On the Function Field Sieve and the Impact of Higher Splitting Probabilities Application to Discrete Logarithms in $\mathbb{F}_{2^{1971}}$ and $\mathbb{F}_{2^{3164}}$

Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel

Claude Shannon Institute
Complex & Adaptive Systems Laboratory
School of Mathematical Sciences
University College Dublin, Ireland

21st August, CRYPTO 2013

Consider the DLP in \mathbb{F}_{q^n} . The ICM consists of two stages:

The Index Calculus Method

Consider the DLP in \mathbb{F}_{q^n} . The ICM consists of two stages:

1. Choose a factor base \mathcal{F} , find relations between elements and then compute their logarithms.

The Index Calculus Method

Consider the DLP in \mathbb{F}_{q^n} . The ICM consists of two stages:

- 1. Choose a factor base \mathcal{F} , find relations between elements and then compute their logarithms.
- 2. For an arbitrary element, express it as a product of lower degree elements; recurse until all leaves are in \mathcal{F} .

 The first polynomial time relation generation method for degree one elements

- The first polynomial time relation generation method for degree one elements
- The first polynomial time elimination method for degree two elements

- The first polynomial time relation generation method for degree one elements
- The first polynomial time elimination method for degree two elements
- An $L_{q^n}(1/3, (4/9)^{1/3} \approx 0.763)$ algorithm for solving the DLP for suitably balanced q, n

- The first polynomial time relation generation method for degree one elements
- The first polynomial time elimination method for degree two elements
- An $L_{q^n}(1/3, (4/9)^{1/3} \approx 0.763)$ algorithm for solving the DLP for suitably balanced q, n
- ullet Practical results: solved example DLPs in $\mathbb{F}_{2^{1971}}$ and $\mathbb{F}_{2^{3164}}$

To find factor base relations in \mathbb{F}_{q^n} one uses the following setup.

To find factor base relations in \mathbb{F}_{q^n} one uses the following setup.

- Choose $g_1,g_2\in \mathbb{F}_q[X]$ of degrees d_1,d_2 such that $X-g_1(g_2(X))$ has a degree n irreducible factor f(X) over \mathbb{F}_q , then $\mathbb{F}_{q^n}=\mathbb{F}_q(x)\cong \mathbb{F}_q[X]/(f(X)\mathbb{F}_q[X])$
- Let $y=g_2(x)$; then $x=g_1(y)$ and $\mathbb{F}_{q^n}\cong \mathbb{F}_q(x)\cong \mathbb{F}_q(y)$
- In best case factor base is $\{x-a\mid a\in\mathbb{F}_q\}\cup\{y-b\mid b\in\mathbb{F}_q\}$

To find factor base relations in \mathbb{F}_{q^n} one uses the following setup.

- Choose $g_1,g_2\in \mathbb{F}_q[X]$ of degrees d_1,d_2 such that $X-g_1(g_2(X))$ has a degree n irreducible factor f(X) over \mathbb{F}_q , then $\mathbb{F}_{q^n}=\mathbb{F}_q(x)\cong \mathbb{F}_q[X]/(f(X)\mathbb{F}_q[X])$
- Let $y=g_2(x)$; then $x=g_1(y)$ and $\mathbb{F}_{q^n}\cong \mathbb{F}_q(x)\cong \mathbb{F}_q(y)$
- In best case factor base is $\{x-a\mid a\in\mathbb{F}_q\}\cup\{y-b\mid b\in\mathbb{F}_q\}$

Relation generation:

To find factor base relations in \mathbb{F}_{q^n} one uses the following setup.

- Choose $g_1,g_2\in \mathbb{F}_q[X]$ of degrees d_1,d_2 such that $X-g_1(g_2(X))$ has a degree n irreducible factor f(X) over \mathbb{F}_q , then $\mathbb{F}_{q^n}=\mathbb{F}_q(x)\cong \mathbb{F}_q[X]/(f(X)\mathbb{F}_q[X])$
- Let $y=g_2(x)$; then $x=g_1(y)$ and $\mathbb{F}_{q^n}\cong \mathbb{F}_q(x)\cong \mathbb{F}_q(y)$
- In best case factor base is $\{x-a\mid a\in\mathbb{F}_q\}\cup\{y-b\mid b\in\mathbb{F}_q\}$

Relation generation:

• Considering elements xy+ay+bx+c with $a,b,c\in\mathbb{F}_q$, one obtains the \mathbb{F}_{q^n} -equality

$$xg_2(x) + ag_2(x) + bx + c = yg_1(y) + ay + bg_1(y) + c$$

• When both sides split over \mathbb{F}_q one obtains a relation

Fundamental Theorem of Cryptography

"If we have no clue about something, then we can safely assume that it behaves as a uniformly distributed random variable."

