# Resisting and Eliminating Smoothness Heuristics

Robert Granger robbiegranger@gmail.com

Joint work with Thorsten Kleinjung and Jens Zumbrägel

Laboratory for Cryptologic Algorithms School of Computer and Communication Sciences École polytechnique fédérale de Lausanne Switzerland

DLP 2014







#### Basics

Resisting smoothness heuristics

Breaking supersingular binary curves

Eliminating smoothness heuristics

## Overview

#### Basics

Resisting smoothness heuristics

Breaking supersingular binary curves

Eliminating smoothness heuristics

## The Index Calculus Method

Consider the DLP in  $\mathbb{F}_{q^n}$ . The ICM consists of two stages:

## The Index Calculus Method

Consider the DLP in  $\mathbb{F}_{q^n}$ . The ICM consists of two stages:

1. Choose a factor base  ${\cal F},$  find relations between elements and then compute their logarithms.

## The Index Calculus Method

Consider the DLP in  $\mathbb{F}_{q^n}$ . The ICM consists of two stages:

- 1. Choose a factor base  $\mathcal{F}$ , find relations between elements and then compute their logarithms.
- 2. For an arbitrary element, express it as a product of lower degree elements; recurse until all leaves are in  $\mathcal{F}$ .

## Smoothness and the F.T.C.

#### Definition

An element  $f \in \mathbb{F}_q[X]$  is said to be *B*-smooth if all of its irreducible factors have degree  $\leq B$ .

# Smoothness and the F.T.C.

#### Definition

An element  $f \in \mathbb{F}_q[X]$  is said to be *B*-smooth if all of its irreducible factors have degree  $\leq B$ .

#### Theorem (Odlyzko '84, Lovorn '92)

For  $m^{1/100} \leq B \leq m^{99/100}$ , the probability that a polynomial  $f \in \mathbb{F}_q[X]$  of degree *m* chosen uniformly at random is *B*-smooth, is

$$u^{-(1+o(1))u}$$
, where  $u = m/B$ 

# Smoothness and the F.T.C.

#### Definition

An element  $f \in \mathbb{F}_q[X]$  is said to be *B*-smooth if all of its irreducible factors have degree  $\leq B$ .

#### Theorem (*Odlyzko '84, Lovorn '92*)

For  $m^{1/100} \leq B \leq m^{99/100}$ , the probability that a polynomial  $f \in \mathbb{F}_q[X]$  of degree *m* chosen uniformly at random is *B*-smooth, is

$$u^{-(1+o(1))u}$$
, where  $u = m/B$ 

#### 'The Fundamental Theorem of Cryptography'

"If we have no clue about something, then we can safely assume that it behaves as a uniformly distributed random variable."

– Igor Shparlinski

# The Joux-Lercier FFS variation [JL06]

To find factor base relations in  $\mathbb{F}_{q^n}$  one uses the following setup.

- Choose  $g_1, g_2 \in \mathbb{F}_q[X]$  of degrees  $d_1, d_2$  s.t.  $X g_1(g_2(X))$  has a degree n irreducible factor I(X) over  $\mathbb{F}_q$ , so that  $\mathbb{F}_{q^n} = \mathbb{F}_q[X]/(I(X)) = \mathbb{F}_q(x)$
- Let  $y = g_2(x)$ ; then  $x = g_1(y)$  and  $\mathbb{F}_{q^n} \cong \mathbb{F}_q(x) \cong \mathbb{F}_q(y)$
- In best case factor base is  $\{x a \mid a \in \mathbb{F}_q\} \cup \{y b \mid b \in \mathbb{F}_q\}$

Relation generation:

• Considering elements xy + ay + bx + c with  $a, b, c \in \mathbb{F}_q$ , one obtains the  $\mathbb{F}_{q^n}$ -equality

$$xg_{2}(x) + ag_{2}(x) + bx + c = yg_{1}(y) + ay + bg_{1}(y) + c$$

• When both sides split over  $\mathbb{F}_q$  one obtains a relation

## Optimising $d_1$ and $d_2$ in [JL06]

 $F.T.C. \implies$  that as  $q \rightarrow \infty$  each side of xy + ay + bx + c splits over  $\mathbb{F}_q$  with probability  $1/(d_2 + 1)!$  and  $1/(d_1 + 1)!$  respectively.

- $\implies$  Choose  $d_1 \approx d_2 \approx \sqrt{n}$
- For  $q = L_{q^n}(1/3, 3^{-2/3})$  algorithm is  $L_{q^n}(1/3, 3^{1/3})$

# Optimising $d_1$ and $d_2$ in [JL06]

 $F.T.C. \implies$  that as  $q \rightarrow \infty$  each side of xy + ay + bx + c splits over  $\mathbb{F}_q$  with probability  $1/(d_2 + 1)!$  and  $1/(d_1 + 1)!$  respectively.

