
On Small Degree Extension
Fields in Cryptology

Robert Granger

A dissertation submitted to the University of Bristol in accordance with the

requirements for the degree of Doctor of Philosophy in the Faculty of

Engineering, Department of Computer Science.

50,000 words

November 2005

Abstract

This thesis studies the implications of using public key cryptographic primitives

that are based in, or map to, the multiplicative group of finite fields with small

extension degree. A central observation is that the multiplicative group of exten-

sion fields essentially decomposes as a product of algebraic tori, whose properties

allow for improved communication efficiency.

Part I of this thesis is concerned with the constructive implications of this

idea. Firstly, algorithms are developed for the efficient implementation of torus-

based cryptosystems and their performance compared with previous work. It is

then shown how to apply these methods to operations required in low character-

istic pairing-based cryptography. Finally, practical schemes for high-dimensional

tori are discussed. Highly optimised implementations and benchmark timings are

provided for each of these systems.

Part II addresses the security of the schemes presented in Part I, i.e., the hard-

ness of the discrete logarithm problem. Firstly, an heuristic analysis of the ef-

fectiveness of the Function Field Sieve in small characteristic is given. Next pre-

sented is an implementation of this algorithm for characteristic three fields used in

pairing-based cryptography. Finally, a new index calculus algorithm for solving

the discrete logarithm problem on algebraic tori is described and analysed.

i

Acknowledgements

It has been just over three years since I began studying for this degree. These three

years have been a tremendous period of development for me, both academically

and personally, and I owe a sincere debt of gratitude to many people who have

made much of this time unforgettable.

First and foremost, I would like to thank my supervisor Nigel Smart. His

seemingly boundless knowledge, enthusiasm and sense of humour have been an

inspiration, and without his expert guidance I would no doubt not be writing this.

I would also like to extend my thanks to Fré Vercauteren, who as my advisor

for two years was always available to bounce ideas off (and indeed still is), and

often bounced several new ones back to me with an infectious alacrity.

My learning during the course of this PhD has by no means been a lone ef-

fort. The Cryptography and Information Security Group at Bristol has been an

excellent place to work, and contains (and has contained) several talented people,

who have always been willing to share their expertise, and a joke. Many thanks

go to Dan Page, John Malone-Lee, Martijn Stam, Peter Leadbitter, Richard Noad,

Florian Hess, Katharina Geissler, Pooya Farshim, Kamel Bentahar, and also to

Steven Galbraith, for answering my often ill-posed questions when no one else

could. Thanks also to Mark, Dennis, Kate, Angus, Veronica, Paul and Mike, for

splitting up the days, and stretching out the nights, and to Amoss also, who as well

as being a great mate, first piqued my interest in real computer science.

In addition to going to more places than I can remember, and meeting even

more very interesting people, I had the privilege of being invited to visit the CACR

at the University of Waterloo for three brilliant months in the summer of 2005.

iii

Very special thanks go to Alfred Menezes for being an excellent host, and also

to Edlyn Teske, Darrel Hankerson, Nicholas Thériault and Isabelle Dechene for

making my stay both stimulating and a real pleasure. A very big thanks also to

Kim, Erin and Iza, for taking me under their wing, and showing me just how damn

awesome life can be.

Thanks also to my friends who have always been up for a good laugh over the

years: to Russ, Mozza, Joey, Bourner, Lovell, Pete and Sutton - cheers lads; to

Greg, for opening my eyes and for suggesting doing this PhD in the first place;

to Kuba, for being a really good mate; to Michal and Ania, for throwing wicked

parties; and to Phil, who over the last three years not only taught me what to look

for, but also always made sure I kept my head firmly fixed on.

And finally, a huge thanks to my family: to Mum and Dad - thank you for all

your support over the years; to Amy and James, for being there no matter what;

to Alex, for making me feel old(er); and to Jasmine and Tamara, who I have not

seen enough of over the last seven years - now it’s time to make sure it was worth

it...

Declaration

I declare that the work in this dissertation was carried out in accordance with

the Regulations of the University of Bristol. The work is original except where

indicated by special reference in the text and no part of the dissertation has been

submitted for any other degree.

Any views expressed in the dissertation are those of the author and in no way

represent those of the University of Bristol.

