Content	Page no.
General Considerations	S 2
Supplementary Experimental Results	S 6
Experimental Section	S 15
References	S 54
NMR Spectra	S 57

General Considerations

(A) General Analytical Information

Nuclear Magnetic Resonance spectra were recorded on a Bruker Avance 400 MHz instruments at ambient temperature. All ${ }^{1} \mathrm{H}$ NMR spectra were measured in part per million (ppm) relative to the signals for tetramethylsilane (TMS) added into the deuterated chloroform (CDCl_{3}) (0 ppm) unless otherwise stated. Data for ${ }^{1} \mathrm{H}$ NMR were reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, d $=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qu}=$ quintet, $\mathrm{m}=$ multiplet, ovrlp = overlap; $\mathrm{br}=$ broad), coupling constants, and integration. All ${ }^{13} \mathrm{C}$ NMR spectra were reported in ppm relative to CDCl_{3} (77.16 ppm) unless otherwise stated, and were obtained with complete ${ }^{1} \mathrm{H}$ decoupling. All GC analyses were performed on a Perkin-Elmer Clarus 400 GC system with a FID detector. All GC-MS analyses were performed on an Agilent Technologies 7890A GC system equipped with a 5975C MS detector. Highresolution mass spectra (HRMS) by electrospray ionization (ESI) method were performed at the EPFL ISIC Mass Spectroscopy Service with a Micro Mass QTOF Ultima spectrometer.

(B) General Reagent Information

Unless otherwise noted, all chemicals used in the reactions were commercially available and were used as received without further purifications. Tetrahydrofuran (THF) was purified and dehydrated using a two-column solid-state purification system (Innovative Technology, NJ, U.S.A.) and transferred to the nitrogen-filled glove box and further dried with activated $3 \AA$ molecular sieves (beads) for storage. Anhydrous dimethylacetamide (DMA) (99.8% purity) were purchased from Acros Chemicals in SureSeal bottles and stored under nitrogen. Iron(II) bromide ($\mathrm{FeBr}_{2}, 98 \%$ purity) was purchased from Aldrich Chemical Co.. Copper(I) iodide (98% purity) was purchased from Strem Chemicals. Bis(1,5cyclooctadiene)nickel(0) (98% purity) was purchased from abcr GmbH. Anhydrous cobalt(II) bromide (99% purity) was purchased from Aldrich Chemical Co.. All alkyl halides (starting materials) and the resulting alkene products were in form of racemic mixtures unless otherwise noted.

The following known starting materials (alkyl halides, bromoalkynes, aryl halides and triflates, and alkenyl halides) were prepared according to the literature procedures; ${ }^{1-32}$

(i) Alkyl Halides

(ii) Bromoalkynes

(iii) Aryl and Alkenyl Halides

(E)-5-(2-bromovinyl)-1,2,3trimethoxybenzene ${ }^{27}$

(E)-5-(2-bromovinyl)-
benzo[d][1,3]dioxole ${ }^{28}$

(E)-1-(2-bromovinyl)-4-chlorobenzene ${ }^{29}$

(E)-1-(2-bromovinyl)-4-fluorobenzene ${ }^{28}$

(E)-4-(2-bromovinyl)phenyl acetate ${ }^{30}$

methyl (Z)-3-iodoacrylate ${ }^{31}$

4-benzoylphenyl trifluoromethanesulfonate ${ }^{32}$

(C) General Manipulation Considerations

All manipulations for the (i) Fe-catalyzed reductive coupling reactions of alkyl iodides with terminal alkynes to alkenylzinc reagents, and (ii) the subsequent transition metal-catalyzed cross-couplings of alkenylzinc reagents, were set up in a 30 mL Teflon-screw cap test tube under an inert nitrogen atmosphere using the glove-box techniques. The test tubes were then sealed with airtight electrical tapes and the reaction mixtures were stirred under nitrogen atmosphere at room temperature on benchtop or heated in a preheated oil bath. Flash column chromatography was performed using silica gel (Silicycle, ultrapure grade). Preparative thin layer chromatography (preparative TLC) was used to purify the trisubstituted alkene products using TLC silica gel $60 \mathrm{~F}_{254}$ glass plate (Merck). The eluents for column chromatography and preparative TLC are presented as a ratio of solvent volumes.

The yields reported in the publication are of isolated materials unless otherwise noted. All new trisubstituted alkene products were characterized by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopies and highresolution mass spectrometry (HRMS); in case the molecular ions could not be detected by HRMS, GC-MS was used instead.

The major stereoisomers of trisubstituted alkene products (Figures 1 and 3 in the main text; Figure S1 and S3 in Supporting Information) and the corresponding minor stereoisomers were differentiated by comparing the chemical shifts of the olefinic protons of product isomers with the stereochemically similar, known compounds. ${ }^{33,34}$ The stereospecific trisubstituted alkenes products (Figure 2 in the main text; Figure S2 in Supporting Information) were supported by comparing the ${ }^{1} \mathrm{H}$ NMR spectrum of product S3a (Table S2) with the authentic compound. ${ }^{35}$ The ratio of the stereoisomers of trisubstituted alkene product was determined by comparing the ratio of the integrations of olefinic protons by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

In case diastereomers exist in 1:1 ratio in the α-alkylated styene products (Figures 3 and S3), the multiplicity of the splitting of proton signals in the ${ }^{1} \mathrm{H}$ NMR spectra were not shown due to the complexity of the proton signals. Moreover, the chemical shifts of carbon signals in the ${ }^{13} \mathrm{C}$ NMR spectra were represented as "number (number)" for the same carbons of the diastereomers.

Supplementary Experimental Results

(A) Optimization of Cu-Catalyzed Cross-Coupling of Alkenylzinc Reagents with Bomoalkynes

The Z-disubstituted alkenylzinc reagent was prepared by using a procedure similar to that used in our previous study ${ }^{36}$ (by using ethynylbenzene ($0.14 \mathrm{mmol}, 1$ equiv) and excess iodocyclohexane (1.5 equiv) as reagents, $\mathrm{FeBr}_{2}(10 \mathrm{~mol} \%)$ as catalyst, Zn as redundant (1.5 equiv), iodine ($\sim 2 \mathrm{~mol} \%$) as zinc activating reagent, and DMA ($\sim 0.3 \mathrm{~mL}$) as solvent). The in-situ formed alkenylzinc reagent was then diluted with THF (volume ratio THF to DMA $\sim 6: 1$). In the reaction of excess alkenylzinc reagent (up to 1.4 equiv assuming 100% conversion in the first step) with (2-bromoethynyl)benzene (test substrate, 1 equiv, 0.10 mmol), the use of CuCl catalyst ($20 \mathrm{~mol} \%$) in conjunction with 2,2-dibypridyl ($20 \mathrm{~mol} \%$) could catalyze the reaction to give the E-enyne product in 49% GC yield (Table S1, entry 1). Other bidentate nitrogen and phosphine ligands did not promote the reaction as efficiently as bipy (Table S1, entries 2-6). By using iodotrimethylsilane as Zn activating reagent, the yield of enyne was significantly enhanced to 87% yield (Table S1, entry 7). The product yield can be further slightly increased to 91% when a lower loading of $\mathrm{CuCl}(15 \mathrm{~mol} \%)$ was used (Table S 1 , entry 8). By switching the catalyst to CuI , the highest yield (95%) was obtained (Table S1, entry 9). However, the lowering of the loading of bipy or CuI led to the decrease of yields (Table S , entries 10 and 11). Other Cu catalysts were also screened but they did not catalyze the reactions as efficiently as CuI (Table S1, entries 12-18). The use of other Zn activating reagents, bromo- and chlorotrimethylsilane (TMSBr and TMSCl), did not lead to a higher yielder yield compared to TMSI (Table S1, entries 19 and 20). Without CuI, the reaction was sluggish and only a modest yield was obtained (Table S1, entry 21). The conditions in entry 9 were used as the optimal general conditions for substrate scope study.

Table S1. Complete Optimization of Cu-Catalyzed Cross-Coupling of Alkenylzinc Reagents with Bomoalkynes

entry	additive (mol \%)	\%) $\mathrm{CuX}(\mathrm{mol} \%)$	ligand (mol \%)	GC yield (\%) ${ }^{\text {a }}$
1	$\mathrm{I}_{2}(2)$	$\mathrm{CuCl}(20)$	bipy (20)	49
2	$\mathrm{I}_{2}(2)$	$\mathrm{CuCl}(20) \quad t$ -		27
3	$\mathrm{I}_{2}(2)$	$\mathrm{CuCl}(20) \quad \mathrm{ph}$	phenanthroline (20)	46
4	$\mathrm{I}_{2}(2)$	$\mathrm{CuCl}(20)$	TMEDA (80)	48
5	$\mathrm{I}_{2}(2)$	$\mathrm{CuCl}(20) \quad \mathrm{P}$	 (20)	28
6	$\mathrm{I}_{2}(2)$	$\mathrm{CuCl}(20) \quad \mathrm{C}$		24
7	TMSI (10)	$\mathrm{CuCl}(20)$	bipy (20)	87
8	TMSI (10)	CuCl (15)	bipy (20)	91
9	TMSI (10)	Cul (15)	bipy (20)	95
10	TMSI (10)	Cul (15)	bipy (15)	79
11	TMSI (10)	Cul (10)	bipy (20)	83
12	TMSI (10)	CuBr (15)	bipy (20)	83
13	TMSI (10)	$\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$ (15)	bipy (20)	94
14	TMSI (10) 1/2	$1 / 2[\mathrm{Cu}(\mathrm{OTf})]_{2} \cdot$ benzene (15)	5) bipy (20)	78
15	TMSI (10)	CuSCN (15)	bipy (20)	87
16	TMSI (10)	CuCN (15)	bipy (20)	89
17	TMSI (10)	CuOAc (15)	bipy (20)	90
18	TMSI (10)	CuTc (15)	bipy (20)	84
19	TMSBr (10)	Cul (15)	bipy (20)	89
20	TMSCI (10)	Cul (15)	bipy (20)	81
21	TMSI (10)	Cul (0)	bipy (20)	41

(a) GC yield using n-dodecane as internal standard.

(B) Optimization of Ni-Catalyzed Cross-Coupling of Alkenylzinc Reagents with Aryl Halides

The in-situ formed alkenylzinc reagent solution was prepared using conditions optimized in Table S1. ${ }^{36}$ In the reaction of excess alkenylzinc reagents (up to 1.25 equiv assuming 100% conversion in the first step) with ethyl 4-bromobenzoate (test substrate, 1 equiv, 0.10 mmol), the effect of ligand was first studied in the presence of $\mathrm{Ni}(\operatorname{cod})_{2}$ catalyst ($20 \mathrm{~mol} \%$). The use of phosphine-type ligands only led to the formation of the α-phenylstyrene product in low yields (Table S2, entries 1-8). On the contrary, the use of bidentate nitrogen-type ligands could generally give higher yields (Table S2, entries 9-13), and $2,2^{\prime}$-dipyridiyl ligand was found to be the optimal ligand to give the product in 64% yield (Table S2, entry 9). Further screening demonstrated that the yield was highest (76\%) when $\mathrm{Ni}(\operatorname{cod})_{2}(10 \mathrm{~mol} \%)$ and bipy ($15 \mathrm{~mol} \%$) were used (Table S2, entry 14). Without a Ni catalyst, only a low yield of was obtained (Table S2, entry 16). Nickel(II) precatalysts, $\mathrm{Ni}^{\mathrm{II}}$ (TMEDA)(o-tolyl)(Cl$)^{37}$ and $\mathrm{Ni}^{\mathrm{II}} \mathrm{Br}_{2}$ (diglyme), did not efficiently catalyze the reaction as compared to $\mathrm{Ni}(\operatorname{cod})_{2}$ despite the use of other derivatives of 2, ''-dipyridiyl ligands (Table S2, entries 17-21). The conditions in entry 14 were used as the optimal general conditions for substrate scope study of aryl halides and other $s p^{2}$-carbon halogen bonds.

Table S2. Complete Optimization of Ni-Catalyzed Cross-Coupling of Alkenylzinc Reagents with ArBr

(a) GC yield using n-dodecane as an internal standard.

(C) Optimization of Co-Catalyzed Cross-Coupling of Alkenylzinc Reagents with Alkyl Iodides

The in-situ formed alkenylzinc reagent solution was prepared using optimized conditions in Table S1. ${ }^{36}$ In the reaction of excess alkenylzinc reagent (up to 1.4 equiv assuming 100% conversion in the first step) with 2-iodooctane (test substrate, 1 equiv, 0.10 mmol), the use of $\mathrm{CoBr}_{2}(10 \mathrm{~mol} \%)$ in conjunction with TEMDA (2 equiv) were found to catalyze the reaction to give the α-alkylstyrene product in 47% yield (Table S3, entry 1). The increase of loading of CoBr_{2} to $20 \mathrm{~mol} \%$ further increased the yield to 57% (Table S3, entry 2), but the further increase of loading of CoBr_{2} (30 and $40 \mathrm{~mol} \%$) could not further enhance the yield (Table S3, entries 3 and 4). The use of TMEDA derivatives, $N, N, N^{\prime}, N^{\prime}$ -tetramethyl-1,3-propanediamine (TMPDA) and $N, N, N^{\prime}, N^{\prime}$-tetraethylethylenediamine (TEEDA), only led to modest yields (Table S3, entries 5 and 6). The incorporation of flame-dried LiCl into either alkenylzinc reagent or various cobalt halide catalysts could not promote the yields (Table S3, entries 79). The additional use of 3 equiv of pyridine co-ligand was found to further enhance the yield to 67% yield (Table S3, entry 10). By using a higher loading of alkenylzinc reagent (1.7 equiv), the use of $\mathrm{CoBr}_{2} / \mathrm{TMEDA} /$ pyridine catalyst system could led to a highest yield of product in 76% yield (Table S3, entry 12). The subsequent tuning of loading of either TMEDA or pyridine did not promote the yield further (Table S3, entries 13-15). Additionally, the conditions in entry 12 also allowed for the coupling of primary alkyl iodide, 1-iodooctane (test substrate, 0.10 mmol), to give the desired product in 76% yield Table S3, entry 12). Without CoBr_{2} catalyst, only trace amounts of products were obtained (Table S3, entry 16). The conditions in entry 12 were used as the optimal general conditions for study of substrate scope of alkyl halides.

Table S3. Complete Optimization of Co-Catalyzed Cross-Coupling of Alkenylzinc Reagents with Alkyl Iodides

	$\begin{gathered} \mathrm{Ph} \overline{\overline{=}} \\ (1 \text { equiv) } \\ + \\ \text { Cy-I } \\ \text { (1.5 equiv) } \end{gathered}$	$\left[\begin{array}{ll}\mathrm{Ph} \\ \mathrm{Cy}\end{array}\right]$ (max. x equiv w.r.t. 2-iodooctane)		
entry	alkenyl-Znl (x equiv)	Co catalyst (mol \%)	ligand(s) (equiv)	GC yield (\%) ${ }^{\text {a }}$
1	1.4	$\mathrm{CoBr}_{2}(10)$	TMEDA (2)	47
2	1.4	$\mathrm{CoBr}_{2}(20)$	TMEDA (2)	57
3	1.4	$\mathrm{CoBr}_{2}(30)$	TMEDA (2)	57
4	1.4	$\mathrm{CoBr}_{2}(40)$	TMEDA (2)	53
5	1.4	$\mathrm{CoBr}_{2}(30)$	TMPDA (2)	26
6	1.4	$\mathrm{CoBr}_{2}(30)$	TEEDA (2)	37
7	1.4 (+ 1.4 equiv LiCl)	$\mathrm{CoBr}_{2}(20)$	TMEDA (2)	49
8	1.4	$\mathrm{CoBr}_{2} \cdot 2 \mathrm{LiCl}(30)$	TMEDA (2)	22
9	1.4	$\mathrm{CoCl}_{2} \cdot 2 \mathrm{LiCl}(30)$	TMEDA (2)	5
10	1.4	$\mathrm{CoBr}_{2}(20)$	TMEDA (2), py (3)	67
11	1.4	$\mathrm{CoBr}_{2}(20)$	TMEDA (1.5), py (3)	45
12	1.7	$\mathrm{CoBr}_{2}(20)$	TMEDA (2), py (3)	$76(76)^{\text {b }}$
13	1.7	$\mathrm{CoBr}_{2}(20)$	TMEDA (2), pyridine (4)	66
14	1.7	$\mathrm{CoBr}_{2}(20)$	TMEDA (1.5), pyridine (4)	70
15	1.7	$\mathrm{CoBr}_{2}(20)$	TMEDA (1.5), pyridine (2)	70
16	1.7	$\mathrm{CoBr}_{2}(0)$	TMEDA (2), py (3)	$<5(<1)^{\text {b }}$

(a) GC yield using n-dodecane as an internal standard. (b) 1-lodooctane was used instead of 2-iodooctane.
(D) Supplementary Results of Cu-Catalyzed Cross-Coupling of Alkenylzinc Reagents with Bromoalkynes

S2a: 44\%
($E: Z=17: 1$)

S2b: $43 \%^{a}$
($E: Z>40: 1$)

S2c: $46 \%^{a}$
($E: Z>20: 1$)

S2h: 37\%
($E: Z>20: 1$)
(a) Alkyl iodide (2 equiv) and Zn (2 equiv) were used in the first step. (b) Alkyl iodide (3 equiv), Zn (3 equiv) and TMSI (20 $\mathrm{mol} \%$) were used in the first step. (c) Cul (25 equiv) and bipy (35 equiv) were used in the second step.

Figure S1. Cu-catalyzed cross-coupling of alkenylzinc reagents with bromoalkynes.
(E) Supplementary Results of of Ni-Catalyzed Cross-Coupling of Alkenylzinc Reagents with $\boldsymbol{s p} \boldsymbol{p}^{\mathbf{2}}$ -Carbon-Halogen Bonds

(a) Alkyl iodide (3 equiv), Zn (3 equiv), and TMSI ($20 \mathrm{~mol} \%$) were used in the first step. (b) Alkyl iodide (1.8 equiv) and Zn (1.8 equiv) were used in the first step.

