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The Discrete Logarithm Problem (DLP)

Let G be a cyclic group of order n , let 〈g〉 = G and let h ∈ G .

The DLP for (G , g , h) is the problem of �nding the unique k ∈ Z/nZ s.t.

h = gk

We call k the discrete logarithm of h w.r.t. g , and write k = logg h .

Examples:

• Multiplicative group of a �nite �eld Fq

• Group of rational points on an elliptic curve over Fq

• Jacobian of a hyperelliptic curve over Fq

If the DLP in a group is `hard' then one can use it for cryptography:
key-agreement, encryption, digital signatures, etc.
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The Index Calculus Method

Consider the DLP in Fqn = Fq[X ]/(I (X )) , where I is a degree n
irreducible polynomial in Fq[X ] . The ICM consists of two stages:

1. Choose a factor base F , usually consisting of all irreducibles of
degree ≤ B . Find multiplicative relations between elements of F
and then compute their logarithms via linear algebra

2. For an arbitrary element, express it as a product of lower degree
elements; recurse until all leaves are in F

When applicable, the ICM leads to subexponential complexities:

De�nition
Let 0 ≤ α ≤ 1 and let 0 < c ∈ R . The subexponential function
LQ(α, c) for input Q(= qn) is de�ned to be

LQ(α, c) := exp
(
(c + o(1)) (logQ)α (log logQ)1−α

)
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Smoothness

De�nition
An element f ∈ Fq[X ] is said to be B -smooth if all of its irreducible
factors have degree ≤ B .

Theorem (Odlyzko '84, Lovorn '92)

For m1/100 ≤ B ≤ m99/100 , the probability that a polynomial f ∈ Fq[X ]
of degree m chosen uniformly at random is B -smooth, is

u−(1+o(1))u, where u = m/B

• Analogous theorem for integers gives an L(1/2) algorithm for prime
�elds (Pollard '78, Adleman '79 and Merkle '79)

• Rigorously proven by Pomerance '93 and Enge-Gaudry '00 for F×p ,

and F×qn with q �xed and n→∞
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Some small to medium characteristic DLP milestones

bitlength who/when method L(1/3, c) with c =
127 Coppersmith 1984 Proto-FFS [1.526, 1.587]
401 Gordon-McCurley 1992 Coppersmith's [1.526, 1.587]

N/A Adleman 1994 FFS (64/9)1/3 ≈ 1.923

521 Joux-Lercier 2001 FFS (32/9)1/3 ≈ 1.526
607 Thomé 2001 Coppersmith's [1.526, 1.587]

613 Joux-Lercier 2005 FFS (32/9)1/3 ≈ 1.526

556 Joux-Lercier 2006 M-FFS 31/3 ≈ 1.442

676 Hayashi et al. 2010 M-FFS (32/9)1/3 ≈ 1.526

923 Hayashi et al. 2012 M-FFS (32/9)1/3 ≈ 1.526

1175 Joux Dec 2012 M-FFS 21/3 ≈ 1.260

1425 Joux Jan 2013 M-FFS 21/3 ≈ 1.260

Assumption of uniformity of the generated polynomials is summarised in
the following heuristic:

`The Fundamental Theorem of Cryptography'

�If we have no clue about something, then we can safely assume that it
behaves as a uniformly distributed random variable.�

� Igor Shparlinski
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The GGMZ approach

`On the Function Field Sieve and the Impact of Higher Splitting
Probabilities: Application to Discrete Logarithms in F21971 and F23164 '

Faruk Gölo§lu, G., Gary McGuire, & Jens Zumbrägel
(B.P.A. at CRYPTO 2013)



The GGMZ approach

The paper presented:

• The �rst (heuristic) polynomial time relation generation method for
degree one elements

• The �rst (heuristic) polynomial time elimination method for degree
two elements

• Example DLP solutions in F21971 and F23164

However, for higher degree irreducibles we did not present any new
elimination methods, which limited the descent cost to L(1/3, (4/9)1/3) .
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The Joux-Lercier '06 FFS variation

To �nd factor base relations in Fqn one uses the following setup.