The dissertation has not been presented to any other University for examina-

tion either in the United Kingdom or overseas.

SIGNED: DATE:

Contents

Abstract i

Acknowledgements iii

Contents vii

List of Figures xiii

List of Algorithms xv

1 Introduction 1

1.1 Cryptology . 1

1.2 Symmetric Key Cryptography 4

1.3 Public Key Cryptography . 5

1.3.1 RSA . 6

1.3.2 Discrete Logarithm Cryptography 7

1.3.3 Elliptic Curve Cryptography 9

1.3.4 Identity-Based Cryptography 10

1.3.5 Torus-Based Cryptography 11

1.4 Thesis Outline and Main Contributions 12

2 Mathematical Background 15

2.1 Finite Fields . 15

2.1.1 Structure of Extension Fields 16

2.1.2 The Multiplicative Group and Subgroup Embeddings . . . 16

vii

2.2 Algebraic Tori . 18

2.2.1 The Torus Tn(Fq) . 18

2.2.2 Rationality of Tori over Fq 18

2.2.3 CEILIDH . 19

2.2.4 XTR . 21

2.3 Elliptic Curves . 22

2.3.1 Background . 22

2.3.2 The Group Law . 23

2.3.3 Elliptic Curves over Finite Fields 27

2.4 Pairings . 27

2.4.1 The Tate Pairing . 28

I Arithmetics 31

3 A Comparison of CEILIDH and XTR 33

3.1 Introduction . 33

3.2 Efficient Representations for T6(Fp) 34

3.2.1 The Representation F1 35

3.2.2 The Representation F2 36

3.2.3 The Representation F3 39

3.3 Exponentiation . 44

3.4 Implementation Results . 45

4 On Small Characteristic Algebraic Tori in Pairing-Based Cryptogra-

phy 49

4.1 Introduction . 49

4.2 The Modified Tate Pairing . 51

4.3 The Quotient Group . 53

4.3.1 The Basic Idea . 54

4.3.2 Arithmetic in G . 55

4.3.3 Further Compression using T6(Fq) 57

4.4 Field Representation . 58

viii

4.5 Exponentiation . 61

4.5.1 Precomputation . 63

4.5.2 Comparison with Trace-Based Exponentiation 64

4.5.3 Application to other Pairings 64

4.6 Computing the Modified Tate Pairing 66

4.6.1 Cost Analysis . 66

4.7 Implementation Results . 69

4.8 Conclusion and Open Problems 71

5 Practical Cryptography in High Dimensional Tori 73

5.1 Introduction . 73

5.2 Asymptotically Optimal Torus-Based Cryptography 75

5.3 The New Construction . 76

5.3.1 Applying the Construction to T30 78

5.3.2 Missing Points . 79

5.4 Applications . 80

5.4.1 ElGamal Encryption . 80

5.4.2 ElGamal Signatures . 82

5.5 Representations and Algorithms for T30 83

5.5.1 Field Representations . 83

5.5.2 Compression and Decompression 84

5.5.3 Arithmetic Costs . 85

5.5.4 Exponentiation in T30 . 85

5.5.5 Parameter Selection . 86

5.6 Implementation Results . 87

5.7 Concluding Remarks . 89

II Security Analysis 91

6 The Discrete Logarithm Problem 93

6.1 The Discrete Logarithm Problem 93

6.2 General Methods . 95

ix

6.2.1 The Pohlig-Hellman Simplification 95

6.2.2 Square-root Algorithms 96

6.3 The Index Calculus Method . 97

6.4 The Discrete Logarithm Problem in Finite Fields 99

7 Estimates for Discrete Logarithm Computations in Finite Fields of

Small Characteristic 101

7.1 Introduction . 101

7.2 The Function Field Sieve . 104

7.3 Methodology of our Analysis . 106

7.3.1 Some Factorisation Probabilities 106

7.3.2 Model of the Function Field Sieve 110

7.4 Empirical Results . 114

7.4.1 Discussion . 114

7.5 Concluding Remarks . 120

8 Function Field Sieve in Characteristic Three 121

8.1 Introduction . 121

8.2 The Function Field Sieve . 122

8.3 Choice of Parameters and Implementation Details 125

8.3.1 Selection of f . 126

8.3.2 Lattice Sieving . 127

8.3.3 Factor Base Size . 127

8.3.4 Linear Algebra Step . 128

8.4 Experiments . 129

8.4.1 Field Size 3186 . 129

8.4.2 Field Size 3222 . 130

