behavior is consistent with the conclusion drawn from Figs. 5.4, 5.5. The
more we reduce the search space (i.e., the smaller the value of 1), the worse is the approximation
performance of the graph signals from the learned dictionary.

In another set of experiments, we apply our dictionaries in distributed denoising applications.
We add some Gaussian noise to the testing signals such that their initial SNR is 10 dB. We then use
the dictionaries learned with the different parameters n to denoise the signals by imposing a sparse
prior. Denoising is performed by applying the iterative soft thresholding algorithm of Eq. (5.14)
for different values of the parameter . In Fig. 5.7, we illustrate the SNR obtained after distributed
denoising with different numbers of bits per messages, for each of the learned dictionaries. For each
bit rate, we keep the value of x that corresponds to the highest SNR. The obtained results indicate
that a small 1 at low bit rate can bring significant gain in terms of denoising performance. When
the bit rate is high, the denoising performance obtained with the dictionary corresponding to a
small n (n = 0.1) saturates to a low SNR value. Due to the quantization constraints, the solution of
the optimization problem (5.22) is not necessarily the optimal, and the representation performance
of the dictionary is reduced. These results are consistent with the one obtained in the previous
experiments.

Finally, we study the application of the proposed framework to the denoising of real world
signals. We consider the daily traffic bottlenecks in San Francisco that are parts of the Caltrans
Performance Measurement System (PeMS) dataset [134].2 It contains measurements of 75 detector
stations between January 2007 and August 2014. The graph is designed by connecting stations
when the distance between them is smaller than a threshold of § = 0.04. For two stations A, B, the

2The data are publicly available at http://pems.dot.ca.gov.
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Figure 5.7: Denoising performance (in dB) versus bits per message using dictionaries learned with different
values of . The SNR of the input signals is 10 dB.

distance dap is set to be the Euclidean distance of the GPS coordinates of the stations and the edge
weights are computed using the exponential kernels such that Wap = e~%48. The signal on the
graph is the duration in minutes of bottlenecks for each specific day. These signals are normalized
for computational issues with the maximum signal norm.

We use half of the signals to learn a polynomial dictionary with S = 3 subdictionaries, and
a maximum polynomial degree of K = 15. The sparsity level in the learning phase is set to
To = 5. We run the dictionary learning algorithm for different values of the parameter n =
[0.1, 1, 10, co]. We add random Gaussian noise to the rest of the signals to obtain a set of noisy
signals, with SNR equal to 10 dB. The obtained dictionaries are then used for denoising the noisy
signals in distributed settings with the iterative soft thresholding algorithm, at different bit rates.
The results are illustrated in Fig. 5.8. As in the case of the synthetic data, we observe at low
bit rate a significant performance gain when the dictionary has been learned with a small value
of the robustness parameter 1. When 71 becomes large, denoising of the signals by 2 dB requires
approximately 8 bits per message, which is much higher than the number of bits required by a
dictionary learned with a small 7, for the same denoising performance.

5.7 Conclusions

In this chapter, we have studied the effect of quantization in distributed graph signal processing
with polynomial dictionary operators. We have shown analytically that the overall quantization
error depends on the graph geometry and the dictionary structure. Following this observation,
we have then proposed an algorithm that learns graph dictionaries to sparsely approximate graph
signals while staying robust to quantization noise. Experimental results have illustrated the trade-
offs between effective distributed signal representation in low bit rate communication settings and
accuracy of the signal approximation in ideal settings. An interesting extension of this work would
be the analysis of the distributed processing performance with loss of information as it happens
in practical networks. The study of the design of adaptive quantization algorithms that would yet
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Figure 5.8: Denoising performance (in dB) versus bit rate per message for the traffic dataset using dictio-
naries learned with different values of 7. The initial SNR is 10 dB.

improve the distributed graph signal processing performance is also an interesting research prob-
lem. In the next chapter, we focus on a specific distributed graph process, the average consensus
process, and we propose an adaptive quantization scheme that goes along the second direction.



Chapter 6

Graph-based Quantization Refinement
for Distributed Consensus

6.1 Introduction

In this chapter, we focus on a particular class of graph signals that are generated from an average
consensus process. This type of processes, although quite simple, have attracted a lot of research
interest due to their applications in wireless network systems. Distributed consensus algorithms
[145] are mainly used in ad-hoc sensor networks in order to compute the global average of sensor
data in a distributed fashion, using only local inter-sensor communication. Some of their most
important applications include distributed coordination and synchronization in multi-agent systems
[48], distributed estimation [146], distributed classification [50] and distributed control problems.

The distributed average consensus problem has been typically addressed in the literature
through the successive application of local graph filtering operators. It results in a process evolving
on the graph that converges to a smooth graph signal that takes the average value of the original
data. The choice of the graph filter, also known as the consensus weights, defines the convergence
rate of the algorithm. These weights are typically designed based on the structure of the graph, i.e.,
the graph weights and the graph Laplacian matrix (e.g., Maximum-degree, Metropolis, Laplacian
weights) [47] or on convergence criteria. For example, graph filters with polynomial structures have
been shown to accelerate the convergence of the average consensus algorithms [59], [147], [61].

While in theory convergence to the global average is mostly dependent on the sensor network
topology, the performance of distributed average consensus algorithms in practical systems is largely
connected to the communication constraints and limited precision operations. In general, the
information exchanged by the network nodes has to be quantized prior to transmission due to
limited communication bandwidth and limited computational power. However, this quantization
process induces some quantization noise that is accumulated throughout the iterative consensus
algorithm and affects its convergence, leading to significant performance degradation [148].

In this chapter, we design a novel distributed progressive quantization algorithm! that limits
the quantization noise and leads to convergence to the average value even at low bit rates [149],

'D. Thanou, E. Kokiopoulou, Y. Pu, and P. Frossard. Distributed average consensus with quantization refinement,
IEEE Trans. on Signal Proc., vol. 61, no.1, pp. 194-205, Jan. 2013.
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[150]. Motivated by the observation that the correlation between the values communicated by
the nodes increases along the consensus iterations, we propose to progressively and consistently
reduce the range of the quantizer in order to refine the information exchanged in the network
and guide the sensors to converge to the average consensus value. The proposed quantization
scheme is computationally simple and consistent throughout the iterations as every node implements
the same quantization all the time. We describe a method for computing offline the parameters
of the quantizers, which depend on the network topology and the communication constraints.
Our design is based on an average case analysis, which leads to effective performance in realistic
settings. Convergence of the consensus iterations is achieved when the energy of the quantization
error decreases with the iterations. We illustrate the performance of the proposed scheme through
simulations that demonstrate that the consensus algorithm converges fast to the average value even
in the case where the information is hardly quantized.

The structure of the chapter is as follows. Section 6.2 presents our new progressive quantization
algorithm. A recursive method for computing the quantization parameters is proposed in Section
6.3, followed by a simple exponential relation for adapting the quantizer step-size. Then, simulations
results are presented in Section 6.4. Finally, in Section 6.5 we review the existing work in the
literature related to the effect of quantization in the distributed average consensus problem.

6.2 Progressive quantizer for distributed average consensus

We consider a sensor network topology that is modeled as a weighted, undirected graph G =
(V,E,W), where V € {1,..., N} represents the sensor nodes and N = |V| denotes the number of
nodes. An edge denoted by an unordered pair {i,j} € &, represents a link between two sensor
nodes ¢ and j that communicate with each other. Moreover, a positive weight W;; > 0 is assigned
to each edge if {i,7} € €. The set of neighbors for node i is finally denoted as N; = {j|{i,j} € £}.

The node states over the network at time ¢ can be expressed as a vector z; = [2:(1), ..., z(N)]7T,
where z;(7) represents a real scalar assigned to node 7 at time ¢. The distributed average consensus

problem consists in computing iteratively at every node the average

1 N
m = N;ZO(i)v

where zo(7) is the initial state at sensor . The consensus can be achieved by linear iterations of the
form z;11 = Wz, where the symmetric weight matrix W satisfies the conditions that are required
to achieve asymptotic average consensus [47], expressed as

1'w =17, w1 =1, p(W —117/N) < 1, (6.1)

with p(-) the spectral radius of the matrix and 1 is the vector of ones.

