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Motivation and Results

Motivation

Consider the extension field [Fpn.
@ Let g be a generator of F;n, andlet h € (g)
@ DLP: Given g and h, compute s such that g° = h
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Motivation and Results

Motivation

Consider the extension field [Fpn.
@ Let g be a generator of F;n, andlet h € (g)
@ DLP: Given g and h, compute s such that g° = h

Basic question: Are all extension fields of the same size
equally secure?
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Motivation and Results

Motivation
Current approaches to the DLP

Two methods:

@ Pohlig-Hellman reduction + square root algorithm
@ Index calculus in full multiplicative group I,

Implications:

@ Use prime order subgroup of size > 160 bits which does
not embed into a subfield

@ Choose Fpn of size > 1024 bits
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Motivation and Results

Motivation
Current approaches to the DLP

Two methods:

@ Pohlig-Hellman reduction + square root algorithm
@ Index calculus in full multiplicative group I,

Implications:

@ Use prime order subgroup of size > 160 bits which does
not embed into a subfield

@ Choose Fpn of size > 1024 bits

Better question: Do these measures alone ensure security?
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Motivation

A pertinent example

Take two “cryptographically secure” fields:
e F = Fp129
o F = Fpgo

Assume that:
@ |29-log, p1| = [30 - log, p2| = 1024

@ £ and F; both contain prime order subgroups > 160-bits
which do not embed into a proper subfield
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Motivation and Results

Motivation

A pertinent example

Take two “cryptographically secure” fields:
e F = Fp129
o F = Fpgo

Assume that:
@ |29-log, p1| = [30 - log, p2| = 1024

@ £ and F; both contain prime order subgroups > 160-bits
which do not embed into a proper subfield

Better question still: Are F* and F,° equally secure?
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Group decomposition

The identity |IF;n| =p" =1 =[Ig, Pa(p), with ®4(-) the d-th
cyclotomic polynomial =
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Group decomposition
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@ d4(p)|(p? — 1) and so subgroup of this order embeds into
de C }FpH

R. Granger, F. Vercauteren DLP on Algebraic Tori



Motivation and Results

Group decomposition

The identity |IF;n| =p" =1 =[Ig, Pa(p), with ®4(-) the d-th
cyclotomic polynomial =

@ dy(p)|(p? — 1) and so subgroup of this order embeds into
de C }FpH

@ subgroup of order ®,(p) can not be attacked by index
calculus in proper subfields of IFn

R. Granger, F. Vercauteren DLP on Algebraic Tori



Motivation and Results

Group decomposition

The identity [Fj| = p" — 1 = ][4, Pa(p), with ®4(-) the d-th
cyclotomic polynomial =
@ dy(p)|(p? — 1) and so subgroup of this order embeds into
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Motivation and Results

Group decomposition

The identity [Fj| = p" — 1 = ][4, Pa(p), with ®4(-) the d-th
cyclotomic polynomial =
@ dy(p)|(p? — 1) and so subgroup of this order embeds into
de C }FpH
@ subgroup of order ®,(p) can not be attacked by index
calculus in proper subfields of IFn
@ subgroup of order ¢,(p) is “cryptographically strongest”
subgroup of F;n

In particular, |®,(p)| = O(p?™).
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Motivation and Results

Motivation
Back to F; and F»...

Strongest subgroups have orders O(p?2) and O(p§)
respectively, so

|log ®29(p1)|/|log P3o(p2)| =~ 3.5
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Motivation and Results

Motivation
Back to F; and F»...

Strongest subgroups have orders O(p?2) and O(p§)
respectively, so

|log ®29(p1)|/|log P3o(p2)| =~ 3.5

@ Hence if there is a native attack in these subgroups then it
should be more efficient for F, than for F;.

Question: How can one exploit properties of these subgroups
in an attack?

