Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions

Robert Granger, Michael Scott

{rgranger, mike}@computing.dcu.ie Claude Shannon Institute Dublin City University Ireland

PKC 2010, May 27th

イロト イポト イヨト イヨト

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups

ヘロア 人間 アメヨア 人口 ア

æ

Statement of Problem

Consider \mathbb{F}_{q^n} :

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups

ヘロア 人間 アメヨア 人口 ア

æ –

Statement of Problem

Consider \mathbb{F}_{q^n} :

• Given $\alpha \in \mathbb{F}_{q^n}^{\times}$, what is the fastest way to compute α^2 ?

・ 回 ト ・ ヨ ト ・ ヨ ト

ъ

Statement of Problem

Consider \mathbb{F}_{q^n} :

- Given $\alpha \in \mathbb{F}_{q^n}^{\times}$, what is the fastest way to compute α^2 ?
- What if α belongs to a proper subgroup of F[×]_α?

Statement of Problem Group decomposition of $\mathbb{F}_{a^n}^{\times}$

The identity $|\mathbb{F}_{q^n}^{\times}| = q^n - 1 = \prod_{d|n} \Phi_d(q)$, with $\Phi_d(\cdot)$ the *d*-th cyclotomic polynomial \Longrightarrow

• $\Phi_d(q)|(q^d-1)$ and so subgroup of this order embeds into $\mathbb{F}_{q^d} \subset \mathbb{F}_{q^n}$

イロト 不得 とくほ とくほ とう

э.

Statement of Problem Group decomposition of $\mathbb{F}_{a^n}^{\times}$

The identity $|\mathbb{F}_{q^n}^{\times}| = q^n - 1 = \prod_{d|n} \Phi_d(q)$, with $\Phi_d(\cdot)$ the *d*-th cyclotomic polynomial \Longrightarrow

• $\Phi_d(q)|(q^d-1)$ and so subgroup of this order embeds into $\mathbb{F}_{q^d} \subset \mathbb{F}_{q^n}$

Definition

The Cyclotomic Subgroup (w.r.t. $\mathbb{F}_{q^n}/\mathbb{F}_q$) of $\mathbb{F}_{q^n}^{\times}$ is

$$G_{\Phi_n(q)} = \{ \alpha \in \mathbb{F}_{q^n} \mid \alpha^{\Phi_n(q)} = 1 \}$$

イロト 不得 とくほ とくほ とう

э.

Statement of Problem Group decomposition of $\mathbb{F}_{a^n}^{\times}$

The identity $|\mathbb{F}_{q^n}^{\times}| = q^n - 1 = \prod_{d|n} \Phi_d(q)$, with $\Phi_d(\cdot)$ the *d*-th cyclotomic polynomial \Longrightarrow

• $\Phi_d(q)|(q^d-1)$ and so subgroup of this order embeds into $\mathbb{F}_{q^d} \subset \mathbb{F}_{q^n}$

Definition

The Cyclotomic Subgroup (w.r.t. $\mathbb{F}_{q^n}/\mathbb{F}_q$) of $\mathbb{F}_{q^n}^{\times}$ is

$$G_{\Phi_n(q)} = \{ \alpha \in \mathbb{F}_{q^n} \mid \alpha^{\Phi_n(q)} = 1 \}$$

 Question: Can one square elements of G_{Φ_n(q)} faster than one can square elements of F_{qⁿ}?

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Motivation Pairing-based Cryptography (PBC)

• PBC requires an efficiently computable, non-degenerate bilinear pairing

$$e_r : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$

- Security necessitates hard DLP in each of $\mathbb{G}_1, \mathbb{G}_2$ and \mathbb{G}_T
- *Efficiency* necessitates fast arithmetic in $\mathbb{G}_1, \mathbb{G}_2$ and \mathbb{G}_T

イロト イポト イヨト イヨト

• Instantiations of pairings typically have the form

$$\boldsymbol{e}_{r}:\boldsymbol{E}(\mathbb{F}_{\boldsymbol{p}})[r]\times\boldsymbol{E}(\mathbb{F}_{\boldsymbol{p}^{k}})/r\boldsymbol{E}(\mathbb{F}_{\boldsymbol{p}^{k}})\rightarrow\mu_{r}\in\mathbb{F}_{\boldsymbol{p}^{k}}^{\times}$$

• Matching DLP security in \mathbb{G}_1 and \mathbb{G}_T [KM05]:

security level	80	128	192	256
br	160	256	384	512
b_{p^k}	1024	3072	8192	15360
b_{p^k}/b_r	6.4	12	21 <u>1</u>	30