When communication rate is limited between sensors, the value z¢(i) of a sensor node i at each
step ¢ is quantized prior to its transmission to neighbor nodes. The quantized value Z(i) can be
written as

5(1) = 2(i) + e (i), (6.2)
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where €;(i) models the additive quantization noise of sensor ¢ at iteration ¢. In particular, in the
case of a m-bit uniform quantizer, the quantized values can be written as

o (min) A )
Zt(l) _ \‘Zt(l) AZO J 'A+§+Z(()mln)y

when the initial sensor states lie in a finite interval of size S = z(()max) - z(()min)

zémin) and z(()max) represent the minimum and the maximum values of the interval respectively. The

parameter A = S/2" is the quantization step-size, which drives the error of the quantizer.

. The parameters

In the presence of quantization noise in the distributed average consensus algorithm, we use the
following linear iterations that preserve the average of the initial states [151]

241 = 2z + (W = 1)z, (6.3)

where I is the identity matrix. An analytical expression of Eq. (6.3) shows that the quantization
error propagates through the iterations of the consensus algorithm. More specifically, the states
zt+1 and Z; are expressed as

t—1
H=W'a+> W W-Deasate (6.4)
s=0
t
zep1 = Witz + Z WHW —I)e;s. (6.5)

s=0

The linear iterations defined by Eq. (6.3) preserve the average of the initial states in the network
but unfortunately do not guarantee convergence to the average consensus value in the presence of
quantization. In order to limit the influence of the quantization noise, we should decrease the
step size by either increasing the number of bits or adapting the quantization range for the same
number of bits. In the average consensus problem, it can be observed that as the number of
iterations increases, the correlation between the sensors’ states increases and the values computed
by the sensors tend to converge into an interval of decreasing size. Quantization in the full range
of size S hence results in a waste of bits or in limited precision that prevents the algorithm to
converge to the true average value. We therefore propose to adapt the quantization step-size as the
number of linear iterations increases in a new progressive quantization algorithm. We keep a simple
uniform quantizer with a fixed number of bits per sensor and we adapt the quantization range so
that quantization becomes finer along the iterations.

In more detail, we denote the size of the range of the quantizer in node 7 at time ¢ as Sy(i). Since
the size of the quantization range is always positive, we impose S;(i) > 0. This range decreases
in each sensor as the iterations proceed. The quantization range is further centered around the
previous state of the consensus algorithm Z;_1(7) as the values of the consensus algorithm converge
over time to a smooth graph signal. More formally, the sensor 7 encodes its state z;4+1(4) by using a
quantization interval that is defined as [Z:(7) — S¢41(7)/2, Z¢(i) + Se41(7)/2]. The data is uniformly



100 Chapter 6. Graph-based Quantization Refinement for Distributed Consensus

quantized in this reduced range, which leads to a step-size

At+1 = (66)

that decreases over time. The values falling out of the quantization interval are clipped and coded
to the nearest quantizer value. In order to simplify the design of the quantizer for realistic settings,
we impose the size of this interval to be identical for all the sensors, independently of their previous
state and their position in the network (i.e., S¢(i) = S;, Vi = 1,...,N). Since each neighbor
node j € N; knows the value Z; (i) received at the previous iteration, it is able to perform inverse
quantization and to compute correctly the value Z;11(7). We call the proposed quantization scheme
Progressive Quantizer.

The important parameter in the Progressive Quantizer algorithm is clearly the size S; of the
quantization range. It has to be small enough such that the precision of the quantized information
is sufficient for convergence to the true average value. On the other hand, it should be chosen large
enough such that the values computed in the network nodes fall in the quantization range with
high probability in order to avoid clipping that may negatively affect the convergence of the average
consensus algorithm.

6.3 Design of the parameters of the progressive quantizer

6.3.1 Average case analysis

In this section, we propose a constructive methodology to compute a priori the size of the quan-
tization range, based on the properties of the network graph topology and the communication
constraints. In order to guarantee that the quantizer does not saturate (i.e., all the values fall
inside the quantization range), S;41 should satisfy the following inequality

) S
21 = Zlloo < 75 6.7)

The computation of the worst case interval based on (6.7) typically leads to conservative progressive
quantizer design that does not necessarily lead to a better performance than the classical uniform
quantizer with a constant range. This observation is supported by simulations in subsection 6.4.3
where a conservative design [8] is unable to lead to fast convergence. Instead of looking for strong
guarantees such as those in (6.7), we build our quantizer such that values fall in the quantization
range with high probability. This comes at a price of some potential clipping, which however does
not significantly penalize the convergence of the algorithm. Moreover, limiting a priori the dynamic
range of the sensors’ states in a meaningful way is expected to prevent the consensus algorithm from
being affected by potential outliers that occur due to quantization noise. The overall procedure
could be characterized as an attempt to guide the quantized consensus algorithm such that it
converges to the average value with a rate that gets close to the convergence rate of the ideal
unquantized consensus algorithm. Since the convergence rate depends on the weight matrix of the
graph, the design of the quantizer should also depend on the graph topology.

In more detail, we propose to relate the quantizer range size to the mean square difference
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| zt41—2||?/N between two successive graph signals. It leads to the following average case condition

Ellze41 — Z[%] St1y2
< 6.8
N — ( 2 ) ’ ( )
where || - || denotes the L2 norm. The expectation of the difference between successive values in

the consensus algorithm represents the minimal size of the quantization range at each iteration.
Moreover, we model the quantization noise samples as spatially and temporally independent random
variables that are uniformly distributed with zero mean and variance A?/12. In the sequel, we first
derive in Proposition 2 an upper-bound of E[||z4+1 — Z/|?] that depends on the previous values
{S1, ..., S¢}. This upper-bound together with (6.8) permits to estimate Spy1.

Proposition 2. Let Z; and z.41 be defined as in Egs. (6.4), (6.5). Let also Ao be defined as

Ao = p(W — %) and Apmin be the smallest algebraically eigenvalue of graph weight matrix W.

Then, it holds that

t—1 2

. ; Stoe
Elllzte1 = 2] < [l20l*A3' (1 = Amin)? + (1= dwin)® D W (W = D[*N 5=
s=0 (6.9)
52
2 — Amin 2N ! .
+ ( A ) 22n .19

The proof of Proposition 2 is given in Appendix D.1.
Then, Egs. (6.8) and (6.9) along with the fact that ||20]> < N| 20||%,, imply that

St ) t—1 . 52787
(PEL)2 = gl A3~ M) (1= M) S W5 (W — 1|2 e
9 2em .12
5=0 (610)
SQ
2 — min 2t >1
+ ( A ) 22n .19’ t=

The computation of the quantizer range size with (6.10) implies a recursive computation of S; at
each time step t of the consensus algorithm. We first set Sy according to the initial range of the
quantizer i.e., S = z(()max) — z(()mm) and we compute S from a simplified version of (6.10) where
the intermediate term from the right hand side is dropped. Then Sii; is computed recursively

according to (6.10), where only positive solutions are kept.

Finally, we note that the terms used in the recursive computation of the quantization range
reflect the characteristics of the network and the communication constraints. The values of the
estimated quantization range depend on the convergence rate of the average consensus algorithm
in the absence of quantization noise Ay, on the maximum value of the initial data ||2z¢]|c0, on the
graph topology W (through Mg, Apin) and on the number of quantization bits n for each sensor.
Moreover, we exploit the properties of the weight matrix W by taking into account the averaging
effect over the successive iterations. We show in the next section that the recursive computation of
the quantization range size can be approximated with a simple exponential model.
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6.3.2 Exponential quantization range

We build on the convergence behavior of the consensus algorithm and propose an approximate
exponential model for the computation of the size of the quantization range. We first pose without
loss of generality that S; = 2-e . In what follows, we show that under a few simplifying
assumptions the recursive relation of the previous section leads to an exponential model whose
parameters can be determined in closed form. This closed form parameter computation is of great
benefit towards deployment in realistic settings.