Answer: Interpret them as algebraic tori!
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Motivation and Results

Overview of Results

@ First direct index calculus attack on Algebraic Tori
@ Practical upper bounds for the DLP in cryptographically
relevant tori

@ Fields of the same size previously thought to be equally
secure are not always so
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Algebraic Tori

Background on Algebraic Tori

@ Consider the degree n extension K = Fgn of k = FFg.

e Galois group Gal(K/k) = (o) witho : K — K : a +— af
e The norm map of K w.r.t. k is defined as

n—1
Nic i (x Hgf(a — Q@=1/(a=1)

e The Fg4-rational points on the algebraic torus T, are

To(Fq) = {a€Fq | Ny, (a)=1forallk C kg C K}
= {aeFqp[a®@ =1}

where ¢,(x) is the n-th cyclotomic polynomial.
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Algebraic Tori

Rationality

@ T,is in fact an algebraic variety over F of dimension ¢(n)

Definition
T is called rational if there exists birational map defined over g

P A T

@ Implication: if T, rational then compression factor n/¢(n)
@ Theorem: T, is rational for n = p{' ps? with p; prime
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Algebraic Tori

A Brief History

Torus-based systems in the last decade

System Year || Embedding Field || Compression
LUC '95 e 2
Gong-Harn ‘99 Fps 3/2
XTR ‘00 IF s 3
XTR-extension || 01 Fpom 3
CEILIDH ‘03 o 3
T30 ‘05 IF o0 30/8

@ All pairing-based protocols map to tori as well.
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Security Assumptions

@ Th(Fq) C Fgn = DLP in Tp(Fq) is no harder than DLP in
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Algebraic Tori

Security Assumptions

@ Th(Fq) C Fgn = DLP in Tp(Fq) is no harder than DLP in

@ Theidentity x" — 1 =[], ®q(x) € Z[x], plus
Pohlig-Hellman reduction =

DLP in {T4(Fq)}gn <= DLP in F,

@ Since other tori embed into subfields, we deduce

DLP in Tp(Fq) <= DLP inF,

@ Conclusion: weak torus = weak embedding field
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Algebraic Tori

A Native Algorithm?

@ Observation: Finite field embedding introduces
redundancy in an attack, so ideally we want to work
directly on the torus. How?
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A Native Algorithm?

@ Observation: Finite field embedding introduces
redundancy in an attack, so ideally we want to work
directly on the torus. How?

@ Use affine representation of T,!

@ Problem: T, not a UFD, so no natural notion of
smoothness

@ Solution: Impose a notion of smoothness algebraically
(Gaudry 2004)

e Define a factor base in T, which generates ‘enough’ of T,
and which also permits an algebraic decomposition
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Algebraic Tori

A Native Algorithm?

@ Observation: Finite field embedding introduces
redundancy in an attack, so ideally we want to work
directly on the torus. How?

@ Use affine representation of T,!

@ Problem: T, not a UFD, so no natural notion of
smoothness

@ Solution: Impose a notion of smoothness algebraically
(Gaudry 2004)

e Define a factor base in T, which generates ‘enough’ of T,
and which also permits an algebraic decomposition
e Then use standard index calculus technique

R. Granger, F. Vercauteren DLP on Algebraic Tori



Algorithm for Ty

The Torus Tx(Fgm)

® LetFoem = Fgm[+]/(72 — 0), with § € Fgm \ Fg non-square (q
odd)
@ Fora=ag+~vyaq € F gom, the norm is

Nic/k(a) = a - o(a) = (ag + var)(ap — yau) = af — 6o

@ By definition, the torus T>(Fgm) is given by
To(Fgm) = {X + vy € Fgem : X* — 6y® = 1}.
@ T, is of dimension 1, # T»(Fgm) = @™ + 1 and rational, with

: N Ry zZ="
¥ A(Fgn) — T2(Fq )-ZHZM

R. Granger, F. Vercauteren DLP on Algebraic Tori



Algorithm for Ty

Index Calculus for To(IFgn)

@ DLP:let (P) = T5(Fgm) and Q = P®, compute s
@ Let Fgm = [Fq[t]/(f(t)) with f € Fq4[t] irreducible of degree m
@ Decomposition base containing g elements:

a—vy
F=LX——":acly,s C To(Fgm
{a+,y q} 2(Fgm)

