On the Discrete Logarithm Problem on Algebraic Tori

Rob Granger ${ }^{1}$ Fré Vercauteren ${ }^{2}$

1granger@cs.bris.ac.uk
University of Bristol, University of Waterloo
${ }^{2}$ fvercaut@esat. kuleuven.be
Katholieke Universiteit Leuven

15th August / CRYPTO 2005

Outline

(1) Motivation and Results
(2) Algebraic Tori
(3) Algorithm for T_{2}
(4) Algorithm for T_{6}
(5) Summary and Future Work

Motivation

Consider the extension field $\mathbb{F}_{p^{n}}$.

- Let g be a generator of $\mathbb{F}_{p^{n}}^{\times}$, and let $h \in\langle g\rangle$
- DLP: Given g and h, compute s such that $g^{s}=h$

Basic question: Are all extension fields of the same size

Motivation

Consider the extension field $\mathbb{F}_{p^{n}}$.

- Let g be a generator of $\mathbb{F}_{p^{n}}^{\times}$, and let $h \in\langle g\rangle$
- DLP: Given g and h, compute s such that $g^{s}=h$

Basic question: Are all extension fields of the same size equally secure?

Motivation
 Current approaches to the DLP

Two methods:

- Pohlig-Hellman reduction + square root algorithm
- Index calculus in full multiplicative group $\mathbb{F}_{p^{n}}^{\times}$

Implications:

- Use prime order subgroup of size ≥ 160 bits which does not embed into a subfield
- Choose $\mathbb{F}_{p^{n}}$ of size ≥ 1024 bits

Better question: Do these measures alone ensure security?

Motivation
 Current approaches to the DLP

Two methods:

- Pohlig-Hellman reduction + square root algorithm
- Index calculus in full multiplicative group $\mathbb{F}_{p^{n}}^{\times}$

Implications:

- Use prime order subgroup of size ≥ 160 bits which does not embed into a subfield
- Choose $\mathbb{F}_{p^{n}}$ of size ≥ 1024 bits

Better question: Do these measures alone ensure security?

Motivation
 A pertinent example

Take two "cryptographically secure" fields:

Better question still: Are F_{1}^{\times}and F_{2}^{\times}equally secure?

Motivation
 A pertinent example

Take two "cryptographically secure" fields:

- $F_{1}=\mathbb{F}_{p_{1}^{29}}$
- $F_{2}=\mathbb{F}_{p_{2}^{30}}$

Assume that:

- $\left\lfloor 29 \cdot \log _{2} p_{1}\right\rfloor=\left\lfloor 30 \cdot \log _{2} p_{2}\right\rfloor=1024$
- F_{1}^{\times}and F_{2}^{\times}both contain prime order subgroups ≥ 160-bits which do not embed into a proper subfield

Better question still: Are F_{1}^{\times}and F_{2}^{x} equally secure?

Motivation
 A pertinent example

Take two "cryptographically secure" fields:

- $F_{1}=\mathbb{F}_{p_{1}^{29}}$
- $F_{2}=\mathbb{F}_{p_{2}^{30}}$

Assume that:

- $\left\lfloor 29 \cdot \log _{2} p_{1}\right\rfloor=\left\lfloor 30 \cdot \log _{2} p_{2}\right\rfloor=1024$
- F_{1}^{\times}and F_{2}^{\times}both contain prime order subgroups ≥ 160-bits which do not embed into a proper subfield

Better question still: Are F_{1}^{\times}and F_{2}^{\times}equally secure?

Motivation

A pertinent example

Take two "cryptographically secure" fields:

- $F_{1}=\mathbb{F}_{p_{1}^{29}}$
- $F_{2}=\mathbb{F}_{p_{2}^{30}}$

Assume that:

- $\left\lfloor 29 \cdot \log _{2} p_{1}\right\rfloor=\left\lfloor 30 \cdot \log _{2} p_{2}\right\rfloor=1024$
- F_{1}^{\times}and F_{2}^{\times}both contain prime order subgroups ≥ 160-bits which do not embed into a proper subfield

Better question still: Are F_{1}^{x} and F_{2}^{x} equally secure?

Motivation

A pertinent example

Take two "cryptographically secure" fields:

- $F_{1}=\mathbb{F}_{p_{1}^{29}}$
- $F_{2}=\mathbb{F}_{p_{2}^{30}}$

Assume that:

- $\left\lfloor 29 \cdot \log _{2} p_{1}\right\rfloor=\left\lfloor 30 \cdot \log _{2} p_{2}\right\rfloor=1024$
- F_{1}^{\times}and F_{2}^{\times}both contain prime order subgroups ≥ 160-bits which do not embed into a proper subfield

Better question still: Are F_{1}^{\times}and F_{2}^{\times}equally secure?