When S; = 2-e %, Eq. (6.10) becomes

t—1 Btfsfl
- e
€721 = [|20]2A8"(1 = M) + (1= i) D_ W2 (W = D)~
—0 (6.11)

+ (2 - )\min) P

The second term in the right-hand side of Eq. (6.11) is due to the accumulated quantization error
from the previous ¢ iterations. In particular, the matrix norm |[W!(W — I)| that multiplies the
quantization noise vectors decays asymptotically to zero. In addition to that, the sequence defined
by Eq. (6.11) decays to zero as specified by the following proposition.

Proposition 3. Let e P+ be a sequence defined by Eq. (6.11). If the condition 0 Amin)* +(2-

(1-23)
)\min)2 < 3-22 js satisfied, then lim;_,oo e P41 = 0.

The Proposition 3, whose proof is given in Appendix D.2, relates the decay and convergence of the
size of the quantizer range to the characteristics of the network graph (through Ag, Apin) and to the
number of bits used in the quantization. Eventually, it means that the expected squared difference
between consecutive iterations in the distributed consensus algorithm as defined by the recursive

log [ (1(1)‘%51)4—(2 )\mm) ]

equation (6.11) goes to zero as long as the number of bits satisfies n >
Then, the following proposition shows that the second term in the right-hand s1de of Eq. (6.11)
becomes negligible when the number of iterations increases.

Proposition 4. Let W be a graph matrix satisfying the conditions defined in (6.1). Let
e Po e=P1 . e P be a sequence such that e Pt < §,Vt and tlim e Pt = 0. Then ZZ;%) [Ws(W —
— 00

I)||?e=2P=s-1 converges asymptotically to zero for t — co.

The proof or Proposition 4 is given in Appendix D.3 and it is based on the proof of Lemma 5.1 in
[152].

Due to the presence of the factor 1/22", the second term of the right-hand side of Eq. (6.11)
decreases faster to zero when the quantization rate is high. This is expected, as this term captures
the propagation of the quantization error. Eq. (6.11) tends to follow an exponential model in
this case. We can thus pose f; = « -t + 7, which leads to an exponential decay of the size of
the quantization range. We assume that there exists an iteration tg where the second term of the
right-hand side of Eq. (6.11) becomes zero. Under this assumption, Eq. (6.11) simplifies to



6.3 Design of the parameters of the progressive quantizer 103

B e~ 2Bt
et = |20/ 3 A3" (1 = Amin)® + (2 — An}in)2m7 t > to, (6.12)
and by substituting f; = a - t + v we obtain
2w (t+1 2 2t 2 pe et
e 2 D) — 1 20] 2 A2 (1 = Amin)? + (2 — Amin) —m g L2t (6.13)

Since av and vy are constant over the iterations, we choose to determine them from later iterations
of the consensus (i.e., t > tg). First, we turn Ay into an exponential form by determining « such
that )\%t = e~2@? holds. This leads to

a = —log(A2). (6.14)
Eq. (6.12) then becomes
6_2615
e M = ||20”goe_2a.t(1 - )‘min)Q +(2- )‘min)QzT?)
2 — Amin 2
= e (Jaale? -+ E 2 s (6.15)

Since B, is linear in t, we observe that e 2ft+1 = =2 (t+)+7) — o=206=28:  which permits to
simplify (6.15) to

—2a (2 — Amin)Q
€72 = JlaolZe® (1= i)+~
We finally determine v as
1 2— )\min 2
T=3 log <>\% - (22n3)> — log (||0[loc (1 = Amin)) - (6.16)

We observe that the decay rate « of the exponential function e~ (@) depends on A2, which
characterizes the convergence rate of the average consensus algorithm in the case of non-quantized
communication. On the other hand, the parameter v, apart from the eigenvalues of W, depends also
on the number of quantization bits. It is interesting to note that the parameters of the exponential
model are similar to the parameters o’,~’ that characterize the difference between two consecutive
time steps in the unquantized consensus problem. In this case, the Euclidean difference between
two consecutive time steps is guaranteed to be reduced by the factor ||IW — 117 /N|| < 1 at each
iteration i.e.,

T
l|ze41 — 2] _ W2y — Wz < W — %ant—zt—lu
VN VN - VN
1 117 1 117
<L B e — sl < = B — 1 (6.17)
< W = S Wl = 2ol < W = S I = Tl o]
1 5
<|[[W - "W = 1][*[|z0[ 00>

N
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where we observe an exponential decrease over time of the form e~ (" *7) where o/ = —log(||W —
%H) and v = —log (|||20|cc][|W — I]|). In particular, the rate at which the exponential function
decays is the same in both cases (o' = a = —log(A2)) while, in the case of quantization, the initial

value ~y of this decay depends on the number of bits (which is not the case for /).

In summary, with our progressive quantizer based on the exponential decay of the quantization
range, we force the average difference in the sensors’ states between two consecutive iterations to
decay with the same rate as in the ideal communication. At the same time, we allow the initial
magnitude of this difference to be higher for a smaller bit rate in order to take into consideration
the quantization error. We emphasize that the above exponential model for S; yet reduces the
complexity of the proposed Progressive Quantizer. Instead of estimating a priori the values of the
quantization range for a large number of iterations, the system can simply use the parameters «
and v of the exponential model.

6.4 Simulation results

In this section we analyze the performance of the Progressive Quantizer in different settings. We
consider a network of 40 sensors (i.e., N = 40) following the random geographic graph model, i.e.,
the sensors are uniformly random distributed over the unit square [0,1] x [0,1]. We assume that
two neighbor sensors are connected if their Euclidean distance is less than r = y/(log N)/N, which
ensures graph connectivity with high probability [153]. We consider static network topologies,
which means that the edge set does not change over the iterations. As an illustration, we consider
the Metropolis and the Laplacian weight matrices [47]| defined respectively as:

e Metropolis weights

1 P
Traqd@any bt eé
Wij =9 1= Gnee Wik, ifi=] (6.18)
0, otherwise,
where d(i) denotes the degree of the i*" sensor.
e Laplacian weights
W =1—aL (6.19)

where L denotes the Laplacian matrix of the graph G and the scalar ¢ must satisfy 0 < a <
1/dmaz, where dpq, consists of the maximum degree in the network.

Moreover, the initial states of the sensors are uniformly distributed in the range [0, 1].

6.4.1 Performance of the approximate exponential model

We first validate the exponential model for S; and we use the Metropolis weight matrix for this
experiment. We compute recursively the values S; from Eq. (6.10) for 200 random realizations of a
random network graph topology and communication rates of n = [2, 4, 6] bits. For implementation
issues, we fix a parameter § = 10716 At iteration ¢, if the quantization range S; is smaller than ¢, we
quantize with the range computed at the previous iteration i.e., we set Sy = S;_1. All the reported
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Figure 6.1: (a) Evolution of the §; values over the iterations. (b) Comparison of the average consensus
performance of the Progressive Quantizer with parameters generated (i) recursively and (ii) with a linear
model.

experimental results are averaged over the 200 random realizations of the network topology. In
order to compare directly with the proposed exponential model in Section 6.3.2, we plot the values
B¢ that occur when we express the quantization range, computed from Eq. (6.10), as Sy = 2- e~ 7.
We observe in Fig. 6.1(a) that the value of 8, appears to increase linearly with the number of
iterations, which means that the quantization range follows an exponential function that decreases
over time. Moreover, the slope of the function 5; is independent of the bitrate, while the y-intercept
value depends on the number of quantization bits. This is consistent with our approximate model
(see Section 6.3.2) and Eqgs. (6.14) and (6.16), which shows that the slope « is dependent on the
convergence rate Ag (and hence the graph topology) and that the parameter 7 is influenced by
the communication rate. We further compare the performance of the Progressive Quantizer whose
parameters are computed using the approximate linear model (from Eqgs. (6.14) and (6.16)) with
the performance achieved when S, is computed recursively from Eq. (6.10). Fig.(6.1(b)) shows the
obtained results. We observe that the performance is rather similar in both cases. This implies that
the solutions of Eq. (6.10) can be well approximated with an exponential model whose parameters
are easily computed. For this reason, in the rest of our experiments we adopt the approximate
exponential model and compute the parameters o and v of the Progressive Quantizer using Egs.
(6.14) and (6.16).

