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e Group of rational points on an elliptic curve over F,

e Jacobian of a hyperelliptic curve over F,

If the DLP in a group is ‘hard’ then one can use it for cryptography:
key-agreement, encryption, digital signatures, etc.
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The Index Calculus Method

Consider the DLP in Fgn = Fy[X]/(/(X)), where [ is a degree n
irreducible polynomial in Fq[X]. The ICM consists of two stages:

1. Choose a factor base F, usually consisting of all irreducibles of
degree < B. Find multiplicative relations between elements of F
and then compute their logarithms via linear algebra

2. For an arbitrary element, express it as a product of lower degree
elements; recurse until all leaves are in F

When applicable, the ICM leads to subexponential complexities:

Definition
Let 0<a <1 andlet 0 <ceR. The subexponential function
Lo(a, c) for input Q(= g") is defined to be

Lo(a,c) := exp ((c+ o(1)) (log Q)* (loglog Q)" %)
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Smoothness

Definition
An element f € Fy[X] is said to be B-smooth if all of its irreducible
factors have degree < B.

Theorem (Odlyzko ‘84, Lovorn '92)
For m*/100 < B < m%/100 the probability that a polynomial f € Fy[X]

of degree m chosen uniformly at random is B-smooth, is

u= e where u = m/B

e Analogous theorem for integers gives an L(1/2) algorithm for prime
fields (Pollard '78, Adleman '79 and Merkle '79)

e Rigorously proven by Pomerance '93 and Enge-Gaudry 00 for T,
and F, with g fixed and n — oo



Some small to medium characteristic DLP milestones

bitlength who/when method L(1/3,c) with ¢ =
127 Coppersmith 1984 Proto-FFS [1.526,1.587]
401 Gordon-McCurley 1992 | Coppersmith’s [1.526,1.587]
N/A Adleman 1994 FFS (64/9)1/3 ~ 1.923
521 Joux-Lercier 2001 FFS (32/9)1/3 ~ 1.526
607 Thomé 2001 Coppersmith’s [1.526,1.587]
613 Joux-Lercier 2005 FFS (32/9)1/3 ~ 1.526
556 Joux-Lercier 2006 M-FFS 31/3 ~1.442
676 Hayashi et al. 2010 M-FFS (32/9)'/3 ~ 1.526
923 Hayashi et al. 2012 M-FFS (32/9)1/3 ~ 1.526
1175 Joux Dec 2012 M-FFS 21/3 ~1.260
1425 Joux Jan 2013 M-FFS 21/3 ~1.260
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Assumption of uniformity of the generated polynomials is summarised in
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‘The Fundamental Theorem of Cryptography’

“If we have no clue about something, then we can safely assume that it
behaves as a uniformly distributed random variable.”

— Igor Shparlinski
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The GGMZ approach

‘On the Function Field Sieve and the Impact of Higher Splitting
Probabilities: Application to Discrete Logarithms in Faier1 and Fasies’

Faruk Gologlu, G., Gary McGuire, & Jens Zumbrigel
(B.P.A. at CRYPTO 2013)

@ Claude Shannon Institute ﬁ
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The GGMZ approach

The paper presented:
e The first (heuristic) polynomial time relation generation method for
degree one elements
e The first (heuristic) polynomial time elimination method for degree
two elements
e Example DLP solutions in Fpie71 and Fosiea

However, for higher degree irreducibles we did not present any new
elimination methods, which limited the descent cost to L(1/3,(4/9)/3).