- $\implies$  Choose  $d_1 \approx d_2 \approx \sqrt{n}$
- For  $q = L_{q^n}(1/3, 3^{-2/3})$  algorithm is  $L_{q^n}(1/3, 3^{1/3})$

#### A Counterpoint to the F.T.C.

Fortunately, in one sub-case of the [JL06] setup, we do have a clue.



#### Basics

#### Resisting smoothness heuristics

Breaking supersingular binary curves

Eliminating smoothness heuristics

# Resisting smoothness heuristics

'On the Function Field Sieve and the Impact of Higher Splitting Probabilities: Application to Discrete Logarithms in  $\mathbb{F}_{2^{1971}}$  and  $\mathbb{F}_{2^{3164}}$ '

Faruk Göloğlu, Robert Granger, Gary McGuire and Jens Zumbrägel. (Best Paper Award at CRYPTO 2013)







# Resisting smoothness heuristics

'On the Function Field Sieve and the Impact of Higher Splitting Probabilities: Application to Discrete Logarithms in  $\mathbb{F}_{2^{1971}}$  and  $\mathbb{F}_{2^{3164}}$ '

Faruk Göloğlu, Robert Granger, Gary McGuire and Jens Zumbrägel. (Best Paper Award at CRYPTO 2013)

The paper contains:

• The first *polynomial time* relation generation method for degree one elements







# Resisting smoothness heuristics

'On the Function Field Sieve and the Impact of Higher Splitting Probabilities: Application to Discrete Logarithms in  $\mathbb{F}_{2^{1971}}$  and  $\mathbb{F}_{2^{3164}}$ '

Faruk Göloğlu, Robert Granger, Gary McGuire and Jens Zumbrägel. (Best Paper Award at CRYPTO 2013)

The paper contains:

- The first *polynomial time* relation generation method for degree one elements
- The first *polynomial time* elimination method for degree two elements







## An auspicious choice for $g_2$ in [JL06]

Assume now that the base field is  $\mathbb{F}_{q^k}$  for  $k \geq 2$ .

• Let 
$$y = g_2(x) = x^q$$

• Eliminates half of the factor base since

$$(y+b) = (x+b^{1/q})^q \Longrightarrow \log(y+b) = q\log(x+b^{1/q})$$

## An auspicious choice for $g_2$ in [JL06]

Assume now that the base field is  $\mathbb{F}_{q^k}$  for  $k \geq 2$ .

• Let 
$$y = g_2(x) = x^q$$

• Eliminates half of the factor base since

$$(y+b) = (x+b^{1/q})^q \Longrightarrow \log(y+b) = q\log(x+b^{1/q})$$

• The l.h.s. of xy + ay + bx + c becomes

$$x^{q+1} + ax^q + bx + c$$

## An auspicious choice for $g_2$ in [JL06]

Assume now that the base field is  $\mathbb{F}_{q^k}$  for  $k \geq 2$ .

• Let 
$$y = g_2(x) = x^q$$

• Eliminates half of the factor base since

$$(y+b) = (x+b^{1/q})^q \Longrightarrow \log(y+b) = q\log(x+b^{1/q})$$

• The l.h.s. of xy + ay + bx + c becomes

$$x^{q+1} + ax^q + bx + c$$

• This polynomial *provably* splits over  $\mathbb{F}_{q^k}$  with probability

$$pprox 1/q^3 \gg 1/(q+1)!$$

## Bluher polynomials

Let  $k \ge 3$  and consider the polynomial  $X^{q+1} + aX^q + bX + c$ . If  $ab \ne c$  and  $a^q \ne b$ , this may be transformed into

$$F_B(\overline{X}) = \overline{X}^{q+1} + B\overline{X} + B$$
, with  $B = rac{(b-a^q)^{q+1}}{(c-ab)^q}$ ,

via 
$$X = rac{c-ab}{b-a^q}\overline{X} - a$$
 .

#### Theorem (*Bluher '04*)

The number of elements  $B \in \mathbb{F}_{q^k}^{\times}$  s.t. the polynomial  $F_B(\overline{X}) \in \mathbb{F}_{q^k}[\overline{X}]$  splits completely over  $\mathbb{F}_{q^k}$  equals

$$rac{q^{k-1}-1}{q^2-1}$$
 if  $k$  is odd ,  $rac{q^{k-1}-q}{q^2-1}$  if  $k$  is even .