– Igor Shparlinski

Fundamental Theorem of Cryptography

"If we have no clue about something, then we can safely assume that it behaves as a uniformly distributed random variable."

– Igor Shparlinski

F.T.C. \Longrightarrow that as $q \to \infty$ each side of xy + ay + bx + c splits over \mathbb{F}_q with probability $1/(d_2+1)!$ and $1/(d_1+1)!$ respectively.

Fundamental Theorem of Cryptography

"If we have no clue about something, then we can safely assume that it behaves as a uniformly distributed random variable."

– Igor Shparlinski

F.T.C. \Longrightarrow that as $q \to \infty$ each side of xy + ay + bx + c splits over \mathbb{F}_q with probability $1/(d_2+1)!$ and $1/(d_1+1)!$ respectively.

• \Longrightarrow Choose $d_1 \approx d_2 \approx \sqrt{n}$

Fundamental Theorem of Cryptography

"If we have no clue about something, then we can safely assume that it behaves as a uniformly distributed random variable."

– Igor Shparlinski

F.T.C. \Longrightarrow that as $q \to \infty$ each side of xy + ay + bx + c splits over \mathbb{F}_q with probability $1/(d_2+1)!$ and $1/(d_1+1)!$ respectively.

- \Longrightarrow Choose $d_1 \approx d_2 \approx \sqrt{n}$
- For $q = L_{q^n}(1/3, 3^{-2/3})$ algorithm is $L_{q^n}(1/3, 3^{1/3})$

Fundamental Theorem of Cryptography

"If we have no clue about something, then we can safely assume that it behaves as a uniformly distributed random variable."

Igor Shparlinski

F.T.C. \Longrightarrow that as $q \to \infty$ each side of xy + ay + bx + c splits over \mathbb{F}_q with probability $1/(d_2+1)!$ and $1/(d_1+1)!$ respectively.

- \Longrightarrow Choose $d_1 \approx d_2 \approx \sqrt{n}$
- For $q = L_{a^n}(1/3, 3^{-2/3})$ algorithm is $L_{a^n}(1/3, 3^{1/3})$

A Counterpoint to the F.T.C.

Fortunately, in one sub-case of the [JL06] setup, we have a clue.

For simplicity, let $\mathbb{F}_q = \mathbb{F}_{2^l}$.

For simplicity, let $\mathbb{F}_q = \mathbb{F}_{2^l}$.

• Let
$$y = g_2(x) = x^{2^k}$$
 with $1 < k < I$

For simplicity, let $\mathbb{F}_q = \mathbb{F}_{2^l}$.

- Let $y = g_2(x) = x^{2^k}$ with 1 < k < I
- Eliminates half of the factor base since

$$(y+b) = (x+b^{2^{-k}})^{2^k} \Longrightarrow \log(y+b) = 2^k \log(x+b^{2^{-k}})$$

For simplicity, let $\mathbb{F}_q = \mathbb{F}_{2^l}$.

- Let $y = g_2(x) = x^{2^k}$ with 1 < k < I
- Eliminates half of the factor base since

$$(y+b) = (x+b^{2^{-k}})^{2^k} \Longrightarrow \log(y+b) = 2^k \log(x+b^{2^{-k}})$$

• The l.h.s. of xy + ay + bx + c becomes

$$x^{2^k+1} + ax^{2^k} + bx + c$$

For simplicity, let $\mathbb{F}_q = \mathbb{F}_{2^l}$.

- Let $y = g_2(x) = x^{2^k}$ with 1 < k < I
- Eliminates half of the factor base since

$$(y+b) = (x+b^{2^{-k}})^{2^k} \Longrightarrow \log(y+b) = 2^k \log(x+b^{2^{-k}})$$

• The l.h.s. of xy + ay + bx + c becomes

$$x^{2^k+1} + ax^{2^k} + bx + c$$

• For $k \mid I$ and $I/k \geq 2$, this polynomial *provably* splits over \mathbb{F}_q with probability $\approx 1/2^{3k} \gg 1/(2^k + 1)!$

Bluher Polynomials

Let $q=2^\ell$, $\ell=kk'$ with $k'\geq 3$. If $ab\neq c$ and $b\neq a^{2^k}$, then $x^{2^k+1}+ax^{2^k}+bx+c$ may be transformed into

$$F_B(\overline{x}) = \overline{x}^{2^k+1} + B\overline{x} + B$$
, with $B = \frac{(a^{2^k} + b)^{2^k+1}}{(ab+c)^{2^k}}$ and $X = \left(\frac{ab+c}{a^{2^k}+b}\right)\overline{x} + a$.

