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Statement of Problem

Consider Fqn :

Given α ∈ F×qn , what is the fastest way to compute α2?

What if α belongs to a proper subgroup of F×qn?
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Statement of Problem
Group decomposition of F×qn

The identity |F×qn | = qn − 1 =
∏

d |n Φd(q), with Φd(·) the d-th
cyclotomic polynomial =⇒

Φd(q)|(qd − 1) and so subgroup of this order embeds into
Fqd ⊂ Fqn

Definition

The Cyclotomic Subgroup (w.r.t. Fqn/Fq) of F×qn is

GΦn(q) = {α ∈ Fqn | αΦn(q) = 1}

Question: Can one square elements of GΦn(q) faster than
one can square elements of Fqn?
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Motivation
Pairing-based Cryptography (PBC)

PBC requires an efficiently computable, non-degenerate
bilinear pairing

er : G1 ×G2 → GT

Security necessitates hard DLP in each of G1,G2 and GT

Efficiency necessitates fast arithmetic in G1,G2 and GT
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Motivation
PBC - Security

Instantiations of pairings typically have the form

er : E(Fp)[r ]× E(Fpk )/rE(Fpk ) → µr ∈ F×pk

Matching DLP security in G1 and GT [KM05]:

security level 80 128 192 256
br 160 256 384 512
bpk 1024 3072 8192 15360

bpk/br 6.4 12 211
3 30

=⇒ k ≈ 6,12,18,24,30,36 depending on ρ = log p/ log r
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Motivation
PBC - Efficiency

2 | k =⇒ can use quadratic twist for G2

2 | k =⇒ can compress pairings by factor of 2
2 | k =⇒ can square fast in GT

4 | k =⇒ can use quartic twist for G2 (if CM disc. D = 1)

4 | k =⇒ can compress pairings by factor of 2
4 | k =⇒ can square fast in GT

6 | k =⇒ can use sextic twist for G2 (if CM disc. D = 3)

6 | k =⇒ can compress pairings by factor of 3
6 | k =⇒ can square very fast in GT (this work)
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Main Result

For q ≡ 1 (mod 6), let α ∈ GΦ6(q) ⊂ F×q6 :

We present a method to compute α2 twice as fast as that
for squaring general elements of Fq6

For q = p,p2,p3,p4 this is between 2/3-rds and 3/4’s the
cost of previous best method [SL03]

Result applies to:
‘Final-powering’ in pairing computations
Post-pairing arithmetic
Torus-Based Cryptography
Fields in IEEE ‘Draft Standard for Identity-Based Public
Key Cryptography using Pairings’ (P1363.3/D1)
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Pairing-Friendly Fields
Simplification of PBC Treatment

Koblitz and Menezes introduced the following [KM05]:
Let p ≡ 1 (mod 12) and k = 2a3b for a ≥ 1 and b ≥ 0.
Then Fpk is known as a Pairing-Friendly Field (PFF)

We restrict to Fpk with k = 2a3b with a,b ≥ 1, so that 6 | k .
Then:

Φ2a3b(x) = x2·2a−13b−1 − x2a−13b−1
+ 1

Note that Φ2a3b(x) = Φ6(x2a−13b−1
) and hence

GΦk (p) = GΦ6(pk/6)

So we need only consider GΦ6(q) with q = pk/6
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Fast squaring in GΦ2(q) - [SL03]

Let Fq2 = Fq[x ]/(x2 − i) with i a quadratic non-residue in
Fq, and consider the square of a generic element
α = a + bx :

α2 = (a + xb)2 = a2 + 2abx + b2x2 = a2 + ib2 + 2abx
= (a + ib)(a + b)− ab(1 + i) + 2abx

If α ∈ GΦ2(q), we have αq+1 = 1, or αq · α = 1. Observe
that since i is a quadratic non-residue:

αq = (a + xb)q = a + bxq = a + bx2(q−1)/2 · x
= a + bi(q−1)/2 · x = a− bx

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups
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Fast squaring in GΦ2(q) - [SL03]

Hence αq+1 becomes:

(a + xb)(a− xb) = 1, or a2 − x2b2 = 1, or a2 − ib2 = 1

Substituting from this equation into the squaring formula,
one obtains

α2 = (a + xb)2 = 2a2 − 1 + [(a + b)2 − a2 − (a2 − 1)/i]x

Main cost of computing this is just two Fq-squarings.
Observe that if i is ‘small’ (for example if i = −1 for p ≡ 3
(mod 4) when Fq = Fp), then the above simplifies

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups
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Round-up and where to next?

