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Gas transmission networks

Objective of this research: Extend the continuous and deterministic formualtion of (F.
Babonneau, Y. Nesterov and J.-P. Vial. Design and operations of gas transmission networks.
Operations Research, Operations Research, 60(1):34-47, 2012) to uncertain demands, fixed
investment costs, and commercial diameters.
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Operations of gas transmission networks

Find a flow x and a system of pressures p such that

laβ
xa|xa|
Da5

= pi
2 − pj

2, a = (i, j), a ∈ Ep (1a)

φ ≤ Ax ≤ φ̄ (1b)

(pi
2 − pj

2)xa ≤ 0, xa ≥ 0, a = (i, j), a ∈ Ec (1c)

(pi
2 − pj

2)xa ≥ 0, xa ≥ 0, a = (i, j), a ∈ Er (1d)

p
i
≤ pi ≤ p̄i , i ∈ V . (1e)

⇒ Nonlinear and non convex set of inequalities. We rely on a two-step procedure of
find a feasible pair of flows and pressures
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First step: Finding feasible flows

The first problem computes flows

min
x

E(x)− 〈f , x〉 − 〈d ,Ax〉 (2a)

φ ≤ Ax ≤ φ̄ (2b)

xa ≥ 0, a ∈ Ec ∪ Er . (2c)

The function E(x) =
∑

a∈V Ea(xa) is separable and is defined by

Ea(xa) = la
β

D5
a

|xa|3

3
, a ∈ Ep (3)
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Second step: Finding compatible pressures

The second one computes compatible pressures. Given x∗, find a system of pressures
p and an action vector f such that

f + AT (p)2 = E ′(x∗) (4a)

fa = 0, a ∈ Ep (4b)

p2
i − p2

j ≤ 0, if x∗a > 0, a = (i, j), a ∈ Ec (4c)

p2
i − p2

j ≥ 0, if x∗a > 0, a = (i, j), a ∈ Er (4d)

p
i
≤ pi ≤ p̄i , i ∈ V . (4e)

By applying the simple change of variable Pi = p2
i , system (4) is linear in f and P.
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Reinforcement problem

Let En to be the set of arcs on which reinforcement takes place and C̄ be an upper
bound on the total investment cost. The investment problem can be stated as

min
x

min
(Da, a∈En)

∑
a∈En

Ea(xa; Da) +
∑

a∈Ep

Ea(xa) (5a)

I(D) ≤ C̄ (5b)

φ ≤ Ax ≤ φ̄ (5c)

xa ≥ 0, a ∈ Ec ∪ Er . (5d)

Assumption

Data analysis shows that the investment cost can be approximated by

I(D) = l × (k1 × D2.5 + k2), (6)

where l is the length of the arc and D ≤ D̄.
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Convex and continuous formulation of reinforcement
problem

Let us perform the change of variable ya = D2.5
a , a ∈ En,

min
x

min
(ya, a∈En)

∑
a∈En

(
la
β

3
|xa|3

y2
a

)
+
∑

a∈Ep

la
β

3
|xa|3

D5
a

(7a)

∑
a∈En

la × ka
1 × ya ≤ C̄ (7b)

φ ≤ Ax ≤ φ̄ (7c)

xa ≥ 0, a ∈ Ec ∪ Er . (7d)

The function |x |3/y2 is jointly convex in x and y .
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Extension to integer considerations

Let k be the set of commercial diameters.

min
x,y,z

∑
a∈En

la
β

3
|xa|3

y2
a

+
∑

a∈Ep

E(xa)

∑
a∈En

∑
k

zak la(ka
1 D5/2

k + ka
2 ) ≤ C̄

ya =
∑

k

zak D5/2
k , k = 1, . . . ,K

∑
k

zak ≤ 1, k = 1, . . . ,K

φ ≤ Ax ≤ φ̄

xa ≥ 0, a ∈ Ec ∪ Er

zak ∈ [0, 1] a ∈ En, k = 1, . . . ,K .

