Breaking '128-bit Secure' Supersingular Binary Curves

(or how to solve discrete logarithms in $\mathbb{F}_{2^{4\cdot 1223}}$ and $\mathbb{F}_{2^{12\cdot 367}}$)

Robert Granger¹, Thorsten Kleinjung¹, Jens Zumbrägel²

¹ Laboratory for Cryptologic Algorithms, EPFL, Switzerland
² Institute of Algebra, TU Dresden, Germany

20th August, CRYPTO 2014

Overview

Motivation

Our Contributions

A Recent Result

Overview

Motivation

Our Contributions

A Recent Result

For $i \in \mathbb{F}_2$ consider the elliptic curves

$$E_i/\mathbb{F}_2: Y^2 + Y = X^3 + X + i$$

- Both E_i are supersingular $(E_i(\overline{\mathbb{F}}_2))$ has no points of order 2)
- For odd prime p we have

$$\#E_i(\mathbb{F}_{2^p}) = \begin{cases} 2^p + 1 + (-1)^i 2^{(p+1)/2} & \text{for } p \equiv 1,7 \pmod{8} \\ 2^p + 1 - (-1)^i 2^{(p+1)/2} & \text{for } p \equiv 3,5 \pmod{8} \end{cases}$$

For $i \in \mathbb{F}_2$ consider the elliptic curves

$$E_i/\mathbb{F}_2: Y^2 + Y = X^3 + X + i$$

- Both E_i are supersingular $(E_i(\overline{\mathbb{F}}_2))$ has no points of order 2)
- For odd prime p we have

$$\#E_i(\mathbb{F}_{2^p}) = \begin{cases} 2^p + 1 + (-1)^i 2^{(p+1)/2} & \text{for } p \equiv 1,7 \pmod{8} \\ 2^p + 1 - (-1)^i 2^{(p+1)/2} & \text{for } p \equiv 3,5 \pmod{8} \end{cases}$$

Lesson 1 (MOV '93)

Supersingular curves are bad for cryptography.

For $i \in \mathbb{F}_2$ consider the elliptic curves

$$E_i/\mathbb{F}_2: Y^2 + Y = X^3 + X + i$$

- Both E_i are supersingular $(E_i(\overline{\mathbb{F}}_2))$ has no points of order 2)
- For odd prime p we have

$$\#E_i(\mathbb{F}_{2^p}) = \begin{cases} 2^p + 1 + (-1)^i 2^{(p+1)/2} & \text{for } p \equiv 1,7 \pmod{8} \\ 2^p + 1 - (-1)^i 2^{(p+1)/2} & \text{for } p \equiv 3,5 \pmod{8} \end{cases}$$

Lesson 1 (MOV '93)

Supersingular curves are bad for cryptography.

• $(2^p + 1 \pm 2^{(p+1)/2}) \mid (2^{4p} - 1) \Longrightarrow E_i$ has embedding degree 4

For $i \in \mathbb{F}_2$ consider the elliptic curves

$$E_i/\mathbb{F}_2: Y^2 + Y = X^3 + X + i$$

- Both E_i are supersingular $(E_i(\overline{\mathbb{F}}_2))$ has no points of order 2)
- For odd prime p we have

$$\#E_i(\mathbb{F}_{2^p}) = \begin{cases} 2^p + 1 + (-1)^i 2^{(p+1)/2} & \text{for } p \equiv 1,7 \pmod{8} \\ 2^p + 1 - (-1)^i 2^{(p+1)/2} & \text{for } p \equiv 3,5 \pmod{8} \end{cases}$$

Lesson 1 (MOV '93)

Supersingular curves are bad for cryptography.

• $(2^p + 1 \pm 2^{(p+1)/2}) \mid (2^{4p} - 1) \Longrightarrow E_i$ has embedding degree 4

Lesson 2 (Pairing-based cryptography '00/01)

Provided that the applications are good enough, ignore Lesson 1.

15th Feb '13: 'On the Function Field Sieve and the Impact of Higher Splitting Probabilities', Göloğlu, G., McGuire and Zumbrägel.

- Polynomial time relation generation for degree one elements
- Polynomial time on-the-fly elimination for degree two elements

20th Feb '13: 'A new index calculus algorithm with complexity L(1/4 + o(1)) in very small characteristic', Joux.

- Polynomial time relation generation for degree one elements
- Polynomial time batch method for eliminating degree two elements
- L(1/4 + o(1)) descent method

18th Jun '13: 'A quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic', Barbulescu, Gaudry, Joux and Thomé.

• L(o(1)) descent method

Lesson 3 (BGJT '13)

Small characteristic supersingular curves really are bad for cryptography.

Lesson 3 (*BGJT '13*)

Small characteristic supersingular curves really are bad for cryptography.

