Hydrogen-Activating Models of Hydrogenases

Tao Xu^1 , Dafa Chen², and Xile Hu^{1,*}

 ¹Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Science and Engineering, Ecole Polytechnique Fédéral de Lausanne (EPFL), EPFL-SB-ISIC-LSCI, BCH 3305, 1015 Lausanne, Switzerland. E-mail: <u>xile.hu@epfl.ch</u> Tel. +41216939781
²School of Chemical Engineering and Technology, Harbin Institute of Technology, 150001

Harbin, China.

Contents

1.	Introduction	
2.	Reactions of [NiFe]-hydrogenase models with hydrogen	4
3.	Reactions of [FeFe]-hydrogenase models with hydrogen	8
	3.1 Diiron models without an internal amine moiety	9
	3.2 Diiron complexes with an internal amine moiety	
	3.3 Bio-inspired complexes with an internal amine moiety	
4.	Reactions of [Fe]-hydrogenase models with hydrogen	16
5.	Conclusion	17
	Acknowledgments	17
	References	

Abstract

Hydrogenases are biological catalysts for hydrogen evolution and activation. While many model complexes of hydrogenases can catalyze the hydrogen evolution reaction, few of them can react with hydrogen. Here we review the hydrogen-activating models of hydrogenases, in particular, [NiFe]- and [FeFe]-hydrogenases. The mechanism of these reactions is described.

Keywords

Hydrogenase; bio-mimetic chemistry; hydrogen activation; mechanism

1. Introduction

Hydrogenases are enzymes that catalyze the production and consumption of hydrogen [1-6]. Hydrogenases were discovered as early as 1930's, but their crystal structures have only been known in the last two decades [7-13]. Based on the structures of the active sites, hydrogenases are classified as [FeFe]-, [NiFe]- and [Fe]-hydrogenases [1,4-6].

The crystal structures of [FeFe]-hydrogenase were first determined in 1998 and 1999, and showed an active site made of a homodinuclear $Fe_2(CO)_3(CN)_2$ core bridged by a SCH_2XCH_2S (X = CH₂, NH or O) dithiolate ligand (Figure 1, left) [7-9]. Since then, its structure and mechanism have been subjected to many studies [14-19]. In 2013, Berggren *et al.* introduced three synthetic complexes [Fe₂(SCH₂XCH₂S)(CO)₄(CN)₂]₂ into the apoprotein of [FeFe]-hydrogenase, and only the semi-synthetic enzyme with X = NH was active [20]. This result provided a strong confirmation that the bridging dithiolate ligand in the active site of [FeFe]-hydrogenase is an azadithiolate [20-22].

The crystal structures of [NiFe]-hydrogenases have been extensively studied by Fontecilla-Camps *et al.* [10-12, 23-25]. The active site of the oxygen sensitive [NiFe]-hydrogenases consists of a heterodinuclear [('S')₂Ni(μ -'S')₂(μ -X)Fe(CO)(CN)₂] (S = Cysteine, X = O or OH) fragment (Figure 1, middle). Recently, the crystal structure of a standard [NiFe] hydrogenase at 0.89 Å resolution [26]. Both [FeFe]- and [NiFe]-hydrogenases catalyze the reversible conversion of H₂ into protons and electrons (eq. 1).

$$2H^{+} + 2e = H_2$$
 Eq. 1

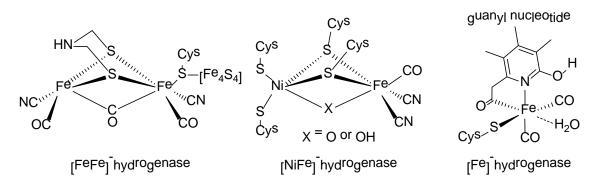
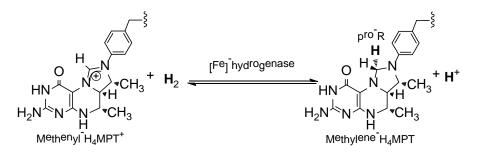
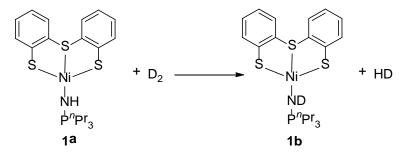



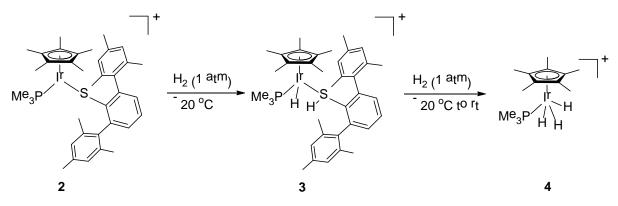
Figure 1. The active sites of three types of hydrogenases [7-13].

The [Fe]-hydrogenase is unique in both structure and activity. The active site of [Fe]hydrogenase contains only one Fe center coordinated by one cysteine sulfur, two cis-oriented CO, and a bidentate guanylylpyridinol ligand (Figure 1, right) [13]. [Fe]-hydrogenase does not catalyze the hydrogen production and activation reactions described in eq. 1. Instead, it catalyzes the hydrogenation of methenyltetrahydromethanopterin (methenyl-H₄MPT⁺) to form methylenetetrahydromethanopterin (methylene-H₄MPT) and proton, respectively (Scheme 1) [4-6, 27, 28].

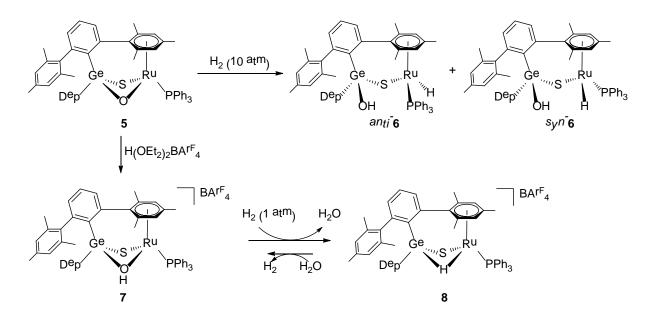

Scheme 1. Reactions catalyzed by [Fe]-hydrogenase [13].

