Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions

Robert Granger, Michael Scott
\{rgranger, mike\}@computing.dcu.ie
Claude Shannon Institute
Dublin City University
Ireland

PKC 2010, May 27th

Outline

(1) Motivation and Results
(2) Method
(3) Applications

Statement of Problem

Consider $\mathbb{F}_{q^{n}}$:

Statement of Problem

Consider $\mathbb{F}_{q^{n}}$:

- Given $\alpha \in \mathbb{F}_{q^{n}}^{\times}$, what is the fastest way to compute α^{2} ?

Statement of Problem

Consider $\mathbb{F}_{q^{n}}$:

- Given $\alpha \in \mathbb{F}_{q^{n}}^{\times}$, what is the fastest way to compute α^{2} ?
- What if α belongs to a proper subgroup of $\mathbb{F}_{q^{n}}$?

Statement of Problem

Group decomposition of $\mathbb{F}_{q^{n}}^{\times}$

The identity $\left|\mathbb{F}_{q^{n}}^{\times}\right|=q^{n}-1=\prod_{d \mid n} \Phi_{d}(q)$, with $\Phi_{d}(\cdot)$ the d-th cyclotomic polynomial \Longrightarrow

- $\Phi_{d}(q) \mid\left(q^{d}-1\right)$ and so subgroup of this order embeds into $\mathbb{F}_{q^{d}} \subset \mathbb{F}_{q^{n}}$

Statement of Problem

Group decomposition of $\mathbb{F}_{q^{n}}^{\times}$

The identity $\left|\mathbb{F}_{q^{n}}^{\times}\right|=q^{n}-1=\prod_{d \mid n} \Phi_{d}(q)$, with $\Phi_{d}(\cdot)$ the d-th cyclotomic polynomial \Longrightarrow

- $\Phi_{d}(q) \mid\left(q^{d}-1\right)$ and so subgroup of this order embeds into $\mathbb{F}_{q^{d}} \subset \mathbb{F}_{q^{n}}$

Definition

The Cyclotomic Subgroup (w.r.t. $\mathbb{F}_{q^{n}} / \mathbb{F}_{q}$) of $\mathbb{F}_{q^{n}}^{\times}$is

$$
G_{\Phi_{n}(q)}=\left\{\alpha \in \mathbb{F}_{q^{n}} \mid \alpha^{\Phi_{n}(q)}=1\right\}
$$

Statement of Problem

Group decomposition of $\mathbb{F}_{q^{n}}^{\times}$

The identity $\left|\mathbb{F}_{q^{n}}^{\times}\right|=q^{n}-1=\prod_{d \mid n} \Phi_{d}(q)$, with $\Phi_{d}(\cdot)$ the d-th cyclotomic polynomial \Longrightarrow

- $\Phi_{d}(q) \mid\left(q^{d}-1\right)$ and so subgroup of this order embeds into $\mathbb{F}_{q^{d}} \subset \mathbb{F}_{q^{n}}$

Definition

The Cyclotomic Subgroup (w.r.t. $\mathbb{F}_{q^{n}} / \mathbb{F}_{q}$) of $\mathbb{F}_{q^{n}}^{\times}$is

$$
G_{\Phi_{n}(q)}=\left\{\alpha \in \mathbb{F}_{q^{n}} \mid \alpha^{\Phi_{n}(q)}=1\right\}
$$

- Question: Can one square elements of $G_{\Phi_{n}(q)}$ faster than one can square elements of $\mathbb{F}_{q^{n}}$?

Motivation
 Pairing-based Cryptography (PBC)

- PBC requires an efficiently computable, non-degenerate bilinear pairing

$$
e_{r}: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}
$$

- Security necessitates hard DLP in each of $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T}
- Efficiency necessitates fast arithmetic in $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T}

Motivation
 PBC - Security

- Instantiations of pairings typically have the form

$$
e_{r}: E\left(\mathbb{F}_{p}\right)[r] \times E\left(\mathbb{F}_{p^{k}}\right) / r E\left(\mathbb{F}_{p^{k}}\right) \rightarrow \mu_{r} \in \mathbb{F}_{p^{k}}^{\times}
$$