## Polynomial time relation generation: $k \ge 3$

Assume that  $g_1$  can be found s.t.  $X - g_1(X^q) \equiv 0 \pmod{I(X)}$  with  $\deg(I) = n \leq qd_1$ . Then we have the following method:

- Compute  $\mathcal{B} = \{B \in \mathbb{F}_{q^k}^{ imes} \mid X^{q+1} + BX + B \text{ splits over } \mathbb{F}_{q^k}\}$
- Since  $B = (b a^q)^{q+1}/(c ab)^q$ , for any  $a, b \in \mathbb{F}_{q^k}$  s.t.  $b \neq a^q$ , and  $B \in \mathcal{B}$ , there exists a unique  $c \in \mathbb{F}_{q^k}$  s.t.  $x^{q+1} + ax^q + bx + c$ splits over  $\mathbb{F}_{q^k}$
- For each such (a, b, c), test if r.h.s.  $yg_1(y) + ay + bg_1(y) + c$  splits; if so then have a relation
- If  $q^{3k-3} > q^k(d_1+1)!$  then for  $d_1 \ge 1$  constant we expect to compute logs of degree 1 elements of  $\mathbb{F}_{a^{kn}}$  in time

 $O(q^{2k+1})$ 

## Degree 2 elimination

Let  $Q(y) = y^2 + q_1y + q_0 \in \mathbb{F}_{q^{k_n}}$  be an element to be eliminated, i.e., written as a product of linear elements.

• Recall that in  $\mathbb{F}_{q^{kn}}$  we have  $y = x^q$  and  $x = g_1(y)$ , so for any univariate polynomials  $w_0, w_1$  we have

$$w_0(x^q)x + w_1(x^q) = w_0(y)g_1(y) + w_1(y)$$

• Compute a reduced basis of the lattice

 $L_Q = \{(w_0(Y), w_1(Y)) \in \mathbb{F}_{q^k}[Y]^2 : w_0(Y) g_1(Y) + w_1(Y) \equiv 0 \pmod{Q(Y)}\}$ 

- In general we have  $(u_0, Y + u_1), (Y + v_0, v_1)$ , with  $u_i, v_i \in \mathbb{F}_{q^k}$ , and for  $s \in \mathbb{F}_{q^k}$  we have  $(Y + v_0 + su_0, sY + v_1 + su_1) \in L_Q$
- r.h.s.  $(y + v_0 + su_0) g_1(y) + (sy + v_1 + su_1)$  has degree  $d_1 + 1$ , so cofactor splits with probability  $\approx 1/(d_1 1)!$
- I.h.s. is  $(x^q + v_0 + su_0)x + (sx^q + v_1 + su_1)$  which is of the form

$$x^{q+1} + ax^q + bx + c$$

## Degree 2 elimination

Consider the l.h.s.  $x^{q+1} + sx^q + (v_0 + su_0)x + (v_1 + su_1)$ .

- Compute the set  $\mathcal B$  of elements  $B\in \mathbb F_{q^k}$  such that  $X^{q+1}+BX+B$  splits over  $\mathbb F_{q^k}$
- For each  $B\in\mathcal{B}$  we try to solve  $B=(b-a^q)^{q+1}/(c-ab)^q$  for s, i.e., find  $s\in\mathbb{F}_{q^k}$  that satisfies

$$B = \frac{(-s^q + u_0 s + v_0)^{q+1}}{(-u_0 s^2 + (u_1 - v_0)s + v_1)^q}$$

by taking GCD with  $s^{q^k} - s$ : Cost is  $O(q^2 \log q^k)$   $\mathbb{F}_{q^k}$ -ops

- Probability of success is  $pprox 1 \left(1 rac{1}{(d_1-1)!}
  ight)^{q^{k-3}}$
- Hence need  $q^{k-3} > (d_1 1)!$  to eliminate Q(y) with good probability: Expected cost is

$$O(q^2(d_1-1)!\log q^k)$$
  $\mathbb{F}_{q^k}$ -ops

# Joux's insights

- Independently of [GGMZ13], Joux discovered an isomorphic polynomial time degree one relation generation method.
- For  $\mathbb{F}_{q^{2n}}$ , assume  $h_1(X), h_0(X) \in \mathbb{F}_{q^2}[X]$  of very small degree exist s.t.  $h_1(X)X^q h_0(X)$  has an irreducible factor I(X) of degree n.

For  $Q \in \mathbb{F}_{q^2}[X]$  of degree D let F, G have degree < D. Consider

$$G \cdot \prod_{\alpha \in \mathbb{F}_q} (F - \alpha G) = F^q G - F G^q$$

- Since  $X^q \equiv h_0(X)/h_1(X) \pmod{I(X)}$ ,  $F^q$  &  $G^q$  have small degree
- Joux insists that r.h.s. is divisible by  $Q \implies$  results in a bilinear quadratic system, and that the cofactor is (D-1)-smooth

# Joux's insights

- Independently of [GGMZ13], Joux discovered an isomorphic polynomial time degree one relation generation method.
- For  $\mathbb{F}_{q^{2n}}$ , assume  $h_1(X), h_0(X) \in \mathbb{F}_{q^2}[X]$  of very small degree exist s.t.  $h_1(X)X^q h_0(X)$  has an irreducible factor I(X) of degree n.