Figure S2. Ni-catalyzed cross-coupling of alkenylzinc reagents with $s p^{2}$-carbon-halogen bonds. In all products, the ratios of major to minor isomer are more than 50:1.
(F) Supplementary Results of of Co-Catalyzed Cross-Coupling of Alkenylzinc Reagents with Alkyl Iodides

S4a: $48 \%{ }^{a}$
($Z: E>20: 1$)

S4d: 38\% ${ }^{\text {a }}$
($Z: E=40: 1$)

S4b: 44\%
($Z: E=16: 1$)

S4e: 26\%
($Z: E=7.8: 1$)

S4c: $37 \% a, b$
$(Z: E=6.6: 1)$

S4f: 33\%
($Z: E=7.1: 1$)
(a) Alkenylzinc reagent (1.7 equiv with repsect to alkyl iodide) was used in the second step. (b) Alkyl iodide (1.5 equiv)
and Zn (1.5 equiv) were used in the first step.

Figure S3. Co-catalyzed cross-coupling of alkenylzinc reagents with alkyl iodides.

Experimental Section

General Procedure for the Preparation of Alkyl Halide from Alkyl Alcohol. ${ }^{4}$ A 1 L round-bottom flask equipped with a Teflon-coated magnetic stir bar was charged with triphenylphosphine (1.4 equiv), imidazole (1.4 equiv), and dichloromethane ($\sim 300 \mathrm{~mL}$). The reaction mixture was stirred at room temperature until most of the white solids dissolved. Iodine (1.4 equiv) was then added slowly in a few portions into the reaction mixture, and the resulting mixture was stirred until the iodine granules almost dissolved. Alkyl alcohol (1.0 equiv) was then slowly added into the reaction mixture, and the resulting mixture was stirred overnight. After the reaction, the reaction mixture was concentrated with the aid of a rotary evaporator, and it was further diluted with hexanes and filtered to remove the solid residues. The filtrate was concentrated in vacuo with the aid of a rotary evaporator. The residue was purified by flash column chromatography with silica gel using hexanes and ethyl acetate as eluent to afford the following alkyl iodides. The following compounds were synthesized using the general procedures:

1-chloro-8-iodooctane

1-fluoro-4-(2-iodopropyl)benzene

3-iodo-1-methoxybutane

General Procedure for the Preparation of Bromoalkyne.

(i) From Terminal Alkynes. ${ }^{15,16}$ A 100 mL round-bottom flask equipped with a Teflon-coated magnetic stir bar was charged with alkyne (1 equiv) and silver nitrate ($10 \mathrm{~mol} \%$). Acetone ($\sim 30 \mathrm{~mL}$) and water $(\sim 1 \mathrm{~mL})$ were then added into the flask, followed by the addition of N-bromosuccinimide (NBS) (1.1 equiv). The resulting mixture was stirred overnight. After the reaction, the reaction mixture was washed with NaOH solution ($\sim 1 \mathrm{M}, 50 \mathrm{~mL}$) and dichloromethane $(20 \mathrm{~mL})$. The aqueous layer was further washed with dichloromethane ($2 \times 20 \mathrm{~mL}$). The organic fractions were combined and concentrated in vacuo with the aid of a rotary evaporator. The residue was purified by flash column chromatography with silica gel using hexanes and ethyl acetate as eluent to afford the following bromoalkynes. The following compounds were synthesized using the general procedures:

(4-(bromoethynyl)phenyl)(methyl)sulfane

5-(bromoethynyl)-1,2,3trimethoxybenzene
 4-chlorobenzene

(4-((5-bromopent-4-yn-1-yl)oxy)phenyl)(phenyl)methanone

(ii) From Aryl-aldehyde. ${ }^{20}$ A 1 L round-bottom flask equipped with a Teflon-coated magnetic stir bar was charged with triphenylphosphine (3 equiv) and dichloromethane ($\sim 300 \mathrm{~mL}$). Tetrabromomethane (1.5 equiv) was then added slowly into the reaction mixture, and the reaction mixture was stirred at room temperature until most of the solids dissolved. Aryl-aldehyde (1 equiv) was added into the reaction mixture, and the resulting mixture was stirred overnight. After the reaction, the reaction mixture was concentrated with the aid of a rotary evaporator, and it was further diluted with hexanes and filtered to remove the solid residues. The filtrate was concentrated in vacuo with the aid of a rotary evaporator. The residue was purified by flash column chromatography with silica gel using hexanes and ethyl acetate as eluent to afford the (2,2-dibromovinyl)arene. A 500 mL round-bottom flask equipped with a Tefloncoated magnetic stir bar was charged with (2,2-dibromovinyl)arene (1 equiv, prepared from the previous procedure), benzyltriethylammonium chloride (0.88 equiv), and dichloromethane ($\sim 100 \mathrm{~mL}$). A solution of $\mathrm{KOH}(\sim 50$ equiv) in water ($\sim 30-40 \mathrm{~mL})$ was slowly added into the reaction mixture, and the resulting mixture was stirred vigorously at room temperature overnight. The reaction conversion was monitored by GC analysis. After the reaction, the reaction mixture was diluted with water ($\sim 200 \mathrm{~mL}$). The organic fraction was isolated, and the aqueous layer was further washed with dichloromethane ($2 \times 50 \mathrm{~mL}$). The organic fractions were combined and concentrated in vacuo with the aid of a rotary evaporator. The residue was purified by flash column chromatography with silica gel using hexanes and ethyl acetate as eluent to afford the following bromoalkynes. The following compound was synthesized using the general procedures:

3-(bromoethynyl)-9-ethyl-9H-carbazole

General Procedure for the Iron-Catalyzed Reductive Coupling of Terminal Alkyne and Alkyl Iodide to Prepare in-situ Formed Z-Substituted Alkenylzinc Reagent (General Procedure A). An oven-dried 30 mL re-sealable screw-cap test tube equipped with a Teflon-coated magnetic stir bar was charged with zinc powder ($\mathrm{Zn}, 69 \mathrm{mg}, 1.05 \mathrm{mmol}, 1.5$ equiv), iron(II) bromide $\left(\mathrm{FeBr}_{2}, 15 \mathrm{mg}, 0.07\right.$ $\mathrm{mmol}, 10 \mathrm{~mol} \%$), and DMA solvent (1.5 mL). Iodotrimethylsilane (TMSI, $14 \mathrm{mg}, 0.07 \mathrm{mmol}, 10 \mathrm{~mol}$ $\%$) was then added into the reaction mixture, and the mixture was stirred at room temperature for $\sim 1 \mathrm{~min}$ (Caution: white fume was generated when iodotrimethylsilane was once added; no more fume was produced upon prolonged stirring). Ethynylarene ($0.70 \mathrm{mmol}, 1.0$ equiv) was added into the reaction mixture followed by the addition of alkyl iodide ($1.05 \mathrm{mmol}, 1.5$ equiv). The resulting mixture was stirred at room temperature for 16 h . After the reaction, THF (9 mL) was added into the resulting mixture to form the in-situ formed Z-disubstituted alkenylzinc reagent.

General Procedure for the Copper-Catalyzed Cross-Coupling of in-situ Formed Alkenylzinc Reagent with Bromoalkyne (General Procedure B). An oven-dried 30 mL re-sealable screw-cap test tube equipped with a Teflon-coated magnetic stir bar was charged with bromoalkyne ($0.41 \mathrm{mmol}, 1.0$ equiv), copper(I) iodide (CuI, $12 \mathrm{mg}, 0.062 \mathrm{mmol}, 15 \mathrm{~mol} \%$), and 2,2'-dipyridyl (bipy, $13 \mathrm{mg}, 0.082$ $\mathrm{mmol}, 20 \mathrm{~mol} \%$). The solution of $i n$-situ formed Z-disubstituted alkenylzinc reagent in THF/DMA (prepared in General Procedure $\mathbf{A} ; \sim 0.7 \mathrm{mmol}$ (assuming 100% conversion, $\sim \mathbf{1 . 7}$ equiv) was transferred into the tube via a syringe. The resulting reddish brown mixture was stirred at room temperature for 16 h . After the reaction, the crude product was washed with EtOAc ($\sim 20 \mathrm{~mL}$) and saturated NaHCO_{3} solution $(\sim 50 \mathrm{~mL})$. The aqueous fraction was further washed with EtOAc ($2 \mathrm{x} \sim 10$ mL). The combined organic fractions were concentrated in vacuo with the aid of a rotary evaporator. The crude product residue was purified by preparative TLC using a solvent mixture (hexanes and EtOAc) as eluent to afford the isolated E-enyne product.

General Procedure for the Nickel-Catalyzed Cross-Coupling of in-situ Formed Alkenylzinc Reagent with $s \boldsymbol{p}^{2}$-Carbon-Halogen Bond (General Procedure C). An oven-dried 30 mL re-sealable screw-cap test tube equipped with a Teflon-coated magnetic stir bar was charged with aryl halide / alkenyl halide / acyl chloride ($0.41 \mathrm{mmol}, 1.0$ equiv), bis(cyclooctadiene)nickel(0) ($\mathrm{Ni}(\operatorname{cod})_{2}, 11.3 \mathrm{mg}$, $0.041 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and 2,2'-dipyridyl (bipy, $10 \mathrm{mg}, 0.062 \mathrm{mmol}, 15 \mathrm{~mol} \%$). The solution of insitu formed Z-disubstituted alkenylzinc reagent in THF/DMA (prepared in General Procedure A; ~ 0.7 mmol assuming 100% conversion, $\sim \mathbf{1 . 7}$ equiv) was transferred into the tube via a syringe. The resulting dark mixture was stirred at $70{ }^{\circ} \mathrm{C}$ in a preheated oil bath for 16 h . After the reaction, the tube was cooled to room temperature, and the crude product was washed with EtOAc ($\sim 20 \mathrm{~mL}$) and saturated NaHCO_{3} solution ($\sim 50 \mathrm{~mL}$). The aqueous fraction was further washed with EtOAc ($2 \mathrm{x} \sim 10 \mathrm{~mL}$). The combined organic fractions were concentrated in vacuo with the aid of a rotary evaporator. The crude product residue was purified by preparative TLC using a solvent mixture (hexanes and EtOAc) as eluent to afford the isolated α-arylated styrene product.

General Procedure for the Cobalt-Catalyzed Cross-Coupling of in-situ Formed Alkenylzinc Reagent with Alkyl Halide (General Procedure D). An oven-dried 30 mL re-sealable screw-cap test tube equipped with a Teflon-coated magnetic stir bar was charged with alkyl halide ($0.41 \mathrm{mmol}, 1.0$
equiv), anhydrous cobalt(II) bromide $\left(\mathrm{CoBr}_{2}, 18 \mathrm{mg}, 0.082 \mathrm{mmol}, 20 \mathrm{~mol} \%\right), N, N, N^{\prime}, N^{\prime}-$ tetramethylethylenediamine (TMEDA, $95 \mathrm{mg}, 123 \mu \mathrm{~L}, 0.82 \mathrm{mmol}, 2$ equiv), and pyridine (py, 95 mg , $99 \mu \mathrm{~L}, 1.23 \mathrm{mmol}, 3$ equiv). The solution of in-situ formed Z-disubstituted alkenylzinc reagent in THF/DMA (prepared in General Procedure A; $\sim 0.7 \mathrm{mmol}$ assuming 100% conversion, $\sim \mathbf{1 . 7}$ equiv) was transferred into the tube via a syringe. The resulting deep green mixture was stirred at room temperature for 16 h . After the reaction, the crude product was washed with EtOAc ($\sim 20 \mathrm{~mL}$) and saturated NaHCO_{3} solution ($\sim 50 \mathrm{~mL}$). The aqueous fraction was further washed with EtOAc ($2 \mathrm{x} \sim 10$ mL). The combined organic fractions were concentrated in vacuo with the aid of a rotary evaporator. The crude product residue was purified by preparative TLC using a solvent mixture (hexanes and EtOAc) as eluent to afford the isolated α-alkylated styrene product.

General Procedure for the Cobalt-Catalyzed Cross-Coupling of in-situ Formed Alkenylzinc Reagent with Alkyl Halide (General Procedure E). An oven-dried 30 mL re-sealable screw-cap test tube equipped with a Teflon-coated magnetic stir bar was charged with alkyl halide ($0.47 \mathrm{mmol}, 1.0$ equiv), anhydrous cobalt(II) bromide ($\mathrm{CoBr}_{2}, 20 \mathrm{mg}, 0.094 \mathrm{mmol}, 20 \mathrm{~mol} \%$), $N, N, N^{\prime}, N^{\prime}$ ' tetramethylethylenediamine (TMEDA, $109 \mathrm{mg}, 141 \mu \mathrm{~L}, 0.94 \mathrm{mmol}, 2$ equiv), and pyridine ($\mathrm{py}, 112 \mathrm{mg}$, $114 \mu \mathrm{~L}, 1.41 \mathrm{mmol}, 3$ equiv). The solution of in-situ formed Z-disubstituted alkenylzinc reagent in THF/DMA (prepared in General Procedure A; $\sim 0.7 \mathrm{mmol}$ assuming 100% conversion, $\sim \mathbf{1 . 5}$ equiv) was transferred into the tube via a syringe. The resulting deep green mixture was stirred at room temperature for 16 h . After the reaction, the crude product was washed with EtOAc ($\sim 20 \mathrm{~mL}$) and saturated NaHCO_{3} solution ($\sim 50 \mathrm{~mL}$). The aqueous fraction was further washed with EtOAc ($2 \mathrm{x} \sim 10$ mL). The combined organic fractions were concentrated in vacuo with the aid of a rotary evaporator. The crude product residue was purified by preparative TLC using a solvent mixture (hexanes and EtOAc) as eluent to afford the isolated α-alkylated styrene product.

(E)-N,N-Dimethyl-4-(5-methyl-1-(4-(methylthio)phenyl)hept-3-en-1-yn-3-yl)aniline (2a). Following the general procedure A , the alkenylzinc reagent was prepared using 4 -ethynyl- N, N-dimethylaniline ($102 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), $\mathrm{Zn}(138 \mathrm{mg}, 2.1 \mathrm{mmol}, 3$ equiv), TMSI ($28 \mathrm{mg}, 0.14 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and 2-iodobutane ($386 \mathrm{mg}, 2.1 \mathrm{mmol}, 3$ equiv). Following the general procedure B, the title compound was prepared using (4-(bromoethynyl)phenyl)(methyl)sulfane (93 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes/EtOAc (50:1) as an eluent to afford the title compound (2a) as viscous brown oil ($78 \mathrm{mg}, 55 \% ; \boldsymbol{E}: \boldsymbol{Z}=15: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~}$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 6 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{qu}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.8$,
$144.9,138.5,131.9,129.6,126.05,125.96,122.3,120.4,112.0,92.5,86.5,40.6,35.1,30.4,20.6,15.6$, 11.9. HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NS}$ [M]: 350.1941; Found: 350.1937.

(\boldsymbol{E})-4-(3-(4-Bromophenyl)-5-methylhept-3-en-1-yn-1-yl)phenyl)(methyl)sulfane (2b). Following the general procedure A, the alkenylzinc reagent was prepared using 1-bromo-4-ethynylbenzene (127 mg , $0.70 \mathrm{mmol}, 1$ equiv), $\mathrm{Zn}(138 \mathrm{mg}, 2.1 \mathrm{mmol}, 3$ equiv), TMSI ($28 \mathrm{mg}, 0.14 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and 2iodobutane ($386 \mathrm{mg}, 2.1 \mathrm{mmol}, 3$ equiv). Following the general procedure B, the title compound was prepared using (4-(bromoethynyl)phenyl)(methyl)sulfane (93 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (2b) as pale brown solid ($112 \mathrm{mg}, 71 \% ; \boldsymbol{E}: \boldsymbol{Z}>30: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.49$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J$ $=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 146.8,139.1,137.0,131.8,131.5,130.4,125.9,121.6$, 121.4, 119.8, 91.1, 87.6, 35.3, 30.1, 20.5, 15.5, 12.0. HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrS}[\mathrm{M}+\mathrm{H}]:$ 387.0602; Found: 387.0599.

(E)-(4-(3-(4-Chlorophenyl)-4-cyclohexylbut-3-en-1-yn-1-yl)phenyl)(methyl)sulfane (2c). Following the general procedure A, the alkenylzinc reagent was prepared using 1-chloro-4-ethynylbenzene (96 mg , $0.70 \mathrm{mmol}, 1$ equiv), $\mathrm{Zn}(92 \mathrm{mg}, 1.4 \mathrm{mmol}, 2$ equiv), and iodocyclohexane ($294 \mathrm{mg}, 1.4 \mathrm{mmol}, 2$ equiv). Following the general procedure B , the title compound was prepared using (4(bromoethynyl)phenyl)(methyl)sulfane (93 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound (2c) as a yellow solid ($79 \mathrm{mg}, 52 \% ; \boldsymbol{E}: \boldsymbol{Z}>30: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36-7.31$ (ovrlp, 6 H), 7.14 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.09 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45 (s, 3 H), 2.34-2.25 (m, 1 H), 1.73-1.61 (ovrlp, 5 H), 1.25-1.13 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.3,139.1,136.5,133.3,131.8,130.1$, 128.5, 125.9, 120.8, 119.8, 91.3, 87.5, 38.3, 32.9, 25.9, 25.5, 15.5. HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClS}$ [M]: 367.1287; Found: 367.1288.

