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Practical Results:
e Set a DLP record in Fysi20 = F(28,3)28_1, in 750 core-hours:

e Bitlength is 50% bigger than the previous record, set by Joux
in Foss = F(28A2)28_1, but required only 5% of the core-hours

Theoretical Results:

e Optimised Joux's Lo(1/4 4+ o(1)) algorithm to give an
Lo(1/4, (w/8)Y*) algorithm for Q ~ (¢¥)9, k >2, g — o0
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Polynomial Time Relation Generation [GGMZ13]

Setup for F(gryn with k >3, n < qdi and di > 1 (cf. [JLO6]):
e Search for g1(X) € F«[X] s.t. X — g1(X9) =0 (mod (X))
with deg(g1) = di, f irreducible and deg(f) = n
o Let F(gryn = Fgu(x) with x a root of f(X)
o Let y = x9, so that one has x = gi(y) in F(g)n
e Factor base is {x —a|a€Fu}
Relation generation:

e Considering elements xy + ay + bx + ¢ with a,b,c € Fyx,
one obtains the F(g)n-equality

X9t 4 ax9 4+ bx 4+ ¢ = ygi(y) + ay + bai(y) + ¢

e When both sides split over F_« one obtains a relation

q
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Bluher Polynomials

Consider the I.h.s. polynomial x971 4+ ax9 + bx + c.

If ab # ¢ and a% # b, this may be transformed into

+1
-\ _ —q+1 _ . _ (b—a9)9
Fg(X) =X9"" + Bx+ B, with B_i(c—ab)q’
via x = ijfi—a.

Theorem (Bluher 2004, Helleseth-Kholosha 2010)

The number of elements B € IE‘:k such that the polynomial
Fg(X) € F[X] splits completely over F« equals

qkil 1 qkfl —q

71 if k is odd , 71 if k is even .
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Polynomial Time Relation Generation [GGMZ13]

o Let Sp={BeF| X9t 4+ BX + B splits over F i}

e Since B = (b—a9)9%1/(c — ab)?, for any a,b € F i s.t.
b # a%, and B € Sg, there exists a unique ¢ € Fy« s.t.
X9t 4 ax9 + bx + ¢ splits over F

e For each such (a, b,c), test if r.h.s. ygi(y)+ay + bgi(y) + ¢
splits; if so then have a relation

o If ¢33 > ¢¥(dy 4+ 1)! then expect to compute logs of degree
1 elements in time 5(q2k+1)
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Kummer Extensions = More Efficient Attacks

The solution of DLPs in IFP47, IFP57, Foi77s, Fo1071,Fosiea and Foaoso
all used Kummer extensions.

Why? Factor base-preserving automorphisms reduce effective size
of factor base = relation finding & linear algebra become faster.

Observe that Fyi77s and Foaso are of the form F(q2)q—1, for which:
e Degree 1 logs cost 5(q3) for K.E., or 5(q5) otherwise
e Degree 2 logs cost O(q®) for K.E., or O(g”) otherwise

However, for F(4x)ex1 with k > 4 one can compute logs of degree
two elements on the fly [GGMZ13].
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New Degree 2 elimination for K.E.'s and kK > 3

Let g(x) :=x®+ qix + qo € F(gk)a—1 be an element to be written
as a product of linear elements.

e When possible, compute a, b, c € F« s.t. in F(qu)q_l/F:k,

q(x) = x>+ gix+ qo = xI + ax9 + bx + ¢
where r.h.s splits over F*,
q

o As x97 1 =, we have r.hs. =y(x?> + (a + g)x + %)
= Yqo=C,Yq1=7a+b

o For any B € Sg, using (a? + b)?™! = B(ab + ¢)? we arrive
at the condition

(a9 +~va+ ,qu)qul + B(’ya2 +vg1a+790)? =0

e Considering [F .« /F, gives a quadratic system in the [F-
components of a, solvable with a Grobner basis computation
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For ¢=2"and n=gq—1, F(g has bitlength:
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k|

2

\ 3 4 5 6
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7 1778 2667 3556 4445 5334
8 4080 6120 8160 10200 12240
9 0198 13797 18396 22995 27504
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Cost of Computing Factor base Logs for K.E.'s