For  $Q \in \mathbb{F}_{q^2}[X]$  of degree D let F, G have degree < D. Consider

$$G \cdot \prod_{\alpha \in \mathbb{F}_q} (F - \alpha G) = F^q G - F G^q$$

- Since  $X^q \equiv h_0(X)/h_1(X) \pmod{I(X)}$ ,  $F^q$  &  $G^q$  have small degree
- Joux insists that r.h.s. is divisible by  $Q \implies$  results in a bilinear quadratic system, and that the cofactor is (D-1)-smooth

Balancing classical descent with this elimination results in an algorithm with heuristic complexity

$$L_{q^{2n}}(1/4 + o(1))$$

### New method DLP solutions in 2013

- 11th Feb'13, Joux:  $\mathbb{F}_{2^{1778}}$  in 220 core hours
- 19th Feb'13, GGMZ:  $\mathbb{F}_{2^{1971}}$  in 3,132 core hours
- 3rd May'13, GGMZ:  $\mathbb{F}_{2^{31}64}$  in 107,000 core hours
- 22nd Mar'13, Joux:  $\mathbb{F}_{2^{4\,080}}$  in 14,100 core hours
- 11th Apr'13, GGMZ:  $\mathbb{F}_{2^{6120}}$  in 750 core hours
- 21st May'13, Joux:  $\mathbb{F}_{2^{6168}}$  in 550 core hours



#### Basics

Resisting smoothness heuristics

Breaking supersingular binary curves

Eliminating smoothness heuristics

For  $i \in \mathbb{F}_2$  consider the elliptic curves

$$E_i/\mathbb{F}_2: Y^2 + Y = X^3 + X + i$$

- Both  $E_i$  are supersingular  $(E_i(\overline{\mathbb{F}}_2)$  has no points of order 2)
- For prime *p* we have

$$\#E_i(\mathbb{F}_{2^p}) = \begin{cases} 2^p + 1 + (-1)^i 2^{(p+1)/2} & \text{for } p \equiv 1,7 \pmod{8} \\ 2^p + 1 - (-1)^i 2^{(p+1)/2} & \text{for } p \equiv 3,5 \pmod{8} \end{cases}$$

For  $i \in \mathbb{F}_2$  consider the elliptic curves

$$E_i/\mathbb{F}_2: Y^2 + Y = X^3 + X + i$$

- Both  $E_i$  are supersingular  $(E_i(\overline{\mathbb{F}}_2)$  has no points of order 2)
- For prime *p* we have

$$\#E_i(\mathbb{F}_{2^p}) = \begin{cases} 2^p + 1 + (-1)^{i} 2^{(p+1)/2} & \text{for } p \equiv 1,7 \pmod{8} \\ 2^p + 1 - (-1)^{i} 2^{(p+1)/2} & \text{for } p \equiv 3,5 \pmod{8} \end{cases}$$

•  $(2^p + 1 \pm 2^{(p+1)/2}) \mid (2^{4p} - 1) \Longrightarrow E_i$  has embedding degree 4

For  $i \in \mathbb{F}_2$  consider the elliptic curves

$$E_i/\mathbb{F}_2: Y^2 + Y = X^3 + X + i$$

- Both  $E_i$  are supersingular  $(E_i(\overline{\mathbb{F}}_2)$  has no points of order 2)
- For prime *p* we have

$$\#E_i(\mathbb{F}_{2^p}) = \begin{cases} 2^p + 1 + (-1)^i 2^{(p+1)/2} & \text{for } p \equiv 1,7 \pmod{8} \\ 2^p + 1 - (-1)^i 2^{(p+1)/2} & \text{for } p \equiv 3,5 \pmod{8} \end{cases}$$

•  $(2^p + 1 \pm 2^{(p+1)/2}) \mid (2^{4p} - 1) \Longrightarrow E_i$  has embedding degree 4

#### Lesson 1 (*MOV '93*)

Elliptic curves with small embedding degree are weak.

For  $i \in \mathbb{F}_2$  consider the elliptic curves

$$E_i/\mathbb{F}_2: Y^2 + Y = X^3 + X + i$$

- Both  $E_i$  are supersingular  $(E_i(\overline{\mathbb{F}}_2)$  has no points of order 2)
- For prime *p* we have

$$\#E_i(\mathbb{F}_{2^p}) = \begin{cases} 2^p + 1 + (-1)^j 2^{(p+1)/2} & \text{for } p \equiv 1,7 \pmod{8} \\ 2^p + 1 - (-1)^j 2^{(p+1)/2} & \text{for } p \equiv 3,5 \pmod{8} \end{cases}$$

•  $(2^p + 1 \pm 2^{(p+1)/2}) \mid (2^{4p} - 1) \Longrightarrow E_i$  has embedding degree 4

#### Lesson 1 (*MOV '93*)

Elliptic curves with small embedding degree are weak.