• \implies $k \approx$ 6, 12, 18, 24, 30, 36 depending on $\rho = \log \rho / \log r$

• 2 | $k \Longrightarrow$ can use quadratic twist for \mathbb{G}_2

• 4 | $k \implies$ can use quartic twist for \mathbb{G}_2 (if CM disc. D = 1)

• 6 | $k \implies$ can use sextic twist for \mathbb{G}_2 (if CM disc. D = 3)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- 2 | $k \Longrightarrow$ can use quadratic twist for \mathbb{G}_2
- 2 | $k \Longrightarrow$ can compress pairings by factor of 2

- 4 | $k \implies$ can use quartic twist for \mathbb{G}_2 (if CM disc. D = 1)
- 4 | $k \Longrightarrow$ can compress pairings by factor of 2

- 6 | $k \implies$ can use sextic twist for \mathbb{G}_2 (if CM disc. D = 3)
- 6 | $k \Longrightarrow$ can compress pairings by factor of 3

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Motivation and Results Method Applications PBC - Efficiency

- 2 | $k \Longrightarrow$ can use quadratic twist for \mathbb{G}_2
- 2 | $k \Longrightarrow$ can compress pairings by factor of 2
- 2 | $k \Longrightarrow$ can square fast in \mathbb{G}_T
- 4 | $k \Longrightarrow$ can use quartic twist for \mathbb{G}_2 (if CM disc. D = 1)
- 4 | $k \Longrightarrow$ can compress pairings by factor of 2
- 4 | $k \Longrightarrow$ can square fast in \mathbb{G}_T
- 6 | $k \implies$ can use sextic twist for \mathbb{G}_2 (if CM disc. D = 3)
- 6 | $k \implies$ can compress pairings by factor of 3
- 6 | $k \Longrightarrow$ can square very fast in \mathbb{G}_T (this work)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Main Result

For
$$q \equiv 1 \pmod{6}$$
, let $\alpha \in G_{\Phi_6(q)} \subset \mathbb{F}_{q^6}^{\times}$:

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups

ヘロト 人間 とくほとくほとう

Main Result

For
$$q \equiv 1 \pmod{6}$$
, let $\alpha \in G_{\Phi_6(q)} \subset \mathbb{F}_{q^6}^{\times}$:

• We present a method to compute α^2 twice as fast as that for squaring general elements of \mathbb{F}_{a^6}

▲ □ ▶ ▲ □ ▶ ▲

.⊒...>

Main Result

For
$$q \equiv 1 \pmod{6}$$
, let $\alpha \in G_{\Phi_6(q)} \subset \mathbb{F}_{q^6}^{\times}$:

- We present a method to compute α^2 twice as fast as that for squaring general elements of \mathbb{F}_{a^6}
- For q = p, p², p³, p⁴ this is between 2/3-rds and 3/4's the cost of previous best method [SL03]

< 同 > < 回 > < 回 >

Main Result

For
$$q \equiv 1 \pmod{6}$$
, let $\alpha \in G_{\Phi_6(q)} \subset \mathbb{F}_{q^6}^{\times}$:

- We present a method to compute α^2 twice as fast as that for squaring general elements of \mathbb{F}_{q^6}
- For q = p, p², p³, p⁴ this is between 2/3-rds and 3/4's the cost of previous best method [SL03]

Result applies to:

• 'Final-powering' in pairing computations

・ 回 ト ・ ヨ ト ・ ヨ ト

Main Result

For
$$q \equiv 1 \pmod{6}$$
, let $\alpha \in G_{\Phi_6(q)} \subset \mathbb{F}_{q^6}^{\times}$:

- We present a method to compute α^2 twice as fast as that for squaring general elements of \mathbb{F}_{q^6}
- For q = p, p², p³, p⁴ this is between 2/3-rds and 3/4's the cost of previous best method [SL03]

Result applies to:

- 'Final-powering' in pairing computations
- Post-pairing arithmetic

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Main Result

For
$$q \equiv 1 \pmod{6}$$
, let $\alpha \in G_{\Phi_6(q)} \subset \mathbb{F}_{q^6}^{\times}$:

- We present a method to compute α^2 twice as fast as that for squaring general elements of \mathbb{F}_{q^6}
- For q = p, p², p³, p⁴ this is between 2/3-rds and 3/4's the cost of previous best method [SL03]

Result applies to:

