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The Index Calculus Method

Consider the DLP in Fqn . The ICM consists of two stages:

1. Choose a factor base F , find relations between elements and
then compute their logarithms.

2. For an arbitrary element, express it as a product of lower
degree elements; recurse until all leaves are in F .
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Our Contributions

• The first polynomial time relation generation method for
degree one elements

• The first polynomial time elimination method for degree two
elements

• An Lqn(1/3 , (4/9)1/3 ≈ 0.763) algorithm for solving the DLP
for suitably balanced q, n

• Practical results: solved example DLPs in F21971 and F23164
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The Joux-Lercier FFS variation [JL06]

To find factor base relations in Fqn one uses the following setup.

• Choose g1, g2 ∈ Fq[X ] of degrees d1, d2 such that
X − g1(g2(X )) has a degree n irreducible factor f (X ) over
Fq , then Fqn = Fq(x) ∼= Fq[X ]/(f (X )Fq[X ])

• Let y = g2(x); then x = g1(y) and Fqn
∼= Fq(x) ∼= Fq(y)

• In best case factor base is {x − a | a ∈ Fq} ∪ {y − b | b ∈ Fq}

Relation generation:

• Considering elements xy + ay + bx + c with a, b, c ∈ Fq , one
obtains the Fqn -equality

xg2(x) + ag2(x) + bx + c = yg1(y) + ay + bg1(y) + c

• When both sides split over Fq one obtains a relation
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‘Optimising’ d1 and d2 in [JL06]

Fundamental Theorem of Cryptography

“If we have no clue about something, then we can safely assume
that it behaves as a uniformly distributed random variable.”

– Igor Shparlinski

F.T.C. =⇒ that as q →∞ each side of xy + ay + bx + c splits
over Fq with probability 1/(d2 + 1)! and 1/(d1 + 1)! respectively.

• =⇒ Choose d1 ≈ d2 ≈
√
n

• For q = Lqn(1/3, 3−2/3) algorithm is Lqn(1/3, 31/3)

A Counterpoint to the F.T.C.

Fortunately, in one sub-case of the [JL06] setup, we have a clue.
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An Auspicious Choice for g2

For simplicity, let Fq = F2l .

• Let y = g2(x) = x2
k

with 1 < k < l

• Eliminates half of the factor base since

(y + b) = (x + b2
−k

)2
k

=⇒ log(y + b) = 2k log(x + b2
−k

)

• The l.h.s. of xy + ay + bx + c becomes

x2
k+1 + ax2

k
+ bx + c

• For k | l and l/k ≥ 2, this polynomial provably splits over Fq

with probability ≈ 1/23k � 1/(2k + 1)!
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Bluher Polynomials

Let q = 2` , ` = kk ′ with k ′ ≥ 3. If ab 6= c and b 6= a2
k

, then
x2

k+1 + ax2
k

+ bx + c may be transformed into

FB(x) = x2
k+1 + Bx + B , with B =

(a2
k

+ b)2
k+1

(ab + c)2k
and

x =

(
ab + c

a2k + b

)
x + a.

Theorem (Bluher 2004)

The number of elements B ∈ F×q such that the polynomial FB(X )
splits completely over Fq equals

2`−k − 1

22k − 1
if k ′ is odd ,

2`−k − 2k

22k − 1
if k ′ is even .
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Relation Generation

• Let SB = {B ∈ F×q | X 2k+1 + BX + B splits over Fq}

• For any a, b ∈ Fq s.t. b 6= a2
k

and B ∈ SB , there exists a

unique c ∈ Fq s.t. x2
k+1 + ax2

k
+ bx + c splits over Fq

• For each such (a, b, c), test if r.h.s. yg1(y) + ay + bg1(y) + c
splits; if so then have a relation

Assume that g1 can be found s.t. X − g1(X 2k ) ≡ 0 (mod f (X ))
with deg(f ) = n ≤ 2k d1 . Then we have the following:

Heuristic Result 1

Let q = 2l with l = kk ′ and k ′ ≥ 3 and d1 ≥ 1 constants, and
assume n ≈ 2k d1 . Assuming the r.h.s. splits over Fq with
probability 1/(d1 + 1)! , then the logarithms of all degree one
elements of Fqn can be computed in time Õ(log2k

′+1 qn) .
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Polynomial Time Relation Generation - Examples

• Let q = 23k and n = 2k − 1 =⇒ can use a Kummer extension

• Set g1(X ) = γX , so that irreducible is X 2k−1 + γ

• r.h.s has degree 2 and splits with probability 1/2

Table : Relation generation times for q = 23k and n = 2k − 1 on a
2.0GHz AMD Opteron 6128

k log2(qn) #vars time

7 2667 5506 2.3s
8 6120 21932 15.0s
9 13797 87554 122s

10 30690 349858 900s
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Complexity Results

Suppose q = exp
(
α 3
√

log qn · log2 log qn
)

(†). We have:

Heuristic Result 2(i)

Let q = 2l , let k | l and let n be such that (†) holds. Then for
n ≈ 2k d1 where 2k ≈ d1 , the DLP can be solved with complexity
LQ(1/3, (8/9)1/3) ≈ LQ(1/3, 0.961) .

Heuristic Result 2(ii)

Let q = 2l , let k | l and let n be such that (†) holds. Then for
n ≈ 2k d1 where 2k � d1 , the DLP can be solved with complexity
between LQ(1/3, (4/9)1/3) ≈ LQ(1/3, 0.763) and
LQ(1/3, (1/2)1/3) ≈ LQ(1/3, 0.794) .
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Solving the DLP in F21971

Let Fq = F227 = F2[T ]/(T 27 + T 5 + T 2 + T + 1) = F2(t) and let
Fq73 = Fq[X ]/(X 73 + t) = Fq(x) be the field of order 21971 .

• We let y = x8 and thus x = t/y9 and took as generator
α = x + 1 and target

βπ =
72∑
i=0

τ(bπqi+1c mod q) x i .

The computation took:

• 14 core-hrs for relation generation: quotienting out by the
action of the 9-th power of Frobenius on the factor base gives
612, 872 ≈ 227/(3 · 73) variables

• After SGE, 2220 core-hrs for parallelised Lanczos on matrix of
dimension 528, 812× 527, 766

• 898 core-hrs for the descent =⇒ total of 3132 core-hrs.
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Solving the DLP in F21971

On 19/2/13 we announced that logα(βπ) =

11992984215354106866091146371988855845186852755447163352

36895900760902198795745784008181148775933944656038305197

82541742360236535889937362200771117361678269423101163403

13535552228080411390321527355590590108228224824002192878

78207304028565280573096588688279004416835100344085961912

42700060128986433752110002214380289887546061125224587971

19787275080584651962314043764573936293823541736161168108

25627780459657892709561158924173579400674739684346062992

68294291957378226451182620783745349502502960139927453196

48974006524479548958327920827882768332440907342446643941

0976702162039539513377673115483439 .
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Solving the DLP in F23164

Let Fq = F228 = F2[T ]/(T 28 + T + 1) = F2(t) and let
Fq113 = Fq[X ]/(X 113 + t) = Fq(x) be the field of order 23164 .

• We let y = x16 and thus x = t/y7 and took as generator
α = x + t + 1 and target

βπ =
112∑
i=0

τ(bπqi+1c mod q) x i .