- Matching DLP security in \mathbb{G}_{1} and \mathbb{G}_{T} [KM05]:

security level	80	128	192	256
b_{r}	160	256	384	512
$b_{p^{k}}$	1024	3072	8192	15360
$b_{p^{k}} / b_{r}$	6.4	12	$21 \frac{1}{3}$	30

- $\Longrightarrow k \approx 6,12,18,24,30,36$ depending on $\rho=\log p / \log r$

Motivation
 PBC - Efficiency

- $2 \mid k \Longrightarrow$ can use quadratic twist for \mathbb{G}_{2}
- $4 \mid k \Longrightarrow$ can use quartic twist for \mathbb{G}_{2} (if CM disc. $D=1$)
- $6 \mid k \Longrightarrow$ can use sextic twist for \mathbb{G}_{2} (if CM disc. $D=3$)

Motivation
 PBC - Efficiency

- $2 \mid k \Longrightarrow$ can use quadratic twist for \mathbb{G}_{2}
- $2 \mid k \Longrightarrow$ can compress pairings by factor of 2
- $4 \mid k \Longrightarrow$ can use quartic twist for \mathbb{G}_{2} (if CM disc. $D=1$)
- $4 \mid k \Longrightarrow$ can compress pairings by factor of 2
- $6 \mid k \Longrightarrow$ can use sextic twist for \mathbb{G}_{2} (if CM disc. $D=3$)
- $6 \mid k \Longrightarrow$ can compress pairings by factor of 3

Motivation
 PBC - Efficiency

- $2 \mid k \Longrightarrow$ can use quadratic twist for \mathbb{G}_{2}
- $2 \mid k \Longrightarrow$ can compress pairings by factor of 2
- $2 \mid k \Longrightarrow$ can square fast in \mathbb{G}_{T}
- $4 \mid k \Longrightarrow$ can use quartic twist for \mathbb{G}_{2} (if CM disc. $D=1$)
- $4 \mid k \Longrightarrow$ can compress pairings by factor of 2
- $4 \mid k \Longrightarrow$ can square fast in \mathbb{G}_{T}
- $6 \mid k \Longrightarrow$ can use sextic twist for \mathbb{G}_{2} (if CM disc. $D=3$)
- $6 \mid k \Longrightarrow$ can compress pairings by factor of 3
- $6 \mid k \Longrightarrow$ can square very fast in \mathbb{G}_{T} (this work)

Main Result

For $q \equiv 1(\bmod 6)$, let $\alpha \in G_{\Phi_{6}(q)} \subset \mathbb{F}_{q^{6}}^{\times}$:

Main Result

For $q \equiv 1(\bmod 6)$, let $\alpha \in G_{\Phi_{6}(q)} \subset \mathbb{F}_{q^{6}}^{\times}$:

- We present a method to compute α^{2} twice as fast as that for squaring general elements of $\mathbb{F}_{q^{6}}$

Main Result

For $q \equiv 1(\bmod 6)$, let $\alpha \in G_{\Phi_{6}(q)} \subset \mathbb{F}_{q^{6}}^{\times}$:

- We present a method to compute α^{2} twice as fast as that for squaring general elements of $\mathbb{F}_{q^{6}}$
- For $q=p, p^{2}, p^{3}, p^{4}$ this is between $2 / 3$-rds and $3 / 4$'s the cost of previous best method [SL03]

Main Result

For $q \equiv 1(\bmod 6)$, let $\alpha \in G_{\Phi_{6}(q)} \subset \mathbb{F}_{q^{6}}^{\times}$:

- We present a method to compute α^{2} twice as fast as that for squaring general elements of $\mathbb{F}_{q^{6}}$
- For $q=p, p^{2}, p^{3}, p^{4}$ this is between $2 / 3$-rds and $3 / 4$'s the cost of previous best method [SL03]

Result applies to:

- 'Final-powering' in pairing computations

Main Result

For $q \equiv 1(\bmod 6)$, let $\alpha \in G_{\Phi_{6}(q)} \subset \mathbb{F}_{q^{6}}^{\times}$:

- We present a method to compute α^{2} twice as fast as that for squaring general elements of $\mathbb{F}_{q^{6}}$
- For $q=p, p^{2}, p^{3}, p^{4}$ this is between $2 / 3$-rds and $3 / 4$'s the cost of previous best method [SL03]

Result applies to:

- 'Final-powering' in pairing computations
- Post-pairing arithmetic

Main Result

For $q \equiv 1(\bmod 6)$, let $\alpha \in G_{\Phi_{6}(q)} \subset \mathbb{F}_{q^{6}}^{\times}$:

- We present a method to compute α^{2} twice as fast as that for squaring general elements of $\mathbb{F}_{q^{6}}$
- For $q=p, p^{2}, p^{3}, p^{4}$ this is between $2 / 3$-rds and $3 / 4$'s the cost of previous best method [SL03]

Result applies to:

- 'Final-powering' in pairing computations
- Post-pairing arithmetic
- Torus-Based Cryptography

Main Result

For $q \equiv 1(\bmod 6)$, let $\alpha \in G_{\Phi_{6}(q)} \subset \mathbb{F}_{q^{6}}^{\times}$:

- We present a method to compute α^{2} twice as fast as that for squaring general elements of $\mathbb{F}_{q^{6}}$
- For $q=p, p^{2}, p^{3}, p^{4}$ this is between $2 / 3$-rds and $3 / 4$'s the cost of previous best method [SL03]

Result applies to:

- 'Final-powering' in pairing computations
- Post-pairing arithmetic
- Torus-Based Cryptography
- Fields in IEEE ‘Draft Standard for Identity-Based Public Key Cryptography using Pairings' (P1363.3/D1)

Pairing-Friendly Fields

Simplification of PBC Treatment

Koblitz and Menezes introduced the following [KM05]:

- Let $p \equiv 1(\bmod 12)$ and $k=2^{a} 3^{b}$ for $a \geq 1$ and $b \geq 0$. Then $\mathbb{F}_{p^{k}}$ is known as a Pairing-Friendly Field (PFF)

Pairing-Friendly Fields

Simplification of PBC Treatment

Koblitz and Menezes introduced the following [KM05]:

- Let $p \equiv 1(\bmod 12)$ and $k=2^{a} 3^{b}$ for $a \geq 1$ and $b \geq 0$. Then $\mathbb{F}_{p^{k}}$ is known as a Pairing-Friendly Field (PFF)
- We restrict to $\mathbb{F}_{p^{k}}$ with $k=2^{a} 3^{b}$ with $a, b \geq 1$, so that $6 \mid k$. Then:

$$
\Phi_{2^{a} 3^{b}}(x)=x^{2 \cdot 2^{a-1} 3^{b-1}}-x^{2^{a-1} 3^{b-1}}+1
$$

Pairing-Friendly Fields

Simplification of PBC Treatment

Koblitz and Menezes introduced the following [KM05]:

- Let $p \equiv 1(\bmod 12)$ and $k=2^{a} 3^{b}$ for $a \geq 1$ and $b \geq 0$. Then $\mathbb{F}_{p^{k}}$ is known as a Pairing-Friendly Field (PFF)
- We restrict to $\mathbb{F}_{p^{k}}$ with $k=2^{a} 3^{b}$ with $a, b \geq 1$, so that $6 \mid k$. Then:

$$
\Phi_{2^{a} 3^{b}}(x)=x^{2 \cdot 2^{a-1} 3^{b-1}}-x^{2^{a-1} 3^{b-1}}+1
$$

- Note that $\Phi_{2^{a} b}(x)=\Phi_{6}\left(x^{2^{a-1} 3^{b-1}}\right)$ and hence

$$
G_{\Phi_{k}(p)}=G_{\Phi_{6}\left(p^{k / 6}\right)}
$$

Pairing-Friendly Fields

Simplification of PBC Treatment

Koblitz and Menezes introduced the following [KM05]:

