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The Index Calculus Method

Consider the DLP in Fqn . The ICM consists of two stages:

1. Choose a factor base F , �nd relations between elements and then
compute their logarithms.

2. For an arbitrary element, express it as a product of lower degree
elements; recurse until all leaves are in F .
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Smoothness and the F.T.C.

De�nition
An element f ∈ Fq[X ] is said to be B -smooth if all of its irreducible
factors have degree ≤ B .

Theorem (Odlyzko '84, Lovorn '92)

For m1/100 ≤ B ≤ m99/100 , the probability that a polynomial f ∈ Fq[X ]
of degree m chosen uniformly at random is B -smooth, is

u−(1+o(1))u, where u = m/B

`The Fundamental Theorem of Cryptography'

�If we have no clue about something, then we can safely assume that it
behaves as a uniformly distributed random variable.�

� Igor Shparlinski
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The Joux-Lercier FFS variation [JL06]

To �nd factor base relations in Fqn one uses the following setup.

• Choose g1, g2 ∈ Fq[X ] of degrees d1, d2 s.t. X − g1(g2(X )) has a
degree n irreducible factor I (X ) over Fq , so that
Fqn = Fq[X ]/(I (X )) = Fq(x)

• Let y = g2(x) ; then x = g1(y) and Fqn ∼= Fq(x) ∼= Fq(y)
• In best case factor base is {x − a | a ∈ Fq} ∪ {y − b | b ∈ Fq}

Relation generation:

• Considering elements xy + ay + bx + c with a, b, c ∈ Fq , one
obtains the Fqn -equality

xg2(x) + ag2(x) + bx + c = yg1(y) + ay + bg1(y) + c

• When both sides split over Fq one obtains a relation



Optimising d1 and d2 in [JL06]

F.T.C. =⇒ that as q →∞ each side of xy + ay + bx + c splits over Fq
with probability 1/(d2 + 1)! and 1/(d1 + 1)! respectively.

• =⇒ Choose d1 ≈ d2 ≈
√
n

• For q = Lqn(1/3, 3−2/3) algorithm is Lqn(1/3, 31/3)

A Counterpoint to the F.T.C.

Fortunately, in one sub-case of the [JL06] setup, we do have a clue.
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Resisting smoothness heuristics

`On the Function Field Sieve and the Impact of Higher Splitting
Probabilities: Application to Discrete Logarithms in F21971 and F23164 '

Faruk Gölo§lu, Robert Granger, Gary McGuire and Jens Zumbrägel.
(Best Paper Award at CRYPTO 2013)

The paper contains:

• The �rst polynomial time relation generation method for degree one
elements

• The �rst polynomial time elimination method for degree two
elements
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An auspicious choice for g2 in [JL06]

Assume now that the base �eld is Fqk for k ≥ 2.

• Let y = g2(x) = xq

• Eliminates half of the factor base since

(y + b) = (x + b1/q)q =⇒ log(y + b) = q log(x + b1/q)

• The l.h.s. of xy + ay + bx + c becomes

xq+1 + axq + bx + c

• This polynomial provably splits over Fqk with probability

≈ 1/q3 � 1/(q + 1)!
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Bluher polynomials

Let k ≥ 3 and consider the polynomial X q+1 + aX q + bX + c .

If ab 6= c and aq 6= b , this may be transformed into

FB(X ) = X
q+1

+ BX + B , with B =
(b − aq)q+1

(c − ab)q
,

via X = c−ab
b−aq X − a .

Theorem (Bluher '04)

The number of elements B ∈ F×
qk s.t. the polynomial FB(X ) ∈ Fqk [X ]

splits completely over Fqk equals

qk−1 − 1

q2 − 1
if k is odd ,

qk−1 − q

q2 − 1
if k is even .