• Choose g1, g2 ∈ Fq[X ] of degrees d1, d2 s.t. X − g1(g2(X )) has a
degree n irreducible factor I (X ) over Fq , so that
Fqn = Fq[X ]/(I (X )) = Fq(x)

• Let y = g2(x) ; then x = g1(y) and Fqn ∼= Fq(x) ∼= Fq(y)

• In best case factor base is {x − a | a ∈ Fq} ∪ {y − b | b ∈ Fq}
Relation generation:

• Considering elements xy + ay + bx + c with a, b, c ∈ Fq , one
obtains the Fqn -equality

xg2(x) + ag2(x) + bx + c = yg1(y) + ay + bg1(y) + c

• When both sides split over Fq one obtains a relation



Optimising d1 and d2 in [JL06]

F.T.C. =⇒ that as q →∞ each side of xy + ay + bx + c splits over Fq

with probability 1/(d2 + 1)! and 1/(d1 + 1)! respectively.

• =⇒ Choose d1 ≈ d2 ≈
√
n

• For q = Lqn(1/3, 3−2/3) algorithm is Lqn(1/3, 31/3)

A Counterpoint to the F.T.C.

Fortunately, in one sub-case of the [JL06] setup, we do have a clue.
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An auspicious choice for g2 in [JL06]

Assume now that the base �eld is Fqk for k ≥ 2.

• Let y = g2(x) = xq

• Eliminates half of the factor base since

(y + b) = (x + b1/q)q =⇒ log(y + b) = q log(x + b1/q)

• The l.h.s. of xy + ay + bx + c becomes

xq+1 + axq + bx + c

• This polynomial provably splits over Fqk with probability

≈ 1/q3 � 1/(q + 1)!
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Bluher polynomials

Let k ≥ 3 and consider the polynomial X q+1 + aX q + bX + c .

If ab 6= c and aq 6= b , this may be transformed into

FB(X ) = X
q+1

+ BX + B , with B =
(b − aq)q+1

(c − ab)q
,

via X = c−ab
b−aq X − a .

Theorem (Bluher '02)

The number of elements B ∈ F×
qk s.t. the polynomial FB(X ) ∈ Fqk [X ]

splits completely over Fqk equals

qk−1 − 1

q2 − 1
if k is odd ,

qk−1 − q

q2 − 1
if k is even .



Degree 1 relation generation: k ≥ 3

Assume that g1 can be found s.t. X − g1(X q) ≡ 0 (mod I (X )) with
deg(I ) = n ≤ qd1 . Then we have the following method:

• Compute B = {B ∈ F×
qk | X q+1 + BX + B splits over Fqk}

• Since B = (b − aq)q+1/(c − ab)q , for any a, b ∈ Fqk s.t. b 6= aq ,
and B ∈ B , there exists a unique c ∈ Fqk s.t. xq+1 + axq + bx + c
splits over Fqk

• For each such (a, b, c) , test if r.h.s. yg1(y) + ay + bg1(y) + c
splits; if so then have a relation

• If q3k−3 > qk(d1 + 1)! then for d1 ≥ 1 constant we expect to
compute logs of degree 1 elements of Fqkn in time

O(q2k+1)



Degree 2 elimination

Let Q(y) = y2 + q1y + q0 ∈ Fqkn be an element to be eliminated, i.e.,
written as a product of linear elements.

• Recall that in Fqkn we have y = xq and x = g1(y) , so for any
univariate polynomials w0,w1 we have

w0(xq) x + w1(xq) = w0(y) g1(y) + w1(y)

• Compute a reduced basis of the lattice

LQ = {(w0(Y ),w1(Y )) ∈ Fqk [Y ]2 : w0(Y ) g1(Y ) + w1(Y ) ≡ 0 (mod Q(Y ))}

• In general we have (u0,Y + u1), (Y + v0, v1) , with ui , vi ∈ Fqk , and
for s ∈ Fqk we have (Y + v0 + su0, sY + v1 + su1) ∈ LQ

• r.h.s. (y + v0 + su0) g1(y) + (sy + v1 + su1) has degree d1 + 1, so
cofactor splits with probability ≈ 1/(d1 − 1)!

• l.h.s. is (xq + v0 + su0)x + (sxq + v1 + su1) which is of the form

xq+1 + axq + bx + c



Degree 2 elimination

Consider the l.h.s. xq+1 + sxq + (v0 + su0)x + (v1 + su1) .