Hydrogen is a clean energy carrier and an important chemical reagent. The impressive catalytic activity of hydrogenases has inspired a large body of biomimetic chemistry of hydrogenases [4, 16]. While many models can catalyze the hydrogen evolution reaction, very few of them can mediate or catalyze the reverse reaction, the hydrogen activation. This article reviews the current state of biomimetic hydrogen activation. Although several reviews on hydrogenases and their models have been published [4-6, 27-31], this topic has not been exclusively covered.

2. Reactions of [NiFe]-hydrogenase models with hydrogen

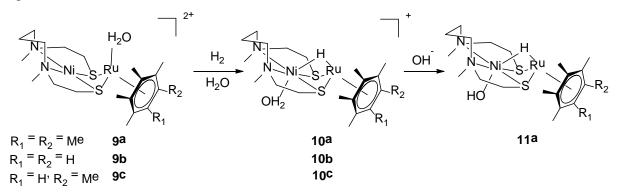

Since the determination of the crystal structure of [NiFe]-hydrogenase, many synthetic models of its active site have been synthesized [4-6, 31,32]. However, only a few models can react with H_2 .

A Ni thiolate complex $[Ni(NHP^{n}Pr_{3})(`S_{3}')]$ (1a) $[`S_{3}'^{2-} = bis(2-sulfanylphenyl)sulfide (2-)]$ that modeled the nickel core of [NiFe]-hydrogenase reacted slowly with D₂ at high pressure, giving HD and $[Ni(NHP^{n}Pr_{3})(`S_{3}')]$ (1b) (Scheme 2). 1a also catalyzed the H/D exchange reaction between D₂O and H₂, a characteristic reaction of [NiFe]-hydrogenase [33].


Scheme 2. Reaction of 1a with $D_2[33]$.

The complex $[Cp*Ir(PMe_3)(SDmp)](BAr^{F_4})$ (2) (Dmp = 2,6-dimesitylphenyl) [34] reacted with 1 atm of H₂ even at -20 °C, forming a thiol-hydride complex $[Cp*Ir(PMe_3)(H)(HSDmp)](BAr^{F_4})$ (3). When the temperature was increased to room temperature, complex 3 further reacted with H₂ to give complex $[Cp*Ir(PMe_3)H_3](BAr^{F_4})$ (4) with concomitant release of HSDmp (Scheme 3).

Scheme 3. Reactions of 2 with H₂ [34].

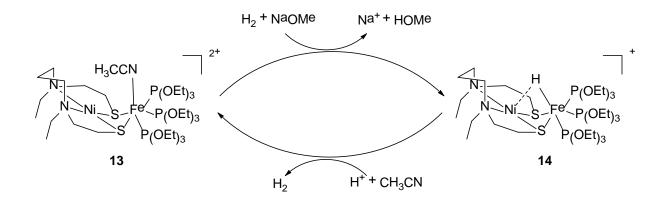

Several dinuclear Ru-Ge complexes could heterolytically activate H₂ [35-37]. For example, complex [(Dmp)(Dep)Ge(μ -S)(μ -O)Ru(PPh₃)] (**5**, Dep = 2,6-diethylphenyl) reacted slowly with H₂ (10 atm.) at 75°C to afford two isomers, *anti*-**6** and *syn*-**6**, *via* Ru-O bond cleavage [35]. The proton was accepted by the μ -O ligand, while the H⁻ was accepted by the Ru ion. Protonation of **5** yielded complex [(Dmp)(Dep)Ge(μ -S)(μ -OH)Ru(PPh₃)](BAr^F₄) (**7**) which could split H₂ under 1 atm, giving [(Dmp)(Dep)Ge(μ -S)(μ -H)Ru(PPh₃)](BAr^F₄) (**8**) and H₂O (Scheme 4). The reaction of **7** with H₂ was reversible: complex **8** reacted with excess H₂O to give **7** and H₂ [36]. Very recently, Matsumoto and co-workers published the theoretical study on this activation of H₂ with the Ru-Ge complex [38].

Scheme 4. Reactivity of Ru-Ge complexes [35-37].

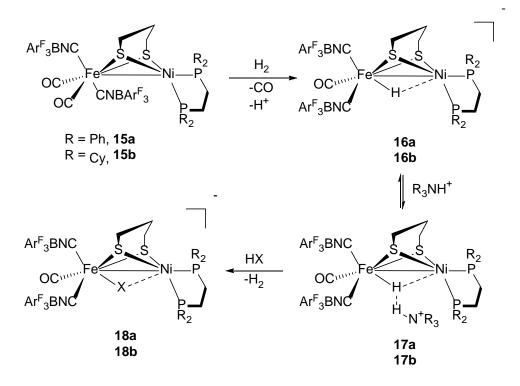
Although the above-mentioned complexes exhibit some functions of hydrogenases, none of them contains a ${}^{10}M(\mu-S)_2{}^8M$ moiety (${}^{10}M$ = group 10 metals, 8M = group 8 metals) that is the core of the active site of [NiFe]-hydrogenase.

The dinuclear Ni-Ru complex $[(NiL)Ru(H_2O)(\eta^6-C_6Me_6)](NO_3)_2$ (**9a**, L = N,N'-dimethyl-N,N'-bis(2-mercaptoethyl)-1,3-propanediamine) reacted with H₂ in water under ambient conditions, resulting in $[(NiL)(H_2O)(\mu-H)Ru(\eta^6-C_6Me_6)](NO_3)$ (**10a**) with a bridging hydride (Scheme 5) [39]. When deprotonated, **10a** was transformed into the neutral complex $[(NiL)(OH)(\mu-H)Ru(\eta^6-C_6Me_6)]$ (**11a**). **11a** catalyzed the hydrogenation of aldehydes to the corresponding alcohols in water [40]. When the C₆Me₆ group was changed to C₆Me₅H or C₆Me₄H₂, the complexes (**9b**, **9c**) also activated H₂. However, if C₆Me₆ was replaced by a weaker σ -donating aromatic group such as C₆H₆ or C₆MeH₅, the resulting Ni-Ru complexes could no longer split H₂. This was attributed to the lower basicity of their coordinated H₂O ligand [41].