#### Lesson 2 (Pairing-based cryptography '00/01)

Provided that the applications are good enough, ignore Lesson 1.

For  $i \in \mathbb{F}_2$  let

$$H_i/\mathbb{F}_2: Y^2 + Y = X^5 + X^3 + i$$

• Both *H<sub>i</sub>* are supersingular (Jac<sub>*H<sub>i</sub>*</sub> is isogenous to a product of two supersingular elliptic curves)

• We have 
$$\# \operatorname{Jac}(H_i)(\mathbb{F}_{2^p}) =$$

$$\begin{cases} 2^{2p} + (-1)^{i} 2^{(3p+1)/2} + 2^{p} + (-1)^{i} 2^{(p+1)/2} + 1 & \text{for } p \equiv 1, 7, 17, 23 \pmod{24} \\ 2^{2p} - (-1)^{i} 2^{(3p+1)/2} + 2^{p} - (-1)^{i} 2^{(p+1)/2} + 1 & \text{for } p \equiv 5, 11, 13, 19 \pmod{24} \end{cases}$$

•  $\# Jac(H_i)(\mathbb{F}_{2^p}) \mid (2^{12p} - 1) \Longrightarrow Jac(H_i)$  has embedding degree 12.

For  $i \in \mathbb{F}_2$  let

$$H_i/\mathbb{F}_2: Y^2 + Y = X^5 + X^3 + i$$

• Both *H<sub>i</sub>* are supersingular (Jac<sub>*H<sub>i</sub>*</sub> is isogenous to a product of two supersingular elliptic curves)

• We have 
$$\# \operatorname{Jac}(H_i)(\mathbb{F}_{2^p}) =$$

$$\begin{cases} 2^{2p} + (-1)^{i} 2^{(3p+1)/2} + 2^{p} + (-1)^{i} 2^{(p+1)/2} + 1 & \text{for } p \equiv 1, 7, 17, 23 \pmod{24} \\ 2^{2p} - (-1)^{i} 2^{(3p+1)/2} + 2^{p} - (-1)^{i} 2^{(p+1)/2} + 1 & \text{for } p \equiv 5, 11, 13, 19 \pmod{24} \end{cases}$$

•  $\# \operatorname{Jac}(H_i)(\mathbb{F}_{2^p}) \mid (2^{12p} - 1) \Longrightarrow \operatorname{Jac}(H_i)$  has embedding degree 12.

Only genus 1 and 2 seriously considered  $\implies$  we are interested in the DLPs in (the prime order  $r \mid \#$ Jac subgroups of )  $\mathbb{F}_{2^{4p}}^{\times}$  and  $\mathbb{F}_{2^{12p}}^{\times}$ .

## Concrete security of small characteristic pairings

Adj, Menezes, Oliveira and Rodríguez-Henríquez used the techniques from [Joux13] and [BGJT13] to analyse the concrete security of the DLP in pairing fields once thought to be 128-bit secure.

## Concrete security of small characteristic pairings

Adj, Menezes, Oliveira and Rodríguez-Henríquez used the techniques from [Joux13] and [BGJT13] to analyse the concrete security of the DLP in pairing fields once thought to be 128-bit secure.

In particular, they showed that:

- The DLP in the 804-bit order r subgroup of  $\mathbb{F}_{3^{6},509}^{\times}$  can be solved in time  $2^{73.7}M_r$ , using  $q = 3^6$  and k = 2
- The DLP in the 698-bit order r subgroup of  $\mathbb{F}_{2^{1_2 \cdot 367}}^{\times}$  can be solved in time  $2^{94.6}M_r$ , using  $q = 2^{12}$  and k = 2
- The DLP in the 1221-bit order r subgroup of  $\mathbb{F}_{2^{4}\cdot 1223}^{\times}$  can be solved in time  $\approx 2^{128}M_r$ , using  $q = 2^{12}$  and k = 2

## Concrete security of small characteristic pairings

Adj, Menezes, Oliveira and Rodríguez-Henríquez used the techniques from [Joux13] and [BGJT13] to analyse the concrete security of the DLP in pairing fields once thought to be 128-bit secure.