(8)
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Relaxed formulation of reinforcement problem

By partial dualization, the problem is

max
α≥0

min
x

min
(ya, a∈En)

E(x ; y) + E(x) + α(I(y)− C̄) (9a)

φ ≤ Ax ≤ φ̄ (9b)

xa ≥ 0, a ∈ Ec ∪ Er . (9c)

with the inner minimization problem

Ca(xa) = min
ya

{
la
β

3
|xa|3

y2
a

+ αlaka
1 ya

}
, a ∈ En. (10)
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Solving the inner minimization problem

Theorem (Babonneau, Nesterov, Vial)

Ca(xa) is convex and is given by

Ca(xa) = laβ1/3
(3αk1

2

)2/3
|xa|

The optimal diameter in problem (11) is

D∗a =

(
2β

3αka
1

) 2
15

|xa|
2
5
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Simplified formulation of the reinforcement problem

For a given α

min
x

∑
a∈En

laβ1/3
(3αka

1
2

)2/3
|xa|+

∑
a∈Ep

la
β

3
|xa|3

D5
a

(11a)

Ai x ≥ φi , i ∈ Vd (11b)

φ
i
≤ Ai x ≤ φ̄i , i /∈ Vd (11c)

xa ≥ 0, a ∈ Ec ∪ Er . (11d)
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Uncertainty model

We consider the demand parameter at delivery nodes i as uncertain such that

φi = φn
i + ξi φ̂i

where φn
i = φ

i
is the nominal demand, φ̂n

i = γφ
i

is the demand dispersion and ξi is a
random factor with support [−1, 1].

The problem of reinforcement gas transmission networks is now a two-stage problem
with recourse. In the first stage, reinforcement investment is selected and in the
second stage the decision concerns the flow (and the activity of compressor and
regulator stations) to satisfy observed demands.
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Affine decision rules

Given the demand model, we can define a decision rule as a function from the space of
demands realizations to the space of recourse flow decisions in order to capture the
fact that flows can be adjusted to fit observed demands. We propose affine decision
rules (ADR)

xa = ν0
a +

∑
i∈Vd

ξiν
i
a, ∀a ∈ Ep.

In that formulation, the new decision variables are the coefficients ν0
a ∈ R and ν i

a ∈ R.
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Uncertain formulation with robust constraints

We can now replace x and φ by their definition.

H(α) = min
t,ν

∑
a∈En

(3αka
1

2

)2/3
ta +

∑
a∈Ep

la
β

3
t3
a

D5
a

(12a)

|ν0
a +

∑
i∈Vd

ξiν
i
a| ≤ ta a ∈ En ∀ξ ∈ Ξ (12b)

Ai (ν
0
a +

∑
i∈Vd

ξiν
i
a) ≥ φn

i + ξi φ̂i , i ∈ Vd ∀ξ ∈ Ξ (12c)

φ
i
≤ Ai (ν

0
a +

∑
i∈Vd

ξiν
i
a) ≤ φ̄i , i /∈ Vd ∀ξ ∈ Ξ (12d)

ν0
a +

∑
i∈Vd

ξiν
i
a ≥ 0, a ∈ Ec ∪ Er ∀ξ ∈ Ξ. (12e)
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Applying robust optimization

We can now state the robust equivalent of the robust constraint.

Theorem (Ben-Tal, El Ghaoui, Nemirovski)

Let ξi , i = 1, . . . ,m be independent random variables with values in interval [−1, 1]
and with average zero: E(ξi ) = 0, the robust equivalent of the constraint

āT x + (PT x)T ξ ≤ b, for all ξ ∈ Ξ = {ξ | ||ξ||2 ≤ k},

is
āT x + k ||PT x ||2 ≤ b,

with an associated satisfaction probability of (1− exp(− k2

2.5 ))
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Belgian instance
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Belgian instance

#Nodes Label φ φ̄ p p̄

1 Zeebrugge 8.87 11.594 0 77
2 Dudzele 0 8.4 0 77
3 Brugge −∞ −3.918 30 80
4 Zomergem 0 0 0 80
5 Loenhout 0 4.8 0 77
6 Antwerpen −∞ −4.034 30 80
7 Gent −∞ −5.256 30 80
8 Voeren 20.344 22.012 50 66.2
9 Berneau 0 0 0 66.2

10 Liège −∞ −6.365 30 66.2
11 Warnand 0 0 0 66.2
12 Namur −∞ −2.12 0 66.2
13 Anderlues 0 1.2 0 66.2
14 Péronnes 0 0.96 0 66.2
15 Mons −∞ −6.848 0 66.2
16 Blagneries −∞ −15.616 50 66.2
17 Wanze 0 0 0 66.2
18 Sinsin 0 0 0 63
19 Arlon −∞ −0.222 0 66.2
20 Pétange −∞ −1.919 25 66.2

We increase the bounds of the demands and the supplies with a factor 1.3 to
make the existing design under-sized.