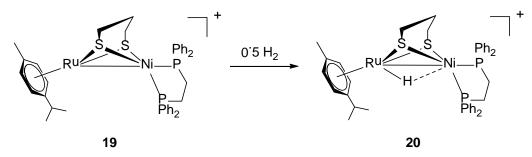
Scheme 5. Reactions of 9 with H_2 [39-40].


Catalytic extraction of electrons from H_2 was achieved by use of the low-valent Ni^IRu^I complex 12 with Cu²⁺ as oxidant at pH 4-6 [42]. A proposed mechanism for the catalytic cycle is shown in Scheme 6, in which H_2 is heterolytically activated twice.

Scheme 6. Reactions of 12 with $H_2[42]$.


A breakthrough was made by the Ogo group when they synthesized complex

[Ni(L)Fe(MeCN){P(OEt)₃}₃](BPh₄)₂ (L = N,N'-diethyl-3,7-diazanonane-1,9-dithiolato) (**13**) (Scheme 7) [43]. Compared to **9a-9c**, **13** is more similar to the active site of [NiFe]hydrogenase because Ru is replaced by Fe. The authors introduced three P(OEt)₃ groups to replace the aromatic ligands in **9a-9c**, which might be the key to its reactivity. **13** reacted with H₂ to give the hydride complex [Ni(L) (μ -H)Fe{P(OEt)₃}](BPh₄) (**14**). The reaction required a strong base (NaOMe) to accept the H⁺ from H₂. The H⁻ ligand was located on the Fe center. **14** reacted with H⁺ in CH₃CN to regenerated **13** and H₂. This reaction is sub-stoichiometric. **14** was also able to reduce methyl viologen (MV²⁺) and ferrocenium ion ([Fe(C₅H₅)₂]⁺) to their one-electron reduced forms. This was the first Ni-Fe example that mediated both H₂ activation and evolution, an essential feature of [NiFe]-hydrogenase.

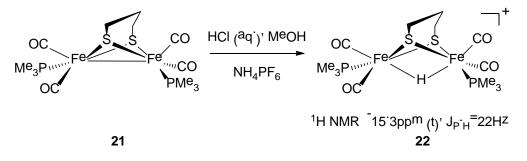

Scheme 7. Reactivity of 13 and 14 [43].

Two Ni-Fe model complexes $(CO)_2(CNBAr^F_3)_2Fe(\mu-pdt)Ni(dxpe)$ (dxpe = dppe, **15a**; dxpe = dcpe, **15b**) were synthesized by Rauchfuss and co-workers, each with two CO and two BAr_F³ protected cyanide ligands on Fe (Scheme 8) [44]. Introduction of BAr^F₃ ligands is essential for H₂ activation, because it makes the Fe center more electrophilic. After H₂ cleavage, the H⁻ ligand binds to Fe rather than Ni, giving products **16a** and **16b**. When a weak acid was added to **16**, dihydrogen-bridging products **17a** and **17b** were formed, respectively. If a stronger acid such as HCl was used, H₂ was released with concomitant formation of the Cl-adduct **18a** and **18b**, respectively. **16a** was also an electrocatalyst for H₂ oxidation in the presence of base DBU.

Scheme 8. Reactivity of Ni-Fe models of Rauchfuss et al [44].

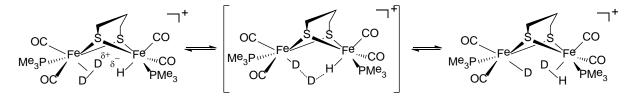
[(cymene)Ru(μ -pdt)Ni(dppe)](BAr^F₄) (**19**) reacted with 1 atm of H₂ to give [(cymene)Ru(μ -pdt)(μ -H)Ni(dppe)](BAr^F₄) (**20**) (Scheme 9) [45]. In this case, H₂ was reduced to two H⁻, while the metal ion was oxidized.

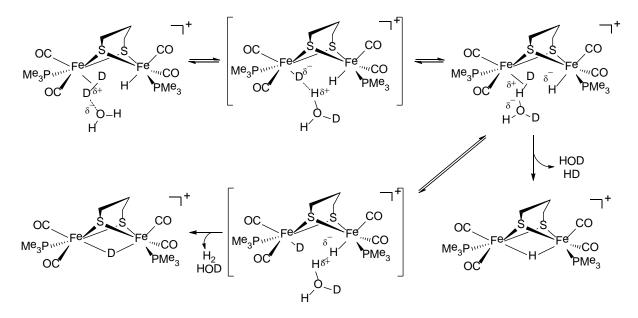
Scheme 9. Reaction of 19 with $H_2[45]$.


It should be noted that among all the above complexes, most of them only activate H_2 in a stoichiometric or sub-stoichiometric manner. Only a few complexes, such as **1a**, **11a**, and **12**, can activate H_2 catalytically. Moreover, nearly all complexes only mediate heterolytic H_2 cleavage or H/D exchange, but not oxidation of H_2 to protons. A notable exception is complex **12**.

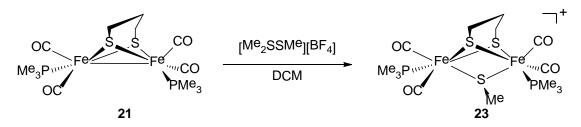
3. Reactions of [FeFe]-hydrogenase models with hydrogen

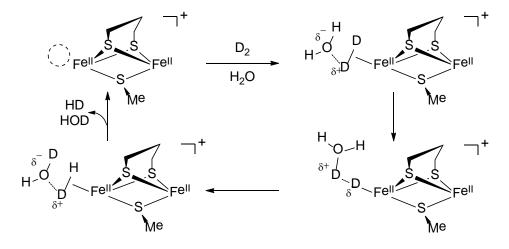
While the structure of the active site of [FeFe]-hydrogenase was first revealed at the late 1990s [46,47], a primitive structural model, dithiolate-bridged hexacarbonyl diiron complexe $[(\mu-SEt)_2Fe_2(CO)_6]$, was reported already in 1929 [48]. Modern models contain additional cyanide, phosphine or carbene ligands. Many models mediate or catalyze proton reduction to form H₂, however, only a few models can split or oxidize hydrogen.


