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Motivation and Results

Statement of Problem

Consider Fgn:

@ Given a € F%,, what is the fastest way to compute a2?

an
@ What if o belongs to a proper subgroup of IF;"?
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Motivation and Results

Statement of Problem

Group decomposition of F,

The identity [Fg.| = " — 1 = [[ 4, ®a(q), with ®4(-) the d-th
cyclotomic polynomial =

@ d4(q)|(g? — 1) and so subgroup of this order embeds into
qu C ]Fqn
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Motivation and Results

Statement of Problem

Group decomposition of F,

The identity [Fg.| = " — 1 = [[ 4, ®a(q), with ®4(-) the d-th
cyclotomic polynomial =

@ d4(q)|(g? — 1) and so subgroup of this order embeds into
qu C ]Fqn

Definition

The Cyclotomic Subgroup (w.r.t. Fgn/Fq) of IF;n is

Gon(q) = {@ € Fgn [ a®(@) = 1}

@ Question: Can one square elements of Gy, (4) faster than
one can square elements of Fgn?
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Motivation and Results

Motivation
Pairing-based Cryptography (PBC)

@ PBC requires an efficiently computable, non-degenerate
bilinear pairing
e:Gy x Gy — Gt

@ Security necessitates hard DLP in each of G4,Go and Gt
@ Efficiency necessitates fast arithmetic in G1, G, and Gt
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Motivation and Results

Motivation
PBC - Security

@ Instantiations of pairings typically have the form

er : E(Fp)[r] x E(Fp)/rE(F) — ur €

@ Matching DLP security in Gy and G [KMO5]:

security level | 80 128 192 256
by 160 256 384 512

o 1024 3072 8192 15360
by /by 64 12 21%1 30

e — k~6,12,18,24,30, 36 depending on p = logp/log r
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Motivation and Results

Motivation
PBC - Efficiency

@ 2 | Kk = can use quadratic twist for G»

@ 4 | k = can use quartic twist for G, (if CM disc. D = 1)

@ 6 | Kk = can use sextic twist for G, (if CM disc. D = 3)
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@ 2 | k = can compress pairings by factor of 2
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Motivation and Results

Motivation
PBC - Efficiency

@ 2 | Kk = can use quadratic twist for G»
@ 2 | k = can compress pairings by factor of 2
@ 2 | Kk = can square fast in Gt

4 | k = can use quartic twist for G, (if CM disc. D = 1)

4 | k = can compress pairings by factor of 2
4 | k = can square fastin Gr

6 | Kk = can use sextic twist for G, (if CM disc. D = 3)

6 | Kk = can compress pairings by factor of 3

6 | Kk = can square very fast in Gt (this work)
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Motivation and Results

Main Result

For g =1 (mod 6), let a € Gog(q) C IE‘CX,G:
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Main Result
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@ We present a method to compute o2 twice as fast as that
for squaring general elements of F
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Motivation and Results

Main Result

For g =1 (mod 6), let a € Gog(q) C IE‘CX,G:

@ We present a method to compute o2 twice as fast as that
for squaring general elements of F

@ For g = p, p?, p3, p* this is between 2/3-rds and 3/4’s the
cost of previous best method [SL03]

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups



Motivation and Results

Main Result

For g =1 (mod 6), let a € Gog(q) C IE‘CX,G:
@ We present a method to compute o2 twice as fast as that
for squaring general elements of F

@ For g = p, p?, p3, p* this is between 2/3-rds and 3/4’s the
cost of previous best method [SL03]

Result applies to:
@ ‘Final-powering’ in pairing computations

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups



Motivation and Results

Main Result

For g =1 (mod 6), let a € Gog(q) C IE‘CXIS:
@ We present a method to compute o2 twice as fast as that
for squaring general elements of F

@ For g = p, p?, p3, p* this is between 2/3-rds and 3/4’s the
cost of previous best method [SL03]

