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1. Introduction 2 VOIS 2. Objectives 3. Data

e East Coast Fever (ECF) is a major livestock ok e Highlight cattle genotypes associated with 803 Ugandan cattle genotyped (54K SNPs)
disease caused by the hemo-parasite protozoan tick occurrence, and thus likely involved into during the NEXTGEN project (2010-2012)
Theileria parva Theiler, 1904 . W tolerance/resistance mechanisms against

It causes high mortality in cattle populations of \ ECF
East and Central Africa, especially in exotic N Build their Spatial area of genotype 19 bioclimatic variables derived from the
breeds and crossbreds (Olwoch et al., 2008) / probability (SPAG) to delimit areas where WorldClim database, both for current

AT | the concerned genotypes are predicted to
be present

532 R. appendiculatus occurrences retrieved
from a published database (Cumming, 1998)

conditions and for moderate/severe climate
change scenarios for 2070

Main T. parva vector is the hard-bodied tick
Rhipicephalus appendiculatus Neumann, 1901

R. appendiculatus

4. MEthOdS 2. Estimation of R. appendiculatus ecological 3. Detection of genotypes likely 4. SPAGs estimation

niche/geographical distribution: proxy of involved into host . Calculate and map a generalized

the current parasite selective pressure tolerance/resistance bability of £ th
1. Selection of poorly collinear (r<0.7, N | | | Probability ot presence ot the
VIF<5) and ecologically meaningful ‘ * Probability of presence of the tick ‘ * Correlative approach implemented ‘ concerned genotypes using the
bioclimatic variables estimated using MAXENT models in SamBada (Stucki et al., 2014): regression coefficients as
(Muscarella et al., 2014) detection of genotypes positively estimated in step 3

e 6 bioclimatic variables selected associated with the probability of

occurrence of the tick

e Model selection based on Akaike’s
Information Criterion (A/C)

6. Comparison between current SPAGs and future areas of parasite potential presence 5. Estimation of the shift in R. appendiculatus niche/geographical distribution as a

* |dentification of areas where the genotypes of interest are not present yet but where - consequence of climate change: proxy of the future parasite selective pressure

the parasite is likely to expand its range in the future * Bioclimatic data corresponding to two climate change scenarios for 2070: one
moderate (RCPs 2.6), one severe (RCPs 8.5) (global climate model GISS-E2-R)

5. Results . " oL Fig. 1 - Relative performance of the MAXENT models used to estimate the
. ] _ = ° . | ecological niche of the tick.
Ecological niche modelling s |\ o LQHP
_ . o = °tan™| e Regularization Multiplier (RM): the higher the value, the smaller the expected
Current climatic conditions g sl | overfitting
* Best environment for R. appendiculatus South and s sl | * Possible kinds of transformation applicable to the predicting variables:
North - East of Lake Victoria g |\ L= Linear, Q = Quadratic, H = Hinge, P = Product, T = Threshold
Climatic conditions in 2070 < | * Evaluation of the single performance: difference between single AIC value and
e Contraction of suitable environments for the tick (both S the AIC value of the best model overall (i.e., best model: Delta AIC = 0). In this
with moderate and severe climate change scenarios) _ case, the bgst model is obtained by allowing all the transformations (LQHPT)
» Expected shift in the tick niche/distribution southwards 05 10 15 20 25 30 35 40 and by setting RM = 2
in the eastern regions of Lake Victoria Regularization Multiplier
Landscape genomics 1 BotBsPrapp | | Fig. 2 — Relationship between the probability of i \Ijlegctzr_nf?:g and ECF
. - L - Pyps = f th type “AG” of th k
* 103 genotypes showing a significant (o = 0.01) positive Pl L4 ePotPiPrany  enan o YR on e ma e X NEXTGEN sampling f
o _ . » . ARS-11" (PArs) and the current R. appendiculatus X p e R e o atus
association with a high probability of presence of the tick 0.6/ . . resences of R. app
o . ; 0 probability of occurrence (Pg,,,), as estimated by a Probability of presence of
* Genotype “AG” of the marker “ARS-BFGL-NGS-113888 o logistic regression model R. appendiculatus
(“ARS-11") shows a significant positive association and is . B =-1.86and B, = 3.39 = o1
_ ' 0.2} 0~ = 17 = 105
close. to the gene I.RAK M, an esse.ntlal component of thg S ST dhres held 6= G4 95
Toll-like receptors involved in the immune response against ) L (Bonferroni correction included) o 97
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\ 4
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