3.1 Diiron models without an internal amine moiety

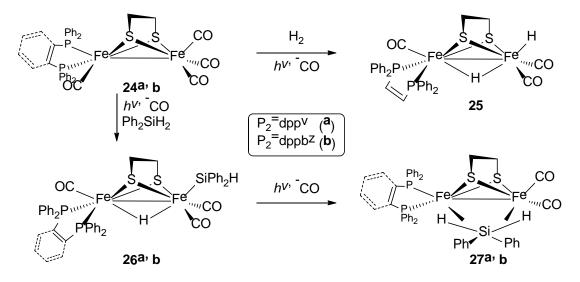

Treatment of the bridged dithiolato complex $(\mu$ -pdt)[Fe(CO)₂(PMe₃)₂]₂ (21, pdt=SCH₂CH₂CH₂CH₂S) with concentrated HCl yielded a stable bridging hydride complex 22 (Scheme 10) [49]. Complex 22 mediated H/D exchange from H₂/D₂ and from H₂/D₂O. The exchange reactions were promoted by sunlight and were inhibited by CO. This suggests that an open site for D₂ binding prior to D-D cleavage was a key step in the reactions.

Scheme 10. Synthesis of complex 22 [49].

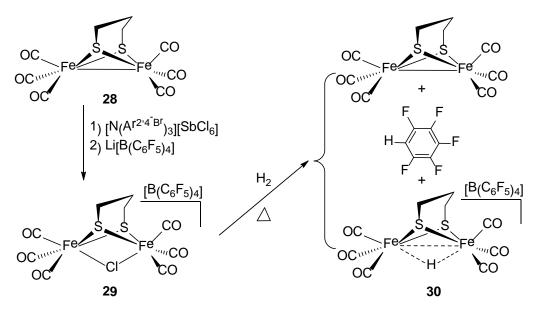

A series of similar complexes, $(\mu-R)_2[Fe(CO)_2(PMe_3)]_2$, $(R = SEt, SCH_2CH_2S, SCH_2C_6H_4CH_2S)$ and their protonated derivatives were studied by Darensbourg and coworkers [50]. The different thiolate ligands had no effects on H/D exchange. Therefore, the sulfur ligands are unlikely proton acceptors in H₂ cleavage. Instead, these ligands are present due to bioavailability. Meanwhile, two mechanisms were proposed for the H/D exchange on **22** (Scheme 11).


Scheme 11. The two proposed pathways of H/D exchange by 22 [50].

Model complex **23** was obtained from reaction of **21** and SMe⁺ (Scheme 12) [51]. This complex can take up H₂ and catalyze the photolytic H/D exchange in D_2/H_2O . It does not catalyze H₂/D₂ exchange under anhydrous conditions.


Scheme 12. Synthesis of complex 23 [51].

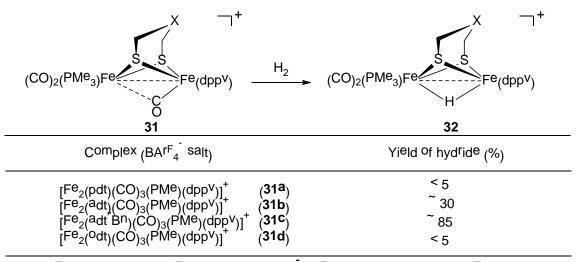
A proposed mechanism for the H/D exchange is shown in Scheme 13. The H_2/D_2 binding site is *trans* to the μ -SMe. H_2O is the external base to facilitate H/D exchange.


Scheme 13. The proposed mechanism for H/D exchange by 23 [51].

Oxidative addition of dihydrogen and silane on a [FeFe]-hydrogenase model **24** (dppv = 1,2-bis(diphenylphosphino)ethylene, dppbz = 1,2-bis(diphenylphosphino)benzene) [52] was reported. Reaction of **24** with H₂ under light gave **25**. Analogous reaction with Ph₂SiH₂ gave **26**. It was proposed that the reactions proceeded by decarbonylation under light followed by formation of a transient σ complex before intramolecular oxidative addition. Photolysis of **26** gave complex **27** (Scheme 14).

Scheme 14. Reaction of 24 with H₂ and Ph₂SiH₂ [52].

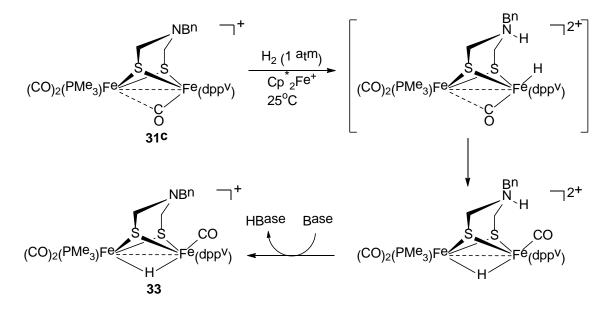
Heating of complex **29**, obtained by oxidation of complex **28** with $[N(Ar^{2,4-Br})_3][SbCl_6]$ and anion metathesis with Li[B(C₆F₅)₄], in fluorobenzene to 70°C under 1 atm of hydrogen gas resulted in the cationic bridging hydride complex $[Fe_2(\mu-H)(\mu-S_2C_3H_6)(CO)_6][B(C_6F_5)_4]$ (**30**), albeit in a small yield (ca. 5%) (Scheme 15) [53,54].


Scheme 15. Reaction of 29 with H₂ [53-54].

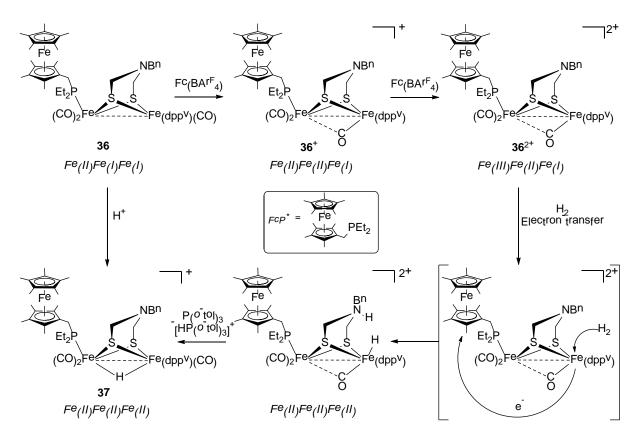
Among these diiron model complexes without an internal amine moiety, complexes 22 and 23 can catalytically cleavage H_2 , while complexes 24 and 29 can only react with H_2 in a stoichiometric manner. None of these models are reported to oxidize H_2 into protons.