6.4.2 Comparison to uniform quantization

We compare the proposed quantization scheme (‘ProgQ’) with a baseline uniform quantization with
a constant range S = 1 (‘UnifQ’), for both the Metropolis and the Laplacian weight matrices. Fig.
6.2 illustrates the average consensus performance corresponding to the absolute error ||z; — ul||2
versus the number of iterations for n = [2,4, 6] bits. In order to obtain statistically meaningful
results we average the error over 200 random realizations of the network topology with random
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Figure 6.2: Average consensus performance of the proposed quantization scheme (ProgQ) vs uniform
quantizer with a constant range (UnifQ) for 2, 4 and 6 bits.

initial values. Observe that the performance of the proposed quantization scheme is very satisfactory
even at a very low bit rate (2 bits). In particular, the error ||z; — u1||2 shows a decreasing behavior
over the iterations, which means that the quantizer does not saturate. It rather follows the evolution
of the average consensus algorithm in the noiseless case (‘no quant.’). On the other hand, the
performance of the uniform quantizer with a constant range saturates quickly even at high bit rate.

6.4.3 Comparison to existing quantization schemes for average consensus

We compare the proposed Progressive Quantizer (‘ProgQ’) with (a) the adaptive quantizer
(‘AdaptQ’) [6], (b) the zoom in-zoom out uniform encoder (‘ZoomQ’) [7] and (c) the quantiza-
tion scheme proposed in [8] (‘Li et al.”). In particular, the scheme proposed in [6] is based on the
Delta modulation with variable step-size. The step-size is adapted throughout the iterations based
on the previously sent bits and a constant K. However, the scheme is quite sensitive to the value
of K and the performance can deteriorate for non-carefully chosen values. In our experiments we
choose K = 1.2 as defined in [6]. On the other hand, the differential encoding scheme proposed
in [7] uses a uniform quantizer and the transmitted value is the quantized difference of the current
value from the previous estimate, scaled by a factor f that is adapted over time. This factor is
similar to the step-size of [6] and it grows or decreases depending on the difference between the
new state z;y1 and the previously quantized state Z;. The decrease or the increase depends on the
constants k;, and kg respectively and the way that these constants have to be determined seems
to be an open question. In our experiments we choose the parameters k;, = 0.5, kot = 2 and the
scaling factor fy = 0.5 as defined in [7]. Finally, the scheme proposed in [8] is also designed by
adapting the scaling function of a difference encoder similar to our quantizer. The value that is
quantized at each time step is the difference between the new state z;4+1 and the previously quan-
tized state Z; while the scaling function is assumed to have an exponential decay over time. The
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Figure 6.3: Average consensus performance of the proposed quantization scheme (ProgQ) vs the adaptive
quantizer (AdaptQ) [6] for 2, 4 and 6 bits.

parameters of the scaling function are defined in an interval form in such a way that the quantizer
never saturates. However, one limitation of the scheme in [8] is that the algorithm is designed only
for the Laplacian weights of the form W = I —aL, where the parameter a depends on the number of
quantization bits. In order to directly compare the performance of the Progressive Quantizer with
the quantization scheme of [8], we implement the version of the latter scheme that corresponds to
a fixed number of quantization levels (Algorithm 1 in [8] ). The parameters of the scaling function
are representative values that belong to the proposed intervals. The edge weights of the matrix
W are computed by Egs. (6.18) and (6.19) for the Progressive Quantizer, the adaptive quantizer
and the zoom-in zoom-out quantizer while for the quantization scheme of [8] they are computed
as defined in the corresponding paper, as they depend on the selected parameters of the scaling
function.

We use the same experimental setup as in the previous experiments. Figs 6.3, 6.4, 6.5 illustrate
the simulation results and show performance comparisons for the quantizers with different bit
rates. Notice first that our scheme outperforms the three above mentioned schemes in all the cases.
AdaptQ appears to saturate especially for a small number of bits. The performance of ZoomQ seems
to be quite good for 4 and 6 bits, but it suffers significantly at low bit rate. On the other hand, the
performance of the last scheme (Li et al.) is quite poor even for 6 bits. This result is quite expected
since the proposed intervals for the parameters of the scaling function are too conservative; they
are computed such that no clipping appears during the iterative consensus algorithm. Moreover,
we observe that both the selection of the weight matrix as indicated in 8] and its dependence on
the bit rate penalize even more the convergence rate and the overall performance of the consensus
algorithm.

Our scheme bears some resemblance with these three schemes in the sense that we also propose
to adapt a scaling function. The scaling function has a very specific definition in our case where
it represents the sensors’ dynamic range. Moreover, we impose a consistent decay of the quan-
tizer range size which is intuitively supported by the increasing correlation of the sensors’ states
throughout the iterations. The parameters a and v that determine the quantization range in our
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Figure 6.4: Average consensus performance of the proposed quantization scheme (ProgQ) vs the zoom-in,
zoom-out uniform quantizer (ZoomQ) [7] for 2, 4 and 6 bits.

Progressive Quantizer have been carefully designed by taking into consideration both the available
number of bits and the graph topology and they are automatically determined in closed-form from
Egs. (6.14) and (6.16). Finally, the performance comparison with the scheme proposed in [8] con-
firms our initial intuition that very conservative bounds do not necessarily improve the average
consensus performance, and that average case analysis is more efficient in practical settings.

6.4.4 Convergence of the consensus algorithm

The assumption that the quantizer saturates complicates significantly the convergence analysis
of the proposed algorithm. Our Progressive Quantizer may generate some clipping of the values
computed by sensors. We have shown through extensive experimental results that this clipping
does not significantly penalize the convergence of the consensus algorithm. It can even help in
case of strong outliers. Moreover, we have observed that the number of clipping, if any, is small
and decays to zero as the iteration of the consensus algorithm increases, as long as the parameter
v is computed according to Eq. (6.16). However, clipping results into some important non-linear
effects that are difficult to analyze. In this subsection, we give some intuition about the convergence
properties as well as the convergence speed of the Progressive Quantizer. The simulation results
provided in the previous subsections verify that the proposed scheme leads the sensors to converge
to the average of their initial values. We notice first that the quantization range reduces to zero as
time elapses, leading to an accurate average consensus that is reached independently of the number
of bits. The latter is verified experimentally in Fig. 6.6(a), where we observe that, as the range
reduces to zero, the absolute error from the accurate consensus value p becomes smaller.

Moreover, the design of the Progressive Quantizer promotes the decrease of the quantization
noise variance over time. By properly decreasing the quantization range, we reduce the quantization
noise, as long as the computed values to be quantized fall into that range. We finally relate the
convergence of the algorithm to the quantization noise in the following proposition. Similar results
have been shown in [154].
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Figure 6.5: Average consensus performance of the proposed quantization scheme (ProgQ) vs the quanti-
zation scheme proposed in [8] (Li et al.) for 2, 4 and 6 bits.

Proposition 5. Let ot2 be the sample variance of the quantization noise vector €; at iteration t. If
0? — 0 ast — oo, the sensor nodes converge asymptotically to the true consensus value .

The proof of Proposition 5 is given in Appendix D.4.