Polynomial time relation generation: k ≥ 3

Assume that g1 can be found s.t. X − g1(X
q) ≡ 0 (mod I (X )) with

deg(I ) = n ≤ qd1 . Then we have the following method:

• Compute B = {B ∈ F×
qk | X q+1 + BX + B splits over Fqk}

• Since B = (b − aq)q+1/(c − ab)q , for any a, b ∈ Fqk s.t. b 6= aq ,
and B ∈ B , there exists a unique c ∈ Fqk s.t. xq+1 + axq + bx + c
splits over Fqk

• For each such (a, b, c) , test if r.h.s. yg1(y) + ay + bg1(y) + c
splits; if so then have a relation

• If q3k−3 > qk(d1 + 1)! then for d1 ≥ 1 constant we expect to
compute logs of degree 1 elements of Fqkn in time

O(q2k+1)



Degree 2 elimination

Let Q(y) = y2 + q1y + q0 ∈ Fqkn be an element to be eliminated, i.e.,
written as a product of linear elements.

• Recall that in Fqkn we have y = xq and x = g1(y) , so for any
univariate polynomials w0,w1 we have

w0(x
q) x + w1(x

q) = w0(y) g1(y) + w1(y)

• Compute a reduced basis of the lattice

LQ = {(w0(Y ),w1(Y )) ∈ Fqk [Y ]2 : w0(Y ) g1(Y ) + w1(Y ) ≡ 0 (mod Q(Y ))}

• In general we have (u0,Y + u1), (Y + v0, v1) , with ui , vi ∈ Fqk , and
for s ∈ Fqk we have (Y + v0 + su0, sY + v1 + su1) ∈ LQ

• r.h.s. (y + v0 + su0) g1(y) + (sy + v1 + su1) has degree d1 + 1, so
cofactor splits with probability ≈ 1/(d1 − 1)!

• l.h.s. is (xq + v0 + su0)x + (sxq + v1 + su1) which is of the form

xq+1 + axq + bx + c



Degree 2 elimination

Consider the l.h.s. xq+1 + sxq + (v0 + su0)x + (v1 + su1) .

• Compute the set B of elements B ∈ Fqk such that X q+1 + BX + B
splits over Fqk

• For each B ∈ B we try to solve B = (b − aq)q+1/(c − ab)q for s ,
i.e., �nd s ∈ Fqk that satis�es

B =
(−sq + u0s + v0)

q+1

(−u0s2 + (u1 − v0)s + v1)q

by taking GCD with sq
k − s : Cost is O(q2 log qk) Fqk -ops

• Probability of success is ≈ 1−
(
1− 1

(d1−1)!
)qk−3

• Hence need qk−3 > (d1 − 1)! to eliminate Q(y) with good
probability: Expected cost is

O(q2(d1 − 1)! log qk) Fqk -ops



Joux's insights

• Independently of [GGMZ13], Joux discovered an isomorphic
polynomial time degree one relation generation method.

• For Fq2n , assume h1(X ), h0(X ) ∈ Fq2 [X ] of very small degree exist
s.t. h1(X )X q − h0(X ) has an irreducible factor I (X ) of degree n .

For Q ∈ Fq2 [X ] of degree D let F ,G have degree < D . Consider

G ·
∏
α∈Fq

(F − αG ) = F qG − FG q

• Since X q ≡ h0(X )/h1(X ) (mod I (X )) , F q & G q have small degree

• Joux insists that r.h.s. is divisible by Q =⇒ results in a bilinear
quadratic system, and that the cofactor is (D − 1) -smooth

Balancing classical descent with this elimination results in an algorithm
with heuristic complexity

Lq2n(1/4+ o(1))
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New method DLP solutions in 2013

• 11th Feb'13, Joux: F21778 in 220 core hours

• 19th Feb'13, GGMZ: F21971 in 3, 132 core hours

• 3rd May'13, GGMZ: F23164 in 107, 000 core hours

• 22nd Mar'13, Joux: F24080 in 14, 100 core hours

• 11th Apr'13, GGMZ: F26120 in 750 core hours

• 21st May'13, Joux: F26168 in 550 core hours
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Supersingular binary curves: genus 1
For i ∈ F2 consider the elliptic curves