8.4.3 Field Size 3582 . 131

8.5 Concluding Remarks . 132

9 On the Discrete Logarithm Problem on Algebraic Tori 135

9.1 Introduction . 135

x

9.2 Discrete Logarithms in Extension Fields and Algebraic Tori 137

9.2.1 A Reduction of the DLP 138

9.3 Algorithm Philosophy . 141

9.3.1 Classical Method . 141

9.3.2 Gaudry’s Method . 142

9.4 An Index Calculus Algorithm for T2(Fqm) ⊂ F×
q2m 144

9.4.1 Setup . 144

9.4.2 Decomposition Base . 146

9.4.3 Relation Finding . 146

9.4.4 Complexity Analysis and Experiments 148

9.4.5 Comparison with other Methods 151

9.5 An Index Calculus Algorithm for T6(Fqm) ⊂ F×
q6m 152

9.5.1 Setup . 152

9.5.2 Decomposition Base . 153

9.5.3 Relation Finding . 153

9.5.4 Complexity Analysis and Experiments 158

9.5.5 Comparison with other Methods 161

9.6 Conclusion and Future Work . 161

Final Remarks 167

Bibliography 167

xi

List of Figures

2.1 Adding two points on an elliptic curve 25

2.2 Doubling a point on an elliptic curve 26

3.1 Timing results for CEILIDH and XTR 46

4.1 Field definitions and curve equations 52

4.2 Pairing and exponentiation timings (ms). 69

4.3 Field operation timings (µs). 70

5.1 Arithmetic costs of operations in T30. 85

5.2 Parameter examples with 32-bit primes q 87

5.3 Parameter examples with 64-bit primes q and corresponding l of

about 200-bits. 88

5.4 Timings of basic field and torus arithmetic. 89

5.5 Timings for compression, decompression and exponentiations. . . 89

7.1 Minimum sieving times: 336 bits 115

7.2 Minimum sieving times: 485 bits 115

7.3 Minimum sieving times: 634 bits 116

7.4 Minimum sieving times: 802 bits 117

7.5 Smoothness measure S(η,F×
pn) for various 802-bit fields 118

7.6 Comparison of S(η,F×
3474) for different field representations . . . 119

8.1 Timings for full discrete logarithm computations 132

xiii

9.1 log2 of expected running times (s) of the T2-algorithm and Pollard-

Rho in a subgroup of size 2160: bold for time < 245 and matrix of

size < 223. 150

9.2 log2 of expected running times (s) of the T6-algorithm and Pollard-

Rho in a subgroup of size 2160: bold for time < 245 and matrix of

size < 223. 160

xiv

List of Algorithms

1 Online Pre-computation for Double Exponentiation 65

2 The Duursma-Lee Algorithm . 66

3 A Refined Duursma-Lee Algorithm. 67

xv

Chapter 1

Introduction

“It is insufficient to protect ourselves with laws; we need to protect ourselves with

mathematics.”

– Bruce Schneier, security technologist and author.

“There is no safety in numbers, or in anything else.”

– James Thurber, author, cartoonist, humorist, & satirist.

In this chapter we provide a synopsis of modern cryptology, detail the focus

and overall structure of the thesis, and describe the main results contained herein.

1.1 Cryptology

Cryptology is the science of making and breaking secret communications. This

description, while perhaps too general to convey the sophistication of modern

cryptology, embodies the subject’s central dichotomy. Should one party for in-

stance, design and implement a method to communicate a message secretly in

the presence of an adversary (cryptography), then assuming the message is suffi-

ciently valuable, this adversary is likely to attempt to circumvent the design (crypt-

analysis). The resulting ‘arms race’ between cryptographer and cryptanalyst, with

1

1.1 Cryptology

regard to both the problem of confidential data transmission and the manifold ap-

plications of modern cryptography, constitutes the field of cryptology.