Fig. 6.6(b) verifies that our scheme leads to a quantization noise variance that converges to
zero as time elapses with exactly the same behavior as the quantization range. These results are
consistent with the ones shown in Fig. 6.2. They confirm that the average consensus performance
is directly related to the decay of the quantization noise variance and that an accurate consensus
is achieved for a variance that converges to zero. Finally, the decay of the noise variance and thus
the convergence speed depend on the number of the quantization bits; more precisely the algorithm
converges faster for a large number of bits, which is expected.

6.5 Related Work

A few works have been proposed to address the problem of quantization in consensus averaging
algorithms. In particular, it was shown in [148] that if the quantization noise is modeled as white
and additive with fixed variance then consensus cannot be achieved. The authors in [155] propose
a probabilistic quantization scheme that is shown to reach a consensus almost surely to a random
variable whose expected value is equal to the desired average. Unfortunately, the scheme performs
poorly at low bit rate. Kashyap et al. [156] designed an average consensus algorithm with the
additional constraint that the states of the agents are integers. Thus convergence is achieved
to some integer approximation of the average of the initial states. Modifications of the classical
consensus algorithm have been proposed in [151, 157], including a compensation error term that
guarantees that the average is preserved at each iteration. A coding scheme based on predictive
coding is proposed in [154] in order to exploit the temporal correlation among successive iterations.
Convergence to the true average is shown to be possible under the condition that the quantization
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Figure 6.6: (a) Evolution of the average consensus performance for an exponentially reducing quantization
range. (b) Evolution of the variance of the quantization noise over the iterations for 2, 4 and 6 bits.

noise variance vanishes over the iterations. A different approach for dealing with the quantization
noise and additive white noise in general is proposed in [158] and [159] respectively. Both algorithms
adapt the weight link sequence in order to guarantee convergence under certain conditions, at a
cost of lower convergence rate. In general, all the above mentioned algorithms either maintain the
average value in the network but cannot reach a consensus effectively, or converge to a random
variable that is not always the target average value.

More recently, the authors in [6], [7] and [8] have proposed quantization strategies that maintain
the average of the initial state and at the same time converge asymptotically to the true average
value. The quantization scheme introduced in [6] adaptively adjusts the quantization step-size by
learning from previous states, at the price of significant complexity and memory requirements. The
quantization threshold in [7] is adapted online based on a zoom-in zoom-out strategy, while the set
of quantization levels is maintained constant over the iterations. Although these last two solutions
perform quite well at high bit rates, the convergence rate appears to be slow when the quantization
is coarse. In addition, the stability of both quantization schemes depends on the choice of globally
defined parameters that are not easy to determine a priori. Finally, the scheme proposed in [8] is
the one that is closer to our work since it is based on the assumption that, as consensus is achieved
asymptotically the prediction error of the sensors’ states tends to zero. The scaling function is
selected in such a way that it decays over time without causing the saturation of the quantizer.
However, the proposed scheme leads to very conservative selection of the parameters of the scaling
function that prevents reading significant gains in the average consensus performance. On the other
hand, our system is able to achieve fast convergence to the true average value in realistic settings,
even if it does not provide strict performance guarantees; it relies on average case analysis instead
of conservative bounds.

Finally, we note that more attention has been recently given to the case of directed topologies.
The authors in [160] propose a communication feedback-based distributed consensus protocol that
limits the effect of quantization in directed time-varying topologies. The problem of parameter
estimation over sensor networks in the presence of quantized data and directed communication
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links is studied in the recent work of [161]. A running average technique is used to guarantee that
the centralized sample mean estimate is achieved both in the mean square and almost sure senses.

6.6 Conclusions

In this chapter, we have studied the effect of quantization on the distributed average consensus
process that converges to a smooth graph signal, consisting of the average of the initial node values.
In particular, we have proposed a novel quantization scheme for solving the average consensus
problem that takes into account the diffusion of the information in the sensor network graph. Our
scheme is based on the progressive reduction of the range of a uniform quantizer that is dictated
by the evolution of the consensus process on the graph. We have shown that the range of the
values throughout the consensus iterations depends on the graph topology, and in particular on the
characteristics of the consensus matrix. The proposed scheme leads to progressive refinement of the
information exchanged by the sensors while the process converges to a smooth and constant signal
on the graph. Simulation results have shown the effectiveness of our scheme that outperforms other
quantized consensus algorithms in terms of convergence rate and accuracy of the computed average.
Finally, our quantization design is another significant proof of the usefulness of considering both
the graph topology and the characteristics of the signal on the graph in solving distributed signal
processing problems. Similar ideas could be exploited to design efficient quantization schemes for
more complicated graph signal models such as the one considered in the previous chapters.






Chapter 7

Conclusions

7.1 Thesis achievements

In this thesis, we have addressed several problems related to the representation and processing
of structured signals defined on weighted and undirected graphs. In particular, we have studied
the problem of compression of 3D point cloud sequences by using useful properties of graph-based
transform representations. Next, we have addressed the problem of sparsity on graphs, by proposing
a novel framework for learning parametric spectral graph dictionaries that are able to sparsely
represent graph signals. Finally, we have studied the distributed processing of graph signals by
focusing on the limitation of the quantization noise that is an important issue in realistic settings.
Below, we give more details about each of these contributions that study some of the open questions
in the emerging field of signal processing on graphs.

The first contribution of this thesis is the use of graph signal representations in removing tempo-
ral redundancy between temporally correlated graph signals. In particular, we have proposed a novel
graph-based compression framework for 3D point cloud sequences that is based on exploiting cor-
relation between temporally consecutive point clouds. This problem has not been addressed earlier
due mainly to the difficulties that arise from the lack of structure in point cloud sequences. Graphs
provide a new and flexible framework for modeling this type of data. 3D models are represented
by a sequence of weighted and undirected graphs and the geometry and the color of each model
are considered as signals residing on the vertices of the corresponding graphs. Correspondences
and eventually motions between nodes on two consecutive graphs are determined by matching new
descriptors constructed on spectral features that are localized on the graph. Motion compensation
is then used to perform geometry and color prediction, which is eventually used to differentially
encode both the geometry and the color attributes. Our novel framework is a nice illustration of
the application of graph signal processing for complex datasets, and a certainly promising path for
removing temporal redundancy from high-dimensional data.

Next, we have introduced dictionary learning on graphs for designing meaningful and signal
adapted representations for graph signals. Note that the existing graph signal representation designs
are based on classical signal transforms such as Fourier and wavelets. We have proposed a new
family of parametric graph dictionaries — namely, unions of polynomial matrix functions of the graph
Laplacian — to sparsely represent signals on a given weighted graph, and an effective algorithm to
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learn the parameters of a dictionary from a set of training signals on the graph. Our trained atoms
reveal underlying patterns in graph signals. The polynomial nature of the dictionaries permits us
to abstract from the actual graph topology and learn dictionaries that can sparsely represent graph
signals that live on different weighted graphs. This surely provides important benefits in terms
of detecting and interpreting common structure across signals that live on different topologies.
The proposed dictionary learning framework certainly represents a promising approach for efficient
interpretation and mining of modern graph-structured data.

Then, we have studied the effect of quantization in distributed graph signal processing with
polynomial dictionary operators. We have shown that the performance is dependent on the graph
geometry and the dictionary structure. In addition, we have proposed an algorithm that learns
graph dictionaries to sparsely approximate graph signals while staying robust to quantization noise
in distributed processing. The proposed dictionary design results in a tradeoff between effective
distributed signal representation in low bit rate communication settings and accuracy of the signal
approximation in ideal communication settings. The work done in this chapter is definitely a first
important step toward designing quantization-aware dictionaries for distributed signal processing.