In particular, they showed that:

- The DLP in the 804-bit order r subgroup of  $\mathbb{F}_{3^{6},509}^{\times}$  can be solved in time  $2^{73.7}M_r$ , using  $q = 3^6$  and k = 2
- The DLP in the 698-bit order r subgroup of  $\mathbb{F}_{2^{1_2 \cdot 367}}^{\times}$  can be solved in time  $2^{94.6}M_r$ , using  $q = 2^{12}$  and k = 2
- The DLP in the 1221-bit order r subgroup of  $\mathbb{F}_{2^{4}\cdot 1223}^{\times}$  can be solved in time  $\approx 2^{128}M_r$ , using  $q = 2^{12}$  and k = 2

Consider the following:

• 
$$h_1(X)X^q - h_0(X) \equiv 0 \pmod{I(X)} \Longrightarrow n \le q + \deg(h_1)$$

### Concrete security of small characteristic pairings

Adj, Menezes, Oliveira and Rodríguez-Henríquez used the techniques from [Joux13] and [BGJT13] to analyse the concrete security of the DLP in pairing fields once thought to be 128-bit secure.

In particular, they showed that:

- The DLP in the 804-bit order r subgroup of  $\mathbb{F}_{3^{6},509}^{\times}$  can be solved in time  $2^{73.7}M_r$ , using  $q = 3^6$  and k = 2
- The DLP in the 698-bit order r subgroup of  $\mathbb{F}_{2^{1_2 \cdot 367}}^{\times}$  can be solved in time  $2^{94.6}M_r$ , using  $q = 2^{12}$  and k = 2
- The DLP in the 1221-bit order r subgroup of  $\mathbb{F}_{2^{4}\cdot 1223}^{\times}$  can be solved in time  $\approx 2^{128}M_r$ , using  $q = 2^{12}$  and k = 2

Consider the following:

• 
$$h_1(X)X^q - h_0(X) \equiv 0 \pmod{I(X)} \Longrightarrow n \le q + \deg(h_1)$$

• The descent cost is lower for smaller q

### Our contributions

We exploited the following observations/principles/techniques:

- $h_1(X^q)X h_0(X^q) \equiv 0 \pmod{I(X)} \Longrightarrow n \le q \cdot \deg(h_1) + 1$
- *Principle of parsimony:* always try to work in the target field; only when this fails should one embed into an extension
- A bonus of solving factor base logs in an extension is that one can factor elements over the extension during the descent
- We can also use k = 1 for the GB phase, eliminating higher degrees & postponing the need for the QPA

### Our contributions

We exploited the following observations/principles/techniques:

- $h_1(X^q)X h_0(X^q) \equiv 0 \pmod{I(X)} \Longrightarrow n \le q \cdot \deg(h_1) + 1$
- *Principle of parsimony:* always try to work in the target field; only when this fails should one embed into an extension
- A bonus of solving factor base logs in an extension is that one can factor elements over the extension during the descent
- We can also use k = 1 for the GB phase, eliminating higher degrees & postponing the need for the QPA

'Breaking '128-bit Secure' Supersingular Binary Curves (or how to solve discrete logarithms in  $\mathbb{F}_{2^{4}\cdot 1^{223}}$  and  $\mathbb{F}_{2^{12}\cdot 3^{67}}$ )'

Robert Granger, Thorsten Kleinjung and Jens Zumbrägel. eprint.iacr.org/2014/119

#### Solving the DLP in $\mathbb{F}_{2^{12\cdot 367}}$

Over  $\mathbb{F}_{2^{367}}$  the Jacobian of  $H_0/\mathbb{F}_2$ :  $Y^2 + Y = X^5 + X^3$  has a subgroup of prime order  $r = (2^{734} + 2^{551} + 2^{367} + 2^{184} + 1)/(13 \cdot 7170258097)$ .

• Let 
$$\mathbb{F}_{2^{12}} = \mathbb{F}_2[U]/(U^{12} + U^3 + 1) = \mathbb{F}_2(u)$$

• Let  $\mathbb{F}_{2^{367}} = \mathbb{F}_2[X]/(I(X)) = \mathbb{F}_2(x)$  where I(X) the irreducible degree 367 divisor of  $h_1(X^{64})X - h_0(X^{64})$ , with

$$h_1 = X^5 + X^3 + X + 1, \ h_0 = X^6 + X^4 + X^2 + X + 1$$

- $\mathbb{F}_{2^{12}}{}_{\mathbf{367}}$  is then the compositum of  $\mathbb{F}_{2^{12}}$  and  $\mathbb{F}_{2^{\mathbf{367}}}$
- We chose as our generator  $g'=g^{(2^{44\,04}-1)/r}$  where  $g=x+u^7$  , and target element  $x'_{\pi}=x_{\pi}^{(2^{24\,04}-1)/r}$  where

$$x_{\pi} = \sum_{i=0}^{4403} (\lfloor \pi \cdot 2^{i+1} \rfloor \mod 2) \cdot u^{11-(i \mod 12)} \cdot x^{\lfloor i/12 \rfloor}$$

#### Factor base logs and initial descent

We also represent  $\mathbb{F}_{2^{12}}$  as  $\mathbb{F}_{q^2}$  with  $q = 2^6$  and k = 2:

• Let 
$$\mathbb{F}_{2^6} = \mathbb{F}_2[U]/(T^6 + T + 1) = \mathbb{F}_2(t)$$

• Let 
$$\mathbb{F}_{2^{12}} = \mathbb{F}_{2^6}[V]/(V^2 + tV + 1) = \mathbb{F}_{2^6}(v)$$

Since  $q^{2k-3} \not> (6+1)!$  we consider relations over  $\mathbb{F}_{q^4}$  instead:

• Let  $\mathbb{F}_{2^{24}} = \mathbb{F}_{2^6}[W]/(W^4 + W^3 + W^2 + t^3) = \mathbb{F}_{2^6}(w)$ 

For the factor base  $\{x + a \mid a \in \mathbb{F}_{2^{24}}\}$  we have:

$$(x+a)^{2^{367}} = x+a^{2^{367}} = x+a^{2^{7}}$$

 $\implies$  reduced factor base has 699,252 elements and linear system was solved in 4896 core hours on a 24 core cluster.

#### Factor base logs and initial descent

We also represent  $\mathbb{F}_{2^{12}}$  as  $\mathbb{F}_{q^2}$  with  $q = 2^6$  and k = 2:

• Let 
$$\mathbb{F}_{2^6} = \mathbb{F}_2[U]/(T^6 + T + 1) = \mathbb{F}_2(t)$$

• Let 
$$\mathbb{F}_{2^{12}} = \mathbb{F}_{2^6}[V]/(V^2 + tV + 1) = \mathbb{F}_{2^6}(v)$$

Since  $q^{2k-3} \not> (6+1)!$  we consider relations over  $\mathbb{F}_{q^4}$  instead:

• Let  $\mathbb{F}_{2^{24}} = \mathbb{F}_{2^6}[W]/(W^4 + W^3 + W^2 + t^3) = \mathbb{F}_{2^6}(w)$ 

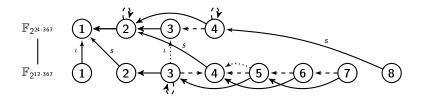
For the factor base  $\{x + a \mid a \in \mathbb{F}_{2^{24}}\}$  we have:

$$(x+a)^{2^{367}} = x+a^{2^{367}} = x+a^{2^{7}}$$

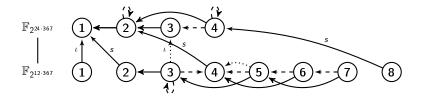
 $\implies$  reduced factor base has 699,252 elements and linear system was solved in 4896 core hours on a 24 core cluster.

*Initial descent:* We performed a continued fraction initial split, then degree-balanced classical descent to degrees  $\leq 8$  in 38224 core hours.

Eliminating small degree elements in  $\mathbb{F}_{2^{12} \cdot 367}/\mathbb{F}_{2^{12}}$ 



### Eliminating small degree elements in $\mathbb{F}_{2^{12} \cdot 367}/\mathbb{F}_{2^{12}}$



The GB phase cost 8432 core hours on Magma V2.20-1, for a total of approximately 52240 core hours. On 30/1/14 we announced that  $x'_{\pi} = g'^{\log}$ , with  $\log =$ 

4093208920214235164093447733900702563725614097945142354192285387447360 4390153516847214082336876895639025110622309801452728710173825428267646 9559843114767895545475795766475848754227211594761182312814017076893242

### Overview

#### Basics

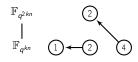
Resisting smoothness heuristics

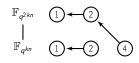
Breaking supersingular binary curves

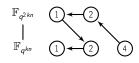
Eliminating smoothness heuristics

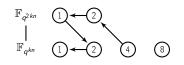
 $\mathbb{F}_{q^{kn}}$  (1)

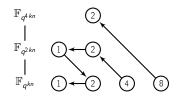
 $\mathbb{F}_{q^{kn}}$  (1)  $\leftarrow$ (4)