The computation took:

• 2 core-hrs for relation generation: quotienting out by the
action of the 14-th power of Frobenius on the factor base
gives 1, 187, 841 ≈ 228/(2 · 113) variables

• After SGE, 85, 488 core-hrs for parallelised Lanczos on matrix
of dimension 1, 066, 010× 1, 064, 991

• 21, 602 core-hrs for the descent =⇒ total of 107, 092 core-hrs
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Solving the DLP in F23164

On 3/5/13 we found that logα(βπ) =

2410958672084703779901202077261642209070514313288787533385808717024

8784565712688312063491036765323357553857177477977665457317849564770

1688094481773173140524389502529386852264636049383546885561763318178

6341747893370309598402582718996263618673697554067799885512742832012

3901294838991530024173934004391610582283400289720429303619769406533

7903255793451858773664350130030722091666253172541070447948299781221

0193428607010640365444303319677531146468063350633002030742348610674

7166841199820454431917683235380198222192499580429542616711230697079

5960798988644631100037393291558580412406942004555116148790387654960

4900084297695444007900819088072394071341577241660482464194055035573

9803589799985259319695403143962976877685099988772087056174191305553

1864041654707840433795403753200520891617150254756586728215941551355

0648407797656823989931563900000242491107399569193500692930336704230

7029958155763666499372120453686303873671488016409635578117870889230

278649164378133 .
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Big Field Hunting

• 11th Feb’13, Joux: F21778 in 220 core-hrs

• 19th Feb’13, GGMZ: F21971 in 3, 132 core-hrs

• 3rd May’13, GGMZ: F23164 in 107, 000 core-hrs

• 22nd Mar’13, Joux: F24080 in 14, 100 core-hrs

• 11th Apr’13, GGMZ: F26120 in 750 core-hrs

• 21st May’13, Joux: F26168 in 550 core-hrs
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Solution to DLP in F26120

On 11/4/13 we announced that βπ = g log , with log =

138587598363978692625475711283123171009236361503896992366495931704517700280127178022234894098617

581360131441835074256363730624426814293233474272521598166126957928116825443110965404253837938808

595404111035238027107772178822939281873403451999731815140073481766513715358449279314556797352446

246860317946750124475689474406274942356035936501674050933448909201029834522226732247771897083223

217282051573645013603613042367782716361877817938374393824313019073624786387618414037541681120284

044659383192907436852526392087724304775451631271825250968111451400502733404381769675255289127346

639350098221570844400380788516332496583882522436381918008200167032186350245107751346979596314696

153666716168951481948091060066730184766758137773944303875429830867205463918144256843911730747265

146154193438041627833661739775057161236346096236566875251277843062329973044475486561062204356908

568471471279383781038538818884463796989906076079843248127252020839705886436071213650575186707456

948584072378916942925369140868417196479573481032711481021729162865973588174096389913305607677858

033996361734905537150362024720515772660781208855505434331055766570014211875602940633575763850457

503079087074376585304470520411320246292255375711457573555286060236699317039454479326718281128961

423275142787569425690532833283344049635521302596000897192512036695298807294032964530959691377087

204546348960132760095544105980198255245493202412831593891984788152417957691939817112366182063687

529915365150361180214451234387656883256149355994405051149585969163075307026647956035683671589546

448539955132726112034938655961291856203422247680387029078473520951160334472525475071680672623661

587292720329606182512044312194357156139201340952037872975243254476081554937002122953415949407262

137232099852298394838422907643191397673290238344183046040975859915928536530445697145317668044973

7096483324156185041
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The Algorithm of Barbulescu, Gaudry, Joux and Thomé

For small characteristic fields of bitlength l , the BGJT algorithm
has quasi-polynomial complexity lO(log l) .

• Applies to fields of the form Fqkn , with k ≥ 2 and n ≈ q

• Complexity dictated by #nodes in the descent tree

Question: Are the any elements of Fqkn that require a
quasi-polynomial number of linear elements to represent them?

Answer: No! F.R.K. Chung has proven that if Fqkn = Fqk (x), then

each h ∈ F×
qkn

can be represented by

h = (x + a1) · · · (x + am), with ai ∈ Fqk ,

if
√

qk > n − 1 and m ≥ 2n + 4n log n/(log qk − 2 log (n − 1)).
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Thanks for your attention!
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