Moreover, new DLP records support validity of the theoretical advances:

- 11th Feb '13, Joux: $\mathbb{F}_{2^{1778}}$ in 220 core hours
- 19th Feb '13, GGMZ: F₂1971 in 3, 132 core hours
- 3rd May '13, GGMZ: F₂₃₁₆₄ in 107,000 core hours
- 22nd Mar '13, Joux: F₂₄₀₈₀ in 14,100 core hours
- 11th Apr '13, GGMZ: F₂₆₁₂₀ in 750 core hours
- 21st May '13, Joux: $\mathbb{F}_{2^{6168}}$ in 550 core hours
- 31st Jan '14, GKZ: $\mathbb{F}_{2^{9234}}$ in 400,000 core hours

Lesson 3 (*BGJT '13*)

Small characteristic supersingular curves really are bad for cryptography.

Moreover, new DLP records support validity of the theoretical advances:

- 11th Feb '13, Joux: $\mathbb{F}_{2^{1778}}$ in 220 core hours
- 19th Feb '13, GGMZ: F₂1971 in 3, 132 core hours
- 3rd May '13, GGMZ: F₂₃₁₆₄ in 107,000 core hours
- 22nd Mar '13, Joux: $\mathbb{F}_{2^{4080}}$ in 14,100 core hours
- 11th Apr '13, GGMZ: $\mathbb{F}_{2^{6120}}$ in 750 core hours
- 21st May '13, Joux: $\mathbb{F}_{2^{6168}}$ in 550 core hours
- 31st Jan '14, GKZ: $\mathbb{F}_{2^{9234}}$ in 400,000 core hours

Question: If the small characteristic field DLP is dead, why study it?

Lesson 3 (*BGJT '13*)

Small characteristic supersingular curves really are bad for cryptography.

Moreover, new DLP records support validity of the theoretical advances:

- 11th Feb '13, Joux: $\mathbb{F}_{2^{1778}}$ in 220 core hours
- 19th Feb '13, GGMZ: F₂1971 in 3, 132 core hours
- 3rd May '13, GGMZ: F₂₃₁₆₄ in 107,000 core hours
- 22nd Mar '13, Joux: $\mathbb{F}_{2^{4080}}$ in 14,100 core hours
- 11th Apr '13, GGMZ: $\mathbb{F}_{2^{6120}}$ in 750 core hours
- 21st May '13, Joux: $\mathbb{F}_{2^{6168}}$ in 550 core hours
- 31st Jan '14, GKZ: $\mathbb{F}_{2^{9234}}$ in 400,000 core hours

Question: If the small characteristic field DLP is dead, why study it?

Short answer: It may be dead, but it's not quite buried...

1. None of the records used parameters from the literature (which arise from pairings on supersingular curves and abelian varieties)

- 1. None of the records used parameters from the literature (which arise from pairings on supersingular curves and abelian varieties)
- 2. The records all used Kummer, or twisted Kummer extensions, which are the easiest to break. So how hard are the DLPs in the literature?

- 1. None of the records used parameters from the literature (which arise from pairings on supersingular curves and abelian varieties)
- 2. The records all used Kummer, or twisted Kummer extensions, which are the easiest to break. So how hard are the DLPs in the literature?
- 3. Another team of researchers studied this very question, and we realised that we could significantly improve upon their results

- 1. None of the records used parameters from the literature (which arise from pairings on supersingular curves and abelian varieties)
- 2. The records all used Kummer, or twisted Kummer extensions, which are the easiest to break. So how hard are the DLPs in the literature?
- 3. Another team of researchers studied this very question, and we realised that we could significantly improve upon their results
- 4. Studying particular problem instances can lead to new insights

Concrete security of small characteristic pairings

'Weakness of $\mathbb{F}_{36\cdot 509}$ for Discrete Logarithm Cryptography' by Adj, Menezes, Oliveira and Rodríguez-Henríquez uses the techniques from [Joux13] and [BGJT13] to analyse the concrete security of the DLP in pairing fields once thought to be 128-bit secure.

Concrete security of small characteristic pairings

'Weakness of $\mathbb{F}_{3^6\cdot 509}$ for Discrete Logarithm Cryptography' by Adj, Menezes, Oliveira and Rodríguez-Henríquez uses the techniques from [Joux13] and [BGJT13] to analyse the concrete security of the DLP in pairing fields once thought to be 128-bit secure.