We assume demand variability of 5%.

Mosek conic MIP optimizer (beta version)
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Impact of fixed costs on reinforcement

Formulation
#Arc No fixed costs Fixed costs No fixed costs Fixed costs No fixed costs Fixed costs

1 - - - - - -
2 - - - - - -
3 - - - - - -
4 - - - - - -
5 - - - - - -
6 - - - - - -
7 - - - - - -
8 - - - - - -
9 - - - - - -
10 - 798.7 - 664.7 361.3 898.4
11 - - - - 361.3 -
12 - 798.7 - - 361.3 898.4
13 - - - - 361.3 -
14 - - - - - -
15 - - - - - -
16 - - - - - -
17 - - - - - -
18 - - - - - -
19 - 922.9 465.5 807.8 666.0 1000.0
20 - - - - 163.5 -
21 - - - - 178.2 -
22 170.5 397.6 264.0 - 316.2 428.5
23 170.5 - 264.0 359.7 316.2 428.5
24 122.0 - 234.1 - 288.8 401.6

Costs 1’508 1’508 1’770 1’770 3’320 3’317
CPU 0.1 140.4 0.1 72.0 0.1 77.4
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Impact of commercial diameters on reinforcement

Investment budget with fixed costs
1’508 1’770 3’320

#Arc Continuous Commercial Continuous Commercial Continuous Commercial

1 - - - - - -
2 - - - - - -
3 - - - - - -
4 - - - - - -
5 - - - - - -
6 - - - - - -
7 - - - - - -
8 - - - - - -
9 - - - - - -
10 798.7 1000 664.7 1000 898.4 600
11 - - - - - -
12 798.7 800 - 800 898.4 1000
13 - - - - - -
14 - - - - - -
15 - - - - - -
16 - - - - - -
17 - - - - - -
18 - - - - - -
19 922.9 800 807.8 1000 1000 1000
20 - - - - - -
21 - - - - - -
22 397.6 400 - 400 428.5 400
23 - - 359.7 - 428.5 400
24 - - - 600 401.6 400

CPU 140.4 233.0 72.0 318.0 77.4 450.9
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Robust investment solutions for α = 10

Arc Probability satisfaction
# (O,D) Existing Determinist 10%( k =0.5) 33% (k =1) 80% (k =2)

1 (1,2) 890 0 0 0 0
2 (1,2) 890 0 0 0 0
3 (2,3) 890 0 0 0 0
4 (2,3) 890 0 0 0 0
5 (3,4) 890 316 357 365 324
6 (5,6) 590.1 0 0 0 0
7 (6,7) 590.1 0 0 0 0
8 (7,4) 590.1 0 0 0 0
9 (4,14) 890 0 0 0 0
10 (8,9) 890 536 536 539 575
11 (8,9) 395.5 0 0 0 0
12 (9,10) 890 536 536 539 575
13 (9,10) 395.5 0 0 0 0
14 (10,11) 890 0 0 0 0
15 (10,11) 395.5 0 0 0 0
16 (11,12) 890 0 0 0 0
17 (12,13) 890 0 0 0 0
18 (13,14) 890 0 0 0 0
19 (14,15) 890 701 717 730 730
20 (15,16) 890 320 375 395 395
21 (11,17) 395.5 199 211 221 221
22 (17,18) 315.5 329 334 340 340
23 (18,19) 315.5 329 334 340 340
24 (19,20) 315.5 301 308 313 313
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Next steps

Validation procedure : generate a set of demand scenarios and find compatible
pressures. Compute a quality of service.

Combine all features.

Improve compressor modelling

Thanks !!!
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