Finally, we have attacked the problem of quantization in distributed graph signal processing from
the perspective of the quantizer design. We have focused in particular on the distributed average
consensus problem, which is a graph filtering process that is widely used in many distributed
applications. We have proposed a novel quantization scheme for solving the average consensus
problem when sensors exchange quantized state information. Our scheme is based on progressive
reduction of the range of a uniform quantizer, which is dictated by the evolution of the averaging
process on the graph. It leads to progressive refinement of the information exchanged by the sensors
along with the convergence of the average consensus algorithm to a constant graph signal. Our
quantizer represents a constructive simple solution with effective performance in realistic settings.
Finally, the proposed design confirms the benefits of jointly considering the graph topology and the
signal model on the graph for solving distributed signal processing tasks.

To summarize, we have studied in this thesis several important problems related to the emerging
field of signal processing on graphs. We have provided novel solutions for processing and analyzing
graph signals in both centralized and distributed settings. We believe that the research effort in this
thesis gives some new insights about solutions to some of the challenges arising from the irregular
graph domain, and makes one more step towards understanding the interplay between signals and
graphs.

7.2 Future directions

Signal processing on graphs is a relatively new research field that is still in its infancy. Parts of
this field are old as there exists a lot of research mainly in the machine learning and the computer
science community on analyzing and understanding the graph structure. However, the concept
of a signal on a graph is new and very interesting from a signal processing perspective. While
this thesis brings several contributions in the theory of sparse graph signal representation and
its applications, it provides answers to only some of the open questions that are related to the
interdependence between the graph structure and the signal on the graph in proper data analysis.
There are therefore many more exciting directions that graph signal processing research can pursue.
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In Chapter 3, we introduced spectral features for finding correspondences between temporally
correlated point clouds. The analysis of such features in terms of robustness to particular trans-
formations such as translation, rotation and scaling would provide more insight into the usefulness
of similar techniques in capturing transformation invariance in high-dimensional datasets. This
would first require an in-depth understanding of the connection between the graph design and the
underlying continuous manifold. Second, since the features are defined on the spectral domain, the
explicit relation between the spectral characteristics of a graph signal and the signal model on an
irregularly sampled manifold is definitely a very interesting and challenging problem.

The connection between sparsity and localization on graphs is very important and it also merits
further investigation. In Chapter 4, we have introduced a framework for learning spectral graph
dictionaries that leads to the sparse representation of graph signals, and we have shown that localiza-
tion can be beneficial in effective signal modeling. However, when the signal is not very sparse in the
vertex domain, very localized atoms tend to reduce the approximation performance at low sparsity
with respect to atoms that have non-local support. Investigating further the tradeoff between the
support of the atoms and the sparse representation is certainly an interesting problem. Moreover,
additional work is required to apply the polynomial structure in other graph signal processing and
data analysis tasks such as signal-based classification, clustering, community detection, or source
localization, where we expect that the localization properties of the dictionary can be beneficial,
as it is the case of wavelets in the Euclidean domain. The ability to detect commonalities across
graphs may require the development of more sophisticated sparse coding algorithms. Intuitively,
sparse coding algorithms should take into consideration the structure of the graph topology.

Concerning the analysis of the propagation of the quantization noise in distributed settings of
Chapter 5, it would be interesting to study the sensitivity of the sparse representation algorithm
with respect to the loss of messages as it happens in practical sensor networks. Moreover, the design
of adaptive quantization algorithms, similar to that proposed in Chapter 6, and further developed
in [162], are expected to yet improve the distributed graph signal processing performance. The
redundancy of the dictionary, the connectivity of the graph, and the relative importance of each
polynomial coefficient are some factors that can guide the design of the quantization scheme.

In all the distributed signal processing problems studied in this thesis, we assume that the sensor
communication graph is the same with the underlying graph structure of the signal. It could be
the case though that these two graphs are different. That would require the development of new
distributed signal processing algorithms that are able to combine the communication graph and
the graph domain of the signal efficiently. It definitely represents a very interesting and challenging
open problem.

Finally, in all the problems studied in this thesis, we have assumed that the graph topology is
known and it represents a useful source of information. However, in many applications the graph
is not known a priori or it is not necessarily optimal. Learning the graph topology from the signals
themselves is definitely a topic that is worth investigating. We have already started investigating
these issues for a smooth signal model [163] and other priors. Graph learning can definitely help
deepen our understanding of the interaction between graphs and signals on graphs, and permit
to explain more complex behaviors in different types of networks. Such research efforts would
generalize, extend, and improve the approaches presented in this thesis for applicability to a wider
range of graph-structured signal representations and models.

To conclude, we definitely believe that graphs are among the most powerful and promising
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discrete tools for analyzing complex high-dimensional data sets. However, in order to fully exploit
their power, we should further learn how to use them properly. The challenges are many. First, we
need to understand the theoretical and empirical role of the graph structure, and define meaningful,
possibly application-driven, criteria for constructing the graph. Second, the in-depth understanding
of the true role of the graph structure in graph signals is a necessary step for designing more efficient
graph-based signal processing and machine learning algorithms that can be used for analysis and
inference tasks on complex high-dimensional data sets. Third, an important parameter that was not
specifically considered in this thesis is the computational complexity of the graph-based algorithms.
These should be designed in a scalable manner in order to handle large-size data (see e.g. [164] for
a family of non-convex algorithms that can be used for learning on big graphs).

This only represents a short snapshot of the challenges that should be faced in the future. We
believe that the algorithms and the applications presented in this thesis made significant steps
towards addressing some of these important challenges.



Appendix A

Analysis of the sparse coding step

The success of the sparse coding step in our dictionary learning algorithm of Chapter 4 depends
on the choice of the dictionary, i.e., the choice of the kernels and the structure of the graph. In
particular, we recall that OMP selects atoms from the dictionary D having maximum inner product
with the residual. The following theorem [125] gives an efficient recovery condition of OMP for the
global dictionary D:

Theorem 2. ([125]) Define the coherence of a dictionary D as

6= max | < d,d >|
 ddepdtd  ||d||||d||

where d,d are two dictionary atoms. OMDP recovers every superposition of Ty atoms from D
whenever the following condition is satisfied:

Ty < %(¢—1+1).

The coherence ¢ measures the similarity between the dictionary atoms, and values of coherence
close to one usually violate the above recovery condition. We examine next the dependence of the
coherence of the graph structured polynomial dictionary on the kernels and the structure of the
graph.

Theorem 3. Let D = [Dy, Do, ..., Dg] be a dictionary, defined on the graph G, which is a concate-
nation of subdictionaries of the form Dy = §5(L£) = xgs(A)x”. The coherence ¢ of the dictionary
can be upper-bounded as follows

N=1 |2 (7 (p)12)1/2 2
6< max V(Zje:o |gj(€)gs (0)]2)2]|degl| ’ (A1)
n#n’ss' g5 (Ao)lgs(Ao) |V degn/degy

where deg = [degy, dega, ..., degn] is a vector containing the degrees of each node of the graph, and
v is the mutual coherence of the graph, defined as the maximum inner product between the basis
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of Kronecker deltas on the graph and the basis of graph Laplacian eigenvectors:

V= max < Xty 0 > |.
é:{l,Q,...,N},n:{O,l,...,N—l}’ Xt 0n > |

Proof: After substituting the polynomial dictionary atoms in the coherence expression, we obtain
the following upper-bound

| < g:('c)énags\’(c)(sn’ > ‘

¢ = = e
nin'ss' 1|55 (£)0n 195 (£)3n |
B | < x@s(A)XT5mX§§(A)XT5n/ > |
= Imax — —
TL#TL,,S,S/ ||gS( )67’LHH98/(£)5’N/||
(a) |5Tng( )gs'(A>XT5n"
= max /\
n#n' 5,8 [|Gs(L£)0nll|gs (L) 0|
B 120" 3:(0)gs (OxF (n)xe(n)]
= max
vt L) 1175 (£)d.]
¢ (050 13077 (D) Y200 I ()xe(m) ) /2
< max —
n#n’,s,s’ ||gs( )5n||||gs'(£)5n’“

U B 0g (O
Smsnf,s,s/ l95(L )5n||||gs( Vol (A.2)

where (a) exploits the orthonormality of the eigenvectors of the graph Laplacian, and (b) relies on
the application of the Cauchy-Schwarz inequality. The norm of each atom can be expressed as