• Recall B = {B ∈ F×
qk | X q+1 + BX + B splits over Fqk}

• For each B ∈ B we try to solve B = (b − aq)q+1/(c − ab)q for s ,
i.e., �nd s ∈ Fqk that satis�es

B =
(−sq + u0s + v0)q+1

(−u0s2 + (u1 − v0)s + v1)q

by taking GCD with sq
k − s : Cost is O(q2 log qk) Fqk -ops

• Probability of success is ≈ 1−
(
1− 1

(d1−1)!
)qk−3

• Hence need qk−3 > (d1 − 1)! to eliminate Q(y) with good
probability: Expected cost is

O(q2(d1 − 1)! log qk) Fqk -ops



Joux's insights

`A new index calculus algorithm with complexity L(1/4 + o(1))
in small characteristic'

Antoine Joux



Degree 1 relation generation

Independently of GGMZ, Joux discovered an isomorphic polynomial time
degree one relation generation method.

• For Fq2n assume h1(X ), h0(X ) ∈ Fq2 [X ] of very low degree exist s.t.
h1(X )X q − h0(X ) has an irreducible factor I (X ) of degree n ≈ q

• Consider X q − X =
∏
α∈Fq

(X − α) composed with X 7→ aX+b
cX+d for

a, b, c , d ∈ Fq2 and ad 6= bc . Multiplying by (cX + d)q+1 one has

(cX+d)
∏
α∈Fq

((a−αc)X+(b−αd)) = (cX+d)(aX+b)q−(aX+b)(cX+d)q

• Since X q ≡ h0(X )/h1(X ) (mod I (X )) , this is ≡

(caq−acq)Xh0(X )+(daq−bcq)h0(X )+(cbq−adq)Xh1(X )+(dbq−bdq)h1(X )

• When r.h.s. splits over Fq2 this gives a relation
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(X − α) composed with X 7→ aX+b
cX+d for

a, b, c , d ∈ Fq2 and ad 6= bc . Multiplying by (cX + d)q+1 one has

(cX+d)
∏
α∈Fq

((a−αc)X+(b−αd)) = (cX+d)(aX+b)q−(aX+b)(cX+d)q

• Since X q ≡ h0(X )/h1(X ) (mod I (X )) , this is ≡

(caq−acq)Xh0(X )+(daq−bcq)h0(X )+(cbq−adq)Xh1(X )+(dbq−bdq)h1(X )

• When r.h.s. splits over Fq2 this gives a relation



Degree ≥ 2 elimination

For degree 2, consider X q − X =
∏
α∈Fq

(X − α) now composed with

X 7→ a(X2+βX )+b
c(X2+βX )+d for a, b, c , d and β ∈ Fq2 and ad 6= bc .

For each β :

• All degree 2 factors on l.h.s. are of the form X 2 + βX + γi

• When r.h.s. splits over Fq2 one has a relation

• Each of the q2 systems of size O(q2) solved separately

For Q ∈ Fq2 [X ] of degree D > 2 let F ,G have degree < D . Consider

G ·
∏
α∈Fq

(F − αG ) = F qG − FG q

• Since X q ≡ h0(X )/h1(X ) (mod I (X )) , F q & G q have small degree

• Joux insists that r.h.s. is divisible by Q =⇒ results in a bilinear
quadratic system, and that the cofactor is (D − 1) -smooth

Balancing classical descent with this elimination results in an algorithm
with heuristic complexity Lq2n(1/4 + o(1)) .
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Ensuing DLP solutions in 2013/14

• 11th Feb'13, Joux: F21778 in 220 core hours

• 19th Feb'13, GGMZ: F21971 in 3, 132 core hours

• 22nd Mar'13, Joux: F24080 in 14, 100 core hours

• 11th Apr'13, GGMZ: F26120 in 750 core hours

• 3rd May'13, GGMZ: F23164 in 107, 000 core hours

• 21st May'13, Joux: F26168 in 550 core hours

• 26th Jan'14, AMOR: F3822 in < 4, 000 core hours

• 30th Jan'14, GKZ: F24404 in 52, 240 core hours

• 31st Jan'14, GKZ: F29234 in 400, 000 core hours

• 26th Feb'14, AMOR: F3978 in < 9, 000 core hours



The BGJT QPA

`A Heuristic Quasi-Polynomial Algorithm for Discrete Logarithm
in Finite Fields of Small Characteristic'

Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, & Emmanuel Thomé
(B.P.A. at EUROCRYPT 2014)



The BGJT QPA

For Fq2n with q ≈ n let Q ∈ Fq2 [X ] of degree D > 2. The key idea
behind each elimination step is to take degree 1 relation generation and
replace X by Q(X ) .