(E)-1-(1-Cyclohexyl-4-phenylbut-1-en-3-yn-2-yl)-4-methoxybenzene (2d). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure B, the title compound was prepared using (bromoethynyl)benzene (74 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (2d) as pale brown oil ($81 \mathrm{mg}, 63 \% ; \boldsymbol{E}: \boldsymbol{Z}=20: 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.29-7.24$ (ovrlp, 3 H), 6.91 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.05$ (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (s, 3 H), 2.46-2.33 (m, 1 H), 1.75-1.60 (ovrlp, 5 H), 1.26-1.12 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $159.0,145.3,131.6,130.4,129.9,128.3,127.9,123.8,121.3,113.7,92.0,87.1,55.4,38.2,33.0,26.0$, 25.6. HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 317.1906$; Found: 317.1906.

(\boldsymbol{E})-1-(4-Cyclohexyl-3-(4-methoxyphenyl)but-3-en-1-yn-1-yl)-4-fluorobenzene (2e). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure B, the title compound was prepared using 1-(bromoethynyl)-4-fluorobenzene (82 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (2e) as low-melting pale brown solid ($80 \mathrm{mg}, \mathbf{5 8 \%} ; \boldsymbol{E}: \boldsymbol{Z}=16: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.39$ $\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz},{ }^{4} J_{\mathrm{HF}}=5.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.97\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{HF}}=8.6 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.54$ (ovrlp, 5 H), 1.27-1.12 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.3$ (d, ${ }^{1} J_{\mathrm{CF}}=247.3 \mathrm{~Hz}$), 159.0, $145.4,133.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.2 \mathrm{~Hz}\right), 130.3,129.9,121.2,119.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=3.5 \mathrm{~Hz}\right), 115.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.9 \mathrm{~Hz}\right)$, 113.8, 91.7, 86.0, 55.4, 38.2, 33.0, 26.0, 25.6. HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{FO}[\mathrm{M}+\mathrm{H}]: 335.1804$; Found: 335.1806.

(E)-1-(4-Cyclohexyl-3-(4-methoxyphenyl)but-3-en-1-yn-1-yl)-4-(trifluoromethyl)benzene

(2f).
Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure B , the title compound was prepared using 1-(bromoethynyl)-4-(trifluoromethyl)benzene (102 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (2f) as yellow oil ($122 \mathrm{mg}, 77 \% ; \boldsymbol{E}: \boldsymbol{Z}=8.1: 1$). ${ }^{1} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~}$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.60(\mathrm{ovrlp}, 5 \mathrm{H})$, 1.26-1.13 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1,146.6,131.8,130.0,129.9$, 129.6 ($\mathrm{q}, J_{\mathrm{CF}}$ $=32.4 \mathrm{~Hz}), 127.7\left(\mathrm{q}, J_{\mathrm{CF}}=1.3 \mathrm{~Hz}\right), 125.3\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 124.1\left(\mathrm{q}, J_{\mathrm{CF}}=270.3 \mathrm{~Hz}\right), 121.0,113.9$, 94.5, 85.8, 55.4, 38.3, 33.0, 26.0, 25.6. HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 385.1779$; Found: 385.1777.

(\boldsymbol{E})-1-(4-Cyclohexyl-3-(4-methoxyphenyl)but-3-en-1-yn-1-yl)-4-nitrobenzene (2g). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure B, the title compound was prepared using 1-(bromoethynyl)-4-nitrobenzene (93 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes/EtOAc (50:1) as an eluent to afford the title compound ($\mathbf{2 g}$) as viscous brown oil ($66 \mathrm{mg}, 45 \% ; \boldsymbol{E}: \boldsymbol{Z}=9.6: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 8.15$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.14$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.60$ (ovrlp, 5 H), 1.27-1.15 (ovrlp, 5 H$)$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.2,147.5,146.8,132.2,130.9,129.8,129.6,129.7,120.9,113.9$, 97.6, 85.3, 55.4, 38.3, 32.9, 25.9, 25.5. HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{3}$ [M+H]: 362.1756; Found: 362.1758 .

(\boldsymbol{E})-1-(5-Ethyl-1-(4-methoxyphenyl)undec-3-en-1-yn-3-yl)-4-methylbenzene (2h). Following the general procedure A , the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene (81 mg) and 3-iodononane (267 mg). Following the general procedure B , the title compound was prepared using 1-(bromoethynyl)-4-methoxybenzene ($93 \mathrm{mg}, 0.44 \mathrm{mmol}, 1$ equiv), $\mathrm{CuI}(13 \mathrm{mg}, 15 \mathrm{~mol} \%$), bipy (14 $\mathrm{mg}, 20 \mathrm{~mol} \%$), and the alkenylzinc reagent prepared in the general procedure A (~ 1.6 equiv). The crude product was purified using hexanes as an eluent to afford the title compound (2h) as a low-melting
yellow solid ($111 \mathrm{mg}, 67 \% ; \boldsymbol{E}: \boldsymbol{Z}>50: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.15 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.94$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (s, 3 H), 2.36-2.29 (ovrlp, 4 H), 1.48-1.12 (ovrlp, 12 H), 0.88-0.83 (ovrlp, 6 H). ${ }^{13}$ C NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 159.4,144.8,136.9,135.7,133.0,128.9,128.7,123.8,116.0,113.9,90.6,87.2,55.3,40.3$, 35.4, 32.0, 29.7, 28.5, 27.4, 22.8, 21.3, 14.2, 12.0. HRMS (ESI): Calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 375.2688$; Found: 375.2683.

(\boldsymbol{E})-4-(5-Ethyl-3-(p-tolyl)undec-3-en-1-yn-1-yl)benzonitrile (2i). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene (81 mg) and 3-iodononane (267 mg). Following the general procedure B , the title compound was prepared using 4(bromoethynyl)benzonitrile ($91 \mathrm{mg}, 0.44 \mathrm{mmol}, 1$ equiv), $\mathrm{CuI}(13 \mathrm{mg}, 15 \mathrm{~mol} \%$), bipy ($14 \mathrm{mg}, 20 \mathrm{~mol}$ $\%$), and the alkenylzinc reagent prepared in the general procedure A (~ 1.6 equiv). The crude product was purified using hexanes/EtOAc (50:1) as an eluent to afford the title compound (2i) as viscous yellow oil ($105 \mathrm{mg}, 65 \% ; \boldsymbol{E}: \boldsymbol{Z}>40: 1$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-$ 2.31 (ovrlp, 4 H), 1.50-1.12 (ovrlp, 12 H), 0.87-0.84 (ovrlp, 6 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 147.6, 137.3, 134.7, 132.0, 129.1, 128.9, 128.6, 123.1, 118.7, 111.0, 96.5, 85.8, 40.4, 35.2, 31.9, 29.6, 28.4, 27.4, 22.8, 21.3, 14.2, 12.0. HRMS (ESI): Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}$ [M]: 370.2528; Found: 370.2529.

(\boldsymbol{E})-1-(4-(5-Butyl-3-(p-tolyl)non-3-en-1-yn-1-yl)phenyl)ethan-1-one (2j). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene (81 mg) and 5 iodononane $(267 \mathrm{mg})$. Following the general procedure B, the title compound was prepared using 1-(4-(bromoethynyl)phenyl)ethan-1-one ($98 \mathrm{mg}, 0.44 \mathrm{mmol}, 1$ equiv), $\mathrm{CuI}(13 \mathrm{mg}, 15 \mathrm{~mol} \%$), bipy (14 mg , $20 \mathrm{~mol} \%$), and the alkenylzinc reagent prepared in the general procedure A (~ 1.6 equiv). The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{2} \mathbf{j}$) as viscous yellow oil ($111 \mathrm{mg}, 65 \% ; \boldsymbol{E}: \boldsymbol{Z}>40: 1$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.48 (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H})$, 2.46-2.40 (m, 1 H), $2.37(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.13$ (ovrlp, 12 H), $0.85(\mathrm{t}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.4,147.3,137.2,135.9,135.0,131.6,129.0,128.9,128.6,128.3,123.1,95.5,86.6$, 38.8, 35.4, 29.6, 26.7, 23.0, 21.3, 14.1. HRMS (ESI): Calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 387.2688$; Found:

Methyl (E)-4-(5-Butyl-3-(p-tolyl)non-3-en-1-yn-1-yl)benzoate (2k). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene (81 mg) and 5-iodononane $(267 \mathrm{mg})$. Following the general procedure B, the title compound was prepared using methyl 4(bromoethynyl)benzoate ($105 \mathrm{mg}, 0.44 \mathrm{mmol}, 1$ equiv), CuI ($13 \mathrm{mg}, 15 \mathrm{~mol} \%$), bipy ($14 \mathrm{mg}, 20 \mathrm{~mol}$ $\%$), and the alkenylzinc reagent prepared in the general procedure A (~ 1.6 equiv). The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{2 k}$) as viscous yellow oil (106 mg , 60%; $\boldsymbol{E}: \boldsymbol{Z}>40: 1) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.38$ $(\mathrm{m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.12$ (ovrlp, 12 H$), 0.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.7,147.1,137.1,135.0,131.4,129.5,129.1,129.0,128.68,128.65,123.1,95.1,86.6,52.2,38.8$, 35.4, 29.6, 23.0, 21.3, 14.1. HRMS (ESI): Calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 403.2627$; Found: 403.2632.

(E)-4-(2-(4-(tert-Butyl)phenyl)-4-(4-(methylthio)phenyl)but-1-en-3-yn-1-yl)tetrahydro-2H-pyran
(21). Following the general procedure A, the alkenylzinc reagent was prepared using 1-(tert-butyl)-4ethynylbenzene ($111 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), $\mathrm{Zn}(92 \mathrm{mg}, 1.4 \mathrm{mmol}, 2$ equiv), and 4 -iodotetrahydro$2 H$-pyran ($297 \mathrm{mg}, 1.4 \mathrm{mmol}$, 2 equiv). Following the general procedure B, the title compound was prepared using (4-(bromoethynyl)phenyl)(methyl)sulfane (93 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (21) as viscous pale-brown oil ($103 \mathrm{mg}, 64 \% ; \boldsymbol{E}: \boldsymbol{Z}=19: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.40 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34-7.32 (ovrlp, 4 H), 7.14 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.05$ (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (d, $J=11 \mathrm{~Hz}, 2 \mathrm{H}$), 3.38-3.32 (m, 2 H), 2.73-2.61 (m, 1 H$), 2.45$ (s, 3 H), 1.61-1.54 (ovrlp, 4 H), $1.35(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.7,143.1,139.0,134.7,131.9,128.3,126.0,125.5$, 123.1, 119.9, 91.6, 87.6, 67.3, 35.4, 34.8, 32.7, 31.5, 15.6. HRMS (ESI): Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{OS}$ [M]: 391.2096; Found: 391.2093.

(4-((E)-4-(Bicyclo[2.2.1]heptan-2-yl)-3-(p-tolyl)but-3-en-1-yn-1 yl)phenyl)(methyl)sulfane (2m). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4methylbenzene ($81 \mathrm{mg}, ~ 0.70 \mathrm{mmol}, 1$ equiv), $\mathrm{Zn}(92 \mathrm{mg}, 1.4 \mathrm{mmol}, 2$ equiv), and 2iodobicyclo[2.2.1]heptane (311 mg , $1.4 \mathrm{mmol}, 2$ equiv). Following the general procedure B , the title compound was prepared using (4-(bromoethynyl)phenyl)(methyl)sulfane (93 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{2 m}$) as viscous pale-brown oil ($87 \mathrm{mg}, 59 \% ; \boldsymbol{E}: \boldsymbol{Z}>30: 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43-7.31$ (ovrlp, 4 H), 7.18 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.11 (d, $J=$ $10.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.44(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.34$ (ovrlp, 4 H), 2.27 (s, 1 H), 2.11 ($\mathrm{s}, 1 \mathrm{H}$), 1.55-1.47 (m, 4 H), 1.39$1.32(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.09(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.2,138.7,137.2,134.9$, 131.8, 128.9, 126.0, 120.9, 120.2, 92.1, 86.9, 43.3, 41.8, 39.6, 36.7, 36.4, 29.5, 29.0, 21.3, 15.5. HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 359.1833$; Found: 359.1833.

(\boldsymbol{E})-(4-(12-Chloro-3-(p-tolyl)dodec-3-en-1-yn-1-yl)phenyl)(methyl)sulfane (2n). Following the general procedure A , the alkenylzinc reagent was prepared using 1 -ethynyl-4-methylbenzene (81 mg , $0.70 \mathrm{mmol}, 1$ equiv), $\mathrm{Zn}(138 \mathrm{mg}, 2.1 \mathrm{mmol}, 3$ equiv), TMSI ($28 \mathrm{mg}, 0.14 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $1-$ chloro- 8 -iodooctane ($577 \mathrm{mg}, 2.1 \mathrm{mmol}, 3$ equiv), along with the additional use of $\mathrm{CuBr}_{2}(15 \mathrm{mg}, 10$ mol \%). Following the general procedure B, the title compound was prepared using (4(bromoethynyl)phenyl)(methyl)sulfane (93 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{2 n}$) as viscous brown oil ($69 \mathrm{mg}, 41 \% ; \boldsymbol{E}: \boldsymbol{Z}=9.4: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.34-7.30$ (ovrlp, 4 H), 7.19-7.14 (ovrlp, 4 H), 6.23 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.51 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.47 (s, 3 H), 2.37 (s, 3 H), 2.25 ($\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.74 (qu, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.45-1.25$ (ovrlp, 10 H). ${ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 140.2,138.8,137.3,134.9,131.9,129.0,128.8,126.0,123.5,120.2,91.9,87.0,45.3,32.7$, 29.8, 29.7, 29.4, 29.3, 28.9, 21.4, 15.6. HRMS (ESI): Calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{ClS}$ [M]: 411.1913; Found: 411.1908 .

Methyl(4-(5-methyl-1-(3,4,5-trimethoxyphenyl)undec-3-en-1-yn-3-yl)phenyl)sulfane
(20).

Following the general procedure A , the alkenylzinc reagent was prepared using (4ethynylphenyl)(methyl)sulfane ($104 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), $\mathrm{Zn}(92 \mathrm{mg}, 1.4 \mathrm{mmol}, 2$ equiv), and 2iodooctane ($336 \mathrm{mg}, 1.4 \mathrm{mmol}, 2$ equiv). Following the general procedure B, the title compound was prepared using 5-(bromoethynyl)-1,2,3-trimethoxybenzene (111 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes/EtOAc (100:1) as an eluent to afford the title compound (20) as viscous brown oil ($97 \mathrm{mg}, 52 \% ; \boldsymbol{E}: \boldsymbol{Z}>30: 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=10.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.84 (s, 3 H), 3.83 (s, 6 H), 2.55-2.48 (ovrlp, 4 H), 1.33-1.13 (ovrlp, 10 H), 1.02 (d, $J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.1,146.8,138.6,137.7,134.9,129.2$, $126.3,121.7,118.7,108.8,90.5,87.4,61.0,56.2,37.4,33.6,31.9,29.5,27.4,22.8,20.9,15.8,14.2$. HRMS (ESI): Calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 453.2463$; Found: 453.2460 .

(E)-1-Bromo-4-(3-(4-(tert-butyl)phenyl)-5,5-dimethylhex-3-en-1-yn-1-yl)benzene (2p). Following the general procedure A, the alkenylzinc reagent was prepared using 1-(tert-butyl)-4-ethynylbenzene ($126 \mathrm{mg}, 0.80 \mathrm{mmol}, 1$ equiv), $\mathrm{Zn}\left(157 \mathrm{mg}, 2.4 \mathrm{mmol}, 3\right.$ equiv), FeBr_{2} ($17 \mathrm{mg}, 0.08 \mathrm{mmol}, 10 \mathrm{~mol} \%$), TMSI ($32 \mathrm{mg}, 0.16 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and 2-iodo-2-methylpropane ($442 \mathrm{mg}, 2.4 \mathrm{mmol}, 3$ equiv). Following the general procedure B , the title compound was prepared using 1-bromo-4(bromoethynyl)benzene ($122 \mathrm{mg}, 0.47 \mathrm{mmol}, 1$ equiv), CuI ($13.4 \mathrm{mg}, 15 \mathrm{~mol} \%$), bipy ($15 \mathrm{mg}, 20 \mathrm{~mol}$ $\%$), and the alkenylzinc reagent prepared in the general procedure $\mathrm{A}(\sim 0.8 \mathrm{mmol}, \sim 1.7$ equiv). The crude product was purified using hexanes as an eluent to afford the title compound (2p) as yellow solid (116 $\mathrm{mg}, 62 \%$; $\boldsymbol{E}: \boldsymbol{Z}>50: 1) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2$ H), 7.24-7.19 (ovrlp, 4 H), 6.27 (s, 1 H), 1.33 (s, 9 H), 0.95 (s, 9 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $150.4,150.3,135.4,132.9,131.4,128.8,124.8,122.8,122.0,121.9,94.0,85.9,34.7,34.6,31.4,31.0$. HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{Br}$ [M]: 395.1375; Found: 395.1380.

(E)-1-(3-(4-(tert-Butyl)phenyl)-5,5-dimethylhex-3-en-1-yn-1-yl)-2-methylbenzene (2q). Following the general procedure A, the alkenylzinc reagent was prepared using 1-(tert-butyl)-4-ethynylbenzene ($126 \mathrm{mg}, 0.80 \mathrm{mmol}, 1$ equiv), $\mathrm{Zn}\left(157 \mathrm{mg}, 2.4 \mathrm{mmol}, 3\right.$ equiv), FeBr_{2} ($17 \mathrm{mg}, 0.08 \mathrm{mmol}, 10 \mathrm{~mol} \%$), TMSI ($32 \mathrm{mg}, 0.16 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and 2-iodo-2-methylpropane ($442 \mathrm{mg}, 2.4 \mathrm{mmol}, 3$ equiv). Following the general procedure B, the title compound was prepared using 1-(bromoethynyl)-2methylbenzene ($92 \mathrm{mg}, 0.47 \mathrm{mmol}$, 1 equiv), $\mathrm{CuI}(13.4 \mathrm{mg}, 15 \mathrm{~mol} \%$), bipy ($15 \mathrm{mg}, 20 \mathrm{~mol} \%$), and the alkenylzinc reagent prepared in the general procedure $\mathrm{A}(\sim 0.8 \mathrm{mmol}, \sim 1.7$ equiv). The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{2 q}$) as viscous yellow oil (94 mg , $60 \% ; \boldsymbol{E}: \boldsymbol{Z}>50: 1$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.31$ (ovrlp, 3 H), 7.25 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.15-7.10 (ovrlp, 2 H), 7.09-7.04 (m, 1 H), 6.25 (s, 1 H), 2.35 (s, 3 H), 1.33 (s, 9 H), 0.97 (s, 9 H$).{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 150.2,149.4,140.1,136.0,131.7,129.4,128.8,127.9,125.5,124.8,123.6$, 122.6, 97.1, 86.2, 34.69, 34.68, 31.6, 21.2, 20.8. HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{31}[\mathrm{M}+\mathrm{H}]: 331.2420$; Found: 331.2420.