3.2 Diiron complexes with an internal amine moiety

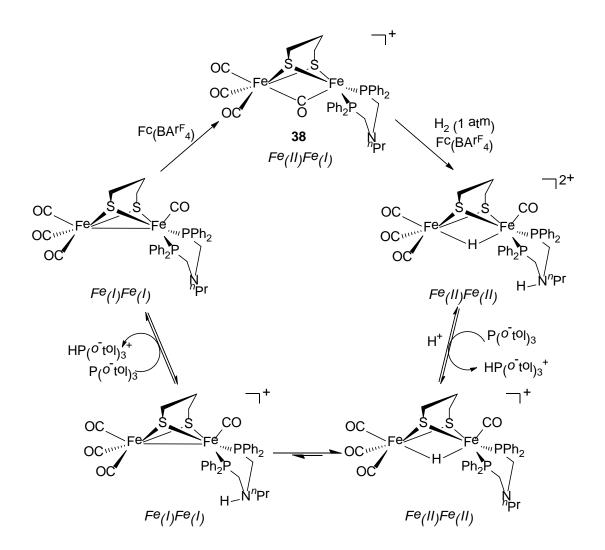
[FeFe]-hydrogenase has an active site made of a diiron core bridged by a 2-aza-propane-1,3-dithilate ligand. The internal amine nitrogen of the 2-aza-propane-1,3-dithilate ligand is an important proton acceptor for heterolytic cleavage of H_2 [55]. Thus, many model complexes containing an internal amine moiety have been developed.


The complexes with an azadithiolate ligand $[Fe_2[(SCH_2)_2X)(CO)_3(PMe)_3(dppv)]^+$ (**31b,c**) could react with H₂, in a stoichiometric manner, to give the corresponding hydride complexes 32b.c. The related complexes with а propanedithiolate ligand $[Fe_2[(SCH_2)_2CH_2)(CO)_3(PMe)_3(dppv)]^+$ (31a)oxadithiolate ligand or an $[Fe_2[(SCH_2)_2O)(CO)_3(PMe)_3(dppv)]^+$ (31d), on the other hand, were unreactive toward H₂ (Scheme 16) [56,57]. These results suggest that heterolytic hydrogen activation was assisted by the azadithiolate ligand.

 $pdt = (SCH_{2})_2CH_2; adt = (SCH_{2})_2(NH); adt Bn = (SCH_{2})_2NCH_2Ph; odt = (SCH_{2})_2OH_2(NH); odt = (SCH_{2})_2OH_2(NH); odt = (SCH_{2})_2OH_2(NH); adt Bn = (SCH_{2})_2OH_2(NH); adt Bn = (SCH_{2})_2(NH); adt Bn = (SC$

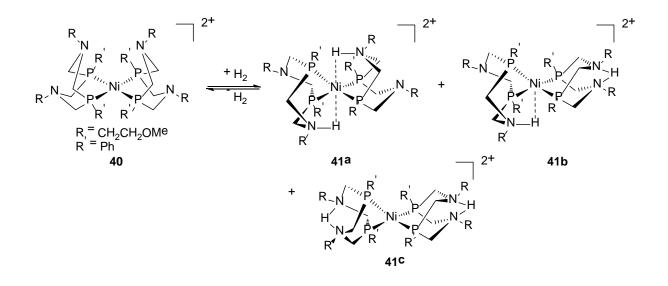

Scheme 16. Reactions of 31 with H_2 [56-57].

Complex $[Fe_2[(SCH_2)_2NBn](CO)_3(dppv)(PMe_3)]^+$ (**31c**) reacted with H₂ only slowly (>26h, 25°C, 1800 psi H₂). In the presence of 1 equiv. of a mild oxidant, $[Fe(C_5Me_5)_2]BAr^F_4[Ar^F=3.5-C_6H_3(CF_3)_2]$ ($[Fc]BAr^F_4$), however, **31c** reacted with 2 atm H₂ at 25°C to give the diferrous hydride product **33** quantitatively in several hours (Scheme 17) [58]. In the presence of 1 equiv. of $[Fc]BAr^F_4$, the more electrophilic diiron model $[Fe_2[(SCH_2)_2NBn](CO)_4(dppn)]^+$ (**34**) (dppn = 1,8-bis(diphenylphosphino)naphthalene) reacted with 1 atm H₂ even more rapidly ($t_{1/2} < 13 \text{ min at } 20^\circ$ C). H₂ activation by [**34** $]/[Fc]^+$ is 10-fold faster than that by [**31c** $]/[Fc]^+$ and 10^4 -fold faster than that by complex **31c** in the absence of an oxidant. Kinetic study indicates that H₂ binding is the rate-determining step in these reactions.

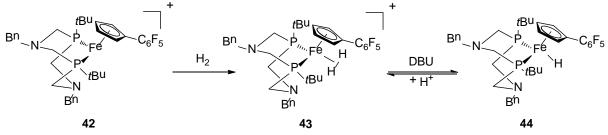

Scheme 17. Reaction of 31c with H_2 in the presence of [Fc]BAr^F₄[58].

Rauchfuss and co-worker introduced a redox active FcP* ligand to complex $[Fe_2[(SCH_2)_2NBn](CO)_4(dppv)]^+$ (**35**) as a model of the Fe-S cluster found in the active site of [FeFe]-hydrogenase. The dicationic complex **36**²⁺ reacted with H₂ through proton-coupled electron transfer to give the bridging hydride complex **37** [59]. The FcP* ligand was reduced by one electron and a heterolytic H₂ cleavage pathway was proposed (Scheme 18). Whereas **31c** can only stoichiometrically activate H₂, the dication **36**²⁺ could act as a catalyst for the oxidation of H₂ in the presence of excess oxidant and excess base, although the rate is only 0.4 turnover/h.