The l.h.s. now has the form:

(cQ(X ) +d)(aQ(X ) +b)q− (aQ(X ) +b)(cQ(X ) +d)q =

q+1∏
i=1

(Q(X )−γi )

The r.h.s. now has the form:

(cQ(X )+d)(āQ̄(h0(X )/h1(X ))+b̄)q−(aQ(X )+b)(c̄Q̄(h0(X )/h1(X ))+d̄)q

• r.h.s. is dD/2e -smooth with prob. ≈ 1/(D(dh + 1)/(D/2))!

• Collect > q2 such relations and then express logQ as a sum of
O(q2) logs of elements of degree at most dD/2e

• Recurse down to linear elements. Heuristic complexity dictated by
#nodes in descent tree: tree arity to the power depth = qO(log n)

• This is smaller than L(ε) for any ε > 0
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Overview

DLP background and smoothness

Resisting smoothness heuristics

Eliminating smoothness heuristics



The GKZ QPA

`On the discrete logarithm problem in �nite �elds of �xed characteristic'
(previously `On the Powers of 2')

arxiv:1507.01495

G., Thorsten Kleinjung, & Jens Zumbrägel

arxiv:1507.01495


The GKZ QPA
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• For an arbitrary element h we compute random h′ = h + r · I s.t.
deg h′ = 2e > 4n and h′ is irreducible (Wan '97), then descend.

• Complexity is tree arity to the power depth = qlog2 n+o(log q)
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Eliminating smoothness heuristics

• If d1 ≤ 2, then r.h.s. cofactor of Q(y) is at most linear =⇒ no
smoothness heuristics needed for descent

• Using a technique due to Enge-Gaudry, one can obviate the need to
compute the factor base logs by performing a descent of gαihβi for
base g , target h and random αi , βi , more than qk times

Hence no smoothness heuristics are needed!
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Ensuring the elimination step works

To eliminate a degree 2 element Q(y) over Fqkd , we need to �nd a
Bluher value B and an s ∈ Fqkd that satisfy

B =
(−sq + u0s + v0)q+1

(−u0s2 + (u1 − v0)s + v1)q

Theorem (Helleseth-Kholosha '10)

For kd ≥ 3 the set of elements B ∈ F×
qkd s.t. X q+1 + BX + B splits

completely over Fqkd is the image of Fqkd \ Fq2 under the map

u 7→ (u − uq
2

)q+1

(u − uq)q2+1

Thus need lower bound for #{(s, u) ∈ Fqkd × (Fqkd \ Fq2)} on the curve

(u−uq
2

)q+1(−u0s2+(u1−v0)s+v1)q−(u−uq)q
2+1(−sq+u0s+v0)q+1 = 0.



Main Results

Theorem

Given a prime power q > 61 that is not a power of 4 , an integer
k ≥ 18 , coprime polynomials h0, h1 ∈ Fqk [X ] of degree at most two and
an irreducible degree l factor I of h1X

q − h0 , the DLP in F×
qkl where

Fqkl
∼= Fqk [X ]/(I ) can be solved in expected time

qlog2 l+O(k)

Using Kummer theory, such hi are known to exist for l = q − 1, giving:

Theorem

For every prime p there exist in�nitely many explicit extension �elds Fpn

for which the DLP in F×pn can be solved in expected quasi-polynomial
time

exp
(
(1/ log 2 + o(1))(log n)2

)
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k ≥ 18 , coprime polynomials h0, h1 ∈ Fqk [X ] of degree at most two and
an irreducible degree l factor I of h1X

q − h0 , the DLP in F×
qkl where

Fqkl
∼= Fqk [X ]/(I ) can be solved in expected time

qlog2 l+O(k)

Using Kummer theory, such hi are known to exist for l = q − 1, giving:

Theorem

For every prime p there exist in�nitely many explicit extension �elds Fpn

for which the DLP in F×pn can be solved in expected quasi-polynomial
time

exp
(
(1/ log 2 + o(1))(log n)2

)



Comparison between the QPAs

BGJT GKZ

Field rep. Heuristic Heuristic
Elimination step Heuristic (x 2) Proven

Tree arity O(q2) q
Complexity qO(log n/ log log q) qlog2 n+o(log q)

Practicality Not yet Yes, in F32395 and F21279



Final remarks

• There is more than one way to skin a cat!

• Removing the �eld heuristic would be great, but seems very hard

• There is no representational obstruction to a poly-time algorithm

• Extending ideas to large prime �elds currently seems impossible...
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