- 'Final-powering' in pairing computations
- Post-pairing arithmetic
- Torus-Based Cryptography

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Main Result

For
$$q \equiv 1 \pmod{6}$$
, let $\alpha \in G_{\Phi_6(q)} \subset \mathbb{F}_{q^6}^{\times}$:

- We present a method to compute α^2 twice as fast as that for squaring general elements of \mathbb{F}_{q^6}
- For q = p, p², p³, p⁴ this is between 2/3-rds and 3/4's the cost of previous best method [SL03]

Result applies to:

- 'Final-powering' in pairing computations
- Post-pairing arithmetic
- Torus-Based Cryptography
- Fields in IEEE 'Draft Standard for Identity-Based Public Key Cryptography using Pairings' (P1363.3/D1)

(4回) (日) (日)

Pairing-Friendly Fields Simplification of PBC Treatment

Koblitz and Menezes introduced the following [KM05]:

• Let $p \equiv 1 \pmod{12}$ and $k = 2^a 3^b$ for $a \ge 1$ and $b \ge 0$. Then \mathbb{F}_{p^k} is known as a Pairing-Friendly Field (PFF)

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Pairing-Friendly Fields Simplification of PBC Treatment

Koblitz and Menezes introduced the following [KM05]:

- Let $p \equiv 1 \pmod{12}$ and $k = 2^a 3^b$ for $a \ge 1$ and $b \ge 0$. Then \mathbb{F}_{p^k} is known as a Pairing-Friendly Field (PFF)
- We restrict to \mathbb{F}_{p^k} with $k = 2^a 3^b$ with $a, b \ge 1$, so that $6 \mid k$. Then:

$$\Phi_{2^{a}3^{b}}(x) = x^{2 \cdot 2^{a-1}3^{b-1}} - x^{2^{a-1}3^{b-1}} + 1$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Pairing-Friendly Fields Simplification of PBC Treatment

Koblitz and Menezes introduced the following [KM05]:

- Let $p \equiv 1 \pmod{12}$ and $k = 2^a 3^b$ for $a \ge 1$ and $b \ge 0$. Then \mathbb{F}_{p^k} is known as a Pairing-Friendly Field (PFF)
- We restrict to \mathbb{F}_{p^k} with $k = 2^a 3^b$ with $a, b \ge 1$, so that $6 \mid k$. Then:

$$\Phi_{2^a 3^b}(x) = x^{2 \cdot 2^{a-1} 3^{b-1}} - x^{2^{a-1} 3^{b-1}} + 1$$

• Note that $\Phi_{2^{a}3^{b}}(x) = \Phi_{6}(x^{2^{a-1}3^{b-1}})$ and hence

$$G_{\Phi_k(p)}=G_{\Phi_6(p^{k/6})}$$

ヘロト 人間 ト ヘヨト ヘヨト

Pairing-Friendly Fields Simplification of PBC Treatment

Koblitz and Menezes introduced the following [KM05]:

- Let $p \equiv 1 \pmod{12}$ and $k = 2^a 3^b$ for $a \ge 1$ and $b \ge 0$. Then \mathbb{F}_{p^k} is known as a Pairing-Friendly Field (PFF)
- We restrict to \mathbb{F}_{p^k} with $k = 2^a 3^b$ with $a, b \ge 1$, so that $6 \mid k$. Then:

$$\Phi_{2^a 3^b}(x) = x^{2 \cdot 2^{a-1} 3^{b-1}} - x^{2^{a-1} 3^{b-1}} + 1$$

• Note that $\Phi_{2^{a}3^{b}}(x) = \Phi_{6}(x^{2^{a-1}3^{b-1}})$ and hence

$$G_{\Phi_k(p)}=G_{\Phi_6(p^{k/6})}$$

• So we need only consider $G_{\Phi_6(q)}$ with $q = p^{k/6}$

ヘロト 人間 ト ヘヨト ヘヨト

Fast squaring in $G_{\Phi_2(q)}$ - [SL03]

• Let $\mathbb{F}_{q^2} = \mathbb{F}_q[x]/(x^2 - i)$ with *i* a quadratic non-residue in \mathbb{F}_q , and consider the square of a generic element $\alpha = a + bx$:

$$\alpha^{2} = (a + xb)^{2} = a^{2} + 2abx + b^{2}x^{2} = a^{2} + ib^{2} + 2abx$$
$$= (a + ib)(a + b) - ab(1 + i) + 2abx$$