For ¢=2"and n=gq—1, F(g has bitlength:

INk | 2 3 4 5 6
6 756 1134 1512 1890 2268
7 1778 2667 3556 4445 5334
8 4080 6120 8160 10200 12240
9 9198 13797 18396 22995 27594

e Degree 1: #tvariables ~ g~ so for k > 2, cost is 5(q2k*1)
e Degree 2: For k = 2,3 cost is O(q?**2), and free for k > 4

kK | 2 3 4 5 6
Cost‘O(qf’) 0(¢g°) O(q") O(q°) O(q'h)
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e Our generator is g = x + w, which has proven order 26120 — 1
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Field Setup and Target Element

Let Fos = Fo[T]/((T8 + T* + T3+ T + 1)F,[T]) = Fa(t)
Let Faos = Fos[W]/((W3 + t)Fas[W]) = Fos(w)
Let Fos2o = Fy2e [X]/((X255 + w + 1)Fou[X]) = Fau(x)

e Our generator is g = x + w, which has proven order 26120 — 1

Our target element 3, was derived as usual from the 22*-ary
expansion of .



Solving the DLP in F,6120

Degree 1 Logarithms

Used the only Bluher polynomial for k = 3, namely
X257 4 X 4+ 1 and our relation generation method

Via automorphisms, reduced the #variables to 21,932 and
obtained 22,932 relations in 15 seconds using C++/NTL on
a 2.0GHz AMD Opteron 6128

For linear algebra, took as modulus the product of the largest
35 prime factors of 26120 — 1, which has bitlength 5121

Ran a parallelised C/GMP implementation of Lanczos’
algorithm on four of the Intel (Westmere) Xeon E5650
hex-core processors of ICHEC's SGI Altix ICE 8200EX Stokes
cluster, completed in 60.5 core-hours (2.5 hours wall time)
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Degree 2 Logarithms

Since there is only one Bluher polynomial for k = 3, elimination
probability is 1/2.

e When it fails, exploit the fact that 6 | 24 and (8 —6) | 24 and
the 64 Bluher polynomials of the form X% + BX 4+ B /Fys

e Results in a probabilistic method to eliminate any given
degree 2 element with probability p =1 — 6.3 x 107%°

e — probability that at least one degree 2 irreducible is not
eliminable is 1 — p222 =27x10"8

e Implemented in MAGMA V2.16-12 on a 2.0GHz AMD
Opteron 6128: each took on average 0.03 seconds



Big Field Hunting Solving the DLP in ]FZGIZO Complexity Considerations

Eliminating Degrees 3,4,5 and 6

We used an analogue of Joux's method [J13], but with the Bluher
polynomial X257 4+ X + 1 rather than X256 4+ X.



Solving the DLP in F,6120

Eliminating Degrees 3,4,5 and 6

We used an analogue of Joux's method [J13], but with the Bluher
polynomial X257 4+ X + 1 rather than X256 4+ X.

o Let f(X),g(X) € Fpu[X] have degrees ¢ and 6,

e Substitute % into Bluher polynomial, giving the numerator

P(X) = f(X)257 4 Bf(X) g(X)256 + Bg(X)257

e P(X) is d-smooth with § = max{dr,dg}
e Since x* = (w + 1)x holds in F(52y2ss, the element P(x)
can also be represented by a polynomial of degree 24

e For Q(x) of degree 26 or 2§ — 1 set P(x) = Q(x) or
(x + a)Q(x) and solve resulting quadratic system over Fys
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DLP Solution
On 11/4/13 we announced that 3, = g8, with log =