The Joux-Lercier '06 FFS variation

To find factor base relations in [Fg» one uses the following setup.

e Choose g1, go € Fg[X] of degrees di,dr s.t. X — g1(g2(X)) has a
degree n irreducible factor /(X) over Fy, so that
For = Fo[X]/(1(X)) = Fy(x)
o Let y = go(x); then x = gi(y) and Fgrn = Fy(x) = Fq(y)
e In best case factor base is {x —a|acF,}U{y —b|beF,}
Relation generation:

o Considering elements xy + ay + bx + ¢ with a, b,c € Fy, one
obtains the Fg»-equality

xg2(x) + aga(x) + bx 4 ¢ = yg1(y) + ay + bgi(y) + ¢

e When both sides split over F, one obtains a relation



Optimising d; and dy in [JLOG]

F.T.C. = that as g — oo each side of xy + ay + bx + ¢ splits over Fq
with probability 1/(d> + 1)! and 1/(d1 + 1)! respectively.

e —> Choose d; ~ d» = +/n
o For g = Ly (1/3,372/3) algorithm is L,+(1/3,3%/3)



Optimising d; and dy in [JLOG]

F.T.C. = that as g — oo each side of xy + ay + bx + ¢ splits over Fq
with probability 1/(dx + 1)! and 1/(dy + 1)! respectively.

e —> Choose d; ~ d» = +/n

o For g = Ly (1/3,372/3) algorithm is L,+(1/3,3%/3)

A Counterpoint to the F.T.C.

Fortunately, in one sub-case of the [JL06] setup, we do have a clue.
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(v + b) = (x + b"/9)? —> log(y + b) = qlog(x + b*/9)
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An auspicious choice for g in [JL06]

Assume now that the base field is Fg« for k > 2.

o Let y = go(x) = x9
e Eliminates half of the factor base since

(v + b) = (x + b"/9)? —> log(y + b) = qlog(x + b*/9)
e The Lh.s. of xy + ay + bx 4+ ¢ becomes
x9T 4 ax9 4 bx + ¢

e This polynomial provably splits over [Fg« with probability

~1/¢> > 1/(q+1)!



Bluher polynomials

Let k > 3 and consider the polynomial X9t 4+ aX9 4+ bX + c.
If ab+# ¢ and a% # b, this may be transformed into

(b— a9)d+1
(c—ab)a ’

Fs(X)=X""" +BX+B, with B=

via X = Z:zﬁ’Y— a.

Theorem (Bluher '02)

The number of elements B € F,, s.t. the polynomial Fg(X) € Fq[X]
splits completely over g« equals

k—1 _ k=1 _
7l kisodd, 99

| if k is even .



Degree 1 relation generation: k > 3

Assume that g; can be found s.t. X — g1(X9) =0 (mod /(X)) with
deg(/) = n < qd;. Then we have the following method:

o Compute B={B € F} | X9t + BX + B splits over F«}

e Since B = (b—a%)9"!/(c — ab)7, for any a,b € Fp s.t. b# a9,
and B € B, there exists a unique ¢ € Fg s.t. X9 4 ax9 4+ bx + ¢
splits over [«

e For each such (a, b, c), test if r.hs. ygi(y) +ay + bgi(y) + ¢
splits; if so then have a relation

o If ¢33 > gk(dy +1)! then for d; > 1 constant we expect to
compute logs of degree 1 elements of Fu in time

O(q2k+1)



Degree 2 elimination
Let Q(y) = y® + g1y + qo € Fy be an element to be eliminated, i.e.,
written as a product of linear elements.

e Recall that in Fw we have y = x9 and x = gi(y), so for any
univariate polynomials wp, w; we have

wo(x7) x + wa(x7) = wo(y) g1(y) + wa(y)

e Compute a reduced basis of the lattice

Lo = {(wo(Y),w1(Y)) € Fu[Y]* : wo(Y) g1(Y) +mwa(Y) =0 (mod Q(Y))}

e In general we have (ug, Y + u1), (Y 4 vo, v1), with uj,v; € Fy, and
for s € Foe we have (Y + vo + sup,sY + vi +su1) € Lo

e rhs. (y+ vo+ sug)gi(y) + (sy +v1 + sup) has degree di +1, so
cofactor splits with probability ~ 1/(d; —1)!