Scheme 18. Model complexes with the redox-active ligand FcP* and the reaction of 36^{2+} with H₂ [59].


The complex $[(\mu-pdt){Fe(CO)_3}{Fe(CO)(\kappa_2-Ph_2PCH_2N(^nPr)CH_2PPh_2}]$ (38) [60, 61] could catalytically oxidize H₂ using excess FcBAr^F₄ as oxidant and P(*o*-totyl)₃ as base [62]. Analogous complex $[(\mu-pdt){Fe(CO)_3}{Fe(CO)(dppp}]$ (39) lacking an internal base on the phosphine ligand didn't react with 1 atm H₂ under similar conditions. A proposed mechanism for H₂ oxidation is shown in Scheme 19. It was noted that the catalytic activity of complex 38 for H₂ oxidation was unchanged in the presence of 2% CO.

Scheme 19. Proposed mechanism for H₂ oxidation catalyzed by complex 38 [62].


3.3 Bio-inspired complexes with an internal amine moiety

Inspired by the pendant SCH₂NHCH₂S ligand in the active site of [FeFe]-hydrogenase, DuBois, Bullock, and co-workers developed a series of functional models of bis-diphosphine nickel complexes with pendant amines that are active for either/both H₂ production or/and H₂ oxidation. [63-65] For example, Ni(II) complex $[Ni(P^{Ph}_2N^R_2)]^{2+}$ (R = CH₂CH₂OMe) (40) reacted with H₂ (1 atm) to form a mixture of Ni(0) isomers 41a, 41b and 41c, with two protonated amines (Scheme 20) [66]. Moreover, 40 could electrocatalytically produce and oxidize H₂ close to the thermodynamic potential. A similar complex $[Ni(P^{Cy}_2N^{Gly}_2)]$ exhibited similar functions even in water [67].

Scheme 20. Reaction of 40 with H_2 [66].

Along the same line, DuBois *et al.* synthesized several Fe(II) complexes based on similar pendant amines in the diphosphine ligands (Scheme 21) [68-70]. Complex $[(CpC_6F_5)Fe(P^{tBu}_2N^{Bn}_2)]^+(BAr_4^F)$ (42) reacted with H₂ (1 atm) at room temperature generating complex $[(CpC_6F_5)Fe(P^{tBu}_2N^{Bn}_2)(H_2)]^+(BAr_4^F)$ (43), which further reacted with DBU to form $[(CpC_6F_5)Fe(P^{tBu}_2N^{Bn}_2)(H)]$ (44) [68]. 44 is an electrocatalyst for H₂ oxidation with low overpotentials of 160-220 mV, and its turnover frequencies reached to 0.66-2.0 s⁻¹, which was the highest for iron complexes.

Scheme 21. Reaction of 42 with H_2 [68].

4 Reactions of [Fe]-hydrogenase models with hydrogen

[Fe]-hydrogenase can activate H_2 in the presence of methenyl- H_4MPT^+ . In the absence of this enzymatic substrate, however, [Fe]-hydrogenase and its extracted Fe-containing co-factor do not react with H_2 . In recent years many synthetic models of [Fe]-hydrogenase have been reported [4, 27-28, 71]. Some selected examples are shown in Figure 2, and several of them have very similar structure with the [Fe]-hydrogenase [72-79]. However, until now, none of the [Fe]-hydrogenase models can activate H_2 , even those structurally very similar to the enzyme. The substrate methenyl- H_4MPT^+ and the protein environment are likely required for H_2 activation. A recent theoretical study on this [Fe]-hydrogenase models offers suggestions on how H_2 activation might be achieved through incorporation of synthetic ligands [80].

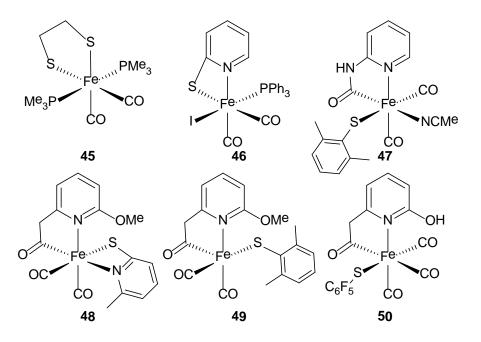


Figure 2. Some selective [Fe]-Hydrogenase models [72-79].

5. Conclusion

Among hundreds of structural models of hydrogenases, only a few can activate H₂. These models and their reactions with H₂ are summarized here. Only a small portion of these H₂-activing model complexes, including complexes **1a**, **11a**, **12**, **22**, **23**, **36**, **38**, can do it in a catalytic manner, which is important not only as more faithful mimics of hydrogenases, but also relevant to practical applications. Most models only mediate or catalyze heterolytic H₂ cleavage without involvement of redox processes. This type of H₂ activation is certainly relevant to the reactions of hydrogenases, and can have important applications in hydrogenases is the oxidation of H₂ into protons, which is relevant to energy conversion in fuel cells. So far only models **12**, **31c**, **36**, **38** are able to convert H₂ into protons in the presence of an oxidant. On the other hand, the bio-inspired models developed by DuBois, Bullock, and co-workers (e.g., complexes **40** and **44**) are quite active for catalytic H₂ oxidation. Some of these complexes have been integrated in fuel-cell-like devices [81]. Looking forward, more catalytically active model complexes of hydrogenases, for both hydrogenation and hydrogen oxidation reactions, remain to be developed.

The chemistry summarized here provides insights into the reaction mechanism of hydrogenases and lays important foundations for the development of bio-mimetic H_2 -activating complexes. However, the application of bio-mimetic compounds in catalytic hydrogenation reactions is largely unexplored. The bio-mimetic hydrogen catalysis is expected to be a fruitful research topic in the near future.

Acknowledgments

The work at EPFL is supported by the Swiss National Science Foundation (no. 200020_152850/1) and a starting grant from the European Research Council (no. 257096), and the National Natural Science Foundation of China (No. 21302028).

References

[1] S. Shima, R.K. Thauer, Chem. Rec. 7 (2007) 37.