Ei/F2 : Y 2 + Y = X 3 + X + i

• Both Ei are supersingular (Ei (F2) has no points of order 2)

• For prime p we have

#Ei (F2p ) =

{
2p + 1+ (−1)i2(p+1)/2 for p ≡ 1, 7 (mod 8)

2p + 1− (−1)i2(p+1)/2 for p ≡ 3, 5 (mod 8)

• (2p + 1± 2(p+1)/2) | (24p − 1) =⇒ Ei has embedding degree 4

Lesson 1 (MOV '93)

Elliptic curves with small embedding degree are weak.

Lesson 2 (Pairing-based cryptography '00/01)

Provided that the applications are good enough, ignore Lesson 1.
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Supersingular binary curves: genus 2

For i ∈ F2 let
Hi/F2 : Y 2 + Y = X 5 + X 3 + i

• Both Hi are supersingular (JacHi is isogenous to a product of two
supersingular elliptic curves)

• We have #Jac(Hi )(F2p ) ={
22p + (−1)i2(3p+1)/2 + 2p + (−1)i2(p+1)/2 + 1 for p ≡ 1, 7, 17, 23 (mod 24)

22p − (−1)i2(3p+1)/2 + 2p − (−1)i2(p+1)/2 + 1 for p ≡ 5, 11, 13, 19 (mod 24)

• #Jac(Hi )(F2p ) | (212p − 1) =⇒ Jac(Hi ) has embedding degree 12.

Only genus 1 and 2 seriously considered =⇒ we are interested in the
DLPs in (the prime order r | #Jac subgroups of ) F×24p and F×212p .
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Concrete security of small characteristic pairings

Adj, Menezes, Oliveira and Rodríguez-Henríquez used the techniques
from [Joux13] and [BGJT13] to analyse the concrete security of the DLP
in pairing �elds once thought to be 128-bit secure.

In particular, they showed that:

• The DLP in the 804-bit order r subgroup of F×36·509 can be solved
in time 273.7Mr , using q = 36 and k = 2

• The DLP in the 698-bit order r subgroup of F×212·367 can be solved
in time 294.6Mr , using q = 212 and k = 2

• The DLP in the 1221-bit order r subgroup of F×24·1223 can be solved
in time ≈ 2128Mr , using q = 212 and k = 2

Consider the following:

• h1(X )X q − h0(X ) ≡ 0 (mod I (X )) =⇒ n ≤ q + deg(h1)

• The descent cost is lower for smaller q
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Our contributions

We exploited the following observations/principles/techniques:

• h1(X
q)X − h0(X

q) ≡ 0 (mod I (X )) =⇒ n ≤ q · deg(h1) + 1

• Principle of parsimony: always try to work in the target �eld; only
when this fails should one embed into an extension

• A bonus of solving factor base logs in an extension is that one can
factor elements over the extension during the descent

• We can also use k = 1 for the GB phase, eliminating higher degrees
& postponing the need for the QPA

`Breaking `128-bit Secure' Supersingular Binary Curves (or how to solve
discrete logarithms in F24·1223 and F212·367 )'

Robert Granger, Thorsten Kleinjung and Jens Zumbrägel.
eprint.iacr.org/2014/119

eprint.iacr.org/2014/119


Our contributions

We exploited the following observations/principles/techniques:

• h1(X
q)X − h0(X

q) ≡ 0 (mod I (X )) =⇒ n ≤ q · deg(h1) + 1

• Principle of parsimony: always try to work in the target �eld; only
when this fails should one embed into an extension

• A bonus of solving factor base logs in an extension is that one can
factor elements over the extension during the descent