(4-((E)-4-(Adamantan-1-yl)-3-(4-methoxyphenyl)but-3-en-1-yn-1 yl)phenyl)(methyl)sulfane (2r). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4methoxybenzene ($53 \mathrm{mg}, 0.40 \mathrm{mmol}$, 1 equiv), Zn ($131 \mathrm{mg}, 2.0 \mathrm{mmol}$, 5 equiv), FeBr_{2} ($9 \mathrm{mg}, 10 \mathrm{~mol}$ $\%$), TMSI ($24 \mathrm{mg}, 0.12 \mathrm{mmol}, 30 \mathrm{~mol} \%$), 1-iodoadamantane ($524 \mathrm{mg}, 2.0 \mathrm{mmol}, 5$ equiv), and DMA $(0.8 \mathrm{~mL})$, and the reaction mixture was stirred at room temperature for 4 d . THF (4.5 mL) was then added into the reaction mixture to form an in-situ alkenylzinc reagent. Following the general procedure B , the title compound was prepared using (4-(bromoethynyl)phenyl)(methyl)sulfane ($54.5 \mathrm{mg}, 0.24$ mmol, 1 equiv), $\mathrm{CuI}(6.8 \mathrm{mg}, 15 \mathrm{~mol} \%$), bipy ($7.5 \mathrm{mg}, 20 \mathrm{~mol} \%$), and the alkenylzinc reagent prepared in the general procedure $\mathrm{A}(\sim 0.4 \mathrm{mmol}, \sim 1.7$ equiv). The crude product was purified using hexanes as an eluent to afford the title compound (2r) as a white solid ($54 \mathrm{mg}, 54 \% ; \boldsymbol{E}: \boldsymbol{Z}>50: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.52($ ovrlp, 12 H$) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.8,150.3,138.6,131.8,131.5,130.3,125.9,121.7,120.3,113.3,93.4$, 86.8, 55.3, 42.8, 37.3, 36.7, 28.5, 15.6. HRMS (ESI): Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{OS}[\mathrm{M}+\mathrm{H}]: 415.2088$; Found: 415.2090.

Methyl (E)-4-(4-(tert-Butyl)phenyl)-5-cyclohexylpent-4-en-2-ynoate (2s). Following the general procedure A, the alkenylzinc reagent was prepared using 1-(tert-butyl)-4-ethynylbenzene (111 mg) and iodocyclohexane (221 mg). Following the general procedure B, the title compound was prepared using methyl 3-bromopropiolate (67 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound (2s) as viscous brown oil ($64 \mathrm{mg}, 48 \% ; \boldsymbol{E}: \boldsymbol{Z}>30: 1$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.57-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.64$ (ovrlp, 5 H$)$, 1.37 (s, 9 H), 1.29-1.16 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.7,151.9,151.0,132.8,128.3$, 125.5, 119.3, 89.4, 78.3, 52.7, 38.4, 34.8, 32.5, 31.4, 25.8, 25.3. HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{2}$ [M+H]: 325.2168; Found: 325.2168.

(E)-4-(4-(tert-Butyl)phenyl)-5-cyclohexyl-1-morpholinopent-4-en-2-yn-1-one (2t). Following the general procedure A , the alkenylzinc reagent was prepared using 1-(tert-buty)-4-ethynylbenzene (111 mg) and iodocyclohexane (221 mg). Following the general procedure B, the title compound was prepared using 3-bromo-1-morpholinoprop-2-yn-1-one (89 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes/EtOAc (50:1) as an eluent to afford the title compound (2t) as viscous yellow oil ($104 \mathrm{mg}, 67 \% ; \boldsymbol{E}: \boldsymbol{Z}=12: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.67(\mathrm{~m}, 4$ H), 3.66-3.62 (ovrlp, 4 H), 2.50-2.41 (m, 1 H), 1.76-1.61 (ovrlp, 5 H), 1.34 (s, 9 H), 1.34-1.14 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.5,150.8,150.2,133.2,128.1,125.4,119.6,93.9,78.6,66.9$, $66.5,47.2,41.9,38.2,34.6,32.6,31.3,25.8,25.2$. HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]$: 380.2589; Found: 380.2592.

(E)-(4-((6-(4-(tert-Butyl)phenyl)-7-cyclohexylhept-6-en-4-yn-1-yl)oxy)phenyl)(phenyl)methanone
(2u). Following the general procedure A, the alkenylzinc reagent was prepared using 1-(tert-butyl)-4ethynylbenzene (111 mg) and iodocyclohexane (221 mg). Following the general procedure B, the title compound was prepared using (4-((5-bromopent-4-yn-1-yl)oxy)phenyl)(phenyl)methanone (141 mg), $\mathrm{CuI}(20 \mathrm{mg}, 25 \mathrm{~mol} \%)$, bipy ($22 \mathrm{mg}, 35 \mathrm{~mol} \%$), and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (2u) as viscous yellow oil ($115 \mathrm{mg}, 56 \% ; \boldsymbol{E}: \boldsymbol{Z}=18: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.81(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.42-2.31 (m, 1 H), 2.04 (qu, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.74-1.58 (ovrlp, 5 H), 1.31 (s, 9 H), 1.22-1.08 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): δ 195.6, 162.8, 150.2, 144.5, 138.4, 135.3, 132.6, 131.9, $130.1,129.8,128.3,128.2,125.1,121.5,114.2,86.1,83.9,66.8,37.9,34.6,33.1,31.4,28.4,26.0,25.5$, 16.2. HRMS (ESI): Calcd for $\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$: 505.3099; Found: 505.3101.

(\boldsymbol{E})-2-(4-Cyclohexyl-3-phenylbut-3-en-1-yn-1-yl)naphthalene (2v). Following the general procedure A, the alkenylzinc reagent was prepared using 1 ethynylbenzene (72 mg) and iodocyclohexane (221 mg). Following the general procedure B , the title compound was prepared using 2(bromoethynyl)naphthalene (95 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (2v) as viscous brown oil ($75 \mathrm{mg}, 54 \% ; \boldsymbol{E}: \boldsymbol{Z}>30: 1$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94$ (s, 1 H), 7.78-7.72 (ovrlp, 3 H), 7.49-7.43 (ovrlp, 5 H), 7.40 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.17$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45-2.36 (m, 1 H), 1.73-1.60 (ovrlp, 5 H), 1.26-1.16 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $146.3,138.1,133.2,132.7,131.3,128.8,128.6,128.4,128.0,127.85,127.81,127.5,126.6,122.0,121.1$, 38.2, 33.0, 26.0, 25.6. HRMS (ESI): Calcd for $\mathrm{C}_{26} \mathrm{H}_{24}$ [M]: 336.1878; Found: 336.1869.

(\boldsymbol{E})-1-Chloro-4-(4-cyclohexyl-3-phenylbut-3-en-1-yn-1-yl)benzene (2w). Following the general procedure A, the alkenylzinc reagent was prepared using ethynylbenzene (72 mg) and iodocyclohexane (221 mg). Following the general procedure B, the title compound was prepared using 1-(bromoethynyl)-4-chlorobenzene (88 mg), CuI ($16 \mathrm{mg}, 20 \mathrm{~mol} \%$), bipy ($19 \mathrm{mg}, 30 \mathrm{~mol} \%$), and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (2w) as yellow solid ($74 \mathrm{mg}, 57 \% ; \boldsymbol{E}: \boldsymbol{Z}>20: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.41-7.30$ (ovrlp, 7 H), 7.24 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.11 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43-2.32 (m, 1 H), 1.771.58 (ovrlp, 5 H), 1.28-1.10 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.5,137.8,133.9$, 132.8, 128.69, 128.66, 128.4, 127.6, 122.3, 121.7, 92.7, 86.3, 38.2, 33.0, 26.0, 25.5. HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]: 321.1410$; Found: 321.1407 .

(\boldsymbol{E})-(4-Cyclohexyl-3-phenylbut-3-en-1-yn-1-yl)triethylsilane (2x). Following the general procedure A, the alkenylzinc reagent was prepared using 1 ethynylbenzene (72 mg) and iodocyclohexane (221 mg). Following the general procedure B, the title compound was prepared using (bromoethynyl)triethylsilane $(90 \mathrm{mg}), \mathrm{CuI}(16 \mathrm{mg}, 20 \mathrm{~mol} \%)$, bipy ($19 \mathrm{mg}, 30 \mathrm{~mol} \%$), and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{2 x}$) as colorless oil ($85 \mathrm{mg}, 64 \% ; \boldsymbol{E}: \boldsymbol{Z}=9.9: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.38-7.32$ (ovrlp, 4 H), $7.26(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.58$ (ovrlp, 5 H), 1.23-1.13 (ovrlp, 5 H), $0.99(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 146.6,137.9,128.7,128.2,127.4,122.1,108.2,89.0,38.1,33.0,26.0,25.8,7.7,4.7$. HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{Si}[\mathrm{M}]: 325.2351$; Found: 325.2348.

(E)-3-(4-Cyclohexyl-3-(4-methoxyphenyl)but-3-en-1-yn-1-yl)-9-ethyl-9H-carbazole (2y). Following the general procedure A , the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene (92
mg) and iodocyclohexane (221 mg). Following the general procedure B, the title compound was prepared using 3-(bromoethynyl)-9-ethyl-9H-carbazole (122 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes/EtOAc (100:1) as an eluent to afford the title compound ($\mathbf{2 y}$) as viscous brown oil ($119 \mathrm{mg}, 67 \% ; \boldsymbol{E}: \boldsymbol{Z}>20: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, CDCl_{3}): $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.40$ (ovrlp, 3 H), 7.33 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.08$ (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.25 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.80 (s, 3 H), 2.46-2.37 (m, 1 H), 1.76-1.59 (ovrlp, 5 H), $1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.13$ (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.9,144.3$, 140.3, $139.4,130.9,129.9,129.3,126.1,124.0,123.0,122.6,121.7,120.6,119.3,113.8,113.7,108.7,108.4$, 90.1, 88.5, 55.3, 38.2, 37.7, 33.2, 26.0, 25.6, 13.9. HRMS (ESI): Calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NO}$ [M]: 434.2484; Found: 434.2481.

(E)-5-Cyclohexyl-4-(4-methoxyphenyl)-1-phenylpent-4-en-2-yn-1-one (2z). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure B, the title compound was prepared using 3-bromo-1-phenylprop-2-yn-1-one (86 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound $(\mathbf{2 z})$ as viscous brown oil ($69 \mathrm{mg}, 49 \% ; \boldsymbol{E}: \boldsymbol{Z}=8.7: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.11(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.58$ (ovrlp, 5 H$), 1.31-1.13$ (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.1,159.4,152.0,137.2,139.9,129.9,129.6,128.6$, $128.5,119.8,114.0,96.3,85.3,55.4,38.6,32.6,25.8,25.4$. HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]:$ 345.1855; Found: 345.1855.

(E)-2-((6-Cyclohexyl-5-(4-methoxyphenyl)hex-5-en-3-yn-1-yl)oxy)tetrahydro-2H-pyran
(2aa). Following the general procedure A , the alkenylzinc reagent was prepared using 1-ethynyl-4methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure B , the title compound was prepared using 2-((4-bromobut-3-yn-1-yl)oxy)tetrahydro-2H-pyran (96 mg), CuI (20 $\mathrm{mg}, 25 \mathrm{~mol} \%$), bipy ($22 \mathrm{mg}, 35 \mathrm{~mol} \%$), and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes/EtOAc (50:1) as an eluent to afford the title compound (2aa) as viscous yellow oil ($82 \mathrm{mg}, 54 \% ; \boldsymbol{E}: \boldsymbol{Z}=16: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.27(\mathrm{~d}, J=8.6$
$\mathrm{Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 5.87 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.64 (t, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88-3.79 (ovrlp, $5 \mathrm{H}), 3.60-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.46$ (ovrlp, 11 H), 1.21-1.07 (ovrlp, 5 H). ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.8,144.1,130.8,129.8,121.3$, 113.6, 98.7, 84.4, 83.9, 65.9, 62.2, 55.3, 37.9, 33.1, 30.7, 26.0, 25.57, 25.56, 21.0, 19.5. HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{3}[\mathrm{M}]: 369.2430$; Found: 369.2432.

(E)-1-(tert-Butyl)-4-(4-cyclohexyl-3-(4-methoxyphenyl)but-3-en-1-yn-1-yl)benzene (S2a). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure B, the title compound was prepared using 1-(bromoethynyl)-4-(tert-butyl)benzene (97 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound (S2a) as viscous yellow oil ($67 \mathrm{mg}, 44 \% ; \boldsymbol{E}: \boldsymbol{Z}=17: 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-$ 7.35 (ovrlp, 4 H), 7.30 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ (s, 3 H), 2.44-2.36 (ovrlp, 1 H), 1.77-1.57 (ovrlp, 5 H), 1.29 (s, 9 H), 1.25-1.12 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.9,151.1,144.9,131.3,130.6,129.9,125.3,121.5,120.8,113.7,91.4,87.3,55.4$, 38.2, 34.8, 33.1, 31.3, 26.0, 25.6.

(E)-(4-(3-(4-(tert-Butyl)phenyl)-4-cycloheptylbut-3-en-1-yn-1-yl)phenyl)(methyl)sulfane
(S2b). Following the general procedure A, the alkenylzinc reagent was prepared using 1-(tert-butyl)-4ethynylbenzene ($111 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), $\mathrm{Zn}(92 \mathrm{mg}, 1.4 \mathrm{mmol}, 2$ equiv), and iodocycloheptane ($314 \mathrm{mg}, 1.4 \mathrm{mmol}, 2$ equiv). Following the general procedure B, the title compound was prepared using (4-(bromoethynyl)phenyl)(methyl)sulfane (93 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (S2b) as viscous brown oil ($71 \mathrm{mg}, 43 \% ; \boldsymbol{E}: \boldsymbol{Z}>40: 1$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.30$ (ovrlp, $6 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.64$ (m, 4 H), 1.59-1.40 (ovrlp, 8 H), $1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.3,146.3,138.7$, $134.9,131.9,128.5,126.0,125.2,120.3,120.2,92.3,86.7,39.2,34.9,34.7,31.5,28.7,26.2,15.6$.

(E)-(4-(3-(4-(tert-Butyl)phenyl)-4-cyclooctylbut-3-en-1-yn-1-yl)phenyl)(methyl)sulfane
(S2c). Following the general procedure A, the alkenylzinc reagent was prepared using 1-(tert-butyl)-4ethynylbenzene ($111 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), $\mathrm{Zn}(92 \mathrm{mg}, 1.4 \mathrm{mmol}, 2$ equiv), and iodocyclooctane ($333 \mathrm{mg}, 1.4 \mathrm{mmol}, 2$ equiv). Following the general procedure B , the title compound was prepared using (4-(bromoethynyl)phenyl)(methyl)sulfane (93 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (S2c) as viscous brown oil ($78 \mathrm{mg}, 46 \% ; \boldsymbol{E}: \boldsymbol{Z}>20: 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-4.32$ (ovrlp, $6 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.63$ (ovrlp, 4 H), 157-1.42 (ovrlp, 10 H), 1.34 (s, 9 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.3,146.4,138.7$, $134.9,131.9,128.5,126.0,125.2,120.31,120.27,92.3,86.7,37.4,34.7,32.1,31.5,27.4,26.2,25.0$, 15.6 .

(E)-Methyl(4-(5-methyl-7-phenyl-3-(p-tolyl)hept-3-en-1-yn-1-yl)phenyl)sulfane (S2d). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene (81 $\mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), $\mathrm{Zn}(137 \mathrm{mg}, 2.1 \mathrm{mmol}, 3$ equiv), and (3-iodobutyl)benzene ($546 \mathrm{mg}, 2.1$ $\mathrm{mmol}, 3$ equiv). Following the general procedure B, the title compound was prepared using (4(bromoethynyl)phenyl)(methyl)sulfane (93 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (S2d) as viscous pale-brown oil ($93 \mathrm{mg}, \mathbf{3 9 \%} ; \boldsymbol{E}: \boldsymbol{Z}=18: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.21-7.11$ (ovrlp, 7 H), 7.05 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.06 (d, $J=10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.42$ (ovrlp, 4 H), 2.36 (s, 3 H), 1.63 (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.07 (d, $J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 145.6,142.4,138.9,137.2,135.1,131.9,129.1,128.6$, $128.5,128.3,126.0,125.7,123.0,120.1,91.8,87.3,39.4,33.8,33.2,21.4,21.0,15.5$.