1G5(£)0n 12 = 135(£)3, > = Z 195 (\e) P ()2, (A.3)

where again we have used the orthonormality of the eigenvectors. Using the definition of the graph
coherence and the fact that, for connected graphs, xo(n) = ij%h, where deg, is the degree of

node n, and deg is the vector containing the degree of all the nodes, we obtain

195 (M) [*degn
|degl|>

195 (£)dnl* =

which implies that

e V(305" 195035 (O)!2|deg]®
¢ IQS(Ao)IIQS(/\o)I\/degn\/degn

¢ <

Eq. (A.1) indicates that the coherence of the dictionary depends on the structure of the graph (i.e.,
the coherence of the graph and the degree distribution of the nodes) and the spectral representation
of the underlying kernels. In particular, in order to have a dictionary with incoherent atoms, we
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require that ¢ < 1, which implies that

e VG0V eg|3 (Mol 194 (M)

vl|deg|* < me T~ 0
nntss (300 G5 (0)g9 (0)[2)1/2

(A4)

The latter indicates that the smaller the coherence of the graph, the higher the probability that we
recover the support of the signals. We note that the above condition is based on a very conservative
bound. Nevertheless, it still gives us an intuition about the type of graphs that lead to better results
in the sparse recovery and sequentially in the dictionary update process.






Appendix B

Continuous kernel approximation on
graphs from discrete samples

In the graph-based polynomial dictionary learning algorithm of Chapter 4, the problem of recov-
ering the kernels {gs(-)},_15 g, for given sparse codes, can be cast as a continuous function
approximation problem by polynomials from a set of discrete samples. In the following, we assume
for simplicity that S = 1. However, the results can be generalized easily to S > 1. In particular,
the fitting term of the optimization problem can be written as

T T

L 1
—||Y; — Dy X = —|lg X, — Dl X
; Mt” t — DiXi|lF ; Mt||g(£t) s — (L)X || F

T
1 . .
< 30 NlFE) = L) 2 Xil
t=1

Ny

X B.1
311Xl (B.)

T
= max [§(A) =P\ Y
t=1

€0, 2]

where the last two inequalities follow from basic matrix analysis [165]. We thus observe that the
representation performance depends on how well the polynomials can approximate the kernels, and
in particular on the minimax approximation. Since these kernels are defined in the spectral do-
main, we assume every kernel g(-) to be a continuous real-valued function defined on the interval
[Amins Amaz], which in our case, due to the spectrum of the normalized Laplacian, is [0, 2]. Ac-
(i(irding to the Weierstrass approximation theorem/\[166], for every € > 0 there exists a polynomial
P (X) such that for all X € [0, 2], we have |g(\) —p& (\)| < e. The magnitude of the approximation

error however depends on the interpolation points, which in our case correspond to the samples
obtained from the different topologies.

Theorem 4 ([167]). Suppose f is a real-valued function defined and continuous on the closed real
interval [a, b] and such that the derivative of f of order n + 1 is continuous on [a, b]. Let p, € Py,
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denote the Lagrange interpolation polynomial of f with the Chebyshev interpolation points

1 (j+1/2)my 1 .
T = Q(b a) cos (ni—i—l) + §(b+ a), j=0,1,..,n (B.2)
then ( e
b—a)"
ol € — L ntlpxy| B.3
I =l < gaor oy 2, £ 0) (B.3)

By combining Eqs. (B.1, B.2, B.3), we obtain the following result

T
1
Y, - DX — gt (A7) X B4
Z Y = DiXillp < gy ma g |Z Xl (B4)

which indicates that when the kernels are interpolated from polynomials defined in the Chebyshev
nodes, the representation error is bounded and converges to zero as the degree of the polynomial
increases. Since we do not have access to the samples of the kernel but only to the signal values,
we aim through the dictionary learning process to estimate the values of the kernels g(-) in the
Chebyshev nodes. The polynomial approximation of the function can then be computed though
interpolation using Lagrange polynomials.

The kernel update step of the dictionary learning process estimates the values of the polynomials
from the signal observations. We define as o(A) := {A1UAg, ...,UAr} the discrete set of eigenvalues
contained in all the different topologies. We show next that the dictionary update step can be
written as a weighted discrete least square problem between the underlying kernels g and the
approximation polynomial p in the discrete set of points that are contained in o(A). In particular,

T T

1 N ~
Z |IYe = DeXill = > ﬁtuxtg(At)xtT X — xeP(A)XT Xellr
t=1 t=1

— p(A)X! Xl F

I
g
=
)
=
=
e

T N M - -
= Z M, Z Z(/g\()‘ft)in()‘ft) _Z/)\(/\Zt)Xtm()‘ft))z
t=1 "t p=1m=1
T N Moo
=2 2 G0w) =B Y X O ), (B.5)

where )/(?L()\gt) is the graph Fourier coefficient of the m*" signal of the t** topology that corresponds
to the eigenvector whose eigenvalue is A\y,. Eq. (B.5) indicated that in order to have an accurate
approximation of the kernel in the Chebyshev points we need two conditions: (i) the Chebyshev
points should belong in o(A), and (ii) the weights that are given by the graph Fourier transform of
the sparse codes in those points should be big.



Appendix C

IMlustrative application of polynomial
dictionaries: Image segmentation

As an illustrative application of the polynomial dictionary proposed in Chapter 4, we provide some
results in image segmentation. We take the 128 x 128 house and 128 x 129 cameraman images and
from each of them we extract overlapping block patches of size 5 x 5 pixels, covering all the pixels
of the original image. Each patch is centered in one pixel and, for the sake of simplicity, we ignore
the pixels on the boundary that do not have both horizontal and vertical neighbors. For each of
the two images, the training signals are constructed as a collection of 15376 and 15625 such patches
respectively. We fix the number of subdictionaries to S = 4, the polynomial degree to K = 15 and
the sparsity level to Ty = 4. The graph for each patch is the binary graph defined by connecting
each pixel to its horizontal and vertical neighbors. For each of the images, we apply our polynomial
dictionary learning algorithm, training a dictionary of dimensionality 25 x 100. Since the number
of training signals is large, we apply ADMM to solve the quadratic program in the learning phase.
In order to extract the features for the segmentation of the image, we compute the inner product
of each patch with the atoms of the learned dictionary. If y; is the patch corresponding to pixel
j, then DI'y; = Zé\/:—ol 7j(Ae)Gs(Ae)xe, which implies that we filter each patch with all four filters
{95(-)}s=1234 in order to modify its frequency characteristics. For each filtered version of the

LEL EFLEENL |
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(b) (c) (d)

Figure C.1: Learned atoms (a) and segmentation results (d,e) obtained using the polynomial dictionary
on the house (b) and cameraman (c) images.
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patch, we compute the mean and the variance. We define as feature for each patch a vector in R?%
that contains the mean and variance of each filtered versions. The features, and consequently the
nodes, are then clustered in S = 4 clusters, using K-means.

The obtained segmentations and some of the learned atoms are shown in Fig. C.1. We observe
that the segmentation results in both images are quite promising as the edges of the images are
preserved most of the time. This is mainly due to the localization of the atoms. Further work
and more extensive studies are required to deploy the proposed algorithm in image segmentation
applications.