- Let $p \equiv 1(\bmod 12)$ and $k=2^{a} 3^{b}$ for $a \geq 1$ and $b \geq 0$. Then $\mathbb{F}_{p^{k}}$ is known as a Pairing-Friendly Field (PFF)
- We restrict to $\mathbb{F}_{p^{k}}$ with $k=2^{a} 3^{b}$ with $a, b \geq 1$, so that $6 \mid k$. Then:

$$
\Phi_{2^{a} 3^{b}}(x)=x^{2 \cdot 2^{a-1} 3^{b-1}}-x^{2^{a-1} 3^{b-1}}+1
$$

- Note that $\Phi_{2^{a} 3^{b}}(x)=\Phi_{6}\left(x^{2^{a-1} 3^{b-1}}\right)$ and hence

$$
G_{\Phi_{k}(p)}=G_{\Phi_{6}\left(p^{k / 6}\right)}
$$

- So we need only consider $G_{\Phi_{6}(q)}$ with $q=p^{k / 6}$

Fast squaring in $G_{\Phi_{2}(q)}-[S L 03]$

- Let $\mathbb{F}_{q^{2}}=\mathbb{F}_{q}[x] /\left(x^{2}-i\right)$ with i a quadratic non-residue in \mathbb{F}_{q}, and consider the square of a generic element $\alpha=a+b x$:

$$
\begin{aligned}
\alpha^{2} & =(a+x b)^{2}=a^{2}+2 a b x+b^{2} x^{2}=a^{2}+i b^{2}+2 a b x \\
& =(a+i b)(a+b)-a b(1+i)+2 a b x
\end{aligned}
$$

- If $\alpha \in G_{\Phi_{2}(q)}$, we have $\alpha^{q+1}=1$, or $\alpha^{q} \cdot \alpha=1$. Observe that since i is a quadratic non-residue:

$$
\begin{aligned}
\alpha^{q} & =(a+x b)^{q}=a+b x^{q}=a+b x^{2(q-1) / 2} \cdot x \\
& =a+b i^{(q-1) / 2} \cdot x=a-b x
\end{aligned}
$$

Fast squaring in $G_{\Phi_{2}(q)}-[S L 03]$

- Hence α^{q+1} becomes:

$$
(a+x b)(a-x b)=1, \text { or } a^{2}-x^{2} b^{2}=1, \text { or } a^{2}-i b^{2}=1
$$

- Substituting from this equation into the squaring formula, one obtains

$$
\alpha^{2}=(a+x b)^{2}=2 a^{2}-1+\left[(a+b)^{2}-a^{2}-\left(a^{2}-1\right) / i\right] x
$$

- Main cost of computing this is just two \mathbb{F}_{q}-squarings.
- Observe that if i is 'small' (for example if $i=-1$ for $p \equiv 3$ $(\bmod 4)$ when $\left.\mathbb{F}_{q}=\mathbb{F}_{p}\right)$, then the above simplifies

Round-up and where to next?

- [SL03] obtains one \mathbb{F}_{q}-equation for elements of

$$
G_{\Phi_{2}(q)} \subset \mathbb{F}_{q^{2}}
$$

- Equivalent to one $\mathbb{F}_{q^{3}}$ equation for elements of $G_{\Phi_{2}\left(q^{3}\right)} \subset \mathbb{F}_{q^{6}}$
- Since $\Phi_{6}(q) \mid \Phi_{2}\left(q^{3}\right)$, this method also applies to $G_{\Phi_{6}(q)}$, but with some redundancy
- [SL03] also obtain six \mathbb{F}_{q} equations for $G_{\Phi_{6}(q)} \subset \mathbb{F}_{q^{6}}$ for fast squaring, but for $q \equiv 2$ or $5(\bmod 9)$, so can't be used with sextic twists $(p \equiv 1 \bmod 3)$
- [GPS06] obtain six equations in \mathbb{F}_{q} for $G_{\Phi_{6}(q)}$, but complicated and not as good as second [SL03] result

Round-up and where to next?