Bluher Polynomials

Let $q=2^\ell$, $\ell=kk'$ with $k'\geq 3$. If $ab\neq c$ and $b\neq a^{2^k}$, then $x^{2^k+1}+ax^{2^k}+bx+c$ may be transformed into

$$F_B(\overline{x}) = \overline{x}^{2^k+1} + B\overline{x} + B$$
, with $B = \frac{(a^{2^k} + b)^{2^k+1}}{(ab+c)^{2^k}}$ and $X = \left(\frac{ab+c}{a^{2^k}+b}\right)\overline{x} + a$.

Theorem (Bluher 2004)

The number of elements $B \in \mathbb{F}_q^{\times}$ such that the polynomial $F_B(X)$ splits completely over \mathbb{F}_q equals

$$\frac{2^{\ell-k}-1}{2^{2k}-1}$$
 if k' is odd, $\frac{2^{\ell-k}-2^k}{2^{2k}-1}$ if k' is even.

• Let $S_B = \{B \in \mathbb{F}_q^{\times} \mid X^{2^k+1} + BX + B \text{ splits over } \mathbb{F}_q \}$

- Let $S_B = \{B \in \mathbb{F}_q^{\times} \mid X^{2^k+1} + BX + B \text{ splits over } \mathbb{F}_q\}$
- For any $a,b\in\mathbb{F}_q$ s.t. $b\neq a^{2^k}$ and $B\in\mathcal{S}_B$, there exists a unique $c \in \mathbb{F}_a$ s.t. $x^{2^k+1} + ax^{2^k} + bx + c$ splits over \mathbb{F}_a

- Let $S_B = \{B \in \mathbb{F}_q^{\times} \mid X^{2^k+1} + BX + B \text{ splits over } \mathbb{F}_q\}$
- For any $a,b\in\mathbb{F}_q$ s.t. $b\neq a^{2^k}$ and $B\in\mathcal{S}_B$, there exists a unique $c\in\mathbb{F}_q$ s.t. $x^{2^k+1}+ax^{2^k}+bx+c$ splits over \mathbb{F}_q
- For each such (a, b, c), test if r.h.s. $yg_1(y) + ay + bg_1(y) + c$ splits; if so then have a relation

- Let $S_B = \{B \in \mathbb{F}_q^{\times} \mid X^{2^k+1} + BX + B \text{ splits over } \mathbb{F}_q\}$
- For any $a,b\in\mathbb{F}_q$ s.t. $b\neq a^{2^k}$ and $B\in\mathcal{S}_B$, there exists a unique $c\in\mathbb{F}_q$ s.t. $x^{2^k+1}+ax^{2^k}+bx+c$ splits over \mathbb{F}_q
- For each such (a, b, c), test if r.h.s. $yg_1(y) + ay + bg_1(y) + c$ splits; if so then have a relation

Assume that g_1 can be found s.t. $X - g_1(X^{2^k}) \equiv 0 \pmod{f(X)}$ with $\deg(f) = n \leq 2^k d_1$. Then we have the following:

- Let $S_B = \{B \in \mathbb{F}_q^{\times} \mid X^{2^k+1} + BX + B \text{ splits over } \mathbb{F}_q\}$
- For any $a,b\in\mathbb{F}_q$ s.t. $b\neq a^{2^k}$ and $B\in\mathcal{S}_B$, there exists a unique $c\in\mathbb{F}_q$ s.t. $x^{2^k+1}+ax^{2^k}+bx+c$ splits over \mathbb{F}_q
- For each such (a, b, c), test if r.h.s. $yg_1(y) + ay + bg_1(y) + c$ splits; if so then have a relation

Assume that g_1 can be found s.t. $X - g_1(X^{2^k}) \equiv 0 \pmod{f(X)}$ with $\deg(f) = n \leq 2^k d_1$. Then we have the following:

Heuristic Result 1

Let $q=2^l$ with l=kk' and $k'\geq 3$ and $d_1\geq 1$ constants, and assume $n\approx 2^k\,d_1$. Assuming the r.h.s. splits over \mathbb{F}_q with probability $1/(d_1+1)!$, then the logarithms of all degree one elements of \mathbb{F}_{q^n} can be computed in time $\widetilde{O}(\log^{2k'+1}q^n)$.