Result applies to:
@ ‘Final-powering’ in pairing computations
@ Post-pairing arithmetic

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups



Motivation and Results

Main Result

For g =1 (mod 6), let a € Gog(q) C IE‘CXIS:
@ We present a method to compute o2 twice as fast as that
for squaring general elements of F
@ For g = p, p?, p3, p* this is between 2/3-rds and 3/4’s the
cost of previous best method [SL03]
Result applies to:
@ ‘Final-powering’ in pairing computations
@ Post-pairing arithmetic
@ Torus-Based Cryptography

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups



Motivation and Results

Main Result

For g =1 (mod 6), let a € Gog(q) C IE‘CXIS:
@ We present a method to compute o2 twice as fast as that
for squaring general elements of F
@ For g = p, p?, p3, p* this is between 2/3-rds and 3/4’s the
cost of previous best method [SL03]
Result applies to:
@ ‘Final-powering’ in pairing computations
@ Post-pairing arithmetic
@ Torus-Based Cryptography

@ Fields in IEEE ‘Draft Standard for Identity-Based Public
Key Cryptography using Pairings’ (P1363.3/D1)
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Method

Pairing-Friendly Fields

Simplification of PBC Treatment

Koblitz and Menezes introduced the following [KMO5]:

@ Letp=1 (mod 12) and k = 223 for a> 1 and b > 0.
Then F« is known as a Pairing-Friendly Field (PFF)
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Method

Pairing-Friendly Fields

Simplification of PBC Treatment

Koblitz and Menezes introduced the following [KMO5]:
@ Letp=1 (mod 12) and k = 223 for a > 1 and b > 0.
Then F« is known as a Pairing-Friendly Field (PFF)
@ We restrict to F,x with k = 223 with a,b > 1, so that 6 | k.

Then: , ,
pa—1nb—1 a—1ab—1
¢2a3b(X) :X22 8 —X2 3 +1
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Method

Pairing-Friendly Fields

Simplification of PBC Treatment

Koblitz and Menezes introduced the following [KMO5]:

@ Letp=1 (mod 12) and k = 223 for a> 1 and b > 0.
Then F« is known as a Pairing-Friendly Field (PFF)

@ We restrict to F,x with k = 223 with a,b > 1, so that 6 | k.
Then:
¢233b(X) _ X2,23—13b—1 . X25—13b—1 + 1

@ Note that ®,a50(X) = dg(x2* '3""") and hence

Goy(p) = Glog(p/9)
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Method

Pairing-Friendly Fields

Simplification of PBC Treatment

Koblitz and Menezes introduced the following [KMO5]:

@ Letp=1 (mod 12) and k = 223 for a> 1 and b > 0.
Then F« is known as a Pairing-Friendly Field (PFF)

@ We restrict to F,x with k = 223 with a,b > 1, so that 6 | k.
Then:
¢233b(X) _ X2,23—13b—1 . X25—13b—1 + 1
@ Note that ®,a50(X) = dg(x2* '3""") and hence

Gd’k(P) = G%(Pk/G)

@ So we need only consider G, (q) With g = p*/®
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Method

Fast squaring in Gg,(q) - [SLO3]

® LetF = Fq[x]/(x? — i) with i a quadratic non-residue in
IF4, and consider the square of a generic element
a=a+ bx:
o? = (a+xb)? = a®+2abx + b’x? = & + ib® + 2abx
= (a+ib)(a+ b) —ab(1 + i) + 2abx
@ If o € G, (q), We have a9t =1, 0r a9 a = 1. Observe
that since i is a quadratic non-residue:
a9 = (a+xb)?=a+bxd=a+bx?a1/2. x
a+ b9 "2 . x =a— bx
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Method

Fast squaring in Gg,(q) - [SLO3]

@ Hence a9t! becomes:
(a+ xb)(a—xb) =1, or @ — x?b?> =1, or & — ib? = 1

@ Substituting from this equation into the squaring formula,
one obtains

o? =(a+xb)2 =28 -1+[(a+b?—-a — (& —-1)/ilx

@ Main cost of computing this is just two F4-squarings.