@ Index calculus:

e Generate random combinations R = P/ - Q*
e Try to decompose R over F
e Collect more than q relations and find s using linear algebra
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Algorithm for Ty

Decomposition for Tz(Fgn)

@ Since (ReSqu/Fq T2)(Fq) is m-dimensional, given
R = P/.QF € Ty(Fqgm), want to find m elements P; € F with

Py-----Ppn=R
@ Using the rationality of T,, we can equivalently write

m
H aj—v :r—’Y
. aj+- r—+-y

i=1

@ Note: g; € Fq are unknown, r € Fgm is known
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Algorithm for Ty

Decomposition for Tz(Fgn)

@ Denote oj(ay, ..., am) the i-th symmetric polynomial, then

Om—om1y+- -+ (=1)"" _r—vy
om+omy+--+7 r+-~

@ Since 72 = § € Fgm, we finally obtain

bo(o1,...,0m) —bi(o1,...,0om)Y _r=n
b0(0'1,...,Um)+b1(01,...,0m)7 r+-~

@ Polynomials by and by are linearing;fori=1,....m
@ Using affine representation, we obtain 1 equation over Fgm

b0(01,...,0'm)—b1(0’1,...,0’m)f20

R. Granger, F. Vercauteren DLP on Algebraic Tori



Algorithm for Ty

Decomposition for Tz(Fgn)

@ Writing out on basis of {1,¢,...,t™ '} of Fgm gives
m linear equations over g in the m unknowns o;

@ Factor p(x) := x" — g x™ " + oox™2 — ... 4 (=)o
over Fq

If p(x) splits completely, found a relation!

@ Note: p(x) splits with probability 1/m!.

R. Granger, F. Vercauteren DLP on Algebraic Tori



Algorithm for Ty

Complexity of T,-algorithm

@ Complexity of the T»-algorithm to compute DLOGs in
TQ(qu) is

Oo(m! - q- (m® + m?log q) + m*q?) operations in Fy

@ Index calculus in ]F;Zm runs in time Lgem(1/2, ¢)
@ For g ~ m!, the T, algorithm runs in time Lyn(1/2,¢)

R. Granger, F. Vercauteren DLP on Algebraic Tori



Algorithm for Tg

The Torus Tg(Fgm)

@ Forgm=2o0r5 (mod 9), let x = (3 andy:CngCQ_1
o Fqu = ]qu [y] and ]Fqﬁm = ]Fqu [X]
@ By definition, the Fyn-rational points on Tg are

T6(qu) = {Oé c Fqu | NIFqGIn/]Fq(im(a) - 17 Nﬁ“qem/ﬂ“qgm(a) = 1}

@ Ty has dimension 2, # Tg(Fgm) = ®(q™) = ¢°™ — @™ + 1
@ Birational map ¢ : A2(Fgm) — Tg(Fgm)

1+ay +aa(y? —2)+ (1 — a2 — a2 + ajap)x

aq, ) =
v(as, az) T+ay+az(y? —2) + (1 - af — a3 + arag)x?

R. Granger, F. Vercauteren DLP on Algebraic Tori



Algorithm for Tg

Index Calculus for Te(IFgn)

@ DLP:let (P) = Tg(Fgm) and Q = P®, find s
@ Let Fgm = [Fq[t]/(f(t)) with f € Fq4[t] irreducible of degree m
@ Decomposition base consists of ¢(at, 0) for a € Fq

[ 1+ (atyy+(1—(at)?)x
f‘{1 Flay + (1= (a)2)x .aqu}

@ Since (Res]qu/Fq Ts)(Fq) is 2m-dimensional, to decompose
R = P/.QF wanttofind Py,..., Py, € F such that

Py Py,=R
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Algorithm for Tg

Decomposition for Tg(Fgn)

@ Let P; = ¢(a;t,0) with a; € Fq, then

i_"’[ ( 1+ (ait)y + (1 — (ait)?)x

14+ (a/t)y-|- (1 _ (a/t)2)x2> =R= @b(ﬁ,fg)

i=1

@ Rewriting this using elementary symmetric polynomials o;
gives

bo + byy + bo(y? — 2) 1 +ry+n(y?-2)
Co+cCry +co(y?—2) 1—r2—r24+nr

@ by and ¢ are quadratic polynomials in the o; for
i=1,...2m
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Algorithm for Tg