138587598363978692625475711283123171009236361503896992366495931704517700280127178022234894098617
581360131441835074256363730624426814293233474272521598166126957928116825443110965404253837938808
595404111035238027107772178822939281873403451999731815140073481766513715358449279314556797352446
246860317946750124475689474406274942356035936501674050933448909201029834522226732247771897083223
217282051573645013603613042367782716361877817938374393824313019073624786387618414037541681120284
044659383192907436852526392087724304775451631271825250968111451400502733404381769675255289127346
639350098221570844400380788516332496583882522436381918008200167032186350245107751346979596314696
153666716168951481948091060066730184766758137773944303875429830867205463918144256843911730747265
146154193438041627833661739775057161236346096236566875251277843062329973044475486561062204356908
568471471279383781038538818884463796989906076079843248127252020839705886436071213650575186707456
948584072378916942925369140868417196479573481032711481021729162865973588174096389913305607677858
033996361734905537150362024720515772660781208855505434331055766570014211875602940633575763850457
503079087074376585304470520411320246292255375711457573555286060236699317039454479326718281128961
423275142787569425690532833283344049635521302596000897192512036695298807294032964530959691377087
204546348960132760095544105980198255245493202412831593891984788152417957691939817112366182063687
529915365150361180214451234387656883256149355994405051149585969163075307026647956035683671589546
448539955132726112034938655961291856203422247680387029078473520951160334472525475071680672623661
587292720329606182512044312194357156139201340952037872975243254476081554937002122953415949407262
137232099852298394838422907643191397673290238344183046040975859915928536530445697145317668044973
7096483324156185041
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The quadratic systems we obtain using X9t! + BX + B are not
bilinear = we can't argue for the same Lg(1/4 + o(1))
complexity that arises when using X9 — X.
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Complexity Considerations

The quadratic systems we obtain using X9t! + BX + B are not
bilinear = we can't argue for the same Lg(1/4 + o(1))
complexity that arises when using X9 — X.

However, when using X9 — X, with judiciously chosen parameters,
the complexity can be improved.

e Consider F(qk)n with k > 2 fixed, n~ g and g —

e Assume degree 1 logs are known and degree 2 logs are either
known or are efficiently computable (on the fly)
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1
=t (014 )
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The Descent

Want to compute log, h. The descent consists of 3 parts:

e Stage 0: Choose random i until hg' is agg®*-smooth. This

costs 1
0= Lo (1/ + 4ak/)

e Stage 1: Perform classical descent (with degree balancing)
until elements are a1q1/2—smooth. For 0 < p < 1, this costs

1
=t (014 )

e Stage 2: Perform Joux's descent until elements are 2-smooth.
This costs

G =Ly (1/4, k1/4\/woz1)
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Complexity Considerations

The Descent

e Balancing Stages 1 and 2 gives the optimal a3 as 1/(uv8kw)
e Choosing ag > 1/(32kw)* means Stage 0 is ignorable

e In the limit as u© — 17, we obtain an overall complexity of

Lga(1/4, (w/8)"/*)
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A Final Remark

e Barbulescu, Gaudry, Joux and Thomé have proposed a
quasi-polynomial algorithm for the DLP in finite fields of small
characteristic (eprint.iacr.org/2013/400)

e Our relation generation method gives an analogous
quasi-polynomial algorithm; in fact ours and Joux's method
based on Mobius transforms of X9 — X are equivalent

For BGJT algorithm, one setup issue is to find a set of coset
representatives for PGLy(IF )/ PGLa(Fg):

o |PGLy(Fgv)/PGLa(Fq)| = (¢ — 4¥)/(a® — q) = ¢*
e For k > 3 our search space has cardinality

a“(¢" —1)(¢" — {a.a°}/(® — q) = >3



A Final Remark

e Barbulescu, Gaudry, Joux and Thomé have proposed a
quasi-polynomial algorithm for the DLP in finite fields of small
characteristic (eprint.iacr.org/2013/400)

e Our relation generation method gives an analogous
quasi-polynomial algorithm; in fact ours and Joux's method
based on Mobius transforms of X9 — X are equivalent

For BGJT algorithm, one setup issue is to find a set of coset
representatives for PGLy(IF )/ PGLa(Fg):

o |PGLy(Fgv)/PGLa(Fq)| = (¢ — 4¥)/(a® — q) = ¢*
e For k > 3 our search space has cardinality

a“(¢" —1)(¢" — {a.a°}/(® — q) = >3

e Cost of finding all Bluher polynomials is only 5(qk)
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