@ Observe that if j is ‘small’ (for example if i = —1 for p =3
(mod 4) when Fq = [Fp), then the above simplifies
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Method

Round-up and where to next?

@ [SL03] obtains one [Fg-equation for elements of
G¢2(Q) CFep

@ Equivalent to one F s equation for elements of
G¢2(q3) C qu

@ Since ¥g(q) | P2(g?), this method also applies to Gy (q),
but with some redundancy

@ [SLO03] also obtain six Fq equations for Geg(q) C Fge for fast
squaring, but for g =2 or 5 (mod 9), so can’t be used with
sextic twists (p = 1 mod 3)

@ [GPS06] obtain six equations in Fq for Gog(q), but
complicated and not as good as second [SL03] result
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Method

Round-up and where to next?

@ [SL03] obtains one [Fg-equation for elements of
G¢2(Q) CFep

@ Equivalent to one F s equation for elements of
G¢2(q3) CFg

@ Since ¥g(q) | P2(g?), this method also applies to Gy (q),
but with some redundancy

@ [SLO03] also obtain six Fq equations for Geg(q) C Fge for fast
squaring, but for g =2 or 5 (mod 9), so can’t be used with
sextic twists (p = 1 mod 3)

@ [GPS06] obtain six equations in Fq for Gog(q), but
complicated and not as good as second [SL03] result

So for G, (r,), Prior methods have used equations in subfields
Fq and F s, but not F . This is what we do...
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Method

Fast squaring in Ge,(q) With g = 1 mod 6

o LetF = Fq[z]/(2° — i), with i € Fq a quadratic and cubic
non-residue
@ Standard representation for an element of F e /Fq is

a=oay)t+a1Z+ a222 + a323 + oz424 + a525

@ In order to make the subfield structure explicit, we write
elements of F g in two possible ways:

e As a compositum of F. and Fs
e As a cubic extension of a quadratic extension of Fg
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Method

Fast squaring in Ge,(q) With g = 1 mod 6

F as a compositum

® LetFg = Fqlyl/(y? — i) and F e = Fqx]/(x® — i) and
hence y = 23, x = 22
@ o= (ay+ayy)+ (by+biy)x+(co+cry)x? = a+ bx + cx?
@ We thus have
qu = }Fq(z) = Fqs (y) = qu(X)

@ Viewing « in the latter form its square is (a + bx + cx?)?

= & +2abx + (2ac + b?)x? + 2bex® + Ax*
= (& + 2ibc) + (2ab + ic®)x + (2ac + b?)x?
= A+ Bx+Cx?
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Method

Fast squaring in Ge,(q) With g = 1 mod 6

F as a compositum

2
@ As a € Ggy, we have a9 —9+1 =1

@ To obtain equations over F ., compute Frobenius action on
basis:

ya — y2(q—1)/2 Ly = j(a-1)/2 . y=—y,

hence a? = (ap + a1y)? = ap — a;y, which for simplicity we
write as 2, and similarly for b, ¢;

@ Letw is a primitive cube root of unity in Fq. Then

@ Applying the Frobenius again gives x% = w?x
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Method

Fast squaring in Go,(q) With q

F as a compositum

@ Rewriting a9’ 9+ =1 as a9 - a = o9 gives:
(@a+ bw?x + cw*x®)(a+ bx + cx?) = @+ bwx + Cw?x?,

@ Upon expanding, reducing modulo x3 — i, and modulo
®3(w) = w? 4+ w + 1, this becomes

(& — a— bei) + w(ic® — b— ab)x + w?(b?> — ¢ — ac)x®> = 0

@ This equation gives three . equations, as each F
coefficient of x' equals zero.