Motivation

A pertinent example

Take two "cryptographically secure" fields:

- $F_{1}=\mathbb{F}_{p_{1}^{29}}$
- $F_{2}=\mathbb{F}_{p_{2}^{30}}$

Assume that:

- $\left\lfloor 29 \cdot \log _{2} p_{1}\right\rfloor=\left\lfloor 30 \cdot \log _{2} p_{2}\right\rfloor=1024$
- F_{1}^{\times}and F_{2}^{\times}both contain prime order subgroups ≥ 160-bits which do not embed into a proper subfield

Better question still: Are F_{1}^{\times}and F_{2}^{\times}equally secure?

Group decomposition

The identity $\left|\mathbb{F}_{p^{n}}^{\times}\right|=p^{n}-1=\prod_{d \mid n} \Phi_{d}(p)$, with $\Phi_{d}(\cdot)$ the d-th cyclotomic polynomial \Longrightarrow

- $\Phi_{d}(p) \mid\left(p^{d}-1\right)$ and so subgroup of this order embeds into
- subgroup of order $\Phi_{n}(p)$ can not be attacked by index calculus in proper subfields of $\mathbb{F}_{p^{n}}$
- subgroup of order $\Phi_{n}(p)$ is "cryptographically strongest" subgroup of $\mathbb{F}_{p^{n}}^{\times}$

In particular, $\left|\phi_{n}(p)\right|=O\left(p^{\phi(n)}\right)$.

Group decomposition

The identity $\left|\mathbb{F}_{p^{n}}^{\times}\right|=p^{n}-1=\prod_{d \mid n} \Phi_{d}(p)$, with $\Phi_{d}(\cdot)$ the d-th cyclotomic polynomial \Longrightarrow

- $\Phi_{d}(p) \mid\left(p^{d}-1\right)$ and so subgroup of this order embeds into $\mathbb{F}_{p^{d}} \subset \mathbb{F}_{p^{n}}$
- subgroup of order $\Phi_{n}(p)$ can not be attacked by index calculus in proper subfields of $\mathbb{F}_{p^{n}}$
- subgroup of order $\Phi_{n}(p)$ is "cryptographically strongest" subgroup of $\mathbb{F}_{p^{n}}^{\times}$

In particular, $\left|\Phi_{n}(p)\right|=O\left(p^{\phi(n)}\right)$.

Group decomposition

The identity $\left|\mathbb{F}_{p^{n}}^{\times}\right|=p^{n}-1=\prod_{d \mid n} \Phi_{d}(p)$, with $\Phi_{d}(\cdot)$ the d-th cyclotomic polynomial \Longrightarrow

- $\Phi_{d}(p) \mid\left(p^{d}-1\right)$ and so subgroup of this order embeds into $\mathbb{F}_{p^{d}} \subset \mathbb{F}_{p^{n}}$
- subgroup of order $\Phi_{n}(p)$ can not be attacked by index calculus in proper subfields of $\mathbb{F}_{p^{n}}$
- subgroup of order $\Phi_{n}(p)$ is "cryptographically strongest"
subgroup of $\mathbb{F}_{p^{n}}^{\times}$

In particular, $\left|\Phi_{n}(p)\right|=O\left(p^{\phi(n)}\right)$.

Group decomposition

The identity $\left|\mathbb{F}_{p^{n}}^{\times}\right|=p^{n}-1=\prod_{d \mid n} \Phi_{d}(p)$, with $\Phi_{d}(\cdot)$ the d-th cyclotomic polynomial \Longrightarrow

- $\Phi_{d}(p) \mid\left(p^{d}-1\right)$ and so subgroup of this order embeds into $\mathbb{F}_{p^{d}} \subset \mathbb{F}_{p^{n}}$
- subgroup of order $\Phi_{n}(p)$ can not be attacked by index calculus in proper subfields of $\mathbb{F}_{p^{n}}$
- subgroup of order $\Phi_{n}(p)$ is "cryptographically strongest" subgroup of $\mathbb{F}_{p^{n}}^{\times}$

In particular, $\left|\Phi_{n}(p)\right|=O\left(p^{\phi(n)}\right)$.

Group decomposition

The identity $\left|\mathbb{F}_{p^{n}}^{\times}\right|=p^{n}-1=\prod_{d \mid n} \Phi_{d}(p)$, with $\Phi_{d}(\cdot)$ the d-th cyclotomic polynomial \Longrightarrow

- $\Phi_{d}(p) \mid\left(p^{d}-1\right)$ and so subgroup of this order embeds into $\mathbb{F}_{p^{d}} \subset \mathbb{F}_{p^{n}}$
- subgroup of order $\Phi_{n}(p)$ can not be attacked by index calculus in proper subfields of $\mathbb{F}_{p^{n}}$
- subgroup of order $\Phi_{n}(p)$ is "cryptographically strongest" subgroup of $\mathbb{F}_{p^{n}}^{\times}$
In particular, $\left|\Phi_{n}(p)\right|=O\left(p^{\phi(n)}\right)$.