- [SL03] obtains one \mathbb{F}_{q}-equation for elements of

$$
G_{\Phi_{2}(q)} \subset \mathbb{F}_{q^{2}}
$$

- Equivalent to one $\mathbb{F}_{q^{3}}$ equation for elements of

$$
G_{\Phi_{2}\left(q^{3}\right)} \subset \mathbb{F}_{q^{6}}
$$

- Since $\Phi_{6}(q) \mid \Phi_{2}\left(q^{3}\right)$, this method also applies to $G_{\Phi_{6}(q)}$, but with some redundancy
- [SL03] also obtain six \mathbb{F}_{q} equations for $G_{\Phi_{6}(q)} \subset \mathbb{F}_{q^{6}}$ for fast squaring, but for $q \equiv 2$ or $5(\bmod 9)$, so can't be used with sextic twists $(p \equiv 1 \bmod 3)$
- [GPS06] obtain six equations in \mathbb{F}_{q} for $G_{\Phi_{6}(q)}$, but complicated and not as good as second [SLO3] result

So for $G_{\Phi_{6}\left(\mathbb{F}_{q}\right)}$, prior methods have used equations in subfields \mathbb{F}_{q} and $\mathbb{F}_{q^{3}}$, but not $\mathbb{F}_{q^{2}}$. This is what we do...

Fast squaring in $G_{\Phi_{\epsilon}(q)}$ with $q \equiv 1 \bmod 6$

- Let $\mathbb{F}_{q^{6}}=\mathbb{F}_{q}[z] /\left(z^{6}-i\right)$, with $i \in \mathbb{F}_{q}$ a quadratic and cubic non-residue
- Standard representation for an element of $\mathbb{F}_{q^{6}} / \mathbb{F}_{q}$ is

$$
\alpha=\alpha_{0}+\alpha_{1} z+\alpha_{2} z^{2}+\alpha_{3} z^{3}+\alpha_{4} z^{4}+\alpha_{5} z^{5}
$$

- In order to make the subfield structure explicit, we write elements of $\mathbb{F}_{q^{6}}$ in two possible ways:
- As a compositum of $\mathbb{F}_{q^{2}}$ and $\mathbb{F}_{q^{3}}$
- As a cubic extension of a quadratic extension of \mathbb{F}_{q}

Fast squaring in $G_{\Phi_{\epsilon}(q)}$ with $q \equiv 1 \bmod 6$

$\mathbb{F}_{q^{6}}$ as a compositum

- Let $\mathbb{F}_{q^{2}}=\mathbb{F}_{q}[y] /\left(y^{2}-i\right)$ and $\mathbb{F}_{q^{3}}=\mathbb{F}_{q}[x] /\left(x^{3}-i\right)$ and hence $y=z^{3}, x=z^{2}$
- $\alpha=\left(a_{0}+a_{1} y\right)+\left(b_{0}+b_{1} y\right) x+\left(c_{0}+c_{1} y\right) x^{2}=a+b x+c x^{2}$
- We thus have

$$
\mathbb{F}_{q^{6}}=\mathbb{F}_{q}(z)=\mathbb{F}_{q^{3}}(y)=\mathbb{F}_{q^{2}}(x)
$$

- Viewing α in the latter form its square is $\left(a+b x+c x^{2}\right)^{2}$

$$
\begin{aligned}
& =a^{2}+2 a b x+\left(2 a c+b^{2}\right) x^{2}+2 b c x^{3}+c^{2} x^{4} \\
& =\left(a^{2}+2 i b c\right)+\left(2 a b+c^{2}\right) x+\left(2 a c+b^{2}\right) x^{2} \\
& =A+B x+C x^{2}
\end{aligned}
$$

Fast squaring in $G_{\phi_{6}(q)}$ with $q \equiv 1 \bmod 6$

$\mathbb{F}_{q^{6}}$ as a compositum

- As $\alpha \in G_{\Phi_{6}}$ we have $\alpha^{q^{2}-q+1}=1$
- To obtain equations over $\mathbb{F}_{q^{2}}$, compute Frobenius action on basis:

$$
y^{q}=y^{2(q-1) / 2} \cdot y=i^{(q-1) / 2} \cdot y=-y
$$

hence $a^{q}=\left(a_{0}+a_{1} y\right)^{q}=a_{0}-a_{1} y$, which for simplicity we write as \bar{a}, and similarly for \bar{b}, \bar{c};