[2] P.M. Vignais, B. Billoud, Chem. Rev. 107 (2007) 4206.

[3] J.C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Chem. Rev. 107 (2007) 4273.

[4] C. Tard, C.J. Pickett, Chem. Rev. 109 (2009) 2245.

[5] T.R. Simmons, G. Berggren, M. Bacchi, M. Fontecave, V. Artero. Coord. Chem. Rev. 270-271 (2014) 127.

[6] W. Lubitz, H. Ogata, O. Rüdiger, E. Reijerse, Chem. Rev. 114 (2014) 4081.

[7] J.W. Peters, W.N. Lanzilotta, B.J. Lemon, L.C. Seefeldt, Science 282 (1998) 1853.

[8] Y. Nicolet, C. Piras, P. Legrand, C.E. Hatchikian, J.C. Fontecilla-Camps, Structure 7 (1999) 13.

[9] A.S. Pandey, T.V. Harris, L.J. Giles, J.W. Peters, R.K. Szilagyi, J. Am. Chem. Soc. 130 (2008) 4533.

[10] A. Volbeda, M.-H. Charon, C. Piras, E.C. Hatchikian, M. Frey, J.C. Fontecilla-Camps, Nature 373 (1995) 580.

[11] J. Fritsch, P. Scheerer, S. Frielingsdorf, S. Kroschinsky, B. Friedrich, O. Lenz, C.M.T. Spahn, Nature 479 (2011) 249.

[12] Y. Shomura, K.-S. Yoon, H. Nishihara, Y. Higuchi, Nature 479 (2011) 253.

[13] S. Shima, O. Pilak, S. Vogt, M. Schick, M.S. Stagni, W. Meyer-Klaucke, E. Warkentin, R.K. Thauer, U. Ermler, Science 321 (2008) 572.

[14] W. Lubitz, E. Reijerse, M. van Gastel. Chem. Rev. 107 (2007) 4331.

[15] P.E.M. Siegbahn, J.W. Tye, M.B. Hall. Chem. Rev. 107 (2007) 4414.

[16] J.-F Capon, F. Gloaguen, F.Y. Pétillon, P. Schollhammer, J. Talarmin, Coord. Chem. Rev. 253 (2009) 1476.

[17] Y. Nicolet, A.L. de Lacey, X. Vernede, V.M. Fernandez, E.C. Hatchikian, J.C.Fontecilla-Camps, J. Am. Chem. Soc. 123 (2001) 1596.

[18] A. Silakov, B. Wenk, E. Reijerse, W. Lubitz, Phys. Chem. Chem. Phys. 11 (2009) 6592.

[19] Ö.F. Erdem, L. Schwartz, M. Stein, A. Silakov, S. Kaur-Ghumaan, P. Huang, S.Ott, E.J. Reijerse, W. Lubitz, Angew. Chem. Int. Ed. 50 (2011) 1439.

[20] G. Berggren, A. Adamska, C. Lambertz, T.R. Simmons, J. Esselborn, M. Atta, S. Gambarelli, J.-M. Mouesca, E. Reijerse, W. Lubitz, T. Happe, V. Artero, M. Fontecave, Nature 499 (2013) 66.

[21] R.D. Bethel, M.Y. Darensbourg, Nature 499 (2013) 40.

- [22] D. Schilter, T.B. Rauchfuss, Angew. Chem. Int. Ed. 52 (2013) 13518.
- [23] S.P. Best, Coord. Chem. Rev. 249 (2005) 1536.
- [24] A.L. De Lacey, V.M.Fernández, M. Rousset. Coord. Chem. Rev. 249 (2005) 1596.
- [25] A.L. De Lacey, V.M. Fernández, Chem. Rev. 107 (2007) 4304.
- [26] H. Ogata, K. Nishikawa, W. Lubitz, Nature Doi:10.1038/nature14110.
- [27] M.J. Corr, J.A. Murphy, Chem. Soc. Rev. 40 (2010) 2279.
- [28] S. Dey, P.K. Das, A. Dey, Coord. Chem. Rev. 257 (2013), 42.
- [29] R.M. Bullock, A.M. Appel, M.L. Helm, Chem. Commun. 50 (2014) 3125.
- [30] N. Wang, M. Wang, L. Chen, L. Sun, Dalton Trans. 42 (2013) 12059.
- [31] S. Kaur-Ghumaan, M. Stein, Dalton Trans. 43 (2014) 9392.
- [32] Y. Ohki, K. Tatsumi, Eur. J. Inorg. Chem. 2011 (2011) 973.
- [33] D. Sellmann, F. Geipel, M. Moll, Angew. Chem. Int. Ed. 39 (2000) 561.
- [34] Y. Ohki, M. Sakamoto, K. Tatsumi, J. Am. Chem. Soc. 130 (2008) 11610.
- [35] T. Matsumoto, Y. Nakaya, K. Tatsumi, Angew. Chem. Int. Ed. 47 (2008) 1913.
- [36] T. Matsumoto, Y. Nakaya, N. Itakura, K. Tatsumi, J. Am. Chem. Soc. 130 (2008) 2458.
- [37] T. Matsumoto, M. Itakura, Y. Nakaya, K. Tatsumi, Chem. Commun. 47 (2011) 1030.
- [38] N. Ochi, T. Matsumoto, T. Dei, Y. Nakao, H. Sato, K. Tatsumi, S. Sakaki, Inorg. Chem. 54 (2015) 576.
- [39] S. Ogo, R. Kabe, K. Uehara, B. Kure, T. Nishimura, S.C. Menon, R. Harada, S. Fukuzumi, Y. Higuchi, T. Ohhara, T. Tamada, R. Kuroki, Science 316 (2007) 585.
- [40] B. Kure, T. Matsumoto, K. Ichikawa, S. Fukuzumi, Y. Higuchi, T. Yagi, S. Ogo, Dalton Trans. (2008) 4747.
- [41] K. Kim, T. Kishima, T. Matsumoto, H. Nakai, S. Ogo, Organometallics 32 (2013) 79.
- [42] T. Matsumoto, B. Kure, S. Ogo, Chem. Lett. 37 (2008) 970.
- [43] S. Ogo, K. Ichikawa, T. Kishima, T. Matsumoto, H. Nakai, K. Kusaka, T. Ohhara, Science 339 (2013) 682.
- [44] B.C. Manor, T.B. Rauchfuss, J. Am. Chem. Soc. 135 (2013) 11895.
- [45] G.M. Chambers, J. Mitra, T.B. Rauchfuss, M. Stein, Inorg. Chem. 53 (2014) 4243.
- [46] J.W. Peters, W.N. Lanzilotta, B.J. Lemon, L.C. Seefeldt, Science 282 (1998) 1853.
- [47] Y. Nicolet, C. Piras, P. Legrand, C.E. Hatchikian, J.C. Fontecilla-Camps, Structure 7 (1999) 13.