Motivation
 Back to F_{1} and $F_{2} \ldots$

Strongest subgroups have orders $O\left(p_{1}^{28}\right)$ and $O\left(p_{2}^{8}\right)$ respectively, so

$$
\left|\log \Phi_{29}\left(p_{1}\right)\right| /\left|\log \Phi_{30}\left(p_{2}\right)\right| \approx 3.5
$$

> - Hence if there is a native attack in these subgroups then it should be more efficient for F_{2} than for F_{1}.

Question: How can one exploit pronerties of these subgrouns
in an attack?
Answer: Interpret them as algebraic tori!

Motivation

Back to F_{1} and $F_{2} \ldots$

Strongest subgroups have orders $O\left(p_{1}^{28}\right)$ and $O\left(p_{2}^{8}\right)$ respectively, so

$$
\left|\log \Phi_{29}\left(p_{1}\right)\right| / / \log \Phi_{30}\left(p_{2}\right) \mid \approx 3.5
$$

- Hence if there is a native attack in these subgroups then it should be more efficient for F_{2} than for F_{1}.

Question: How can one exploit properties of these subgroups in an attack?

Answer: Interpret them as algebraic tori!

Motivation

Back to F_{1} and $F_{2} \ldots$

Strongest subgroups have orders $O\left(p_{1}^{28}\right)$ and $O\left(p_{2}^{8}\right)$ respectively, so

$$
\left|\log \Phi_{29}\left(p_{1}\right)\right| / / \log \Phi_{30}\left(p_{2}\right) \mid \approx 3.5
$$

- Hence if there is a native attack in these subgroups then it should be more efficient for F_{2} than for F_{1}.
Question: How can one exploit properties of these subgroups in an attack?

Answer: Interpret them as algebraic tori!

Motivation

Back to F_{1} and $F_{2} \ldots$

Strongest subgroups have orders $O\left(p_{1}^{28}\right)$ and $O\left(p_{2}^{8}\right)$ respectively, so

$$
\left|\log \Phi_{29}\left(p_{1}\right)\right| / / \log \Phi_{30}\left(p_{2}\right) \mid \approx 3.5
$$

- Hence if there is a native attack in these subgroups then it should be more efficient for F_{2} than for F_{1}.
Question: How can one exploit properties of these subgroups in an attack?

Answer: Interpret them as algebraic tori!

Overview of Results

- First direct index calculus attack on Algebraic Tori
- Practical upper bounds for the DLP in cryptographically relevant tori
- Fields of the same size previously thought to be equally secure are not always so

Overview of Results

- First direct index calculus attack on Algebraic Tori
- Practical upper bounds for the DLP in cryptographically relevant tori
- Fields of the same size previously thought to be equally secure are not always so

Overview of Results

- First direct index calculus attack on Algebraic Tori
- Practical upper bounds for the DLP in cryptographically relevant tori
- Fields of the same size previously thought to be equally secure are not always so

Background on Algebraic Tori

- Consider the degree n extension $K=\mathbb{F}_{q^{n}}$ of $k=\mathbb{F}_{q}$.
- Galois group $\operatorname{Gal}(K / K)=\langle\sigma\rangle$ with $\sigma: K \longrightarrow K: \alpha \mapsto \alpha^{q}$
- The norm map of K w.r.t. k is defined as

$$
N_{K / k}(\alpha)=\prod_{i=0}^{n-1} \sigma^{i}(\alpha)=\alpha^{\left(q^{n}-1\right) /(q-1)}
$$

- The \mathbb{F}_{q}-rational points on the algebraic torus T_{n} are

$$
\begin{aligned}
T_{n}\left(\mathbb{F}_{q}\right) & =\left\{\alpha \in \mathbb{F}_{q^{n}} \mid N_{K / k_{d}}(\alpha)=1 \text { for all } k \subseteq k_{d} \subsetneq K\right\} \\
& =\left\{\alpha \in \mathbb{F}_{q^{n}} \mid \alpha^{\Phi_{n}(q)}=1\right\}
\end{aligned}
$$

where $\Phi_{n}(x)$ is the n-th cyclotomic polynomial.