e Lhs. is (x9 + v + sug)x + (sx9 4+ vi + sup) which is of the form

x4 ax9 4 bx + ¢



Degree 2 elimination

Consider the l.h.s. x91 + sx9 + (vo + sug)x + (vq + suy).
* Recall B={B e F,, | X7 + BX + B splits over F}
e For each B € B we try to solve B = (b — a%)9™!/(c — ab)9 for s,
i.e., find s € F« that satisfies

(—Sq + ugs + Vo)q+1
(—ups?® + (u1 — vp)s + v1)9

B =

by taking GCD with s9 —s: Cost is O(q? log g¥) F ,«-ops
k—3
o Probability of success is ~1— (1 — ﬁ)q
e Hence need g“~3 > (d; — 1)! to eliminate Q(y) with good
probability: Expected cost is

0(g*(dy — 1)!log ¢*) F -ops



Joux’s insights

‘A new index calculus algorithm with complexity L(1/4 4+ o(1))
in small characteristic'

Antoine Joux
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Degree 1 relation generation

Independently of GGMZ, Joux discovered an isomorphic polynomial time
degree one relation generation method.

e For Fgan assume hy(X), ho(X) € Fg2[X] of very low degree exist s.t.

h1(X)X9 — ho(X) has an irreducible factor /(X) of degree n= g
e Consider X9 — X =], ¢y, (X — @) composed with X i ggis for

a,b,c,d € Fp2 and ad # bc. Multiplying by (cX + d)9** one has
(eX+d) H ((a—ac)X+(b—ad)) = (cX+d)(aX+b)T—(aX+b)(cX+d)7
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e Since X9 = ho(X)/h1(X) (mod I(X)), this is =

(ca—ac?)Xho(X)+(da—bc?) ho(X )+(cb?—ad¥) Xhy (X)+(db?—bd?) hy (X)

e When r.h.s. splits over Fg2 this gives a relation
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Degree > 2 elimination

For degree 2, consider X9 — X = HaeF (X — @) now composed with
XH%hrabcdandﬂer and ad # bc.
For each 3:

e All degree 2 factors on l.h.s. are of the form X2 4 X + ~;
e When r.hs. splits over F;2 one has a relation
e Each of the g° systems of size O(g?) solved separately

For Q € Fg2[X] of degree D > 2 let F, G have degree < D. Consider

G- [[(F-aG)=FiG-FG?
a€cly
e Since X7 = hg(X)/hi(X) (mod /(X)), F? & G have small degree

e Joux insists that r.h.s. is divisible by @ = results in a bilinear
quadratic system, and that the cofactor is (D — 1)-smooth

Balancing classical descent with this elimination results in an algorithm
with heuristic complexity Lg2-(1/4 4+ o(1)).



Ensuing DLP solutions in 2013/14

11th Feb'13, Joux: Fyi77s in 220 core hours

19th Feb'13, GGMZ: Fyie71 in 3,132 core hours
22nd Mar'13, Joux: [Fpacso in 14,100 core hours
11th Apr'13, GGMZ: Fae120 in 750 core hours

3rd May'13, GGMZ: Fjs1es in 107,000 core hours
21st May'13, Joux: Foeies in 550 core hours

26th Jan'14, AMOR: F3e22 in < 4,000 core hours
30th Jan'14, GKZ: Fyass in 52,240 core hours
31st Jan'14, GKZ: Fye23s in 400,000 core hours
26th Feb'14, AMOR: F3e7s in < 9,000 core hours



The BGJT QPA

‘A Heuristic Quasi-Polynomial Algorithm for Discrete Logarithm
in Finite Fields of Small Characteristic’

Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, & Emmanuel Thomé
(B.P.A. at EUROCRYPT 2014)
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For Fgzn with g =~ n let Q € Fp2[X] of degree D > 2. The key idea
behind each elimination step is to take degree 1 relation generation and
replace X by Q(X).