[SL03] obtains one Fq-equation for elements of
GΦ2(q) ⊂ Fq2

Equivalent to one Fq3 equation for elements of
GΦ2(q3) ⊂ Fq6

Since Φ6(q) | Φ2(q3), this method also applies to GΦ6(q),
but with some redundancy
[SL03] also obtain six Fq equations for GΦ6(q) ⊂ Fq6 for fast
squaring, but for q ≡ 2 or 5 (mod 9), so can’t be used with
sextic twists (p ≡ 1 mod 3)
[GPS06] obtain six equations in Fq for GΦ6(q), but
complicated and not as good as second [SL03] result

So for GΦ6(Fq), prior methods have used equations in subfields
Fq and Fq3 , but not Fq2 . This is what we do...
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Fast squaring in GΦ6(q) with q ≡ 1 mod 6

Let Fq6 = Fq[z]/(z6 − i), with i ∈ Fq a quadratic and cubic
non-residue
Standard representation for an element of Fq6/Fq is

α = α0 + α1z + α2z2 + α3z3 + α4z4 + α5z5

In order to make the subfield structure explicit, we write
elements of Fq6 in two possible ways:

As a compositum of Fq2 and Fq3

As a cubic extension of a quadratic extension of Fq

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups
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Fast squaring in GΦ6(q) with q ≡ 1 mod 6
Fq6 as a compositum

Let Fq2 = Fq[y ]/(y2 − i) and Fq3 = Fq[x ]/(x3 − i) and
hence y = z3, x = z2

α = (a0 + a1y) + (b0 + b1y)x + (c0 + c1y)x2 = a + bx + cx2

We thus have

Fq6 = Fq(z) = Fq3(y) = Fq2(x)

Viewing α in the latter form its square is (a + bx + cx2)2

= a2 + 2abx + (2ac + b2)x2 + 2bcx3 + c2x4

= (a2 + 2ibc) + (2ab + ic2)x + (2ac + b2)x2

= A + Bx + Cx2

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups
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Fast squaring in GΦ6(q) with q ≡ 1 mod 6
Fq6 as a compositum

As α ∈ GΦ6 we have αq2−q+1 = 1
To obtain equations over Fq2 , compute Frobenius action on
basis:

yq = y2(q−1)/2 · y = i(q−1)/2 · y = −y ,

hence aq = (a0 + a1y)q = a0 − a1y , which for simplicity we
write as ā, and similarly for b̄, c̄;
Let ω is a primitive cube root of unity in Fq. Then

xq = x3(q−1)/3 · x = i(q−1)/3 · x = ωx

Applying the Frobenius again gives xq2
= ω2x

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups
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Fast squaring in GΦ6(q) with q ≡ 1 mod 6
Fq6 as a compositum

Rewriting αq2−q+1 = 1 as αq2 · α = αq gives:

(a + bω2x + cω4x2)(a + bx + cx2) = ā + b̄ωx + c̄ω2x2,

Upon expanding, reducing modulo x3 − i , and modulo
Φ3(ω) = ω2 + ω + 1, this becomes

(a2 − ā− bci) + ω(ic2 − b̄ − ab)x + ω2(b2 − c̄ − ac)x2 = 0

This equation gives three Fq2 equations, as each Fq2

coefficient of x i equals zero.
Note also defines the variety ResFq6/Fq2

GΦ6(q), which is the
Weil restriction of scalars of GΦ6(q) from Fq6 to Fq2

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups
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Fast squaring in GΦ6(q) with q ≡ 1 mod 6
Fq6 as a compositum