Polynomial Time Relation Generation - Examples

- Let $q=2^{3k}$ and $n=2^k-1\Longrightarrow$ can use a Kummer extension
- Set $g_1(X) = \gamma X$, so that irreducible is $X^{2^k-1} + \gamma$
- \bullet r.h.s has degree 2 and splits with probability 1/2

Polynomial Time Relation Generation - Examples

- Let $q=2^{3k}$ and $n=2^k-1\Longrightarrow$ can use a Kummer extension
- Set $g_1(X) = \gamma X$, so that irreducible is $X^{2^k-1} + \gamma$
- ullet r.h.s has degree 2 and splits with probability 1/2

Table : Relation generation times for $q=2^{3k}$ and $n=2^k-1$ on a 2.0GHz AMD Opteron 6128

K	$\log_2(q'')$	#vars	time
7	2667	5506	2.3 <i>s</i>
8	6120	21932	15.0 <i>s</i>
9	13797	87554	122 <i>s</i>
10	30690	349858	900 <i>s</i>

Complexity Results

Suppose $q = \exp\left(\alpha \sqrt[3]{\log q^n \cdot \log^2 \log q^n}\right)$ (†). We have:

Heuristic Result 2(i)

Let $q=2^l$, let $k \mid l$ and let n be such that (\dagger) holds. Then for $n \approx 2^k d_1$ where $2^k \approx d_1$, the DLP can be solved with complexity $L_Q(1/3,(8/9)^{1/3}) \approx L_Q(1/3,0.961)$.

Heuristic Result 2(ii)

Let $q=2^l$, let $k \mid l$ and let n be such that (\dagger) holds. Then for $n \approx 2^k d_1$ where $2^k \gg d_1$, the DLP can be solved with complexity between $L_Q(1/3, (4/9)^{1/3}) \approx L_Q(1/3, 0.763)$ and $L_Q(1/3, (1/2)^{1/3}) \approx L_Q(1/3, 0.794)$.

Solving the DLP in $\mathbb{F}_{2^{1971}}$

Let $\mathbb{F}_q = \mathbb{F}_{2^{27}} = \mathbb{F}_2[T]/(T^{27} + T^5 + T^2 + T + 1) = \mathbb{F}_2(t)$ and let $\mathbb{F}_{q^{73}} = \mathbb{F}_q[X]/(X^{73} + t) = \mathbb{F}_q(x)$ be the field of order 2^{1971} .

• We let $y=x^8$ and thus $x=t/y^9$ and took as generator $\alpha=x+1$ and target

$$\beta_{\pi} = \sum_{i=0}^{n} \tau(\lfloor \pi q^{i+1} \rfloor \mod q) x^i.$$

Solving the DLP in $\mathbb{F}_{2^{1971}}$

Let $\mathbb{F}_q = \mathbb{F}_{2^{27}} = \mathbb{F}_2[T]/(T^{27} + T^5 + T^2 + T + 1) = \mathbb{F}_2(t)$ and let $\mathbb{F}_{q^{73}} = \mathbb{F}_q[X]/(X^{73} + t) = \mathbb{F}_q(x)$ be the field of order 2^{1971} .

• We let $y=x^8$ and thus $x=t/y^9$ and took as generator $\alpha=x+1$ and target

$$\beta_{\pi} = \sum_{i=0}^{\ell^2} \tau(\lfloor \pi q^{i+1} \rfloor \mod q) x^i.$$

The computation took:

- 14 core-hrs for relation generation: quotienting out by the action of the 9-th power of Frobenius on the factor base gives $612,872\approx 2^{27}/(3\cdot73)$ variables
- After SGE, 2220 core-hrs for parallelised Lanczos on matrix of dimension $528,812 \times 527,766$
- 898 core-hrs for the descent \implies total of 3132 core-hrs.

Solving the DLP in $\mathbb{F}_{2^{1971}}$

On 19/2/13 we announced that $\log_{\alpha}(\beta_{\pi}) =$

0976702162039539513377673115483439.

Solving the DLP in $\mathbb{F}_{2^{3164}}$

Let
$$\mathbb{F}_q = \mathbb{F}_{2^{28}} = \mathbb{F}_2[T]/(T^{28} + T + 1) = \mathbb{F}_2(t)$$
 and let $\mathbb{F}_{q^{113}} = \mathbb{F}_q[X]/(X^{113} + t) = \mathbb{F}_q(x)$ be the field of order 2^{3164} .