- Let ω is a primitive cube root of unity in \mathbb{F}_{q}. Then

$$
x^{q}=x^{3(q-1) / 3} \cdot x=i^{(q-1) / 3} \cdot x=\omega x
$$

- Applying the Frobenius again gives $x^{q^{2}}=\omega^{2} x$

Fast squaring in $G_{\phi_{\epsilon}(q)}$ with $q \equiv 1 \bmod 6$

$\mathbb{F}_{q^{6}}$ as a compositum

- Rewriting $\alpha^{q^{2}-q+1}=1$ as $\alpha^{q^{2}} \cdot \alpha=\alpha^{q}$ gives:

$$
\left(a+b \omega^{2} x+c \omega^{4} x^{2}\right)\left(a+b x+c x^{2}\right)=\bar{a}+\bar{b} \omega x+\bar{c} \omega^{2} x^{2}
$$

- Upon expanding, reducing modulo $x^{3}-i$, and modulo $\Phi_{3}(\omega)=\omega^{2}+\omega+1$, this becomes $\left(a^{2}-\bar{a}-b c i\right)+\omega\left(i c^{2}-\bar{b}-a b\right) x+\omega^{2}\left(b^{2}-\bar{c}-a c\right) x^{2}=0$
- This equation gives three $\mathbb{F}_{q^{2}}$ equations, as each $\mathbb{F}_{q^{2}}$ coefficient of x^{i} equals zero.
- Note also defines the variety $\operatorname{Res}_{\mathbb{F}_{q^{6}} / \mathbb{F}_{q^{2}}} G_{\Phi_{6}(q)}$, which is the Weil restriction of scalars of $G_{\Phi_{6}(q)}$ from $\mathbb{F}_{q^{6}}$ to $\mathbb{F}_{q^{2}}$

Fast squaring in $G_{\phi_{6}(q)}$ with $q \equiv 1 \bmod 6$

$\mathbb{F}_{q^{6}}$ as a compositum

- Solving for $b c, a b, a c$, one obtains:

$$
\begin{aligned}
& b c=\left(a^{2}-\bar{a}\right) / i \\
& a b=i c^{2}-\bar{b} \\
& a c=b^{2}-\bar{c}
\end{aligned}
$$

- Substituting these into the original squaring formula gives

$$
\begin{aligned}
& A=a^{2}+2 i b c=a^{2}+2 i\left(a^{2}-\bar{a}\right) / i=3 a^{2}-2 \bar{a} \\
& B=i c^{2}+2 a b=i c^{2}+2\left(i c^{2}-\bar{b}\right)=3 i c^{2}-2 \bar{b} \\
& C=b^{2}+2 a c=b^{2}+2\left(b^{2}-\bar{c}\right)=3 b^{2}-2 \bar{c}
\end{aligned}
$$

Fast squaring in $G_{\Phi_{\epsilon}(q)}$ with $q \equiv 1 \bmod 6$

$\mathbb{F}_{q^{6}}$ as a tower extension

- Let $\mathbb{F}_{q^{2}}=\mathbb{F}_{q}[y] /\left(y^{2}-i\right)$ and $\mathbb{F}_{q^{6}}=\mathbb{F}_{q^{2}}[x] /\left(x^{3}-\sqrt{i}\right)$ and hence $y=z^{3}, x=z$
- $\alpha=\left(a_{0}+a_{1} y\right)+\left(b_{0}+b_{1} y\right) x+\left(c_{0}+c_{1} y\right) x^{2}=a+b x+c x^{2}$
- Similar argument with a primitive sixth root of unity gives:

$$
\begin{aligned}
& A=3 a^{2}-2 \bar{a} \\
& B=3 \sqrt{i c^{2}}+2 \bar{b} \\
& C=3 b^{2}-2 \bar{c}
\end{aligned}
$$