If α ∈ G_{Φ2(q)}, we have α^{q+1} = 1, or α^q · α = 1. Observe that since *i* is a quadratic non-residue:

$$\alpha^q = (a+xb)^q = a+bx^q = a+bx^{2(q-1)/2} \cdot x$$
$$= a+bi^{(q-1)/2} \cdot x = a-bx$$

イロト イポト イヨト イヨト

Fast squaring in $G_{\Phi_2(q)}$ - [SL03]

• Hence α^{q+1} becomes:

$$(a + xb)(a - xb) = 1$$
, or $a^2 - x^2b^2 = 1$, or $a^2 - ib^2 = 1$

 Substituting from this equation into the squaring formula, one obtains

$$\alpha^{2} = (a + xb)^{2} = 2a^{2} - 1 + [(a + b)^{2} - a^{2} - (a^{2} - 1)/i]x$$

- Main cost of computing this is just two \mathbb{F}_q -squarings.
- Observe that if *i* is 'small' (for example if *i* = −1 for *p* ≡ 3 (mod 4) when F_q = F_p), then the above simplifies

イロト 不得 とくほ とくほう

Round-up and where to next?

- [SL03] obtains one \mathbb{F}_q -equation for elements of $G_{\Phi_2(q)} \subset \mathbb{F}_{q^2}$
- Equivalent to one \mathbb{F}_{q^3} equation for elements of $G_{\Phi_2(q^3)} \subset \mathbb{F}_{q^6}$
- Since Φ₆(q) | Φ₂(q³), this method also applies to G_{Φ₆(q)}, but with some redundancy
- [SL03] also obtain six F_q equations for G_{Φ₆(q)} ⊂ F_{q⁶} for fast squaring, but for q ≡ 2 or 5 (mod 9), so can't be used with sextic twists (p ≡ 1 mod 3)
- [GPS06] obtain six equations in F_q for G_{Φ₆(q)}, but complicated and not as good as second [SL03] result

・ロト ・ 理 ト ・ ヨ ト ・

Round-up and where to next?

- [SL03] obtains one \mathbb{F}_q -equation for elements of $G_{\Phi_2(q)} \subset \mathbb{F}_{q^2}$
- Equivalent to one \mathbb{F}_{q^3} equation for elements of $G_{\Phi_2(q^3)} \subset \mathbb{F}_{q^6}$
- Since Φ₆(q) | Φ₂(q³), this method also applies to G_{Φ₆(q)}, but with some redundancy
- [SL03] also obtain six F_q equations for G_{Φ₆(q)} ⊂ F_{q⁶} for fast squaring, but for q ≡ 2 or 5 (mod 9), so can't be used with sextic twists (p ≡ 1 mod 3)
- [GPS06] obtain six equations in 𝔽_q for G_{Φ₆(q)}, but complicated and not as good as second [SL03] result

So for $G_{\Phi_6(\mathbb{F}_q)}$, prior methods have used equations in subfields \mathbb{F}_q and \mathbb{F}_{q^3} , but not \mathbb{F}_{q^2} . This is what we do...

Fast squaring in $G_{\Phi_6(q)}$ with $q \equiv 1 \mod 6$

- Let $\mathbb{F}_{q^6} = \mathbb{F}_q[z]/(z^6 i)$, with $i \in \mathbb{F}_q$ a quadratic and cubic non-residue
- Standard representation for an element of $\mathbb{F}_{q^6}/\mathbb{F}_q$ is

$$\alpha = \alpha_0 + \alpha_1 z + \alpha_2 z^2 + \alpha_3 z^3 + \alpha_4 z^4 + \alpha_5 z^5$$

- In order to make the subfield structure explicit, we write elements of 𝔽_{𝑌⁶} in two possible ways:
 - As a compositum of \mathbb{F}_{q^2} and \mathbb{F}_{q^3}
 - As a cubic extension of a quadratic extension of \mathbb{F}_q

ヘロン 人間 とくほど くほとう

Fast squaring in $G_{\Phi_6(q)}$ with $q\equiv 1 \mod 6$ \mathbb{F}_{q^6} as a compositum

- Let $\mathbb{F}_{q^2} = \mathbb{F}_q[y]/(y^2 i)$ and $\mathbb{F}_{q^3} = \mathbb{F}_q[x]/(x^3 i)$ and hence $y = z^3$, $x = z^2$
- $\alpha = (a_0 + a_1 y) + (b_0 + b_1 y)x + (c_0 + c_1 y)x^2 = a + bx + cx^2$
- We thus have

$$\mathbb{F}_{q^6} = \mathbb{F}_q(z) = \mathbb{F}_{q^3}(y) = \mathbb{F}_{q^2}(x)$$

• Viewing α in the latter form its square is $(a + bx + cx^2)^2$

$$= a^{2} + 2abx + (2ac + b^{2})x^{2} + 2bcx^{3} + c^{2}x^{4}$$

= $(a^{2} + 2ibc) + (2ab + ic^{2})x + (2ac + b^{2})x^{2}$
= $A + Bx + Cx^{2}$

イロト イポト イヨト イヨト

э.