(E)-2-(5-Cyclohexyl-4-(4-methoxyphenyl)pent-4-en-2-yn-1-yl)isoindoline-1,3-dione

(S2e).
Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4methoxybenzene $(92 \mathrm{mg})$ and iodocyclohexane $(221 \mathrm{mg})$. Following the general procedure B , the title compound was prepared using 2-(3-bromoprop-2-yn-1-yl)isoindoline-1,3-dione (117 mg), CuI (20 mg , $25 \mathrm{~mol} \%$), bipy ($22 \mathrm{mg}, 35 \mathrm{~mol} \%$), and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes/EtOAc (50:1) as an eluent to afford the title compound (S2e) as low-melting yellow solid ($67 \mathrm{mg}, 41 \% ; \boldsymbol{E}: \boldsymbol{Z}=17: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.90-7.84$ (m, 2 H), 7.74-7.69 (m, 2 H), $7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1$ $\mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.57$ (ovrlp, 5 H$), 1.24-1.07$ (ovrlp, 5 H$).{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 167.2,158.9,145.9,134.2,132.2,130.0,129.8,123.5,120.4,113.6,85.4$, 80.1, 55.3, 38.0, 32.9, 28.0, 25.9, 25.5.

(\boldsymbol{E})-1-Chloro-4-((8-cyclohexyl-7-(4-methoxyphenyl)oct-7-en-5-yn-1-yl)oxy)benzene (S2f). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure B, the title compound was prepared using 1-((6-bromohex-5-yn-1-yl)oxy)-4-chlorobenzene (118 mg), CuI (20 mg, $25 \mathrm{~mol} \%$), bipy ($22 \mathrm{mg}, 35 \mathrm{~mol} \%$), and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound (S2f) as viscous yellow oil (86 mg , $49 \% ; \boldsymbol{E}: \boldsymbol{Z}=18: 1) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 6.87 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.80 (s, 3 H), 2.39 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.27$ (m, 1 H), 1.89 (qu, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.74-1.56 (ovrlp, 7 H), 1.24-1.08 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.8,157.7,143.9,131.0,129.7$, 129.4, $125.5,121.4,115.8,113.6,87.1,83.5,67.8,55.3,38.0,33.1,28.5,26.0,25.6,25.4,19.3$.

(\boldsymbol{E})-7-Cyclohexyl-6-(4-methoxyphenyl)hept-6-en-4-yn-1-yl 4-chlorobenzoate (S2g). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure B, the title compound was prepared using 5-bromopent-4-yn-1-yl 4-chlorobenzoate (124 mg), CuI ($20 \mathrm{mg}, 25 \mathrm{~mol} \%$), bipy ($22 \mathrm{mg}, 35 \mathrm{~mol}$ $\%$), and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{S 2 g}$) as viscous yellow oil ($80 \mathrm{mg}, 44 \% ; \boldsymbol{E}: \boldsymbol{Z}=$ 16:1). ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=$
$8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $2.51(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{qu}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.57$ (ovrlp, 5 H), 1.201.08 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.8,158.8,144.2,139.5,131.1,130.8,129.7$, $128.9,128.8,121.2,113.6,86.0,83.8,64.2,55.4,38.0,33.1,28.1,26.0,25.6,16.5$.

(\boldsymbol{E})-6-Methyl-4-(4-(methylthio)phenyl)dodec-4-en-2-yn-1-yl benzoate (S2h). Following the general procedure A, the alkenylzinc reagent was prepared using (4-ethynylphenyl)(methyl)sulfane (104 mg) and 2-iodooctane (252 mg). Following the general procedure B, the title compound was prepared using 3-bromoprop-2-yn-1-yl benzoate (98 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{S 2 h}$) as viscous yellow oil ($64 \mathrm{mg}, 37 \% ; \boldsymbol{E}: \boldsymbol{Z}>20: 1$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.22$ (ovrlp, 4 H), $6.00(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ ($\mathrm{s}, 2 \mathrm{H}$), 2.51-2.43 (ovrlp, 4 H), 1.30-1.13 (ovrlp, 10 H), 0.98 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$), 0.85 (d, $J=6.4 \mathrm{~Hz}, 3$ H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.1,148.0,137.8,134.4,133.3,129.9,129.8,129.1,128.5,126.4$, $120.9,88.6,80.9,53.6,37.3,33.5,31.9,29.5,27.4,22.8,20.8,15.9,14.2$.

Ethyl (E)-3-(2-Cyclohexyl-1-(p-tolyl)vinyl)benzoate (3a). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene (81 mg) and iodocyclohexane (221 mg). Following the general procedure C , the title compound was prepared using ethyl 3-iodobenzoate $(113 \mathrm{mg})$ and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (3a) as viscous brown oil ($88 \mathrm{mg}, 62 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.25$ (ovrlp, 2 H), 7.16 (d, $J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{qu}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$, 2.26-2.11 (m, 1 H), 1.77-1.59 (ovrlp, 5 H), 1.28 (t, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1226-1.17 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.0,143.8,138.9,137.2,137.0,136.7,132.2,130.5,129.7,129.1,128.12$, 128.08, 127.8, 61.1, 38.5, 33.4, 26.1, 25.7, 21.4, 14.5. HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{2}$ [M]: 349.2168; Found: 349.2159.

4,4'-(2-Cyclohexylethene-1,1-diyl)bis(methylbenzene) (3b). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene (81 mg) and iodocyclohexane (221 mg). Following the general procedure C , the title compound was prepared using 1-iodo-4methylbenzene (89 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound (3b) as white solid (74 mg , 62%). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.03$ (ovrlp, 4 H), 5.81 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (s, 3 H), 2.30 ($\mathrm{s}, 3 \mathrm{H}$), 2.16-2.13 (m, 1 H), 1.66-1.59 (ovrlp, 5 H), 1.22-1.15 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.6,139.4,137.9,136.4,136.3,135.2$, 129.8, 128.9, 128.8, 127.3, 38.4, 33.6, 26.2, 25.8, 21.4, 21.2. HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{27}[\mathrm{M}+\mathrm{H}]:$ 291.2113; Found: 291.2110.

Ethyl (E)-4-(1-(4-(tert-Butyl)phenyl)-2-cyclohexylvinyl)benzoate (3c). Following the general procedure A, the alkenylzinc reagent was prepared using 1-(tert-butyl)-4-ethynylbenzene (111 mg) and iodocyclohexane (221 mg). Following the general procedure C , the title compound was prepared using ethyl 4-bromobenzoate (94 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{3 c}$) as viscous brown oil ($97 \mathrm{mg}, 61 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 (d, $J=8.0 \mathrm{~Hz}, 2$ H), $7.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2$ H), 7.27-2.17 (m, 1 H), 1.74-1.58 (ovrlp, 5 H), $1.36(\mathrm{~s}, 9 \mathrm{H}), 1.26-1.13$ (ovrlp, 5 H). ${ }^{13}$ C NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.8,150.0,148.0,139.1,138.0,136.9,129.5,129.4,128.6,127.3,125.2,60.9,38.5$, 34.8, 33.4, 31.6, 26.1, 25.7, 14.5. HRMS (ESI): Calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{O}_{2}$ [M]: 391.2637; Found: 391.2639.

Ethyl (E)-5-(1-(4-(tert-Butyl)phenyl)-2-cyclohexylvinyl)thiophene-2-carboxylate (3d). Following the general procedure A , the alkenylzinc reagent was prepared using 1-(tert-butyl)-4-ethynylbenzene (111 mg) and iodocyclohexane (221 mg). Following the general procedure C, the title compound was
prepared using ethyl 5-bromothiophene-2-carboxylate (96 mg), $\mathrm{Ni}(\mathrm{cod})_{2}$ ($17 \mathrm{mg}, 15 \mathrm{~mol} \%$), bipy (16 $\mathrm{mg}, 25 \mathrm{~mol} \%$), and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{3 d}$) as viscous brown oil ($86 \mathrm{mg}, 53 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 6.60(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.00(\mathrm{~m}, 1 \mathrm{H})$, 1.70-1.59 (ovrlp, 5 H), 1.42-1.29 (ovrlp, 12 H), 1.23-1.11 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $162.6,154.8,150.5,137.4,135.6,133.68$, 133.66, 130.9, 129.1, 125.3, 125.0, 38.2, 34.7, 33.1, 31.5, 26.0, 25.5, 14.5. HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 397.2196$; Found: 397.2193.

(E)-1-(3-Methyl-1-(p-tolyl)pent-1-en-1-yl)-3-(trifluoromethyl)benzene (3e). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene ($81 \mathrm{mg}, 0.70$ $\mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure C , the title compound was prepared using 1-iodo-3(trifluoromethyl)benzene (112 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{3 e}$) as viscous colorless oil ($85 \mathrm{mg}, 65 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.29$ (ovrlp, 2 H), 7.18 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.04 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 5.87 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (s, 3 H), $2.30-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{qu}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{~d}, J=\mathrm{Hz}, 2 \mathrm{H}), 1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.0,139.4,137.8,136.9,130.7,130.6(\mathrm{q}, J=31.7$ $\mathrm{Hz}), 129.8,129.2,128.6,124.4(\mathrm{q}, J=270.8 \mathrm{~Hz}), 123.6(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.4(\mathrm{q}, J=3.7 \mathrm{~Hz}), 35.7$, $30.5,21.4,21.0,12.2$. GCMS: $[M]^{+}=318$ was detected which corresponds to $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3}$.

(Z)-4-(2-Cyclohexyl-1-(4-methoxyphenyl)vinyl)-N,N-diethylbenzamide (3f). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure C , the title compound was prepared using 4-bromo- N, N-diethylbenzamide $(105 \mathrm{mg})$ and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{3 f}$) as lowmelting yellow solid ($98 \mathrm{mg}, 61 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-7.21$ (ovrlp, 4 H), 7.05 (d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.28$ (br $\mathrm{s}, 2 \mathrm{H}$), 2.27-2.10 (m, 1 H), 1.80-1.55 (ovrlp, 5 H), 1.38-1.17 (ovrlp, 11 H). ${ }^{13} \mathbf{C}$ NMR (100 MHz , CDCl_{3}): $\delta 171.3,158.6,144.2,138.7,136.6,135.5,132.5,130.9,127.2,126.2,113.6,55.2,43.3,39.4$,
38.4, 33.4, 26.0, 25.7, 14.3, 13.1. HRMS (ESI): Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]: 392.2584$; Found: 392.2584.

(\boldsymbol{E})-4-(2-Cyclohexyl-1-(4-methoxyphenyl)vinyl)-2-methylbenzonitrile (3g). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure C, the title compound was prepared using 4-bromo-2-methylbenzonitrile (76 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes/EtOAc (100:1) as an eluent to afford the title compound $(\mathbf{3 g})$ as low-melting colorless solid ($76 \mathrm{mg}, 56 \%$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1$ H), 7.13 (s, 1 H), 7.07 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.04 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.93 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.95 (d, J $=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.84(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.61$ (ovrlp, 5 H), 1.26-1.16 (ovrlp, $5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.8,147.8,141.6,138.8,138.3,132.3,131.7,130.9,128.9$, $125.2,118.6,113.9,110.5,55.3,38.6,33.2,26.0,25.6,20.6$. HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}$ [M]: 332.2009; Found: 332.2009.

(Z)-1-(4-(2-Cyclohexyl-1-(4-methoxyphenyl)vinyl)phenyl)ethan-1-one (3h). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure C , the title compound was prepared using 1-(4-iodophenyl)ethan-1-one (101 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{3 h}$) as viscous pale-yellow oil ($85 \mathrm{mg}, 62 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $2.55(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.61$ (ovrlp, 5 H), 1.25-1.17 (ovrlp, 5 H$).{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 197.7,158.7,148.1,138.6,138.2,135.4,132.1,130.9,128.3,127.3,113.8,55.3,38.6,33.3$, 26.6, 26.0, 25.6. HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 335.2003$; Found: 335.2006.

(E)-1-(2-Cyclohexyl-1-(4-methoxyphenyl)vinyl)-3-methoxybenzene (3i). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure C, the title compound was prepared using 1-iodo-3-methoxybenzene (96 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound (3i) as low-melting colorless solid ($78 \mathrm{mg}, 59 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.16(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.10(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-7.74$ (ovrlp, 2 H), 5.88 (d, $J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.60$ (ovrlp, 5 H$), 1.1-1.16$ (ovrlp, 5 H$).{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.5,158.6,145.0,139.1,136.2,132.9,131.0,129.0,120.1,113.6,113.4$, 112.0, 55.34, 55.33, 38.4, 33.5, 26.2, 25.8. HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 323.2011$; Found: 323.2005 .

(E)-4-(2-Cyclohexyl-1-(4-methoxyphenyl)vinyl)-2-methylthiophene (3j). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure C , the title compound was prepared using 4-bromo-2-methylthiophene (73 mg), $\mathrm{Ni}(\operatorname{cod})_{2}(17 \mathrm{mg}, 15 \mathrm{~mol} \%)$, bipy ($16 \mathrm{mg}, 25 \mathrm{~mol} \%$), and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{3 j}$) as viscous brown oil ($70 \mathrm{mg}, 55 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.84(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.58$ (ovrlp, 5 H), 1.19-1.14 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.5,144.8,139.7,134.7,134.4,132.7,130.6,124.0,119.6,113.6$, 55.4, 38.0, 33.5, 26.1, 25.8, 15.6. HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{OS}[\mathrm{M}+\mathrm{H}]: 313.1617$; Found: 313.1621.

Methyl (E)-4-(2-Cyclohexyl-1-phenylvinyl)benzoate (3k). Following the general procedure A, the
alkenylzinc reagent was prepared using ethynylbenzene (72 mg) and iodocyclohexane (221 mg). Following the general procedure C , the title compound was prepared using methyl 4-iodobenzoate (107 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{3 k}$) as viscous pale-brown oil ($107 \mathrm{mg}, 65 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.32$ (ovrlp, 3 H), $7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2$ H), $7.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.0(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.60$ (ovrlp, 5 H), 1.25-1.15 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.1,147.5,139.9,139.1,138.1$, 129.8, 129.5, 128.4, 128.3, 127.2, 127.1, 52.1, 38.6, 33.3, 26.0, 25.6. HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]: 321.1855$; Found: 321.1860.

(E)-3-Cyclohexyl-1,2-diphenylprop-2-en-1-one (31). ${ }^{\mathbf{3 8}}$ Following the general procedure A, the alkenylzinc reagent was prepared using ethynylbenzene (72 mg) and iodocyclohexane (221 mg). Following the general procedure C , the title compound was prepared using benzoyl chloride (58 mg) and the alkenylzinc reagent prepared in the general procedure A by stirring at rt. The crude product was purified using hexanes as an eluent to afford the title compound (31) as pale yellow oil ($62 \mathrm{mg}, 52 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.36$ (ovrlp, 4 H), $7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.74-$ 1.57 (ovrlp, 5 H), 1.24-1.08 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.6,150.2,139.6,138.6$, 136.5, 132.0, 129.8, 129.5, 128.3, 128.2, 127.5, 38.4, 32.5, 25.8, 25.3.

(E)-2-Fluoro-5-(1-(4-methoxyphenyl)-3-methylpent-1-en-1-yl)pyridine (3m). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene ($92 \mathrm{mg}, 0.70$ mmol, 1 equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure C , the title compound was prepared using 5-bromo-2-fluoropyridine $(72 \mathrm{mg}), \mathrm{Ni}(\operatorname{cod})_{2}(17 \mathrm{mg}, 15 \mathrm{~mol} \%)$, bipy $(16 \mathrm{mg}, 25 \mathrm{~mol} \%)$, and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes/EtOAc (50:1) as an eluent to afford the title compound ($\mathbf{3 m}$) as viscous pale-yellow oil ($60 \mathrm{mg}, 51 \%$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ $8.15(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 1 \mathrm{H})$, $5.87(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3$ $\mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.7\left(\mathrm{~d}, J_{\mathrm{CF}}=236.9 \mathrm{~Hz}\right), 158.9,145.8(\mathrm{~d}$, $\left.J_{\mathrm{CF}}=14.5 \mathrm{~Hz}\right), 139.8\left(\mathrm{~d}, J_{\mathrm{CF}}=7.7 \mathrm{~Hz}\right), 137.8,137.0\left(\mathrm{~d}, J_{\mathrm{CF}}=4.7 \mathrm{~Hz}\right), 136.0,131.7,130.8,114.0,108.7$ (d, $J_{\mathrm{CF}}=37.3 \mathrm{~Hz}$), $55.4,35.6,30.4$, 21.0, 12.1. HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{FNO}$ [M]: 286.1607; Found: 286.1608.

(\boldsymbol{E})-3-(1-(4-Methoxyphenyl)-3-methylpent-1-en-1-yl)quinolone (3n). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene ($92 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure C, the title compound was prepared using 3-bromoquionline (85 mg), $\mathrm{Ni}(\operatorname{cod})_{2}(17 \mathrm{mg}, 15 \mathrm{~mol} \%)$, bipy ($16 \mathrm{mg}, 25 \mathrm{~mol} \%$), and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{3 n}$) as viscous yellow oil ($71 \mathrm{mg}, 55 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.94(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 2.40-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{qu}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.9,150.1,147.1,138.4,137.4,135.9,133.4,131.9,131.0,129.2$, 129.0, 128.0, 127.9, 126.7, 114.0, 55.4, 35.8, 30.5, 21.0, 12.2. HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]$: 318.1858; Found: 318.1854.

5-((1E,3Z)-3-(4-(tert-Butyl)phenyl)-5-methylhepta-1,3-dien-1-yl)benzo[d][1,3]dioxole
Following the general procedure A, the alkenylzinc reagent was prepared using 1 -(tert-butyl)-4ethynylbenzene ($111 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure C , the title compound was prepared using (E)-5-(2-bromovinyl)benzo $[d][1,3]$ dioxole $(93 \mathrm{mg})$ and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes/EtOAc (100:1) as an eluent to afford the title compound ($\mathbf{3 0}$) as viscous brown oil ($95 \mathrm{mg}, 64 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.07 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.90 (s, 1 H), 6.81 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.71-6.66 (ovrlp, 2 H), 5.92-5.88 (ovrlp, 3 H), 5.54 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.03$ (m, 1 H), 1.36 ($\mathrm{s}, 9 \mathrm{H}$), 1.32-1.24 (m, $2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.5,148.1$, $146.8,140.5,140.2,135.5,132.6,132.4,129.3,128.8,125.1,121.1,108.3,105.5,101.0,35.1,34.7$, 31.6, 30.4, 21.2, 12.1. HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 363.2324$; Found: 363.2320.