Comparison with Prior Work

Operation counts for squaring using various Weil restrictions of $G_{\Phi_{k}(q)}:$

k	$\mathbb{F}_{q^{k}}$	$\operatorname{Res}_{\mathbb{F}_{q^{k}} / \mathbb{F}_{q^{k / 2}}} G_{\Phi_{2}\left(q^{k / 2}\right)}$ [SL03]	$\operatorname{Res}_{\mathbb{F}_{q^{k}} / \mathbb{F}_{q^{k / 3}}} G_{\Phi_{6}\left(q^{k / 6}\right)}$ (Present result)	$\operatorname{Res}_{\mathbb{F}_{q^{k}} / \mathbb{F}_{q}} G_{\Phi_{6}\left(q^{k / 6}\right)}$ $[G P S 06]$
6	$12 m$	$2 S_{3}=4 m+6 s$	$3 S_{2}=6 m$	$3 m+6 s$
12	$36 m$	$2 S_{6}=24 m$	$3 S_{4}=18 m$	$18 m+12 s$
18	$72 m$	$2 S_{9}=24 m+30 s$	$3 S_{6}=36 m$	
24	$108 m$	$2 S_{12}=72 m$	$3 S_{8}=54 m$	$84 m+24 s$

Barreto-Naehrig Curves [BN05]

- These are elliptic curves $E / \mathbb{F}_{p}: y^{2}=x^{3}+b$ with embedding degree 12 for which

$$
\begin{aligned}
p(t) & =36 t^{4}+36 t^{3}+24 t^{2}+6 t+1 \\
r(t) & =36 t^{4}+36 t^{3}+18 t^{2}+6 t+1 \\
\operatorname{tr}(t) & =6 t^{2}+1
\end{aligned}
$$

- Odd $t \Longrightarrow p \equiv 3(\bmod 4)$ and so $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}[x] /\left(x^{2}+1\right)$
- $p^{2} \equiv 1(\bmod 6)$ hence apply our construction for $\mathbb{F}_{p^{12}} / \mathbb{F}_{p^{2}}$
- For 'final powering' using Scott et al.'s method [SBCPK09]: [SL03] costs 5971 , our method costs $4856 m$

Torus-Based Cryptography (TBC)

- TBC is cryptography based in $T_{k}\left(\mathbb{F}_{q}\right) \cong G_{\Phi_{k}(q)}$
- Uses rationality of algebraic torus to compress elements best factor is 3 for $6 \mid k$
- For $\alpha=\left(a_{0}+a_{1} x+a_{2} x^{2}\right)+\left(b_{0}+b_{1} x+b_{2} x^{2}\right) y=a+b y$ using compositum representation and $p \equiv 1(\bmod 6)$ let

$$
c=-(a+1) / b=c_{0}+c_{1} x+c_{2} x^{2}
$$

- Then $\left(c_{0}, c_{1}\right)$ represents α with inverse

$$
\begin{aligned}
\psi: \mathbb{A}^{2}\left(\mathbb{F}_{q}\right) & \rightarrow T_{6}\left(\mathbb{F}_{q}\right) \backslash\{1\}: \\
\left(c_{0}, c_{1} \neq 0\right) & \mapsto \frac{3 i c_{0} c_{1}+3 i i_{1}^{2} x+\left(3 c_{0}^{2}+i\right) x^{2}-3 i c_{1} y}{3 i c_{0} c_{1}+3 i c_{1}^{2} x+\left(3 c_{0}^{2}+i\right) x^{2}+3 i c_{1} y}
\end{aligned}
$$

Other Considerations

- Weil restriction framework applies to any k and $d \mid k$ - for PBC extension degrees our squaring method is best

Other Considerations

- Weil restriction framework applies to any k and $d \mid k$ - for PBC extension degrees our squaring method is best
- Higher powerings?
- Possible eg., using $\alpha^{\Phi_{3}(q)}=1$ which aids in cubing - but slower than squaring
- Degree of $\alpha^{\Phi_{k}(q)}=1$ when expanded is ≤ 2 only for $k=2^{a} 3^{b}$ for $a \geq 1, b \geq 0$
- Hence fields with these extension degrees ideally suited to our squaring method

Summary

Our method:

- Provides the fastest available squaring in $G_{\Phi_{6}(q)}$ and for PBC fields
- Is conceptually easy and permits generalisation
- Is highly applicable - only requires $q \equiv 1(\bmod 6)$ so applies to 3/4's finite fields
- Ideal for TBC - allows fast maximal compression (assuming $p \equiv 1(\bmod 6))$ and fastest squaring
- Applies to fields in IEEE P1363.3/D1 and so gives a compelling argument for their adoption