• We let $y=x^{16}$ and thus $x=t/y^7$ and took as generator $\alpha=x+t+1$ and target

$$eta_{\pi} = \sum_{i=0}^{112} \tau(\lfloor \pi q^{i+1} \rfloor mod q) x^i$$
.

Solving the DLP in $\mathbb{F}_{2^{3164}}$

Let
$$\mathbb{F}_q = \mathbb{F}_{2^{28}} = \mathbb{F}_2[T]/(T^{28} + T + 1) = \mathbb{F}_2(t)$$
 and let $\mathbb{F}_{q^{113}} = \mathbb{F}_q[X]/(X^{113} + t) = \mathbb{F}_q(x)$ be the field of order 2^{3164} .

• We let $y=x^{16}$ and thus $x=t/y^7$ and took as generator $\alpha=x+t+1$ and target

$$eta_{\pi} = \sum_{i=0}^{112} au(\lfloor \pi q^{i+1}
floor mod q) x^i$$
 .

The computation took:

- 2 core-hrs for relation generation: quotienting out by the action of the 14-th power of Frobenius on the factor base gives $1,187,841 \approx 2^{28}/(2\cdot 113)$ variables
- After SGE, 85,488 core-hrs for parallelised Lanczos on matrix of dimension $1,066,010\times1,064,991$
- 21,602 core-hrs for the descent \implies total of 107,092 core-hrs

Solving the DLP in $\mathbb{F}_{2^{3164}}$

On 3/5/13 we found that $\log_{\alpha}(\beta_{\pi}) =$

278649164378133.

Big Field Hunting

- 11th Feb'13, Joux: $\mathbb{F}_{2^{1778}}$ in 220 core-hrs
- 19th Feb'13, GGMZ: $\mathbb{F}_{2^{1971}}$ in 3,132 core-hrs
- 3rd May'13, GGMZ: $\mathbb{F}_{2^{3164}}$ in 107,000 core-hrs
- 22nd Mar'13, Joux: $\mathbb{F}_{2^{4080}}$ in 14,100 core-hrs
- 11th Apr'13, GGMZ: $\mathbb{F}_{2^{6120}}$ in 750 core-hrs
- 21st May'13, Joux: $\mathbb{F}_{2^{6168}}$ in 550 core-hrs

Solution to DLP in $\mathbb{F}_{2^{6120}}$

On 11/4/13 we announced that $\beta_{\pi} = g^{\log}$, with $\log =$

The Algorithm of Barbulescu, Gaudry, Joux and Thomé

For small characteristic fields of bitlength I, the BGJT algorithm has quasi-polynomial complexity $I^{O(\log I)}$.

- Applies to fields of the form $\mathbb{F}_{q^{kn}}$, with $k \geq 2$ and $n \approx q$
- Complexity dictated by #nodes in the descent tree

The Algorithm of Barbulescu, Gaudry, Joux and Thomé

For small characteristic fields of bitlength I, the BGJT algorithm has quasi-polynomial complexity $I^{O(\log I)}$.

- Applies to fields of the form $\mathbb{F}_{q^{kn}}$, with $k \geq 2$ and $n \approx q$
- ullet Complexity dictated by # nodes in the descent tree

Question: Are the any elements of $\mathbb{F}_{q^{kn}}$ that require a quasi-polynomial number of linear elements to represent them?

The Algorithm of Barbulescu, Gaudry, Joux and Thomé

For small characteristic fields of bitlength I, the BGJT algorithm has quasi-polynomial complexity $I^{O(\log I)}$.

- Applies to fields of the form $\mathbb{F}_{q^{kn}}$, with $k \geq 2$ and $n \approx q$
- Complexity dictated by #nodes in the descent tree

Question: Are the any elements of $\mathbb{F}_{q^{kn}}$ that require a quasi-polynomial number of linear elements to represent them?

Answer: No! F.R.K. Chung has proven that if $\mathbb{F}_{q^{kn}} = \mathbb{F}_{q^k}(x)$, then each $h \in \mathbb{F}_{q^{kn}}^{\times}$ can be represented by

$$h = (x + a_1) \cdots (x + a_m), \text{ with } a_i \in \mathbb{F}_{q^k},$$

if $\sqrt{q^k} > n-1$ and $m \ge 2n + 4n \log n / (\log q^k - 2 \log (n-1))$.