[48] H. Reihlen, A. Gruhl, G. Hessling, Liebigs Ann. Chem. 472 (1929) 268.

[49] X. Zhao, I.P. Georgakaki, M.L. Miller, J.C. Yarbrough, M.Y. Darensbourg, J. Am. Chem. Soc., 123 (2001) 9710.

[50] X. Zhao, I.P. Georgakaki, M.L. Miller, R. Mejia-Rodriguez, C.Y. Chiang, M.Y. Darensbourg, Inorg, Chem., 41 (2002) 3917.

[51] I.P. Georgakaki, M.L. Miller, M.Y. Darensbourg, Inorg, Chem., 42 (2003) 2489.

[52] Z.M. Heiden, G. Zampella, L.D. Gioia, T.B. Rauchfuss, Angew, Chem. Int. Ed., 47 (2008) 9756.

[53] S.L. Matthews, D.M. Heinekey, Inorg, Chem., 50 (2011) 7925.

[54] S.L. Matthews, D.M. Heinekey, Inorg, Chem., 49 (2010) 9746.

[55] M. Bruschi, G. Zampella, P. Fantucci, L. De Gioia, Coord. Chem. Rev. 249 (2005) 1620.

[56] M.T. Olsen, B.E. Barton, T.B. Rauchfuss, Inorg, Chem., 48 (2009) 7507.

[57] M.T. Olsen, T.B. Rauchfuss, S.R. Wilson, J. Am. Chem. Soc., 132 (2010) 17733.

[58] J.M. Camara, T.B. Rauchfuss, J. Am. Chem. Soc., 133 (2011) 8098.

[59] J.M. Camara, T.B. Rauchfuss, Nat. Chem, 4 (2012) 26.

[60] N. Wang; M. Wang; T. Zhang; P. Li; J. Liu; L Sun. Chem. Commun. 2008 (2008) 5800.

[61] N. Wang; M. Wang; L. Liu; K. Jin; L. Chen; L. Sun, Inorg. Chem. 48 (2009) 11551.

[62] N. Wang; M. Wang, Y. Wang, D. Zheng, H. Han, M. S. Ahlquist, L. Sun, J. Am. Chem. Soc. 135 (2013) 13688.

[63] M.R. DuBois, D.L. DuBois, Chem. Soc. Rev. 38 (2009) 62.

[64] R.M. Bullock, A.M. Appel, M.L. Helm. Chem. Commun. 50 (2014) 3125.

[65] B. Ginovska-Pangovska, A. Dutta, M.L. Reback, J.C. Linehan, W.J. Shaw, Acc. Chem.Res. 47 (2014) 2621.[66] S.E. Simth, J.Y. Yang, D.L. DuBois, R.M. Bullock, Angew. Chem.Int. Ed. 51 (2012) 3152.

[67] A. Dutta, S. Lense, J. Hou, M.H. Engelhard, J.A.S. Robert, W.J. Shaw, J. Am. Chem. Soc. 135 (2013) 18490.

[68] T. Liu, D.L. DuBois, R.M. Bullock, Nat. Chem. 5 (2013) 228.

[69] T. Liu, X. Wang, C. Hoffmann, D.L. DuBois, R.M. Bullock, Angew. Chem. Int. Ed. 53 (2014) 5300.

[70] T. Liu, S. Chen, M.J. O'Hagan, M.R. DuBois, R.M. Bullock, D.L. DuBois, J. Am. Chem. Soc. 134 (2012) 6257.

[71] K.M. Schultz, D. Chen, X. Hu, Chem. Asian J. 8 (2013) 1068.

[72] Y. Guo, H. Wang, Y. Xiao, S. Vogt, R.K. Thauer, S. Shima, P.I. Volkers, T.B. Rauchfuss, V. Pelmenschikov, D.A. Case, E.E. Alp, W. Sturhahn, Y. Yoda, S.P. Cramer, Inorg. Chem. 47 (2008) 3969.

[73] B. Li, T. Liu, C.V. Popescu, A. Bilko, M.Y. Darensbourg, Inorg. Chem. 48 (2009) 11283.

[74] T. Liu, B. Li, C.V. Popescu, A. Bilko, L.M. Perez, M.B. Hall, M.Y. Darensbourg, Chem. Eur. J. 16 (2010) 3083.

[75] P.J. Turrell, J.A. Wright, J.N.T. Peck, V.S. Oganesyan, C.J. Pickett, Angew. Chem. Int. Ed. 49 (2010) 7508.

[76] D. Chen, R. Scopelliti, X. Hu, Angew. Chem. Int. Ed. 49 (2010) 7512.

[77] D. Chen, R. Scopelliti, X. Hu, Angew. Chem. Int. Ed. 50 (2011) 5671.

[78] B. Hu, D. Chen, X. Hu, Chem. Eur. J. 20 (2014) 1677.

[79] L.-C. Song, F.-Q. Hu, G.-Y. Zhao, J.-W. Zhang, W.-W. Zhang, Organometallics 33 (2014) 6614.

[80] K. A. Murray, M. D. Wodrich, X. Hu, C. Corminboeuf, Chem. Eur. J. 21 (2015) 3987.

[81] P. D. Tran, A. Morozan, S. Archambault, J. Heidkamp, P. Chenevier, H. Dau, M. Fontecave, A. Martinent, B. Jousselme, V. Artero, Chem. Sci. 6 (2015) 2050.