1-(tert-Butyl)-4-((1E,3Z)-1-(4-chlorophenyl)-5-methylhepta-1,3-dien-3-yl)benzene (3p). Following the general procedure A, the alkenylzinc reagent was prepared using 1-(tert-butyl)-4-ethynylbenzene ($111 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2-iodobutane ($232 \mathrm{mg}, 1.26$ mmol, 1.8 equiv). Following the general procedure C, the title compound was prepared using (E)-1-(2-bromovinyl)-4-chlorobenzene (89 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{3 p}$) as viscous brown oil ($92 \mathrm{mg}, 64 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24-7.19 (ovrlp, 4 H), $7.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.7,141.8,140.1,136.5,135.2,134.6,132.5,129.2,128.7$, $127.8,127.5,125.2,35.2,34.7,31.6,30.3,21.1,12.1$. HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{Cl}$ [M]: 352.1913; Found: 352.1913.

5-((1E,3Z)-4-Cyclohexyl-3-(4-methoxyphenyl)buta-1,3-dien-1-yl)-1,2,3-trimethoxybenzene (3q). Following the general procedure A , the alkenylzinc reagent was prepared using 1 -ethynyl-4methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure C, the title compound was prepared using (E)-5-(2-bromovinyl)-1,2,3-trimethoxybenzene (112 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes/EtOAc (50:1) as an eluent to afford the title compound ($\mathbf{3 q}$) as yellow solid ($122 \mathrm{mg}, 73 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1$ H), $6.53(\mathrm{~s}, 2 \mathrm{H}), 5.91(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.79$ (ovrlp, 9 H), 2.06-1.99 (m, 1 H), 1.71-1.52 (ovrlp, 5 H), 1.20-1.11 (ovrlp, 5 H$).{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z , ~ C D C l ~}{ }_{3}$): δ $158.5,153.3,140.8,138.9,137.4,133.61,133.60,130.61,130.57,129.2,113.7,103.2,60.9,56.0,55.2$, 38.0, 33.2, 26.0, 25.6. HRMS (ESI): Calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{4}$ [M]: 409.2371; Found: 409.2373.

1-((1E,3Z)-4-Cyclohexyl-3-(4-methoxyphenyl)buta-1,3-dien-1-yl)-4-fluorobenzene (3r). Following the general procedure A , the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure C , the title compound was prepared using (E)-1-(2-bromovinyl)-4-fluorobenzene (82 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound (3r) as white solid ($94 \mathrm{mg}, 68 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{CF}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-6.92(\mathrm{ovrlp}, 4 \mathrm{H}), 6.85(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.64(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.55$ (ovrlp, 5 H$)$, 1.20-1.05 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.9$ (d, $J=244.6 \mathrm{~Hz}$), 158.6, 141.1, 139.0, $134.1(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 134.0(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 130.7,130.6,128.1,127.7(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=21.4$ Hz), 113.8, 55.4, 38.0, 33.3, 26.1, 25.7. HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{FO}[\mathrm{M}+\mathrm{H}]: 337.1960$; Found: 337.1962.

(E)-(4-(3-Methyl-1-(p-tolyl)pent-1-en-1-yl)phenyl)(phenyl)methanone (3s). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene ($81 \mathrm{mg}, 0.70$ mmol, 1 equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure C , the title compound was prepared using 4 -benzoylphenyl trifluoromethanesulfonate (135 mg), $\mathrm{Ni}(\operatorname{cod})_{2}(23 \mathrm{mg}, 20 \mathrm{~mol} \%)$, bipy ($20 \mathrm{mg}, 30 \mathrm{~mol} \%$), and the alkenylzinc reagent prepared in the general procedure A by stirring at rt . The crude product was purified using hexanes as an eluent to afford the title compound (3s) as viscous brown oil ($126 \mathrm{mg}, 75 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $5.78(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{qu}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.02(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.4,147.2,139.8,138.5,138.0$, 137.0, 136.8, 135.7, 132.3, 130.2, 130.1, 129.8, 129.2, 128.3, 126.9, 35.8, 30.5, 21.4, 21.0, 12.2. HRMS (ESI): Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}$ [M]: 355.2062; Found: 355.2064.

(E)-4-Methyl-1-morpholino-2-(p-tolyl)hex-2-en-1-one (3t). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene ($81 \mathrm{mg}, 0.70 \mathrm{mmol}, 1 \mathrm{equiv}$), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure C , the title compound was prepared using morpholine-4-carbonyl chloride (70 mg), $\mathrm{Ni}(\operatorname{cod})_{2}(17 \mathrm{mg}, 15 \mathrm{~mol} \%)$, bipy ($16 \mathrm{mg}, 25 \mathrm{~mol} \%$), and the alkenylzinc reagent prepared in the general procedure A by stirring at rt . The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{3 t}$) as viscous brown oil ($75 \mathrm{mg}, 68 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21-$ 7.15 (ovrlp, 4 H), 5.61 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.64 (br s, 2 H), 3.46 (br s, 2 H), 2.51-2.42 (m, 1 H), 2.35 (s, 3 H), $1.36(\mathrm{qu}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.7,139.4,137.5,135.3,133.0,129.3,128.4,66.8,47.6,42.4,34.2,30.1,21.3,20.4$, 12.0. HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{2}$ [M+H]: 288.1960; Found: 288.1958.

(\boldsymbol{E})-2-(4-(tert-Butyl)phenyl)-4-methyl-1-phenylhex-2-en-1-one (3u). Following the general procedure A, the alkenylzinc reagent was prepared using 1-(tert-butyl)-4-ethynylbenzene ($111 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure C , the title compound was prepared using benzoyl chloride (57 mg) and the alkenylzinc reagent prepared in the general procedure A by stirring at rt. The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{3 u}$) as viscous brown oil (102 mg , 77%). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.37$ (ovrlp, 4 H), 7.19 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.16(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.28$ (ovrlp, $11 \mathrm{H}), 1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.8,150.5$, 150.2, 140.5, 138.7, 133.4, 132.0, 129.8, 129.1, 128.2, 125.2, 35.5, 34.7, 31.5, 29.9, 20.4, 12.1. HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}[\mathrm{M}+\mathrm{H}]$: 321.2218; Found: 321.2220 .

(E)-2-(4-(tert-Butyl)phenyl)-1-(4-methoxyphenyl)-4-methylhex-2-en-1-one (3v). Following the general procedure A, the alkenylzinc reagent was prepared using 1-(tert-butyl)-4-ethynylbenzene (111 $\mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}$,
1.8 equiv). Following the general procedure C , the title compound was prepared using 4methoxybenzoyl chloride (70 mg) and the alkenylzinc reagent prepared in the general procedure A by stirring at rt . The crude product was purified using hexanes as an eluent to afford the title compound (3v) as viscous brown oil ($80 \mathrm{mg}, 56 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.21 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (s, 3 H), 2.54-2.43 (m, 1 H), 1.40-1.26 (ovrlp, 11 H), 1.03 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$), 0.88 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.5,163.0,150.1,147.7,140.3,133.7,132.3,131.0,129.0,125.2$, $113.5,55.5,35.2,34.6,31.5,30.0,20.5,12.1$. GCMS: $[M]^{+}=350$ was detected which corresponds to $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{2}$.

(\boldsymbol{E})-2-(4-(tert-Butyl)phenyl)-1-(4-chlorophenyl)-4-methylhex-2-en-1-one (3w). Following the general procedure A, the alkenylzinc reagent was prepared using 1-(tert-butyl)-4-ethynylbenzene ($111 \mathrm{mg}, 0.70$ $\mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure C , the title compound was prepared using 4-chlorobenzoyl chloride (72 mg) and the alkenylzinc reagent prepared in the general procedure A by stirring at rt . The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{3 w}$) as viscous brown oil (77 mg , 53%). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40-7.37$ (ovrlp, 4 H), 7.16 (d, $J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.15(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.31$ (ovrlp, 11 H), $1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3$ $\mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.4,150.6,150.4,140.3,138.3,137.0$, 133.1, 131.2, 129.1, 128.6, 125.4, 35.5, 34.7, 31.5, 29.9, 20.4, 12.1. HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClO}$ $[\mathrm{M}+\mathrm{H}]: 355.1829$; Found: 355.1823.

(Z)-1-(3,3-Dimethyl-1-phenylbut-1-en-1-yl)-4-methylbenzene (S3a). ${ }^{\mathbf{3 5}}$ Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene ($81 \mathrm{mg}, 0.70$ mmol, 1 equiv), Zn (137 equiv, $2.1 \mathrm{mmol}, 3$ equiv), TMSI ($28 \mathrm{mg}, 0.14 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and 2-iodo-2methylpropoane ($386 \mathrm{mg}, 2.1 \mathrm{mmol}, 3$ equiv). Following the general procedure C, the title compound was prepared using bromobenzene ($65 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (S3a) as viscous pale yellow oil ($44 \mathrm{mg}, 42 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.17$ (ovrlp, 5 H), 7.13 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.06 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.06 ($\mathrm{s}, 1 \mathrm{H}$), 2.37 (s, 3 H), 0.96 (s, 12 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.4,140.1,139.1,137.8,136.3,130.2,128.5,128.0,126.9,126.5$, 34.0, 31.4, 21.3.

4-((1E,3Z)-5-methyl-3-(p-tolyl)hepta-1,3-dien-1-yl)phenyl acetate (S3b). Following the general procedure A , the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene ($81 \mathrm{mg}, 0.70$ mmol, 1 equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure C , the title compound was prepared using (E)-4-(2-bromovinyl)phenyl acetate (99 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (S3d) as brown solid ($68 \mathrm{mg}, 50 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2$ H), 6.98 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (d, $J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.79$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.5,149.6,141.3,140.2,136.4,135.8,135.5$, $134.2,129.5,129.0,128.2,127.1,121.6,35.3,30.3,21.4,21.2,21.0,12.1$.

Methyl (2E,4Z)-5-Cyclohexyl-4-(4-methoxyphenyl)penta-2,4-dienoate (S3c). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene (92 mg) and iodocyclohexane (221 mg). Following the general procedure C , the title compound was prepared using methyl (Z)-3-iodoacrylate $(87 \mathrm{mg})$ and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{S 3} \mathbf{e}$) as pale yellow solid ($66 \mathrm{mg}, 54 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3$ H), 2.10-1.96 (m, 1 H), 1.70-1.53 (ovrlp, 5 H), 1.21-1.05 (ovrlp, 5 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $168.0,158.9,149.9,148.6,137.8,130.3,129.0,118.3,113.9,55.3,51.4,38.4,32.6,25.9,25.4$.

1-((Z)-3,6-Dimethyldodec-4-en-5-yl)-4-methylbenzene (4a). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene ($81 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure D , the title compound was prepared using 2-iodooctane (98 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound (4a) as viscous colorless oil ($65 \mathrm{mg}, 55 \% ; \boldsymbol{Z}: \boldsymbol{E}>20: 1$). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-$ 2.26 (ovrlp, 4 H), 1.92-1.80 (m, 1 H), 1.36-1.14 (ovrlp, 12 H), 0.98-0.95 (m, 3 H), 0.91-0.84 (ovrlp, 6 $\mathrm{H}), 0.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.6,138.6$ (138.4), 135.5, 132.9 (132.8), $129.1,128.4,42.22$ (42.18), 35.5 (35.4), 34.72 (34.68), 32.1, 30.51 (30.49), 29.64 (29.62), 27.7 (27.6), 22.8, 21.6, 21.3, 20.5 (20.3), 14.3, 12.21 (12.19). HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{34}$ [M]: 286.2661; Found: 286.2648.

1-Methyl-4-((Z)-3,6,10-trimethylundeca-4,9-dien-5-yl)benzene (4b). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene ($81 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure D , the title compound was prepared using 6-iodo-2-methylhept-2-ene (98 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{4 b}$) as viscous colorless oil ($64 \mathrm{mg}, 55 \% ; \boldsymbol{Z}: \boldsymbol{E}=7.5: 1$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.12-5.07$ (ovrlp, 2 H), 2.40-2.27 (ovrlp, 4 H), 2.05-1.95 (ovrlp, 2 H), 1.95-1.83 (m, 1 H), 1.68 ($\mathrm{s}, 3 \mathrm{H}$), 1.60 (s, 3 H), 1.45-1.36 (m, 1 H), 1.26-1.13 (ovrlp, 3 H), 0.98 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.77$ (t, $J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.4,138.40$ (138.36), 135.6, 133.1 (133.0), 131.2, 129.2 (129.1), 128.5, 125.11 (125.09), 41.93 (41.87), 35.5 (35.4), 34.72 (34.70), 30.49 (30.47), 26.29 (26.26), 25.9, 21.65 (21.60), 21.3, 20.5 (20.3), 17.89 (17.86), 12.23 (12.20). HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{33}$ [M]: 285.2582; Found: 285.2586.

1-((Z)-3,6-Dimethyl-1-phenyloct-4-en-4-yl)-4-methylbenzene (4c). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene ($81 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure E , the title compound was prepared using (3-iodobutyl)benzene (122 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{4 c}$) as viscous colorless oil ($84 \mathrm{mg}, 58 \% ; \boldsymbol{Z}: \boldsymbol{E}=14: 1$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17-7.10 (ovrlp, 5 H), 6.96 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $5.16(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.29$ (ovrlp, 4 H), 1.96-1.88 (m, 1 H$), 1.74-1.65(\mathrm{~m}, 1$ ${ }^{H}$), $1.55-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.04-1.02(\mathrm{~m}, 3 \mathrm{H}), 0.89-0.86(\mathrm{~m}, 3 \mathrm{H}), 0.82-0.76(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.0,143.1,138.2$ (138.1), 135.7, 133.6 (133.5), 129.1, 128.6 (128.5), $128.4,125.7,42.0$ (41.9), 37.2 (37.1), 34.8 (34.7), 34.1, 30.5, 21.62 (21.56), 21.3, 20.6 (20.4), 12.32 (12.28). HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{31}[\mathrm{M}+\mathrm{H}]: 307.2426$; Found: 307.2421.

1-Methyl-4-((Z)-5-Methyl-2-phenylhept-3-en-3-yl)benzene (4d). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene ($81 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure E, the title compound was prepared using (1-bromoethyl)benzene (80 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{4 d}$) as viscous colorless oil ($66 \mathrm{mg}, 50 \% ; \boldsymbol{Z}: \boldsymbol{E}>20: 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12$ (ovrlp, 3 H), 7.01-6.95 (m, 2 H), 6.73-6.68 (m, 2 H), 5.28-5.20 (m, 1 H), 3.71-3.63 (m, 1 H), 2.29-2.27 (ovrlp, 3 H), 1.97-1.87 (m, 1 H), 1.38-1.35 (ovrlp, 3 H), 1.30-1.15 (m, 2 H), 0.91-0.84 (m, 3 H), 0.80-0.73 (ovrlp, 3 H). ${ }^{13} \mathbf{C}$ NMR (100 MHz , CDCl_{3}): $\delta 145.2,144.2$ (144.1), 138.5 (138.3), 135.59 (135.58), 133.5, 129.01 (128.97), 128.38 (128.34), 128.10 (128.09), 128.1 (128.0), 125.94 (125.93), 47.8 (47.7), 34.81 (34.78), 30.5, 21.5 (21.4), 21.3, 20.35 (20.29), 12.24 (12.16). HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{27}$ [M]: 279.2113; Found: 279.2091.

(Z)-1-methyl-4-(3-methyl-10-phenyldec-4-en-5-yl)benzene (4e). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene ($81 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure E , the title compound was prepared using (5-iodopentyl)benzene (129 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (4e) as colorless oil ($90 \mathrm{mg}, 60 \% ; \boldsymbol{Z}: \boldsymbol{E}=6.3: 1$). ${ }^{1} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~}$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.09(\mathrm{ovrlp}, 5 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.11$ (d, $J=10.0$
$\mathrm{Hz}, 1 \mathrm{H}), 2.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{qu}, J$ $=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.36-1.28 (ovrlp, 4 H), 1.26-1.14 (m, 2 H), 0.87 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.76$ (t, $J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.0,139.8,139.1,135.7,133.6,128.7,128.5,128.4,128.3$, $125.7,39.6,36.1,34.6,31.4,30.5,28.9,28.1,21.4,21.3,12.1$. HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{33}$ [M]: 321.2582; Found: 321.2580.

(Z)-1-(13-Chloro-3-methyltridec-4-en-5-yl)-4-methylbenzene (4f). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene ($81 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure E , the title compound was prepared using 1-chloro-8-iodooctane (129 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (4f) as pale yellow oil ($84 \mathrm{mg}, 55 \% ; \boldsymbol{Z}: \boldsymbol{E}=6.5: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.51(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{qu}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.39 (qu, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.31-1.15 (ovrlp, 10 H), 0.88 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), 0.77 (t, $J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 139.8,139.2,135.7,133.5,128.7,128.4,45.3,39.7,34.7$, $32.8,30.5,29.4,29.1,29.0,28.2,27.0,21.5,21.3,12.1$. HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{Cl}$ [M]: 320.2271; Found: 320.2271 .