Appendix D

Supplementary material for Chapter 6

D.1 Proof of Proposition 2

Eq. (6.4) implies that

t—1
Zp1 — 5 =W W = Dzg+ (W —2D)e, + (W = 1) > W*(W = I)er—g1. (D.1)
s=0
Let us define
A1 = Wt(W - I)Zo

and .
Ay o= (W =1 W' (W = Dets 1 + (W = 2D)e;.
s=0
Then, we observe that
Bllze+1 — %% = BlllA1|*] + BIA] Ao] + E[A3 Ai] + B[] A2||?]. (D.2)

In the formula above, ||A;||? is a deterministic quantity depending on the (fixed) network topology
and the initial states of the sensors. We assume that the quantization noise samples €,(7) in (6.2) are
(spatially and temporally) independent random variables that are uniformly distributed with zero
mean and variance A% /12, where A, is the quantization step-size at step ¢. The latter assumption is
widely used in the literature [154, 6, 151] for modeling the quantization noise and is true under the
conditions specified in [168]. Due to this independence assumption, the two cross terms E[A] As]
and E[A] A;] become zero, and (D.2) simplifies to

Elllzes1 = 207 = | A))* + B[] A2]%)- (D.3)
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In the sequel, we work out each individual term separately. First, note that

[AL[* = [WH (W = T)zo*

@ 117
W0V Do = SV - 1)z D4

W_i

() 117
H HW—IHQIIZOIIZ»

where (a) follows from the fact that W is doubly stochastic and (b) holds because HWt - H
AL, where \g := p(W — %) Moreover,

t—1
E[|[AolP] = E[|(W = 1) Y W*(W = Desy1 + (W = 20)et|]
s=0
t—1
<NW =112 YW (W = DIPE[lle—s—1 ] + W = 21| E[]Je:],

s=0

where we have again exploited the fact that the quantization noise variables are independent and
zero mean. We compute the expectation of the quantization error norms by exploiting the consis-
tently reduced range of the Progressive Quantizer. In particular, the expectation of the error norm
at each time step ¢ can be expressed as E|e|?] < NE[e(i)?] < NA?/12 [168], where A; is the
quantization step-size at step t. Hence, the expectation of the second term is bounded as follows

1 A A2
B[l A2)] < W = IIP ) WP (W — D|PN=2=0 4 |W - 21 N5 (D.5)

s=0

We finally derive an upper-bound for E[| ;11 — Z|?] by combining both (D.4) and (D.5) and taking

into consideration that A? = (%)2 (see also Eq. (6.6)). Altogether, we obtain

t—1
- s SE .
Elllzie1 = 2% < lzolPX W = 1) + [W = 1> Y [W*(W — I)|\2N2§n _ 112
s=0
2
—2I|*N
+ HW H 22n . 19"

Since the eigenvalues of the matrix W lie in the interval [—1, 1], the Proposition 2 follows from the
fact that |W —I|| = 1 — Ay and ||[W — 2I|| = 2 — Apin, where Ay, is the smallest algebraically
eigenvalue of W. (]

D.2 Proof of Proposition 3

Firstly, we define a new sequence P(t) to be the upper-bound of e 2B,
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Definition 1. The sequence P(t) is defined as:

(Z(()max) _ Zémin))g

P =
(0 .
2 2 (2 - Amin)2
P(1) = [l20[I3 (1 = Amin)* + 55— P(0)
t—2
_ 2 2,2(t-1) 1 25 P(t—2—5) 2 P(t—1)
P(t) = ll20l5(1 = Amin)“ A2 + (1 = Amin) ;AZ —omm g T2 ) o5t t22
Moreover,
P(0) = e %
P(1) = ¢
P(t)y>e 2 t>2
We can then write the sequence in the following form
P(t+1) = (c+7)P(t) + (b— cy)P(t — 1), (D.6)

2_>\min 2 1_)\min 4 43 3
where ¢ = %, b = (22% and v = )\% are positive constants. Expressing the above

sequence in a matrix form we obtain

[P(]i(t)l)} _ [cJ{v b—ocv} [Pg(f)l)} _ (D.7)
—

£/ (c—~)2
The eigenvalues of the matrix A are w and the dynamical system (D.7) converges
to zero if its eigenvalues are strictly smaller than 1 [169]. Since ¢, b and « are three positive constants,

/(c—~)2
it is enough to find conditions that guarantee that M < 1. After substitution of the
values of the constants ¢, b and -, it leads to the following inequality

(2 - )\min)Q 2 (2 - )\min)Q 2 (1 - >\min)4
5o T A5+ (73 on A2)2 + 473 o < 2.

Equivalently, we can write

41 = Amin)* — 402 = 1)(2 = Amin)?

3. 9o < (23 —2)2 —2)3(2)\3 - 2), (D.8)

which indicates that P(t) converges to zero if the following condition

(1 - )\min)4

T2 + (2 = Ain)? < 322" (D.9)
2
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is satisfied. Since the sequence P(t) is an upper-bound of the positive sequence e~2% if the
condition (D.9) is satisfied, e 2% also converges to zero. g

D.3 Proof of Proposition 4

Recall from (D.4) that |[W W —I)||? < |W — 11T |2 W — 1|2 = A2(1 — Amin)?. Moreover, under
the condition specified in Proposition 3, we have that limy_,oc e % = 0. Given € > 0, there exists
a time instant k£ > 0 such that Vi > k, e Pt < €. Then,

ZHWS (W = D)|PePmr < ZHW—— [P[W = I|j?e=2Pe
s=0 L (D.10)
=W -1 Z W — =[PP

Moreover, since the eigenvalues of the matrix W lie in the interval [—1, 1] we have that |[W —I| =
1 — Amin < 2. Hence, using these observations and setting [ = ¢ — s — 1, the above inequality can
be written as

Z”Ws W I)H2 2B 1 < 4Z”W H2(t 1-1) ,~28
s=0

. . (D.11)
<4Z”W |2(t 1-1) —251 +4 Z HW i H2(t — 1) 2

l=k+1

We notice that, since |[W — %H <1, e P < §,Vt and k is finite, the first term of the right-hand
side of the inequality converges to 0 for ¢ — oco. Finally, we can write

t—1 i1
Jm ZHW& W —I)|Pe Pt < Jim 4 Z = H2(t 1-1) 2
=0 l=k+1 (D12)

< lim 4Ce? — 0, for € — 0,
t—o00

where we have used the fact that lim;_, Zl a1 [IW— HT |21 converges to a constant C' < oc.
(]
D.4 Proof of Proposition 5
2

The proof of Proposition 5 is similar to the one of Proposition 4. Assume that the sample variance o}
of the quantization noise components converges to zero after some specific iterations. In particular,
given § > 0, there exists a time instant k& > 0 such that V¢ > k, 02 < §. Using Eq.(6.4), the
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Euclidean deviation of the node states can be expressed as

11" t4+1 : B 117
2641 — TZOH = Wiz + Y W (W — e — TZOH
s=0
117 !
< Witz — 2ol + S TIWEW = Der||
s=0
117 117
< ||w — 41 _ =
| N — I l=0 N zo|
t T T
11 11
+ ;) (W = =)W = Dl = )|
117 117
< W - THtHHZ‘O - TZOH‘F
117
+ZHW— H W —I|lle:— s—TQ—sH,

where we have used again the properties of the matrix W as defined in Eq. (6.1). Notice that
llet—s — %615—5” can be written in terms of the sample variance o7 of the quantization noise at

iteration ¢ — s such as ||e—s — %et,SH = /No?_,. Moreover, using the fact that [|[W — I|| =

1 — Apin < 2 and setting [ = t — s, the above inequality can be written as
117 117
lze41 — TZOH < W - THHl”ZO 7ZOH + 2\FZ W — Ht l\/ ‘71

=W - Ht“ll 0_7ZO|\+2\F ZIIW—fllt "oi

> w2t o),

l=k+1

We notice that since |[W — % | <1 and k is finite, the first two terms of the right-hand side of
the inequality converge to 0 for t — co. Furthermore, by assumption we have that o7 < §,Vt > k,
which implies that for t — oo, we have

Jlim ||zt+1—7zo||<2f5 lim Z ||W— \|t L <2vVNécC,

l k+1

where again we have used the fact that lim; e >5_, W = %Ht_l converges to a constant

C < oo. Finally, as the variance converges to 0, the sensors reach a consensus on the average
o= 11T 2520 l.e.,
, 117
tl;rglo lz¢4+1 — TZQH — 0 for § — 0.
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