Decomposition for Tg(Fgn)

@ Writing out on basis of {1,t,...,t™ 1} of Fgm gives 3m
quadratic equations over 4 in the 2m unknowns o;
@ Use Grébner basis algorithms to compute the solutions o;
@ Factor p(x) := x2™ — gy x2M=1 4 gox2M=2 — ... 4 (=1)2Mopp,
over Fq
If p(x) splits completely, found a relation!

@ Note: p(x) splits with probability 1/(2m)!
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Algorithm for Tg

Complexity of Tg-algorithm

@ Complexity of the Tg-algorithm to compute DLOGs in
Te(Fgm) is

O((2m)! - q - (2'2™ 4-32™log q) + m*g?) operations in I

@ Index calculus in quem runs in Lgem(1/2, €)

@ For g ~ (2m)!2'2™ the Ty algorithm runs in time
Lqm(1/2, C/)
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Algorithm for Tg

Ts Experimental Results

log, of expected running times (s) of the Tg-algorithm and
Pollard-Rho in a subgroup of size 2160

m
109y |Fyom| | 109, |Te(Epm)l | p | 1 | 2 | 3 |45
200 67 18 | 25 18 14 | 20 | 29
300 100 34 | 42 36 21 | 24 | 32
400 134 52 | 59 | 54 | 32 | 29 | 36
500 167 66 | 75 71 44 | 33 | 39
600 200 66 | 93 | 88 | 55 |40 | 42
700 234 66 | 109 | 105 | 67 | 48 | 46
800 267 66 | 127 | 122 | 78 | 57 | 51
900 300 68 | 144 | 139 | 90 | 65 | 56
1000 334 69 | 161 | 156 | 101 | 74 | 60
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Algorithm for Tg

Application to T3 (Fp)

A T3o(Fp) cryptosystem was proposed at EUROCRYPT 2005
with the following parameters:

@ p = 2527138379, and s0 |F 0| ~ 2%%7
@ T3o(F,) contains a subgroup of order ~ 2160

Since ®30(x)|Pe(x°), we have the inclusion Tao(Fp) C To(Fps),
and hence one can attack the former via the latter.
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Algorithm for Tg

Application to T3 (Fp)

A T3o(Fp) cryptosystem was proposed at EUROCRYPT 2005
with the following parameters:

@ p = 2527138379, and s0 |F 0| ~ 2%%7
@ T3o(F,) contains a subgroup of order ~ 2160

Since ®30(x)|Pe(x°), we have the inclusion Tao(Fp) C To(Fps),
and hence one can attack the former via the latter.

Question: What does this mean in practice?
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Algorithm for Tg

Application to T3 (Fp)

To solve the DLP in T3o(Fp):

@ Pollard rho time is 268 seconds
@ Our time is 2°8 seconds

Note:
@ This is with a non-optimised Magma implementation

@ Does not use the large prime variants of Thériault,
Gaudry-Thomé-Thériault and Nagao

Conclusion:
@ One should increase the base field size to thwart attack
@ For this field size, possibly no advantage of T3y over Tg
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Summary and Future Work

Summary

@ New algorithm to solve DLP in Tx(Fgm) and Tg(Fgm)

@ Exploits compact representation of algebraic tori

@ Upper bounds on the hardness of the DLP in Fgm for m > 1
@ Security of the DLP in F g0 is questionable via Tg(Fgs)

@ Does not influence security of MNT curves over

@ Does not influence security of XTR over Fp

R. Granger, F. Vercauteren DLP on Algebraic Tori



Summary and Future Work

Future work

@ Complexity of general algorithm with Diem’s choice of
factor base

@ Possibility of using 2m disjoint factor bases
Py-ee Pom=R with Pe Fi, FinFj =0 fori#j

@ Speeding up repeated Grdbner basis computation?

R. Granger, F. Vercauteren DLP on Algebraic Tori
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