(Z)-1-(tert-Butyl)-4-(1-cyclohexyl-4-(4-methoxyphenyl)-3-methylbut-1-en-2-yl)benzene
(4g).
Following the general procedure A , the alkenylzinc reagent was prepared using 1 -(tert-butyl)-4ethynylbenzene (111 mg) and iodocyclohexane (221 mg). Following the general procedure D, the title compound was prepared using 1-(2-iodopropyl)-4-methoxybenzene (113 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound $(\mathbf{4 g})$ as viscous yellow oil $(84 \mathrm{mg}, 52 \% ; \boldsymbol{Z}: \boldsymbol{E}=8.2: 1) .{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 5.19(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.29(\mathrm{~m}$, $1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.49$ (ovrlp, 5 H), 1.33 (s, 9 H), 1.13-1.02 (ovrlp, 5 H), 0.94 (d, $J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.7,148.9,143.4,138.6,133.7,132.6,130.2,128.5,124.7$, 113.5, 55.4, 43.5, 41.5, 37.3, 34.5, 33.8 (33.7), 31.6, 26.2 (25.8), 19.6. HRMS (ESI): Calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}$ [M+H]: 391.2991; Found: 391.2995.

(Z)-2-(1-(4-(tert-Butyl)phenyl)-2-cyclohexylvinyl)-2,3-dihydro-1H-indene (4h). Following the general procedure A , the alkenylzinc reagent was prepared using 1-(tert-butyl)-4-ethynylbenzene (111 mg) and iodocyclohexane (221 mg). Following the general procedure D, the title compound was prepared using 1-(2-iodopropyl)-4-methoxybenzene (113 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{4 h}$) as white crystallize solid ($89 \mathrm{mg}, 61 \% ; \boldsymbol{Z}: \boldsymbol{E}>20: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ $7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.80(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.52$ (ovrlp, 5 H$), 1.33(\mathrm{~s}$, 9 H), 1.14-1.05 (ovrlp, 5 H). ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.9,143.5,141.2,138.3,132.8,128.5$, $126.1,124.9,124.3,48.8,38.3,37.4,34.6,33.7,31.6,26.2,25.8$. GCMS: $[M]^{+}=358$ was detected which corresponds to $\mathrm{C}_{27} \mathrm{H}_{34}$.

(Z)-1-(tert-Butyl)-4-(3-methylpentadeca-4,14-dien-5-yl)benzene (4i). Following the general procedure A, the alkenylzinc reagent was prepared using 1-(tert-butyl)-4-ethynylbenzene ($111 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure E , the title compound was prepared using 10-iododec-1-ene (125 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{4 i}$) as colorless oil ($93 \mathrm{mg}, 56 \% ; \boldsymbol{Z}: \boldsymbol{E}=6.7: 1$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.85-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.12$ $(\mathrm{d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 2.09-2.00 (ovrlp, 3 H), 1.36-1.19 (ovrlp, 23 H), 0.88 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$), $0.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 148.8,139.9,139.4,139.1,133.4,128.1,124.8,114.2,39.7,34.6,34.5$, $34.0,31.6,30.6,29.6,29.5,29.3,29.1,28.3,21.5,12.1$. HRMS (ESI): Calcd for $\mathrm{C}_{26} \mathrm{H}_{43}[\mathrm{M}+\mathrm{H}]$: 355.3365; Found: 355.3361.

(Z)-6-(4-(tert-Butyl)phenyl)-8-methyldec-6-en-1-yl acetate (4j). Following the general procedure A, the alkenylzinc reagent was prepared using 1-(tert-butyl)-4-ethynylbenzene ($111 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$
equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure E, the title compound was prepared using 5-iodopentyl acetate (120 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{4 j}$) as pale-brown oil $(86 \mathrm{mg}, 53 \% ; \boldsymbol{Z}: \boldsymbol{E}=$ 7.1:1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=$ $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-2.00(\mathrm{ovrlp}, 4 \mathrm{H}), 1.59(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 1.37-1.19(\mathrm{ovrlp}, 15 \mathrm{H}), 0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.4,149.0,139.5,138.8,133.7,128.1,124.9,64.8,39.5,34.6,34.5,31.6,30.5,28.5$, 27.9, 25.5, 21.5, 21.2, 12.1. HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{O}_{2}$ [M]: 345.2794; Found: 345.2789.

(\boldsymbol{Z})-(3-Methylpentadec-4-en-5-yl)benzene (4k). Following the general procedure A, the alkenylzinc reagent was prepared using ethynylbenzene ($71 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2-iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure E , the title compound was prepared using 1-iodooctane (126 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{4 k}$) as colorless oil ($70 \mathrm{mg}, 50 \% ; \boldsymbol{Z}: \boldsymbol{E}=8.5: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.06-1.95 (m, 1 H), 1.31-1.19 (ovrlp, 18 H), 0.89-0.86 (ovrlp, 6 H), 0.77 (d, $J=7.4 \mathrm{~Hz}, 3$ H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.3,140.1,133.6,128.6,128.0,126.2,39.7,34.7,32.1,30.5$, 29.81, 29.77, 29.6, 29.5, 29.3, 28.2, 22.9, 21.4, 14.3, 12.1. GCMS (ESI): $[\mathrm{M}]^{+}=300$ was detected which corresponds to $\mathrm{C}_{22} \mathrm{H}_{36}$.

3-((Z)-2-(4-(tert-Butyl)phenyl)-4-methylhex-2-en-1-yl)hexahydrofuro[2,3-b]furan (41). Following the general procedure A , the alkenylzinc reagent was prepared using 1 -(tert-butyl)-4-ethynylbenzene ($111 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26$ mmol, 1.8 equiv). Following the general procedure E, the title compound was prepared using 2 -(allyloxy)-3-iodotetrahydrofuran (119 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes/EtOAc (100:1) as an eluent to afford the title compound (4I) as viscous pale brown oil ($80 \mathrm{mg}, 50 \% ; \boldsymbol{Z}: \boldsymbol{E}=7.3: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ $7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.92-3.79 (ovrlp, 3 H), 3.42 (t, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74-2.63 (m, 1 H), 2.48-2.25 (ovrlp, 3 H), 2.13-2.04 (m, 1 H), 1.96-1.88 (m, 1 H), 1.84-1.73 (m, 1 H), $1.33(\mathrm{~s}, 9 \mathrm{H}), 1.27-1.17(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3$ $\mathrm{H}), 0.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.5,138.0,137.6,135.0,128.0,125.1$,
$110.0,72.53$ (72.47), 69.3, 45.6 (45.5), 40.4, 38.0, 34.6, 34.54 (34.45), 31.5, 30.4, 25.3, 21.4 (21.3), 12.1. HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{2}$ [M]: 343.2637; Found: 343.2684.

3-((Z)-4-Methyl-2-(p-tolyl)hex-2-en-1-yl)hexahydro-4H-furo[2,3-b]pyran (4m). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene (81 mg , $0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure E, the title compound was prepared using 2-(allyloxy)-3-iodotetrahydro- $2 H$-pyran (126 mg) and the alkenylzinc reagent prepared in the general procedure A . The crude product was purified using hexanes/EtOAc (100:1) as an eluent to afford the title compound (4m) as viscous pale brown oil ($75 \mathrm{mg}, 45 \% ; \boldsymbol{Z}: \boldsymbol{E}=7.2: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.13(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 6.99 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $5.19-5.13$ (ovrlp, 2 H), 3.81 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (td, $J=9.6 \mathrm{~Hz}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68-3.58 (ovrlp, 2 H), 2.49-2.40 (m, 1 H), 2.35 (s, 3 H), 2.32-2.25 (m, 2 H), 2.09-1.98 (m, 1 H), 1.89-1.80 (m, 1 H), 1.73-1.51 (ovrlp, 3 H), 1.50-1.38 (m, 1 H), 1.33-1.14 (m, 2 H$), 0.89-0.85$ $(\mathrm{m}, 3 \mathrm{H}), 0.80-0.74(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.2$, 137.70 (137.68), 136.3, 134.95 (134.93), 129.0, 128.3, 102.1, 70.0 (69.9), 61.18 (61.16), 38.87 (38.85), 37.8 (37.7), 36.9 (36.8), 34.7 (34.6), 30.4, 23.4, 21.33, 21.29, 19.61 (19.57), 12.12 (12.07). HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$: 315.2324; Found: 315.2328.

1-((Z)-2,5-Dimethyl-1-phenylhept-3-en-3-yl)-4-methoxybenzene (S4a). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methoxybenzene ($92 \mathrm{mg}, 0.70$ mmol, 1 equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure D, the title compound was prepared using (2-iodopropyl)benzene (101 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (S4a) as colorless oil ($61 \mathrm{mg}, 48 \% ; \boldsymbol{Z}: \boldsymbol{E}>20: 1$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.17-1.12$ (ovrlp, 3 H), 6.98-6.95 (m, 2 H), $6.85(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.42-$ $2.36(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.15(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.95$ (ovrlp, 3 H), 0.86-0.80 (m, 3 H), 0.740.66 (ovrlp, 3 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.1$, 143.8 , 141.6 (141.5), 133.81 (133.79), 133.4 (133.3), 130.23 (130.31), 129.34 (129.31), 128.1, 125.7, 113.3, 55.3, 43.71 (43.70), 42.4 (42.2), 34.7 (34.6), 30.43 (30.42), 21.4 (21.3), 19.7 (19.5), 12.1 (12.0).

1-((Z)-2,5-dimethyl-3-(p-tolyl)hept-3-en-1-yl)-4-fluorobenzene (S4b). Following the general procedure A, the alkenylzinc reagent was prepared using 1-ethynyl-4-methylbenzene ($81 \mathrm{mg}, 0.70$ mmol, 1 equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure E, the title compound was prepared using 1-fluoro-4-(2iodopropyl)benzene (108 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound ($\mathbf{S 4 b}$) as colorless oil ($57 \mathrm{mg}, 44 \% ; \boldsymbol{Z}: \boldsymbol{E}=16: 1$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.12(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09-7.05 (m, 2 H), 6.95-6.91 (ovrlp, 4 H), 5.11 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.30$ (ovrlp, 4 H), 1.93-1.83 (m, 1 H), 1.23-1.05 (m, 2 H), 0.98-0.95 (ovrlp, 3 H), 0.85-0.79 (m, 3 H), 0.740.66 (ovrlp, 3 H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.4\left(J_{\mathrm{CF}}=241.6 \mathrm{~Hz}\right), 143.9,138.43$ (138.37), 137.12 (137.06) ($J_{\mathrm{CF}}=3.3 \mathrm{~Hz}$), 135.8, 133.34 (133.31), 130.60 (130.56) ($J_{\mathrm{CF}}=7.7 \mathrm{~Hz}$), 129.1 (129.0), $128.6,114.84$ (113.83) ($J_{\mathrm{CF}}=20.9 \mathrm{~Hz}$), 43.71 (43.68), 41.5 (41.3), 34.7 (34.6), 30.42 (30.40), 21.45 (21.33), 21.31, 19.7 (19.5), 12.1 (12.0).

(Z)-4-(3-(4-(tert-butyl)phenyl)-4-cyclohexyl-2-methylbut-3-en-1-yl)-1,2-dimethoxybenzene (S4c). Following the general procedure A , the alkenylzinc reagent was prepared using 1-(tert-butyl)-4ethynylbenzene (111 mg) and iodocyclohexane (221 mg). Following the general procedure D, the title compound was prepared using 4-(2-iodopropyl)-1,2-dimethoxybenzene (126 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes/EtOAc $(200: 1)$ as an eluent to afford the title compound (S4c) as viscous yellow oil ($64 \mathrm{mg}, 37 \% ; \boldsymbol{Z}: \boldsymbol{E}=6.6: 1$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70-6.63$ (ovrlp, 2 H), 5.22 (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (ovrlp, 6 H), 2.80-2.70 (m, 1 H), 2.65-2.55 (m, 1 H), 2.37-2.31 (m, 1 H), 1.92-1.82 (m, 1 H), 1.68-1.48 (ovrlp, 5 H), 1.34 (s, 9 H), 1.13-1.10 (ovrlp, $5 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.9,128.6,147.1,143.5,138.6$, $134.3,132.7,128.5,124.7,121.3,112.6,111.0,56.0,55.9,43.5,42.0,37.3,34.5,33.8$ (33.7), 31.6, 26.2, 25.8, 19.8.

1-(tert-Butyl)-4-((Z)-1-methoxy-3,6-dimethyloct-4-en-4-yl)benzene (S4d). Following the general
procedure A, the alkenylzinc reagent was prepared using 1-(tert-butyl)-4-ethynylbenzene ($111 \mathrm{mg}, 0.70$ mmol, 1 equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure D , the title compound was prepared using 3-iodo-1-methoxybutane (88 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes as an eluent to afford the title compound (S4d) as viscous yellow oil ($47 \mathrm{mg}, 38 \% ; \boldsymbol{Z}: \boldsymbol{E}>$ 40:1). ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.18-5.14$ (m, 1 H), 3.34-3.26 (ovrlp, 4 H), 3.16 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43-2.36 (m, 1 H), 1.99-1.88 (m, 1 H), 1.48-1.41 (m, 1 H), 1.32 ($\mathrm{s}, 9 \mathrm{H}$), 1.27-1.14 (ovrlp, 3 H), 0.98-0.94 (ovrlp, 3 H), 0.89-0.86 (m, 3 H), 0.81-0.76 (m, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.9,139.6$ (139.5), 137.6, 136.0 (135.9), 128.8 (128.7), 124.6, 75.7 (75.6), 58.60 (58.56), 50.1, 34.8 (34.7), 34.5, 31.6, 30.5 (30.4), 22.9 (22.8), 21.7 (21.5), 12.22 (12.18), 11.98 (11.97).

(Z)-8-(4-(tert-Butyl)phenyl)-10-methyldodec-8-enenitrile (S4e). Following the general procedure A, the alkenylzinc reagent was prepared using 1 -(tert-butyl)-4-ethynylbenzene ($111 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.8$ equiv). Following the general procedure E, the title compound was prepared using 7-iodoheptanenitrile (111 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes/EtOAc (50:1) as an eluent to afford the title compound (S4e) as viscous yellow oil (41 $\mathrm{mg}, 26 \% ; \boldsymbol{Z}: \boldsymbol{E}=7.8: 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2$ H), $5.13(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ (ovrlp, 4 H), $2.12-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.61$ (qu, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.41$ (qu, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.35-1.28 (ovrlp, 13 H), 1.26-1.40 (m, 2 H), 0.88 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.0,139.4,138.8,133.7,128.0,124.9,119.9,39.9$, 34.6, 34.5, 31.5, 30.5, 28.6, 28.3, 27.9, 25.5, 21.5, 17.2, 12.1.

(Z)-7-(4-(tert-Butyl)phenyl)-9-methylundec-7-en-1-yl thiophene-2-carboxylate (S4f). Following the general procedure A , the alkenylzinc reagent was prepared using 1-(tert-butyl)-4-ethynylbenzene (111 $\mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv), Zn (82 equiv, $1.26 \mathrm{mmol}, 1.8$ equiv), and 2 -iodobutane ($232 \mathrm{mg}, 1.26 \mathrm{mmol}$, 1.8 equiv). Following the general procedure E, the title compound was prepared using 6-iodohexyl thiophene-2-carboxylate (145 mg) and the alkenylzinc reagent prepared in the general procedure A. The crude product was purified using hexanes/EtOAc (100:1) as an eluent to afford the title compound (S4f) as viscous yellow oil ($67 \mathrm{mg}, 33 \% ; \boldsymbol{Z}: \boldsymbol{E}=7.1: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.78(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1$ H), $7.53(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2$ H), $5.13(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 1 \mathrm{H})$,
$1.70(\mathrm{qu}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.42-1.28$ (ovrlp, 15 H$), 1.28-1.15(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 162.5,148.9,139.6,138.9,134.3,133.6,133.3,132.3$, $128.1,127.8,124.8,65.4,39.5,34.55,34.51,31.6,31.5,30.5,28.8,28.1,25.9,21.5,12.1$.