Rationality

- T_{n} is in fact an algebraic variety over \mathbb{F}_{q} of dimension $\phi(n)$

Definition

T_{n} is called rational if there exists birational map defined over \mathbb{F}_{q}

$$
\psi: \mathbb{A}^{\phi(n)} \longrightarrow T_{n}
$$

- Implication: if T_{n} rational then compression factor $n / \phi(n)$
- Theorem: T_{n} is rational for $n=p_{1}^{e_{1}} p_{2}^{e_{2}}$ with p_{i} prime

A Brief History

Torus-based systems in the last decade

System	Year	Embedding Field	Compression
LUC	'95	$\mathbb{F}_{p^{2}}$	2
Gong-Harn	'99	$\mathbb{F}_{p^{3}}$	$3 / 2$
XTR	'00	$\mathbb{F}_{p^{6}}$	3
XTR-extension	'01	$\mathbb{F}_{p^{6 m}}$	3
CEILIDH	'03	$\mathbb{F}_{p^{6}}$	3
T_{30}	'05	$\mathbb{F}_{p^{30}}$	$30 / 8$

- All pairing-based protocols map to tori as well.

Security Assumptions

- $T_{n}\left(\mathbb{F}_{q}\right) \subset \mathbb{F}_{q^{n}}^{\times} \Longrightarrow \operatorname{DLP}$ in $T_{n}\left(\mathbb{F}_{q}\right)$ is no harder than DLP in $\mathbb{F}_{q^{n}}^{\times}$
- The identity $x^{n}-1=\prod_{d \mid n} \Phi_{d}(x) \in \mathbb{Z}[x]$, plus Pohlig-Hellman reduction \Longrightarrow

- Since other tori embed into subfields, we deduce

- Conclusion: weak torus \Longrightarrow weak embedding field

Security Assumptions

- $T_{n}\left(\mathbb{F}_{q}\right) \subset \mathbb{F}_{q^{n}}^{\times} \Longrightarrow \operatorname{DLP}$ in $T_{n}\left(\mathbb{F}_{q}\right)$ is no harder than DLP in $\mathbb{F}_{q^{n}}^{\times}$
- The identity $x^{n}-1=\prod_{d \mid n} \Phi_{d}(x) \in \mathbb{Z}[x]$, plus Pohlig-Hellman reduction \Longrightarrow
DLP in $\left\{T_{d}\left(\mathbb{F}_{q}\right)\right\}_{d \mid n} \Longleftrightarrow \operatorname{DLP}$ in $\mathbb{F}_{q^{n}}^{\times}$
- Since other tori embed into subfields, we deduce

- Conclusion: weak torus \Longrightarrow weak embedding field

Security Assumptions

- $T_{n}\left(\mathbb{F}_{q}\right) \subset \mathbb{F}_{q^{n}}^{\times} \Longrightarrow \operatorname{DLP}$ in $T_{n}\left(\mathbb{F}_{q}\right)$ is no harder than DLP in $\mathbb{F}_{q^{n}}^{\times}$
- The identity $x^{n}-1=\prod_{d \mid n} \Phi_{d}(x) \in \mathbb{Z}[x]$, plus Pohlig-Hellman reduction \Longrightarrow

$$
\operatorname{DLP} \text { in }\left\{T_{d}\left(\mathbb{F}_{q}\right)\right\}_{d \mid n} \Longleftrightarrow \operatorname{DLP} \text { in } \mathbb{F}_{q^{n}}^{\times}
$$

- Since other tori embed into subfields, we deduce

$$
\operatorname{DLP} \text { in } T_{n}\left(\mathbb{F}_{q}\right) \Longleftrightarrow \operatorname{DLP} \text { in } \mathbb{F}_{q^{n}}^{\times}
$$

- Conclusion: weak torus \Longrightarrow weak embedding field

Security Assumptions

- $T_{n}\left(\mathbb{F}_{q}\right) \subset \mathbb{F}_{q^{n}}^{\times} \Longrightarrow \operatorname{DLP}$ in $T_{n}\left(\mathbb{F}_{q}\right)$ is no harder than DLP in $\mathbb{F}_{q^{n}}^{\times}$
- The identity $x^{n}-1=\prod_{d \mid n} \Phi_{d}(x) \in \mathbb{Z}[x]$, plus Pohlig-Hellman reduction \Longrightarrow

$$
\operatorname{DLP} \text { in }\left\{T_{d}\left(\mathbb{F}_{q}\right)\right\}_{d \mid n} \Longleftrightarrow \operatorname{DLP} \text { in } \mathbb{F}_{q^{n}}^{\times}
$$

- Since other tori embed into subfields, we deduce

$$
\operatorname{DLP} \text { in } T_{n}\left(\mathbb{F}_{q}\right) \Longleftrightarrow \operatorname{DLP} \text { in } \mathbb{F}_{q^{n}}^{\times}
$$

- Conclusion: weak torus \Longrightarrow weak embedding field

A Native Algorithm?

