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Supersingular binary curves (genus 1)

For i € F» consider the elliptic curves
EJFy: Y24+ Y =X34+X+i

e Both E; are supersingular ( E;(F2) has no points of order 2)
e For odd prime p we have

2P £ 14 (—1)2Pt1/2 for p=1,7 (mod 8)

E,' IF p) = .
#Ei(E2) {ZP +1—(=1)2pt1/2 for p=3,5 (mod 8)
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Supersingular binary curves (genus 1)

For i € F» consider the elliptic curves
EJFy: Y24+ Y =X34+X+i
e Both E; are supersingular ( E;(F2) has no points of order 2)

e For odd prime p we have

2P £ 14 (—1)2Pt1/2 for p=1,7 (mod 8)

E,' F p) = .
#Ei(E2) {ZP +1—(=1)2pt1/2 for p=3,5 (mod 8)

Lesson 1 (MOV '93)
Supersingular curves are bad for cryptography.
o (27 414 2(PH1)/2) | (2% — 1) = E; has embedding degree 4

Lesson 2 (Pairing-based cryptography '00/01)

Provided that the applications are good enough, ignore Lesson 1.



The small characteristic DLP "Cryptopocalypse’

15th Feb '13: ‘On the Function Field Sieve and the Impact of Higher
Splitting Probabilities’, Géloglu, G., McGuire and Zumbrigel.

e Polynomial time relation generation for degree one elements

e Polynomial time on-the-fly elimination for degree two elements

20th Feb '13: ‘A new index calculus algorithm with complexity

L(1/4 + o(1)) in very small characteristic’, Joux.
e Polynomial time relation generation for degree one elements
e Polynomial time batch method for eliminating degree two elements
o [(1/4+ o(1)) descent method

18th Jun "13: ‘A quasi-polynomial algorithm for discrete logarithm in
finite fields of small characteristic’, Barbulescu, Gaudry, Joux and Thomé.

e [(o(1)) descent method
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e 19th Feb '13, GGMZ: Fyiem in 3,132 core hours
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Lesson 3 (BGJT '13)

Small characteristic supersingular curves really are bad for cryptography.

Moreover, new DLP records support validity of the theoretical advances:

e 11th Feb '13, Joux: Fsi7zs in 220 core hours

e 19th Feb '13, GGMZ: Fyiem in 3,132 core hours
3rd May "13, GGMZ: Fy316s in 107,000 core hours
22nd Mar "13, Joux: Fyeose in 14,100 core hours
11th Apr '13, GGMZ: Fae120 in 750 core hours
21st May '13, Joux: Faeies in 550 core hours

e 31st Jan '14, GKZ: Fje232 in 400,000 core hours

Question: If the small characteristic field DLP is dead, why study it?

Short answer: It may be dead, but it’s not quite buried...
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Slightly longer answer

. None of the records used parameters from the literature (which arise
from pairings on supersingular curves and abelian varieties)

. The records all used Kummer, or twisted Kummer extensions, which
are the easiest to break. So how hard are the DLPs in the literature?

. Another team of researchers studied this very question, and we
realised that we could significantly improve upon their results

. Studying particular problem instances can lead to new insights
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‘Weakness of F3e.s00 for Discrete Logarithm Cryptography’ by Adj,
Menezes, Oliveira and Rodriguez-Henriquez uses the techniques from
[Joux13] and [BGJT13] to analyse the concrete security of the DLP in
pairing fields once thought to be 128-bit secure.



Concrete security of small characteristic pairings

‘Weakness of F3e.s00 for Discrete Logarithm Cryptography’ by Adj,
Menezes, Oliveira and Rodriguez-Henriquez uses the techniques from
[Joux13] and [BGJT13] to analyse the concrete security of the DLP in
pairing fields once thought to be 128-bit secure.

In particular, they showed that:

e The DLP in the 804-bit order r subgroup of IE‘;G.SO._, can be solved
in time 273-"M, , using F g with g = 3% k=2 and n=509

e The DLP in the 698-bit order r subgroup of F;n,m can be solved
in time 2°45M, , using F g withq = 212 k=2 and n =367

e The DLP in the 1221-bit order r subgroup of ]I-"QX._1223 can be solved
in time ~ 2'2°M,, using Fg with ¢ =2'2, k=2 and n=1223



Overview

Our Contributions



Our contributions

We exploited the following observations/techniques:

e A smaller g gives a faster descent. Rather than using an irreducible
degree n factor of hy(X)X9 — hg(X), we use hy(X9)X — ho(X7)

e Principle of parsimony: always try to work in the target field; only
when this fails should one embed into an extension

e A bonus of solving factor base logs in an extension is that one can
factor elements over the extension during the descent

e If possible, using kK =1 means one can eliminate higher degree
elements efficiently, postponing the need for the QPA
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Our contributions

We exploited the following observations/techniques:

e A smaller g gives a faster descent. Rather than using an irreducible
degree n factor of hy(X)X9 — hg(X), we use hy(X9)X — ho(X7)

e Principle of parsimony: always try to work in the target field; only
when this fails should one embed into an extension

e A bonus of solving factor base logs in an extension is that one can
factor elements over the extension during the descent

e If possible, using kK =1 means one can eliminate higher degree
elements efficiently, postponing the need for the QPA

As a result, we showed that the:
e DLP in order r subgroup of Fq120; costs at most 2°M, (20 s)
o DLP in order r subgroup of F., 5, costs at most 2*8 M, (52240 h)



Solving the DLP in [Fyi2367

Over Fasez the Jacobian of Hy/F» : Y2+ Y = X® + X3 has a subgroup
of prime order r = (273% 4 2551 4 2367 4 D184 4 1) /(13 . 7170258097).

o We defined Faser — F>[X]/(/(X)) = Fa(x) where /(X) the
irreducible degree 367 factor of hy (X)X — ho(X®*), with

=X 4+ X34 X+1, hg =X+ X*+ X2+ X +1

o Small degree elimination flowchart:

F)24367 @4—@%

| s
L S L :

Fj12.367 é\@&@-
4,

e Total time was 52240 h
e Announced solution on 30/1/14
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Using the previous descent method, we have the following result:

Theorem (G., Kleinjung, Zumbrigel '14)

For all primes p there exist infinitely many extension fields Fp. for which
the discrete logarithm problem in ]an can be solved in quasi-polynomial
time exp(c,(log n)?), with ¢, > 0 a constant depending only on p.
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A new QPA in fixed characteristic

Using the previous descent method, we have the following result:

Theorem (G., Kleinjung, Zumbrigel '14)

For all primes p there exist infinitely many extension fields Fp. for which
the discrete logarithm problem in ]an can be solved in quasi-polynomial
time exp(c,(log n)?), with ¢, > 0 a constant depending only on p.

‘On the discrete logarithm problem in finite fields of fixed characteristic’
(preprint available soon)

Thanks for your attention!
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