Fast squaring in $G_{\Phi_6(q)}$ with $q \equiv 1 \mod 6$ \mathbb{F}_{q^6} as a compositum

- As $\alpha \in G_{\Phi_6}$ we have $\alpha^{q^2-q+1}=1$
- To obtain equations over \mathbb{F}_{q^2} , compute Frobenius action on basis:

$$y^{q} = y^{2(q-1)/2} \cdot y = i^{(q-1)/2} \cdot y = -y,$$

hence $a^q = (a_0 + a_1 y)^q = a_0 - a_1 y$, which for simplicity we write as \bar{a} , and similarly for \bar{b} , \bar{c} ;

• Let ω is a primitive cube root of unity in \mathbb{F}_q . Then

$$x^{q} = x^{3(q-1)/3} \cdot x = i^{(q-1)/3} \cdot x = \omega x$$

• Applying the Frobenius again gives $x^{q^2} = \omega^2 x$

ヘロア 人間 アメヨア 人口 ア

Fast squaring in $G_{\Phi_6(q)}$ with $q\equiv 1 \mod 6$ \mathbb{F}_{q^6} as a compositum

• Rewriting
$$\alpha^{q^2-q+1} = 1$$
 as $\alpha^{q^2} \cdot \alpha = \alpha^q$ gives:

$$(a+b\omega^2x+c\omega^4x^2)(a+bx+cx^2)=\bar{a}+\bar{b}\omega x+\bar{c}\omega^2x^2,$$

Upon expanding, reducing modulo x³ - i, and modulo Φ₃(ω) = ω² + ω + 1, this becomes

$$(a^2 - \overline{a} - bci) + \omega(ic^2 - \overline{b} - ab)x + \omega^2(b^2 - \overline{c} - ac)x^2 = 0$$

- This equation gives three F_{q²} equations, as each F_{q²} coefficient of xⁱ equals zero.
- Note also defines the variety Res_{*μ*_q6/*F*_q2} *G*_{Φ₆(q)}, which is the Weil restriction of scalars of *G*_{Φ₆(q)} from *F*_q⁶ to *F*_q²

・ 戸 ・ ・ ヨ ・ ・ 日 ・

Fast squaring in $G_{\Phi_6(q)}$ with $q \equiv 1 \mod 6$ \mathbb{F}_{q^6} as a compositum

• Solving for *bc*, *ab*, *ac*, one obtains:

$$egin{array}{rcl} bc&=&(a^2-ar{a})/i\ ab&=⁣^2-ar{b}\ ac&=&b^2-ar{c} \end{array}$$

Substituting these into the original squaring formula gives

$$A = a^{2} + 2ibc = a^{2} + 2i(a^{2} - \bar{a})/i = 3a^{2} - 2\bar{a}$$

$$B = ic^{2} + 2ab = ic^{2} + 2(ic^{2} - \bar{b}) = 3ic^{2} - 2\bar{b}$$

$$C = b^{2} + 2ac = b^{2} + 2(b^{2} - \bar{c}) = 3b^{2} - 2\bar{c}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Fast squaring in $G_{\Phi_6(q)}$ with $q \equiv 1 \mod 6$ \mathbb{F}_{q^6} as a tower extension

• Let $\mathbb{F}_{q^2} = \mathbb{F}_q[y]/(y^2 - i)$ and $\mathbb{F}_{q^6} = \mathbb{F}_{q^2}[x]/(x^3 - \sqrt{i})$ and hence $y = z^3$, x = z