- Observation: Finite field embedding introduces redundancy in an attack, so ideally we want to work directly on the torus. How?
- Use affine representation of T_{n}.
- Problem: T_{n} not a UFD, so no natural notion of smoothness
- Solution: Impose a notion of smoothness algebraically (Gaudry 2004)
- Define a factor base in T_{n} which generates 'enough' of T_{n}, and which also permits an algebraic decomposition
- Then use standard index calculus technique

A Native Algorithm?

- Observation: Finite field embedding introduces redundancy in an attack, so ideally we want to work directly on the torus. How?
- Use affine representation of T_{n} !
- Problem: T_{n} not a UFD, so no natural notion of smoothness
- Solution: Impose a notion of smoothness algebraically (Gaudry 2004)
- Define a factor base in T_{n} which generates 'enough' of T_{n}, and which also permits an algebraic decomposition
- Then use standard index calculus technique

A Native Algorithm?

- Observation: Finite field embedding introduces redundancy in an attack, so ideally we want to work directly on the torus. How?
- Use affine representation of T_{n} !
- Problem: T_{n} not a UFD, so no natural notion of smoothness
- Solution: Impose a notion of smoothness algebraically (Gaudry 2004)
- Define a factor base in T_{n} which generates 'enough' of T_{n}, and which also permits an algebraic decomposition
- Then use standard index calculus technique

A Native Algorithm?

- Observation: Finite field embedding introduces redundancy in an attack, so ideally we want to work directly on the torus. How?
- Use affine representation of T_{n} !
- Problem: T_{n} not a UFD, so no natural notion of smoothness
- Solution: Impose a notion of smoothness algebraically (Gaudry 2004)
- Define a factor base in T_{n} which generates 'enough' of T_{n},
and which also permits an algebraic decomposition
- Then use standard index calculus technique

A Native Algorithm?

- Observation: Finite field embedding introduces redundancy in an attack, so ideally we want to work directly on the torus. How?
- Use affine representation of T_{n} !
- Problem: T_{n} not a UFD, so no natural notion of smoothness
- Solution: Impose a notion of smoothness algebraically (Gaudry 2004)
- Define a factor base in T_{n} which generates 'enough' of T_{n}, and which also permits an algebraic decomposition

A Native Algorithm?

- Observation: Finite field embedding introduces redundancy in an attack, so ideally we want to work directly on the torus. How?
- Use affine representation of T_{n} !
- Problem: T_{n} not a UFD, so no natural notion of smoothness
- Solution: Impose a notion of smoothness algebraically (Gaudry 2004)
- Define a factor base in T_{n} which generates 'enough' of T_{n}, and which also permits an algebraic decomposition
- Then use standard index calculus technique

The Torus $T_{2}\left(\mathbb{F}_{q^{m}}\right)$

- Let $\mathbb{F}_{q^{2 m}}=\mathbb{F}_{q^{m}}[\gamma] /\left(\gamma^{2}-\delta\right)$, with $\delta \in \mathbb{F}_{q^{m}} \backslash \mathbb{F}_{q}$ non-square $(q$ odd)
- For $\alpha=\alpha_{0}+\gamma \alpha_{1} \in \mathbb{F}_{q^{2 m}}$, the norm is

$$
N_{K / k}(\alpha)=\alpha \cdot \sigma(\alpha)=\left(\alpha_{0}+\gamma \alpha_{1}\right)\left(\alpha_{0}-\gamma \alpha_{1}\right)=\alpha_{0}^{2}-\delta \alpha_{1}^{2}
$$

- By definition, the torus $T_{2}\left(\mathbb{F}_{q^{m}}\right)$ is given by

$$
T_{2}\left(\mathbb{F}_{q^{m}}\right)=\left\{x+\gamma y \in \mathbb{F}_{q^{2 m}}: x^{2}-\delta y^{2}=1\right\}
$$

- T_{2} is of dimension $1, \# T_{2}\left(\mathbb{F}_{q^{m}}\right)=q^{m}+1$ and rational, with

$$
\psi: \mathbb{A}\left(\mathbb{F}_{q^{m}}\right) \longrightarrow T_{2}\left(\mathbb{F}_{q^{m}}\right): z \mapsto \frac{z-\gamma}{z+\gamma}
$$

Index Calculus for $T_{2}\left(\mathbb{F}_{q^{m}}\right)$

- DLP: let $\langle P\rangle=T_{2}\left(\mathbb{F}_{q^{m}}\right)$ and $Q=P^{s}$, compute s
- Let $\mathbb{F}_{q^{m}}=\mathbb{F}_{q}[t] /(f(t))$ with $f \in F_{q}[t]$ irreducible of degree m
- Decomposition base containing q elements:

$$
\mathcal{F}=\left\{\frac{a-\gamma}{a+\gamma}: a \in \mathbb{F}_{q}\right\} \subset T_{2}\left(\mathbb{F}_{q^{m}}\right)
$$