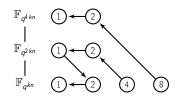


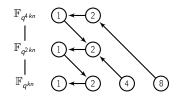


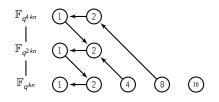


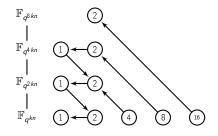


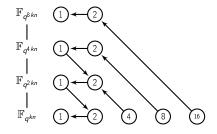


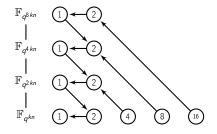


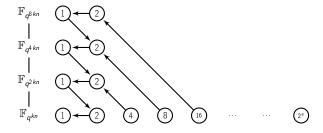


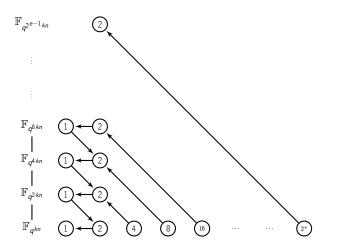


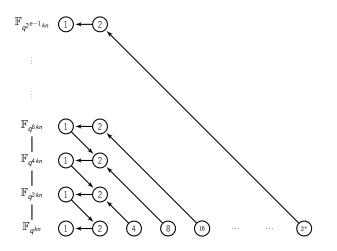


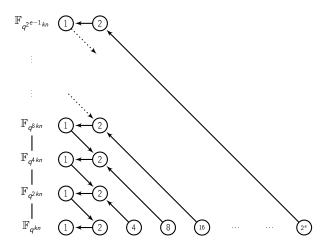


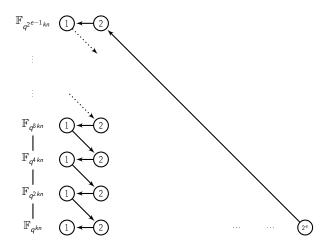












 If d<sub>h</sub> ≤ 2, then r.h.s. cofactor of a degree 2 element being eliminated is linear ⇒ no smoothness heuristics needed for descent

- If d<sub>h</sub> ≤ 2, then r.h.s. cofactor of a degree 2 element being eliminated is linear ⇒ no smoothness heuristics needed for descent
- Using reducible degree 2's ⇒ degree 1 relation generation does not use smoothness heuristics

- If d<sub>h</sub> ≤ 2, then r.h.s. cofactor of a degree 2 element being eliminated is linear ⇒ no smoothness heuristics needed for descent
- Using reducible degree 2's  $\implies$  degree 1 relation generation does not use smoothness heuristics

Hence no smoothness heuristics are needed!

- If d<sub>h</sub> ≤ 2, then r.h.s. cofactor of a degree 2 element being eliminated is linear ⇒ no smoothness heuristics needed for descent
- Using reducible degree 2's  $\implies$  degree 1 relation generation does not use smoothness heuristics

#### Hence no smoothness heuristics are needed!

#### Heuristic 1

Given a prime p and an integer n, for q the smallest power of p greater than n and for an integer k = O(1), there exist polynomials  $h_0, h_1 \in \mathbb{F}_{q^k}[X]$  of degree at most two s.t.  $h_1(X^q)X - h_0(X^q)$  has an irreducible factor of degree n (or the equivalent for  $h_1(X)X^q - h_0(X)$ ).

- If d<sub>h</sub> ≤ 2, then r.h.s. cofactor of a degree 2 element being eliminated is linear ⇒ no smoothness heuristics needed for descent
- Using reducible degree 2's  $\implies$  degree 1 relation generation does not use smoothness heuristics

#### Hence no smoothness heuristics are needed!

#### Heuristic 1

Given a prime p and an integer n, for q the smallest power of p greater than n and for an integer k = O(1), there exist polynomials  $h_0, h_1 \in \mathbb{F}_{q^k}[X]$  of degree at most two s.t.  $h_1(X^q)X - h_0(X^q)$  has an irreducible factor of degree n (or the equivalent for  $h_1(X)X^q - h_0(X)$ ).

#### Heuristic 2

There exists a polynomial time algorithm for obtaining the logarithms of polynomials of bounded degree using the parameters from Heuristic 1.

A new quasi-polynomial algorithm

Theorem (G.-Kleinjung-Zumbrägel '14)

Subject to Heuristics 1 and 2, the running time of the new algorithm is quasi-polynomial, namely

 $q^{\log_2 n + O(1)}$ 

A new quasi-polynomial algorithm

#### Theorem (*G.-Kleinjung-Zumbrägel '14*)

Subject to Heuristics 1 and 2, the running time of the new algorithm is quasi-polynomial, namely

 $q^{\log_2 n + O(1)}$ 

#### Theorem (G.-Kleinjung-Zumbrägel '14)

Subject to Heuristics 1 and 2, by balancing the cost of computing the factor base logs and the descent, the running time of the new algorithm is

 $q^{\log_2 n - (1-\epsilon)\log_2 \log_2 n}$ 

A new quasi-polynomial algorithm

#### Theorem (*G.-Kleinjung-Zumbrägel '14*)

Subject to Heuristics 1 and 2, the running time of the new algorithm is quasi-polynomial, namely

 $q^{\log_2 n + O(1)}$ 

#### Theorem (G.-Kleinjung-Zumbrägel '14)

Subject to Heuristics 1 and 2, by balancing the cost of computing the factor base logs and the descent, the running time of the new algorithm is

 $q^{\log_2 n - (1-\epsilon)\log_2 \log_2 n}$ 

'On the Powers of 2'. Robert Granger, Thorsten Kleinjung and Jens Zumbrägel. eprint.iacr.org/2014/300

Thanks for your attention!

Thanks for your attention!

Thanks for your attention!