•
$$\alpha = (a_0 + a_1y) + (b_0 + b_1y)x + (c_0 + c_1y)x^2 = a + bx + cx^2$$

• Similar argument with a primitive sixth root of unity gives:

$$A = 3a^2 - 2\bar{a}$$
$$B = 3\sqrt{ic^2 + 2\bar{b}}$$
$$C = 3b^2 - 2\bar{c}$$

ヘロン 人間 とくほ とくほ とう

1

Comparison with Prior Work

Operation counts for squaring using various Weil restrictions of $G_{\Phi_k(q)}$:

k	\mathbb{F}_{q^k}	$Res_{\mathbb{F}_{q^k}/\mathbb{F}_{q^{k/2}}}G_{\Phi_2(q^{k/2})}$	$Res_{\mathbb{F}_{q^k}/\mathbb{F}_{q^{k/3}}}G_{\Phi_6(q^{k/6})}$	$\operatorname{Res}_{\mathbb{F}_{q^k}/\mathbb{F}_q}G_{\Phi_6(q^{k/6})}$
		[SL03]	(Present result)	[GPS06]
6	12 <i>m</i>	$2S_3 = 4m + 6s$	$3S_2 = 6m$	3 <i>m</i> + 6 <i>s</i>
12	36 <i>m</i>	$2S_6 = 24m$	$3S_4 = 18m$	18 <i>m</i> + 12 <i>s</i>
18	72 <i>m</i>	$2S_9 = 24m + 30s$	$3S_6 = 36m$	
24	108 <i>m</i>	$2S_{12} = 72m$	$3S_8 = 54m$	84 <i>m</i> + 24 <i>s</i>

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Barreto-Naehrig Curves [BN05]

These are elliptic curves E/F_p: y² = x³ + b with embedding degree 12 for which

$$p(t) = 36t^4 + 36t^3 + 24t^2 + 6t + 1$$

$$r(t) = 36t^4 + 36t^3 + 18t^2 + 6t + 1$$

$$tr(t) = 6t^2 + 1$$

- Odd $t \Longrightarrow p \equiv 3 \pmod{4}$ and so $\mathbb{F}_{p^2} = \mathbb{F}_p[x]/(x^2 + 1)$
- $p^2 \equiv 1 \pmod{6}$ hence apply our construction for $\mathbb{F}_{p^{12}}/\mathbb{F}_{p^2}$
- For 'final powering' using Scott et al.'s method [SBCPK09]: [SL03] costs 5971*m*, our method costs 4856*m*

ヘロン 人間 とくほ とくほ とう

Torus-Based Cryptography (TBC)

- TBC is cryptography based in $T_k(\mathbb{F}_q) \cong G_{\Phi_k(q)}$
- Uses rationality of algebraic torus to compress elements best factor is 3 for 6 | k
- For $\alpha = (a_0 + a_1x + a_2x^2) + (b_0 + b_1x + b_2x^2)y = a + by$ using compositum representation and $p \equiv 1 \pmod{6}$ let

$$c = -(a+1)/b = c_0 + c_1 x + c_2 x^2$$

• Then (c_0, c_1) represents α with inverse

$$\begin{array}{rcl} \psi : \mathbb{A}^{2}(\mathbb{F}_{q}) & \to & T_{6}(\mathbb{F}_{q}) \setminus \{1\} : \\ (c_{0}, c_{1} \neq 0) & \mapsto & \frac{3ic_{0}c_{1} + 3ic_{1}^{2}x + (3c_{0}^{2} + i)x^{2} - 3ic_{1}y}{3ic_{0}c_{1} + 3ic_{1}^{2}x + (3c_{0}^{2} + i)x^{2} + 3ic_{1}y} \end{array}$$

イロト イポト イヨト イヨト

Other Considerations

 Weil restriction framework applies to any k and d | k - for PBC extension degrees our squaring method is best

・ 同 ト ・ ヨ ト ・ ヨ ト

Other Considerations

- Weil restriction framework applies to any k and d | k for PBC extension degrees our squaring method is best
- Higher powerings?
 - Possible eg., using α^{Φ₃(q)} = 1 which aids in cubing but slower than squaring
 - Degree of $\alpha^{\Phi_k(q)} = 1$ when expanded is ≤ 2 only for $k = 2^a 3^b$ for $a \geq 1, b \geq 0$
 - Hence fields with these extension degrees ideally suited to our squaring method

ヘロト ヘワト ヘビト ヘビト

Summary

Our method:

- Provides the fastest available squaring in G_{Φ₆(q)} and for PBC fields
- Is conceptually easy and permits generalisation
- Is highly applicable only requires q = 1 (mod 6) so applies to 3/4's finite fields
- Ideal for TBC allows fast maximal compression (assuming $p \equiv 1 \pmod{6}$) and fastest squaring
- Applies to fields in IEEE P1363.3/D1 and so gives a compelling argument for their adoption

ヘロト 人間 ト ヘヨト ヘヨト