The L.h.s. now has the form:
q+1

(cQ(X) +d)(aQ(X) +b) — (aQ(X) + b)(cQ(X) +d)? = [ [(Q(X) =)

i=1
The r.h.s. now has the form:

(cQ(X)+d)(3Q(ho(X)/h1 (X)) +b)I—(aQ(X)+b)(EQ(ho(X)/h(X))+d)?

e r.his. is [D/2]-smooth with prob. ~ 1/(D(ds +1)/(D/2))!
e Collect > g? such relations and then express log @ as a sum of
O(q?) logs of elements of degree at most [D/2]

e Recurse down to linear elements. Heuristic complexity dictated by
#nodes in descent tree: tree arity to the power depth = g©(l°g")

o This is smaller than L(e) for any ¢ >0



Overview

Eliminating smoothness heuristics



The GKZ QPA

‘On the discrete logarithm problem in finite fields of fixed characteristic’
(previously ‘On the Powers of 2")
arxiv:1507.01495

G., Thorsten Kleinjung, & Jens Zumbrigel
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e For an arbitrary element h we compute random A = h+r -/ s.t.
deg ' =2° > 4n and K is irreducible (Wan '97), then descend.

o Complexity is tree arity to the power depth = ¢'°g2 "+o(loga)
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Eliminating smoothness heuristics

o If di <2, then r.h.s. cofactor of Q(y) is at most linear = no
smoothness heuristics needed for descent

e Using a technique due to Enge-Gaudry, one can obviate the need to
compute the factor base logs by performing a descent of g® h% for
base g, target h and random «;, B;, more than g* times

Hence no smoothness heuristics are needed!



Ensuring the elimination step works

To eliminate a degree 2 element Q(y) over Fguw, we need to find a
Bluher value B and an s € Fgw that satisfy

(—Sq + ugs + V())(H_1

B =
(—U0$2 —+ (Ul — Vo)S + Vl)q

Theorem (Helleseth-Kholosha '10)
For kd > 3 the set of elements B € ]F:kd s.t. X9 + BX + B splits

completely over Ty is the image of Fu \ Fg2 under the map

(u—u? )t

ur— (u — uq)q2+1

Thus need lower bound for #{(s,u) € Fgua x (Fgua \ Fg2)} on the curve

(u—uq2)q+1(—uos2+(u1—vo)s+v1)q—(u—uq)q2+1(—sq+uos+v0)q+1 =0.
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Main Results

Theorem

Given a prime power q > 61 that is not a power of 4, an integer
k > 18, coprime polynomials hy, hy € F«[X] of degree at most two and
an irreducible degree | factor | of hyX9 — hg, the DLP in F:k, where

Fqu = Fo[X]/(I) can be solved in expected time

glog2 1+0(K)

Using Kummer theory, such h; are known to exist for | = g — 1, giving:

Theorem

For every prime p there exist infinitely many explicit extension fields -
for which the DLP in JF;" can be solved in expected quasi-polynomial
time

exp ((1/log2 + o(1))(log n)?)



Comparison between the QPAs

BGJT GKZ
Field rep. Heuristic Heuristic
Elimination step | Heuristic (x 2) Proven
Tree arity 0(q?) q
Complexity qO(Iog n/ log log q) qlog2 n+o(log q)
Practicality Not yet Yes, in F323es and Foizrs



Final remarks

There is more than one way to skin a cat!

Removing the field heuristic would be great, but seems very hard
There is no representational obstruction to a poly-time algorithm
Extending ideas to large prime fields currently seems impossible...



the best of times, it was the worst of times,
 age of wisdom, it was the age of foolishness, it was the epoch
was the epoch of incredulity, it was the season of Light,
season of Darkness, it was the spring of hope, it was the winter
 had everything before us, we had nothing before us, we were all
Heaven, we were all going direct the other way — in short, the
like the present period, that some of its noisiest authorities
ing received, for good or evil, in the superlative degree

- A Tale of Two Cities
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