Solving for bc,ab,ac, one obtains:

bc = (a2 − ā)/i
ab = ic2 − b̄
ac = b2 − c̄

Substituting these into the original squaring formula gives

A = a2 + 2ibc = a2 + 2i(a2 − ā)/i = 3a2 − 2ā
B = ic2 + 2ab = ic2 + 2(ic2 − b̄) = 3ic2 − 2b̄
C = b2 + 2ac = b2 + 2(b2 − c̄) = 3b2 − 2c̄

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups
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Fast squaring in GΦ6(q) with q ≡ 1 mod 6
Fq6 as a tower extension

Let Fq2 = Fq[y ]/(y2 − i) and Fq6 = Fq2 [x ]/(x3 −
√

i) and
hence y = z3, x = z
α = (a0 + a1y) + (b0 + b1y)x + (c0 + c1y)x2 = a + bx + cx2

Similar argument with a primitive sixth root of unity gives:

A = 3a2 − 2ā
B = 3

√
ic2 + 2b̄

C = 3b2 − 2c̄

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups
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Comparison with Prior Work

Operation counts for squaring using various Weil restrictions of
GΦk (q):

k Fqk ResFqk /F
qk/2

GΦ2(qk/2) ResFqk /F
qk/3

GΦ6(qk/6) ResFqk /Fq GΦ6(qk/6)

[SL03] (Present result) [GPS06]
6 12m 2S3 = 4m + 6s 3S2 = 6m 3m + 6s

12 36m 2S6 = 24m 3S4 = 18m 18m + 12s
18 72m 2S9 = 24m + 30s 3S6 = 36m
24 108m 2S12 = 72m 3S8 = 54m 84m + 24s

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups
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Barreto-Naehrig Curves [BN05]

These are elliptic curves E/Fp : y2 = x3 + b with
embedding degree 12 for which

p(t) = 36t4 + 36t3 + 24t2 + 6t + 1
r(t) = 36t4 + 36t3 + 18t2 + 6t + 1
tr(t) = 6t2 + 1

Odd t =⇒ p ≡ 3 (mod 4) and so Fp2 = Fp[x ]/(x2 + 1)

p2 ≡ 1 (mod 6) hence apply our construction for Fp12/Fp2

For ‘final powering’ using Scott et al.’s method [SBCPK09]:
[SL03] costs 5971m, our method costs 4856m

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups
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Torus-Based Cryptography (TBC)

TBC is cryptography based in Tk (Fq) ∼= GΦk (q)

Uses rationality of algebraic torus to compress elements -
best factor is 3 for 6 | k
For α = (a0 + a1x + a2x2) + (b0 + b1x + b2x2)y = a + by
using compositum representation and p ≡ 1 (mod 6) let

c = −(a + 1)/b = c0 + c1x + c2x2

Then (c0, c1) represents α with inverse

ψ : A2(Fq) → T6(Fq) \ {1} :

(c0, c1 6= 0) 7→
3ic0c1 + 3ic2

1x + (3c2
0 + i)x2 − 3ic1y

3ic0c1 + 3ic2
1x + (3c2

0 + i)x2 + 3ic1y

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups
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Other Considerations

Weil restriction framework applies to any k and d | k - for
PBC extension degrees our squaring method is best

Higher powerings?
Possible eg., using αΦ3(q) = 1 which aids in cubing - but
slower than squaring
Degree of αΦk (q) = 1 when expanded is ≤ 2 only for
k = 2a3b for a ≥ 1,b ≥ 0
Hence fields with these extension degrees ideally suited to
our squaring method
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Summary

Our method:

Provides the fastest available squaring in GΦ6(q) and for
PBC fields
Is conceptually easy and permits generalisation
Is highly applicable - only requires q ≡ 1 (mod 6) so
applies to 3/4’s finite fields
Ideal for TBC - allows fast maximal compression
(assuming p ≡ 1 (mod 6)) and fastest squaring
Applies to fields in IEEE P1363.3/D1 and so gives a
compelling argument for their adoption

R. Granger and M. Scott Faster Squaring in Cyclotomic Subgroups
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