@ Note also defines the variety ReSqu/qu Gog(g), Which is the
Weil restriction of scalars of G, (q) from Fge to Fge
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Method

Fast squaring in Ge,(q) With g = 1 mod 6

F as a compositum

@ Solving for be, ab, ac, one obtains:

bc = (& -2a)/i
ab = ic®—b
ac = b°-¢

@ Substituting these into the original squaring formula gives

A = @ +2ibc=2a®+2i(a8 —2a))i=3a 22
B = ic®+2ab=ic®+2(ic® — b) = 3ic® — 2b
C = b?+2ac=b?+2(b>—-¢)=3b°—2C
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Method

Fast squaring in Ge,(q) With g = 1 mod 6

]Fqs as a tower extension

® LetFpe =Fqlyl/(y? — i) and Fe = Fge[x]/(x3 — Vi) and
hencey =23, x =z

® o= (ap+ary)+(bo+biy)x+(co+ciy)x* = a+ bx+cx?

@ Similar argument with a primitive sixth root of unity gives:

A = 348423
B = 3Vic®+2b
C = 3b°-2¢
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Method

Comparison with Prior Work

Operation counts for squaring using various Weil restrictions of

G¢k(Q)'
K| Foo | ReSs /i /o Goyqh/2) | RESEL/F i/ Gog(arrey | RESE /g Gog(qr/e)
[SLO3] (Present result) [GPSO06]
6 12m 25; =4m+6s 3S, =6m 3m+ 6s
12 | 36m 25 =24m 35, =18m 18m+ 12s
18 72m 2Sg = 24m + 30s 35S = 36m
24 | 108m 28, =72m 3Sg = 54m 84m + 24s
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Applications

Barreto-Naehrig Curves [BNO5]

@ These are elliptic curves E/F,, : y? = x3 + b with
embedding degree 12 for which

p(t) = 36t*+ 36t + 2412 4 6t + 1
r(t) = 36t*+36f + 182 +6t+ 1
tr(t) = 6t°+1
@ Odd t = p =3 (mod 4) and s0 F,z = Fp[x]/(x? + 1)

@ p? =1 (mod 6) hence apply our construction for Fprz/Fpe

@ For final powering’ using Scott et al’s method [SBCPKO09]:
[SLO3] costs 5971m, our method costs 4856m
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Applications

Torus-Based Cryptography (TBC)

@ TBC is cryptography based in Tx(Fq) = Go,(qg)

@ Uses rationality of algebraic torus to compress elements -
best factor is 3 for 6 | k

@ Fora = (ag + aix + axx?) + (by + by x + box?)y = a+ by
using compositum representation and p =1 (mod 6) let

c=—(a+1)/b=cy+cix + x>
@ Then (¢, ¢1) represents « with inverse

(C cy # 0) 3icpet + 3iC12X + (3C§ + i)X2 o 3iC1y
—
0, (1 3iCOC1 + 3iC12X + (SCS + i)X2 T 3iC1y
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Applications

Other Considerations

@ Weil restriction framework applies to any k and d | k - for
PBC extension degrees our squaring method is best
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Applications

Other Considerations

@ Weil restriction framework applies to any k and d | k - for
PBC extension degrees our squaring method is best
@ Higher powerings?
e Possible eg., using a®(9) = 1 which aids in cubing - but
slower than squaring
o Degree of a®(@ = 1 when expanded is < 2 only for
k=223%fora>1,b>0
e Hence fields with these extension degrees ideally suited to
our squaring method
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Applications

Summary

Our method:
@ Provides the fastest available squaring in G, (q) and for
PBC fields
@ |s conceptually easy and permits generalisation
@ Is highly applicable - only requires g =1 (mod 6) so
applies to 3/4’s finite fields

@ |deal for TBC - allows fast maximal compression
(assuming p =1 (mod 6)) and fastest squaring

@ Applies to fields in IEEE P1363.3/D1 and so gives a
compelling argument for their adoption
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