References

(1) Laughrey, Z. R.; Upton, T. G.; Gibb, B. C. Chem. Commun. 2006, 970-972.
(2) Ren, P.; Vechorkin, O.; von Allmen, K.; Scopelliti, R; Hu, X. J. Am. Chem. Soc. 2011, 133, 70847095.
(3) Fernández-Salas, J. A.; Maestro, M. C.; Rodríguez-Fernández, M. M.; García-Ruano, J. L.; Alonso, I. Org. Lett. 2013, 15, 1658-1661.
(4) Cheung, C. W.; Ren, P.; Hu, X. Org. Lett. 2014, 16, 2566-2569.
(5) Cao, J.; Perlmutter, P. Aust. J. Chem. 2014, 67, 1360-1361.
(6) Yi, J.; Lu, X.; Sun, Y.-Y.; Xiao, B; Liu, L. Angew. Chem. Int. Ed. 2013, 52, 12409-12413.
(7) Harriman, G. C.; Masse, C. E.; Harwood, J.; Bhat, S.; Greenwood, J. R. PCT Int. Appl., 2013071169, May 16, 2013.
(8) Dai, Y.; Wu, F.; Zang, Z.; You, H.; Gong, H. Chem. Eur. J., 2012, 18, 808-812.
(9) Guisan-Ceinos, M.; Soler-Yanes, R.; Collado-Sanz, D.; Phapale, V. B.; Bunuel, E.; Cardenas, D. J. Chem. Eur. J. 2013, 19, 8405-8410.
(10) Shepherd, B. D.; Powell, D. R.; West, R. Organometallics 1989, 8, 2664-2669.
(11) Vechorkin, O.; Proust, V.; Hu, X. J. Am. Chem. Soc. 2009, 131, 9756-9766.
(12) Iwasaki, K.; Wan, K. K.; Oppedisano, A.; Crossley, S. W. M.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 1300-1303.
(13) Murphy, J. A.; Schoenebeck, F.; Findlay, N. J.; Thomson, D. W.; Zhou, S.; Garnier, J. J. Am. Chem. Soc. 2009, 131, 6475-6479.
(14) Yasui, K.; Fugami, K.; Tanaka, S.; Tamaru, Y. J. Org. Chem. 1995, 60, 1365-1380.
(15) Cornelissen, L.; Lefrancq, M.; Riant, O. Org. Lett. 2014, 16, 3024-3027.
(16) Sun, N.; Li, Y.; Yin, G.; Jiang, S. Eur. J. Org. Chem. 2013, 2541-2544.
(17) Patterson, B. D.; Lu, Q.; Aggen, J. B.; Dozzo, P.; Kasar, R. A.; Linsell, M. S.; Kane, T. R.; Gliedt, M. J.; Hildebrandt, D. J.; McEnroe, G. A.; Cohen, F. PCT Int. Appl., 2013170165, Nov 14, 2013.
(18) Kley, C. S.; Cechal, J.; Kumagai, T.; Schramm, F.; Ruben, M.; Stepanow, S.; Kern, K. J. Am. Chem. Soc. 2012, 134, 6072-6075.
(19) Witulski, B.; Schweikert, T.; Schollmeyer, D.; Nemkovich, N. A. Chem. Commun. 2010, 46, 2953-2955.
(20) Chen, X. Y.; Wang, L.; Frings, M.; Bolm, C. Org. Lett. 2014, 16, 3796-3799.
(21) Reichl, K. D.; Radosevich, A. T. Chem. Commun. 2014, 50, 9302-9305.
(22) Sugihara, Y.; Yamashita, T.; Shibata, S.; Matsumura, K.; Kuwazuru, Y. Eur. Pat. Appl., 649835, Apr 26, 1995.
(23) Okitsu, T.; Yumitate, S.; Sato, K.; In, Y.; Wada, A. Chem. Eur. J. 2013, 19, 4992-4996.
(24) Zhdanko, A.; Maier, M. E. Eur. J. Org. Chem. 2014, 3411-3422.
(25) He, L.-Y.; Schulz-Senft, M.; Thiedemann, B.; Linshoeft, J.; Gates, P. J.; Staubitz, A. Eur. J. Org. Chem. 2015, 2498-2502.
(26) Jeon, H.-B.; Sayre, L. M. Biochem. Biophys. Res. Commun. 2003, 304, 788-794.
(27) Das, J. P.; Roy, S. J. Org. Chem. 2002, 67, 7861-7864.
(28) Li, H.; Zhang, Z.; Shangguan, X.; Huang, S.; Chen, J.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2014, 53, 11921-11925.
(29) Chowdhury, S.; Roy, S. Tetrahedron Lett. 1996, 37, 2623-2624.
(30) Cheung, C. W.; Buchwald, S. L. J. Org. Chem. 2012, 77, 7526-7537.
(31) Cornil, J.; Echeverria, P.-G.; Phansavath, P.; Ratovelomanana-Vidal, V.; Guerinot, A.; Cossy, J. Org. Lett. 2015, 17, 948-951.
(32) Hu, J.; Lu, Y.; Li, Y.; Zhou, J. Chem . Commun. 2013, 49, 9425-9427.
(33) For enyne products, the major E-stereoisomers (as shown in Figures 1 and S1) have more upfield olefinic protons than the minor Z-stereoisomers. For the ${ }^{1} \mathrm{H}$ NMR spectrometric data of structurally similar products, see: (a) Ikeda, S.-i.; Kondo, K.; Sato, Y. Chem. Lett. 1999, 28, 1227-1228. (b)

ElDouhaibi, A. S.; Lozanovb, M.; Montgomery, J. Tetrahedron 2006, 62, 11460-11469. (c) Zhong, M.J.; Wang, X.-C.; Zhu, H.-T.; Hu, J.; Liu, L.; Liu, X.-Y.; Liang, Y.-M. J. Org. Chem. 2012, 77, 1095510961. (d) Che, C.; Zheng, H.; Zhu, G. Org. Lett. 2015, 17, 1617-1620.
(34) For α-alkylated styrene products generated from secondary alkyl iodides in the second step, the major Z-stereoisomers (as shown in Figures 3 and S3) have more downfield olefinic protons than the minor E-stereoisomers. On the contrary, for α-alkylated styrene products generated from primary alkyl iodides in the second step, the major Z-stereoisomers (as shown in Figures 3 and S3) have more upfield olefinic protons than the minor E-stereoisomers. For the ${ }^{1} \mathrm{H}$ NMR spectrometric data of structurally similar products, see: (a) Liu, J.-T.; Jang, Y.-J.; Shih, Y.-K.; Hu, S.-R.; Chu, C.-M.; Yao, C.-F. J. Org. Chem. 2001, 66, 6021-6028. (b) Huang, T.-H.; Chang, H.-M.; Wu, M.-Y.; Cheng, C.-H. J. Org. Chem. 2002, 67, 99-105.
(35) (a) Varela, J. A.; Pena, D.; Goldfuss, B.; Polborn, K.; Knochel, P. Org. Lett. 2001, 3, 2395-2398. (b) Varela, J. A.; Pena, D.; Goldfuss, B.; Denisenko, D.; Kulhanek, J.; Polborn, K.; Knochel, P. Chem. Eur. J. 2004, 10, 4252-4264.
(36) Cheung, C. W.; Zhurkin, F. E.; Hu, X. J. Am. Chem. Soc. 2015, 137, 4932-4935.
(37) Magano, J.; Monfette, S. ACS Catal. 2015, 5, 3120-3123.
(38) Karpaviciene, I.; Cikotiene, I.; Padrón, J. M. Eur. J. Med. Chem. 2013, 70, 568-578.

Lists of NMR Spectra

(E)-N,N-Dimethyl-4-(5-methyl-1-(4-(methylthio)phenyl)hept-3-en-1-yn-3-yl)aniline (2a)

(E)-4-(3-(4-Bromophenyl)-5-methylhept-3-en-1-yn-1-yl)phenyl)(methyl)sulfane (2b)

(E)-(4-(3-(4-Chlorophenyl)-4-cyclohexylbut-3-en-1-yn-1-yl)phenyl)(methyl)sulfane (2c)

(E)-1-(1-Cyclohexyl-4-phenylbut-1-en-3-yn-2-yl)-4-methoxybenzene (2d)

(E)-1-(4-Cyclohexyl-3-(4-methoxyphenyl)but-3-en-1-yn-1-yl)-4-fluorobenzene (2e)

(E)-1-(4-Cyclohexyl-3-(4-methoxyphenyl)but-3-en-1-yn-1-yl)-4-(trifluoromethyl)benzene (2f)

(E)-1-(4-Cyclohexyl-3-(4-methoxyphenyl)but-3-en-1-yn-1-yl)-4-nitrobenzene (2g)

(E)-1-(5-Ethyl-1-(4-methoxyphenyl)undec-3-en-1-yn-3-yl)-4-methylbenzene (2h)

(E)-4-(5-Ethyl-3-(p-tolyl)undec-3-en-1-yn-1-yl)benzonitrile (2i)

cwc13127B-sep (H1).1.fid
cwc13127B-sep $(\mathrm{H} 1)$

C

(E)-1-(4-(5-Butyl-3-(p-tolyl)non-3-en-1-yn-1-yl)phenyl)ethan-1-one (2j)

\ldots

Methyl (E)-4-(5-Butyl-3-(p-tolyl)non-3-en-1-yn-1-yl)benzoate (2k)

(E)-4-(2-(4-(tert-Butyl)phenyl)-4-(4-(methylthio)phenyl)but-1-en-3-yn-1-yl)tetrahydro-2Hpyran (21)

(4-((E)-4-(Bicyclo[2.2.1]heptan-2-yl)-3-(p-tolyl)but-3-en-1-yn-1 yl)phenyl)(methyl)sulfane (2m)

(E)-(4-(12-Chloro-3-(p-tolyl)dodec-3-en-1-yn-1-yl)phenyl)(methyl)sulfane (2n)

Methyl(4-(5-methyl-1-(3,4,5-trimethoxyphenyl)undec-3-en-1-yn-3-yl)phenyl)sulfane (20)

(E)-1-Bromo-4-(3-(4-(tert-butyl)phenyl)-5,5-dimethylhex-3-en-1-yn-1-yl)benzene (2p)

(E)-1-(3-(4-(tert-Butyl)phenyl)-5,5-dimethylhex-3-en-1-yn-1-yl)-2-methylbenzene (2q)

(4-((E)-4-(Adamantan-1-yl)-3-(4-methoxyphenyl)but-3-en-1-yn-1 yl)phenyl)(methyl)sulfane (2r) cwc13128-sep (H1).1.fid
cwc13132B-crude (H1)

$\stackrel{8}{8}$

Methyl (E)-4-(4-(tert-Butyl)phenyl)-5-cyclohexylpent-4-en-2-ynoate (2s)

（E）－4－（4－（tert－Butyl）phenyl）－5－cyclohexyl－1－morpholinopent－4－en－2－yn－1－one（2t）

\qquad
 － $\|\quad\|^{\|}$

		䈶容		笠	\％		篣㩁			
1．009．5 9.08	2.5	6.56	$5_{\text {Sin }}^{\text {coma }}$	4．0．$\quad 3.5 \quad 3.0$	2.5		1.51 .0			
			竞							

(E)-(4-((6-(4-(tert-Butyl)phenyl)-7-cyclohexylhept-6-en-4-yn-1-yl)oxy)phenyl)(phenyl)methanone (2u)

$\int 1,1 \mid$

(E)-2-(4-Cyclohexyl-3-phenylbut-3-en-1-yn-1-yl)naphthalene (2v)

(E)-1-Chloro-4-(4-cyclohexyl-3-phenylbut-3-en-1-yn-1-yl)benzene (2w)

(H1).1.fid

(E)-(4-Cyclohexyl-3-phenylbut-3-en-1-yn-1-yl)triethylsilane (2x) cwc14019B-sep_2nd_(H1).1.fid
 $\int_{1} .5$

(E)-3-(4-Cyclohexyl-3-(4-methoxyphenyl)but-3-en-1-yn-1-yl)-9-ethyl-9H-carbazole (2y)

(E)-5-Cyclohexyl-4-(4-methoxyphenyl)-1-phenylpent-4-en-2-yn-1-one (2z)

(E)-2-((6-Cyclohexyl-5-(4-methoxyphenyl)hex-5-en-3-yn-1-yl)oxy)tetrahydro-2H-pyran (2aa)

(E)-1-(tert-Butyl)-4-(4-cyclohexyl-3-(4-methoxyphenyl)but-3-en-1-yn-1-yl)benzene (S2a)

 cwc14027C-sep (H1).1.fidcwc14024B-sep (H1)

(E)-(4-(3-(4-(tert-Butyl)phenyl)-4-cycloheptylbut-3-en-1-yn-1-yl)phenyl)(methyl)sulfane (S2b)

(E)-(4-(3-(4-(tert-Butyl)phenyl)-4-cyclooctylbut-3-en-1-yn-1-yl)phenyl)(methyl)sulfane (S2c)

$-\Gamma$
$-\int$

$\int(1)$
(S2c)

(E)-Methyl(4-(5-methyl-7-phenyl-3-(p-tolyl)hept-3-en-1-yn-1-yl)phenyl)sulfane (S2d)

 \%

(E)-2-(5-Cyclohexyl-4-(4-methoxyphenyl)pent-4-en-2-yn-1-yl)isoindoline-1,3-dione (S2e)

(E)-1-Chloro-4-((8-cyclohexyl-7-(4-methoxyphenyl)oct-7-en-5-yn-1-yl)oxy)benzene (S2f)

(E)-7-Cyclohexyl-6-(4-methoxyphenyl)hept-6-en-4-yn-1-yl 4-chlorobenzoate (S2g)

(E)-6-Methyl-4-(4-(methylthio)phenyl)dodec-4-en-2-yn-1-yl benzoate (S2h)

20	190	180	170	160	150	140	130	120	110	$100 \quad 90$	80	70	60	50	40	30	20	10	0

Ethyl (E)-3-(2-Cyclohexyl-1-(p-tolyl)vinyl)benzoate (3a)

4,4'-(2-Cyclohexylethene-1,1-diyl)bis(methylbenzene) (3b)

	N్ల్ల్ర్ర
NNNNNN	ω
	1

(

Ethyl (E)-4-(1-(4-(tert-Butyl)phenyl)-2-cyclohexylvinyl)benzoate (3c)

jpm (f1)

Ethyl (E)-5-(1-(4-(tert-Butyl)phenyl)-2-cyclohexylvinyl)thiophene-2-carboxylate (3d)

(E)-1-(3-Methyl-1-(p-tolyl)pent-1-en-1-yl)-3-(trifluoromethyl)benzene (3e)

䯾

 13000 -11000

(Z)-4-(2-Cyclohexyl-1-(4-methoxyphenyl)vinyl)-N,N-diethylbenzamide (3f)

(E)-4-(2-Cyclohexyl-1-(4-methoxyphenyl)vinyl)-2-methylbenzonitrile (3g)

ppm (f1)

(Z)-1-(4-(2-Cyclohexyl-1-(4-methoxyphenyl)vinyl)phenyl)ethan-1-one (3h)

(E)-1-(2-Cyclohexyl-1-(4-methoxyphenyl)vinyl)-3-methoxybenzene (3i)

(E)-4-(2-Cyclohexyl-1-(4-methoxyphenyl)vinyl)-2-methylthiophene (3j)

(

Methyl (E)-4-(2-Cyclohexyl-1-phenylvinyl)benzoate (3k)

(E)-3-Cyclohexyl-1,2-diphenylprop-2-en-1-one (3I)

(E)-2-Fluoro-5-(1-(4-methoxyphenyl)-3-methylpent-1-en-1-yl)pyridine (3m)

(E)-3-(1-(4-Methoxyphenyl)-3-methylpent-1-en-1-yl)quinoline (3n)

Cl|l|les)

5-((1E,3Z)-3-(4-(tert-Butyl)phenyl)-5-methylhepta-1,3-dien-1-yl)benzo[d][1,3]dioxole (30)

1-(tert-Butyl)-4-((1E,3Z)-1-(4-chlorophenyl)-5-methylhepta-1,3-dien-3-yl)benzene (3p)

5-((1E,3Z)-4-Cyclohexyl-3-(4-methoxyphenyl)buta-1,3-dien-1-yl)-1,2,3-trimethoxybenzene

(3q)

1-((1E,3Z)-4-Cyclohexyl-3-(4-methoxyphenyl)buta-1,3-dien-1-yl)-4-fluorobenzene (3r)

(E)-(4-(3-Methyl-1-(p-tolyl)pent-1-en-1-yl)phenyl)(phenyl)methanone (3s)

 Cles)

 cwc14063eessep_2nd_(C13).1.fid 13C\{1H $13 \mathrm{C}\{1 \mathrm{H}\} \mathrm{cP}_{8}^{8}$

(E)-4-Methyl-1-morpholino-2-(p-tolyl)hex-2-en-1-one (3t)

(E)-2-(4-(tert-Butyl)phenyl)-4-methyl-1-phenylhex-2-en-1-one (3u)

(E)-2-(4-(tert-Butyl)phenyl)-1-(4-chlorophenyl)-4-methylhex-2-en-1-one (3w)

(Z)-1-(3,3-Dimethyl-1-phenylbut-1-en-1-yl)-4-methylbenzene (S3a)

ppm (f1)

Methyl (2E,4Z)-5-Cyclohexyl-4-(4-methoxyphenyl)penta-2,4-dienoate (S3c)

1-((Z)-3,6-Dimethyldodec-4-en-5-yl)-4-methylbenzene (4a)

1-Methyl-4-((Z)-3,6,10-trimethylundeca-4,9-dien-5-yl)benzene (4b)

1-((Z)-3,6-Dimethyl-1-phenyloct-4-en-4-yl)-4-methylbenzene (4c)

1-Methyl-4-((Z)-5-Methyl-2-phenylhept-3-en-3-yl)benzene (4d)

\int

(Z)-1-methyl-4-(3-methyl-10-phenyldec-4-en-5-yl)benzene (4e)

(Z)-1-(13-Chloro-3-methyltridec-4-en-5-yl)-4-methylbenzene (4f)

 /f

(Z)-1-(tert-Butyl)-4-(1-cyclohexyl-4-(4-methoxyphenyl)-3-methylbut-1-en-2-yl)benzene (4g)

(Z)-2-(1-(4-(tert-Butyl)phenyl)-2-cyclohexylvinyl)-2,3-dihydro-1H-indene (4h)

(Z)-1-(tert-Butyl)-4-(3-methylpentadeca-4,14-dien-5-yl)benzene (4i)
cwc14051D_sep_2nd_(H 1).1.fid
1 Hzg

(Z)-6-(4-(tert-Butyl)phenyl)-8-methyldec-6-en-1-yl acetate (4j)

(Z)-(3-Methylpentadec-4-en-5-yl)benzene (4k)

3-((Z)-2-(4-(tert-Butyl)phenyl)-4-methylhex-2-en-1-yl)hexahydrofuro[2,3-b]furan (41)

S. 5

$1 / 11$

$\begin{array}{llllllllllllllllllllll}30 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ f 1(\mathrm{ppm})\end{array}$

3-((Z)-4-Methyl-2-(p-tolyl)hex-2-en-1-yl)hexahydro-4H-furo[2,3-b]pyran (4m)

1-((Z)-2,5-Dimethyl-1-phenylhept-3-en-3-yl)-4-methoxybenzene (S4a)

1-((Z)-2,5-dimethyl-3-(p-tolyl)hept-3-en-1-yl)-4-fluorobenzene (S4b)

(Z)-4-(3-(4-(tert-butyl)phenyl)-4-cyclohexyl-2-methylbut-3-en-1-yl)-1,2-dimethoxybenzene (S4c)

1-(tert-Butyl)-4-((Z)-1-methoxy-3,6-dimethyloct-4-en-4-yl)benzene (S4d)

cwc14048A-sep (H1).1.fid
1Hzg

(Z)-8-(4-(tert-Butyl)phenyl)-10-methyldodec-8-enenitrile (S4e)

(Z)-7-(4-(tert-Butyl)phenyl)-9-methylundec-7-en-1-yl thiophene-2-carboxylate (S4f)