- Index calculus:
- Generate random combinations $R=P^{j} \cdot Q^{k}$
- Try to decompose R over \mathcal{F}
- Collect more than q relations and find s using linear algebra

Decomposition for $T_{2}\left(\mathbb{F}_{q^{m}}\right)$

- Since $\left(\operatorname{Res}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}} T_{2}\right)\left(\mathbb{F}_{q}\right)$ is m-dimensional, given $R=P^{j} \cdot Q^{k} \in T_{2}\left(\mathbb{F}_{q^{m}}\right)$, want to find m elements $P_{i} \in \mathcal{F}$ with

$$
P_{1} \ldots \cdots P_{m}=R
$$

- Using the rationality of T_{2}, we can equivalently write

$$
\prod_{i=1}^{m}\left(\frac{a_{i}-\gamma}{a_{i}+\gamma}\right)=\frac{r-\gamma}{r+\gamma}
$$

- Note: $a_{i} \in \mathbb{F}_{q}$ are unknown, $r \in \mathbb{F}_{q^{m}}$ is known

Decomposition for $T_{2}\left(\mathbb{F}_{q^{m}}\right)$

- Denote $\sigma_{i}\left(a_{1}, \ldots, a_{m}\right)$ the i-th symmetric polynomial, then

$$
\frac{\sigma_{m}-\sigma_{m-1} \gamma+\cdots+(-1)^{m} \gamma^{m}}{\sigma_{m}+\sigma_{m-1} \gamma+\cdots+\gamma^{m}}=\frac{r-\gamma}{r+\gamma}
$$

- Since $\gamma^{2}=\delta \in \mathbb{F}_{q^{m}}$, we finally obtain

$$
\frac{b_{0}\left(\sigma_{1}, \ldots, \sigma_{m}\right)-b_{1}\left(\sigma_{1}, \ldots, \sigma_{m}\right) \gamma}{b_{0}\left(\sigma_{1}, \ldots, \sigma_{m}\right)+b_{1}\left(\sigma_{1}, \ldots, \sigma_{m}\right) \gamma}=\frac{r-\gamma}{r+\gamma}
$$

- Polynomials b_{0} and b_{1} are linear in σ_{i} for $i=1, \ldots, m$
- Using affine representation, we obtain 1 equation over $\mathbb{F}_{q^{m}}$

$$
b_{0}\left(\sigma_{1}, \ldots, \sigma_{m}\right)-b_{1}\left(\sigma_{1}, \ldots, \sigma_{m}\right) r=0
$$

Decomposition for $T_{2}\left(\mathbb{F}_{q^{m}}\right)$

- Writing out on basis of $\left\{1, t, \ldots, t^{m-1}\right\}$ of $\mathbb{F}_{q^{m}}$ gives m linear equations over \mathbb{F}_{q} in the m unknowns σ_{i}
- Factor $p(x):=x^{m}-\sigma_{1} x^{m-1}+\sigma_{2} x^{m-2}-\cdots+(-1)^{m} \sigma_{m}$ over \mathbb{F}_{q}

If $p(x)$ splits completely, found a relation!

- Note: $p(x)$ splits with probability $1 / m$!.

Complexity of T_{2}-algorithm

- Complexity of the T_{2}-algorithm to compute DLOGs in $T_{2}\left(\mathbb{F}_{q^{m}}\right)$ is

$$
O\left(m!\cdot q \cdot\left(m^{3}+m^{2} \log q\right)+m^{3} q^{2}\right) \text { operations in } \mathbb{F}_{q}
$$

- Index calculus in $\mathbb{F}_{q^{2 m}}^{\times}$runs in time $L_{q^{2 m}}(1 / 2, c)$
- For $q \simeq m$!, the T_{2} algorithm runs in time $L_{q^{m}}\left(1 / 2, c^{\prime}\right)$

The Torus $T_{6}\left(\mathbb{F}_{q^{m}}\right)$

- For $q^{m} \equiv 2$ or $5(\bmod 9)$, let $x=\zeta_{3}$ and $y=\zeta_{9}+\zeta_{9}^{-1}$
- $\mathbb{F}_{q^{3 m}}=\mathbb{F}_{q^{m}}[y]$ and $\mathbb{F}_{q^{6 m}}=\mathbb{F}_{q^{3 m}}[x]$
- By definition, the $\mathbb{F}_{q^{m}}$-rational points on T_{6} are

$$
T_{6}\left(\mathbb{F}_{q^{m}}\right)=\left\{\alpha \in \mathbb{F}_{q^{6 m}} \mid N_{\mathbb{F}_{q^{6 m}} / \mathbb{F}_{q^{3 m}}}(\alpha)=1, N_{\mathbb{F}_{q^{6 m} / \mathbb{F}_{q^{2 m}}}}(\alpha)=1\right\}
$$