In particular, they showed that:

- The DLP in the 804-bit order r subgroup of $\mathbb{F}_{36-509}^{\times}$ can be solved in time $2^{73.7}M_r$, using $\mathbb{F}_{q^{kn}}$ with $q=3^6$, k=2 and n=509
- The DLP in the 698-bit order r subgroup of $\mathbb{F}_{2^{12\cdot367}}^{\times}$ can be solved in time $2^{94\cdot6}M_r$, using $\mathbb{F}_{q^{kn}}$ with $q=2^{12}$, k=2 and n=367
- The DLP in the 1221-bit order r subgroup of $\mathbb{F}_{2^{4}\cdot 1223}^{\times}$ can be solved in time $\approx 2^{128} M_r$, using $\mathbb{F}_{q^{kn}}$ with $q=2^{12}$, k=2 and n=1223

Overview

Motivation

Our Contributions

A Recent Result

Our contributions

We exploited the following observations/techniques:

- A smaller q gives a faster descent. Rather than using an irreducible degree n factor of $h_1(X)X^q h_0(X)$, we use $h_1(X^q)X h_0(X^q)$
- *Principle of parsimony:* always try to work in the target field; only when this fails should one embed into an extension
- A bonus of solving factor base logs in an extension is that one can factor elements over the extension during the descent
- If possible, using k = 1 means one can eliminate higher degree elements efficiently, postponing the need for the QPA

Our contributions

We exploited the following observations/techniques:

- A smaller q gives a faster descent. Rather than using an irreducible degree n factor of $h_1(X)X^q h_0(X)$, we use $h_1(X^q)X h_0(X^q)$
- *Principle of parsimony:* always try to work in the target field; only when this fails should one embed into an extension
- A bonus of solving factor base logs in an extension is that one can factor elements over the extension during the descent
- If possible, using k = 1 means one can eliminate higher degree elements efficiently, postponing the need for the QPA

As a result, we showed that the:

• DLP in order r subgroup of $\mathbb{F}_{2^{4}-1223}^{\times}$ costs at most $2^{59}M_r$ (2^{40} s)

Our contributions

We exploited the following observations/techniques:

- A smaller q gives a faster descent. Rather than using an irreducible degree n factor of $h_1(X)X^q h_0(X)$, we use $h_1(X^q)X h_0(X^q)$
- *Principle of parsimony:* always try to work in the target field; only when this fails should one embed into an extension
- A bonus of solving factor base logs in an extension is that one can factor elements over the extension during the descent
- If possible, using k = 1 means one can eliminate higher degree elements efficiently, postponing the need for the QPA

As a result, we showed that the:

- DLP in order r subgroup of $\mathbb{F}_{2^{4}-1223}^{\times}$ costs at most $2^{59}M_r$ (2^{40} s)
- DLP in order r subgroup of $\mathbb{F}_{212.367}^{\times}$ costs at most $2^{48}M_r$ (52240 h)

Solving the DLP in $\mathbb{F}_{2^{12\cdot367}}$

Over $\mathbb{F}_{2^{367}}$ the Jacobian of H_0/\mathbb{F}_2 : $Y^2+Y=X^5+X^3$ has a subgroup of prime order $r=(2^{734}+2^{551}+2^{367}+2^{184}+1)/(13\cdot7170258097)$.

• We defined $\mathbb{F}_{2^{367}} = \mathbb{F}_2[X]/(I(X)) = \mathbb{F}_2(x)$ where I(X) the irreducible degree 367 factor of $h_1(X^{64})X - h_0(X^{64})$, with

$$h_1 = X^5 + X^3 + X + 1, \ h_0 = X^6 + X^4 + X^2 + X + 1$$

Small degree elimination flowchart:

- Total time was 52240 h
- Announced solution on 30/1/14

Overview

Motivation

Our Contributions

A Recent Result

$$\mathbb{F}_{q^{kn}}$$
 1 \leftarrow 2

 $\mathbb{F}_{q^{kn}}$ 1 \leftarrow 2 4

Using the previous descent method, we have the following result:

Theorem (G., Kleinjung, Zumbrägel '14)

For all primes p there exist infinitely many extension fields \mathbb{F}_{p^n} for which the discrete logarithm problem in $\mathbb{F}_{p^n}^{\times}$ can be solved in quasi-polynomial time $\exp(c_p(\log n)^2)$, with $c_p>0$ a constant depending only on p.

Using the previous descent method, we have the following result:

Theorem (G., Kleinjung, Zumbrägel '14)

For all primes p there exist infinitely many extension fields \mathbb{F}_{p^n} for which the discrete logarithm problem in $\mathbb{F}_{p^n}^{\times}$ can be solved in quasi-polynomial time $\exp(c_p(\log n)^2)$, with $c_p>0$ a constant depending only on p.

'On the discrete logarithm problem in finite fields of fixed characteristic' (preprint available soon)

Using the previous descent method, we have the following result:

Theorem (G., Kleinjung, Zumbrägel '14)

For all primes p there exist infinitely many extension fields \mathbb{F}_{p^n} for which the discrete logarithm problem in $\mathbb{F}_{p^n}^{\times}$ can be solved in quasi-polynomial time $\exp(c_p(\log n)^2)$, with $c_p>0$ a constant depending only on p.

'On the discrete logarithm problem in finite fields of fixed characteristic' (preprint available soon)

Thanks for your attention!