• We can also use k = 1 for the GB phase, eliminating higher degrees
& postponing the need for the QPA

`Breaking `128-bit Secure' Supersingular Binary Curves (or how to solve
discrete logarithms in F24·1223 and F212·367 )'

Robert Granger, Thorsten Kleinjung and Jens Zumbrägel.
eprint.iacr.org/2014/119

eprint.iacr.org/2014/119


Solving the DLP in F212·367

Over F2367 the Jacobian of H0/F2 : Y 2 + Y = X 5 + X 3 has a subgroup
of prime order r = (2734 + 2551 + 2367 + 2184 + 1)/(13 · 7170258097) .

• Let F212 = F2[U]/(U12 + U3 + 1) = F2(u)
• Let F2367 = F2[X ]/(I (X )) = F2(x) where I (X ) the irreducible
degree 367 divisor of h1(X

64)X − h0(X
64) , with

h1 = X 5 + X 3 + X + 1, h0 = X 6 + X 4 + X 2 + X + 1

• F212·367 is then the compositum of F212 and F2367
• We chose as our generator g ′ = g (24404−1)/r where g = x + u7 , and

target element x ′π = x
(24404−1)/r
π where

xπ =
4403∑
i=0

(bπ · 2i+1c mod 2) · u11−(i mod 12) · xbi/12c



Factor base logs and initial descent

We also represent F212 as Fq2 with q = 26 and k = 2:

• Let F26 = F2[U]/(T 6 + T + 1) = F2(t)
• Let F212 = F26 [V ]/(V 2 + tV + 1) = F26(v)

Since q2k−3 ≯ (6+ 1)! we consider relations over Fq4 instead:

• Let F224 = F26 [W ]/(W 4 +W 3 +W 2 + t3) = F26(w)

For the factor base {x + a | a ∈ F224} we have:

(x + a)2
367

= x + a2
367

= x + a2
7

=⇒ reduced factor base has 699, 252 elements and linear system was
solved in 4896 core hours on a 24 core cluster.

Initial descent: We performed a continued fraction initial split, then
degree-balanced classical descent to degrees ≤ 8 in 38224 core hours.
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Eliminating small degree elements in F212·367/F212

1 2 3 4

1 2 3 4 5 6 7 8

F224·367

F212·367

ι ιs
s

s

The GB phase cost 8432 core hours on Magma V2.20-1, for a total of
approximately 52240 core hours. On 30/1/14 we announced that
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Eliminating smoothness heuristics

• If dh ≤ 2, then r.h.s. cofactor of a degree 2 element being
eliminated is linear =⇒ no smoothness heuristics needed for descent

• Using reducible degree 2's =⇒ degree 1 relation generation does
not use smoothness heuristics

Hence no smoothness heuristics are needed!

Heuristic 1

Given a prime p and an integer n , for q the smallest power of p greater
than n and for an integer k = O(1) , there exist polynomials
h0, h1 ∈ Fqk [X ] of degree at most two s.t. h1(X

q)X − h0(X
q) has an

irreducible factor of degree n (or the equivalent for h1(X )X q − h0(X )).

Heuristic 2

There exists a polynomial time algorithm for obtaining the logarithms of
polynomials of bounded degree using the parameters from Heuristic 1.
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A new quasi-polynomial algorithm

Theorem (G.-Kleinjung-Zumbrägel '14)

Subject to Heuristics 1 and 2, the running time of the new algorithm is
quasi-polynomial, namely

qlog2 n+O(1)

Theorem (G.-Kleinjung-Zumbrägel '14)

Subject to Heuristics 1 and 2, by balancing the cost of computing the
factor base logs and the descent, the running time of the new algorithm is

qlog2 n− (1−ε) log
2
log

2
n

`On the Powers of 2'. Robert Granger, Thorsten Kleinjung and Jens
Zumbrägel. eprint.iacr.org/2014/300

eprint.iacr.org/2014/300
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