- T_{6} has dimension 2, $\# T_{6}\left(\mathbb{F}_{q^{m}}\right)=\Phi_{6}\left(q^{m}\right)=q^{2 m}-q^{m}+1$
- Birational map $\psi: \mathbb{A}^{2}\left(\mathbb{F}_{q^{m}}\right) \longrightarrow T_{6}\left(\mathbb{F}_{q^{m}}\right)$

$$
\psi\left(\alpha_{1}, \alpha_{2}\right)=\frac{1+\alpha_{1} y+\alpha_{2}\left(y^{2}-2\right)+\left(1-\alpha_{1}^{2}-\alpha_{2}^{2}+\alpha_{1} \alpha_{2}\right) x}{1+\alpha_{1} y+\alpha_{2}\left(y^{2}-2\right)+\left(1-\alpha_{1}^{2}-\alpha_{2}^{2}+\alpha_{1} \alpha_{2}\right) x^{2}}
$$

Index Calculus for $T_{6}\left(\mathbb{F}_{q^{m}}\right)$

- DLP: let $\langle P\rangle=T_{6}\left(\mathbb{F}_{q^{m}}\right)$ and $Q=P^{s}$, find s
- Let $\mathbb{F}_{q^{m}}=\mathbb{F}_{q}[t] /(f(t))$ with $f \in F_{q}[t]$ irreducible of degree m
- Decomposition base consists of $\psi(a t, 0)$ for $a \in \mathbb{F}_{q}$

$$
\mathcal{F}=\left\{\frac{1+(a t) y+\left(1-(a t)^{2}\right) x}{1+(a t) y+\left(1-(a t)^{2}\right) x^{2}}: a \in \mathbb{F}_{q}\right\}
$$

- Since $\left(\operatorname{Res}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}} T_{6}\right)\left(\mathbb{F}_{q}\right)$ is $2 m$-dimensional, to decompose $R=P^{j} \cdot Q^{k}$, want to find $P_{1}, \ldots, P_{2 m} \in \mathcal{F}$ such that

$$
P_{1} \cdots P_{2 m}=R
$$

Decomposition for $T_{6}\left(\mathbb{F}_{q^{m}}\right)$

- Let $P_{i}=\psi\left(a_{i} t, 0\right)$ with $a_{i} \in \mathbb{F}_{q}$, then

$$
\prod_{i=1}^{2 m}\left(\frac{1+\left(a_{i} t\right) y+\left(1-\left(a_{i} t\right)^{2}\right) x}{1+\left(a_{i} t\right) y+\left(1-\left(a_{i} t\right)^{2}\right) x^{2}}\right)=R=\psi\left(r_{1}, r_{2}\right)
$$

- Rewriting this using elementary symmetric polynomials σ_{i} gives

$$
\frac{b_{0}+b_{1} y+b_{2}\left(y^{2}-2\right)}{c_{0}+c_{1} y+c_{2}\left(y^{2}-2\right)}=\frac{1+r_{1} y+r_{2}\left(y^{2}-2\right)}{1-r_{1}^{2}-r_{2}^{2}+r_{1} r_{2}}
$$

- b_{k} and c_{k} are quadratic polynomials in the σ_{i} for $i=1, \ldots 2 m$

Decomposition for $T_{6}\left(\mathbb{F}_{q^{m}}\right)$

- Writing out on basis of $\left\{1, t, \ldots, t^{m-1}\right\}$ of $\mathbb{F}_{q^{m}}$ gives $3 m$ quadratic equations over \mathbb{F}_{q} in the $2 m$ unknowns σ_{i}
- Use Gröbner basis algorithms to compute the solutions σ_{i}
- Factor $p(x):=x^{2 m}-\sigma_{1} x^{2 m-1}+\sigma_{2} x^{2 m-2}-\cdots+(-1)^{2 m} \sigma_{2 m}$ $\operatorname{over} \mathbb{F}_{q}$

If $p(x)$ splits completely, found a relation!

- Note: $p(x)$ splits with probability $1 /(2 m)$!

Complexity of T_{σ}-algorithm

- Complexity of the T_{6}-algorithm to compute DLOGs in $T_{6}\left(\mathbb{F}_{q^{m}}\right)$ is

$$
O\left((2 m)!\cdot q \cdot\left(2^{12 m}+3^{2 m} \log q\right)+m^{3} q^{2}\right) \text { operations in } \mathbb{F}_{q}
$$

- Index calculus in $F_{q^{6 m}}^{\times}$runs in $L_{q^{6 m}}(1 / 2, c)$
- For $q \simeq(2 m)!2^{12 m}$, the T_{6} algorithm runs in time $L_{q^{m}}\left(1 / 2, c^{\prime}\right)$

T_{6} Experimental Results

$\log _{2}$ of expected running times (s) of the T_{6}-algorithm and Pollard-Rho in a subgroup of size 2^{160}

		m					
$\log _{2}\left\|\mathbb{F}_{p^{6 m}}\right\|$	$\log _{2}\left\|T_{6}\left(\mathbb{F}_{p^{m}}\right)\right\|$	ρ	1	2	3	4	5
200	67	18	25	$\mathbf{1 8}$	$\mathbf{1 4}$	$\mathbf{2 0}$	$\mathbf{2 9}$
300	100	34	42	36	$\mathbf{2 1}$	$\mathbf{2 4}$	$\mathbf{3 2}$
400	134	52	59	54	$\mathbf{3 2}$	$\mathbf{2 9}$	$\mathbf{3 6}$
500	167	66	75	71	44	$\mathbf{3 3}$	$\mathbf{3 9}$
600	200	66	93	88	55	40	$\mathbf{4 2}$
700	234	66	109	105	67	48	46
800	267	66	127	122	78	57	51
900	300	68	144	139	90	65	56
1000	334	69	161	156	101	74	60

Application to $T_{30}\left(\mathbb{F}_{p}\right)$

A $T_{30}\left(\mathbb{F}_{p}\right)$ cryptosystem was proposed at EUROCRYPT 2005 with the following parameters:

- $p=2527138379$, and so $\left|\mathbb{F}_{p^{30}}\right| \approx 2^{937}$
- $T_{30}\left(\mathbb{F}_{p}\right)$ contains a subgroup of order $\approx 2^{160}$

Since $\Phi_{30}(x) \mid \Phi_{6}\left(x^{5}\right)$, we have the inclusion $T_{30}\left(\mathbb{F}_{p}\right) \subset T_{6}\left(\mathbb{F}_{p^{5}}\right)$, and hence one can attack the former via the latter.

Question: What does this mean in practice?

Application to $T_{30}\left(\mathbb{F}_{p}\right)$

A $T_{30}\left(\mathbb{F}_{p}\right)$ cryptosystem was proposed at EUROCRYPT 2005 with the following parameters:

- $p=2527138379$, and so $\left|\mathbb{F}_{p^{30}}\right| \approx 2^{937}$
- $T_{30}\left(\mathbb{F}_{p}\right)$ contains a subgroup of order $\approx 2^{160}$

Since $\Phi_{30}(x) \mid \Phi_{6}\left(x^{5}\right)$, we have the inclusion $T_{30}\left(\mathbb{F}_{p}\right) \subset T_{6}\left(\mathbb{F}_{p^{5}}\right)$, and hence one can attack the former via the latter.

Question: What does this mean in practice?

Application to $T_{30}\left(\mathbb{F}_{p}\right)$

To solve the DLP in $T_{30}\left(\mathbb{F}_{p}\right)$:

- Pollard rho time is 2^{68} seconds
- Our time is 2^{58} seconds

Note:

- This is with a non-optimised Magma implementation
- Does not use the large prime variants of Thériault, Gaudry-Thomé-Thériault and Nagao
Conclusion:
- One should increase the base field size to thwart attack
- For this field size, possibly no advantage of T_{30} over T_{6}

Summary

- New algorithm to solve DLP in $T_{2}\left(\mathbb{F}_{q^{m}}\right)$ and $T_{6}\left(\mathbb{F}_{q^{m}}\right)$
- Exploits compact representation of algebraic tori
- Upper bounds on the hardness of the DLP in $\mathbb{F}_{q^{m}}$ for $m>1$
- Security of the DLP in $\mathbb{F}_{q^{30}}$ is questionable via $T_{6}\left(\mathbb{F}_{q^{5}}\right)$
- Does not influence security of MNT curves over \mathbb{F}_{p}
- Does not influence security of XTR over \mathbb{F}_{p}

Future work

- Complexity of general algorithm with Diem's choice of factor base
- Possibility of using $2 m$ disjoint factor bases

$$
P_{1} \cdots \cdots P_{2 m}=R \quad \text { with } P_{i} \in \mathcal{F}_{i}, \mathcal{F}_{i} \cap \mathcal{F}_{j}=\emptyset \text { for } i \neq j
$$

- Speeding up repeated Gröbner basis computation?