Historically, the development and deployment of cryptography has been driven

by military and governmental practices of strategic or political importance. How-

ever in recent times, the prevalence of cryptography in modern society has in-

creased dramatically. With the widespread availability of cheap computer tech-

nology, the rapid growth of the internet, and the increasing popularity of wireless

communications and electronic commerce, numerous difficult problems in infor-

mation security have arisen. The variety and depth of these problems has stimu-

lated intense research activity in the past three decades, particularly in academia

and industry, which in turn has resulted in a revolution in cryptographic techniques

and methodology.

Whereas, in the past, the design of cryptosystems has tended to be ad hoc,

modern cryptography can now claim to be a scientific discipline (though one that

is still maturing). A central feature of this maturity is the trend towards modulari-

sation. By identifying basic security objectives and finding mathematical objects

which satisfy these objectives, cryptographers are now able to design, compose,

and argue the security of complex cryptosystems in a rigorous manner.

The most basic of the modules in modern cryptography is that of a primitive,

which may be regarded as a cryptographic building block which performs one or

more desired functions, and may be combined with others to form a cryptographic

protocol. The most well-known and perhaps the simplest primitive is encryption,

which allows parties to achieve confidential data transmission over an insecure

channel. The concept of a digital signature is another essential primitive, en-

abling parties to perform data-origin or entity authentication, while key agreement

allows parties to securely establish a common key over an insecure channel, for

use in encryption for example. In general, primitives are designed to satisfy par-

ticular security objectives, which may be built from the following four basic ob-

jectives [101]: confidentiality, data integrity, authentication and non-repudiation.

By isolating the basic properties required of a given cryptosystem in this way,

and developing primitives that satisfy these objectives, sound design practices can

2

Introduction

be followed, which in turn permit simpler security analyses.

The process of combining cryptographic primitives to achieve a particular

functionality and to satisfy certain security objectives is intricate, and to some

extent depends on what one can argue regarding the security obtained by a given

design. Ideally, one provides a reductionist security argument, reducing the secu-

rity of the protocol to the security of the underlying primitives. The techniques

employed in such arguments constitute the area of cryptography known as prov-

able security. Informally, one argues the security of the protocol by showing that

if an adversary is capable of breaking the protocol (according to some definition

of security) with non-negligible probability, then this adversary would be able to

use this information to break one (or more) of the underlying primitives with non-

negligible probability as well. If one then assumes that the underlying primitives

are secure, one deduces that such an adversary can not exist. Such a proof then

demonstrates the conceptual soundness of the protocol design.

Given a protocol design with a corresponding proof of security relative to a set

of cryptographic primitives, the next task in the design process is to find the tech-

nical means by which these primitives may be securely instantiated. The methods

employed during this stage draw from fields as diverse as computational com-

plexity theory, information theory, discrete mathematics, computational number

theory, computational algebraic geometry, quantum computation and quantum in-

formation theory, to name a few. The number of possible methods of instantiating

a given primitive is huge, but there is no a priori guarantee that any of these ideas

are secure (except possibly for quantum key distribution [31], which potentially

holds great promise for the future if it can be made practical - see [108]). Indeed,

despite many years of research, no modern instantiations of any non-quantum

primitives have been proven secure either in absolute or complexity theoretic

terms, and indeed may never be [115]. As such, one must rely on the continu-

ing failure of cryptanalyst’s best efforts to break these primitives, using this as an

assurance that the problems are as hard as believed, where here “hard” means the

expected time taken to solve a given problem instance is perhaps millions, if not

billions, of years.

3

1.2 Symmetric Key Cryptography

With the difficulty of these problems established, or at the very least assumed

but with strong supporting evidence, to be of any use a protocol must be im-

plemented in the real world. This raises several separate security issues, since

physical computation potentially (and nearly always) leaks information regarding

the secret data being operated upon (see chapter 4 of [11] for some of the meth-

ods employed). Hence further defences, in the form of countermeasures, must be

developed.

These issues having been addressed and the system deployed, one must still

continually reassess the security level attained by a given protocol, in response

to both specialised cryptanalytic attacks, and in light of developments in any of

the above technical fields or in computer technology. As such, contemporary

cryptology is a fast-moving subject requiring the solving of serious and difficult

problems, using a plethora of mathematical, scientific and engineering techniques.

1.2 Symmetric Key Cryptography

While not the subject of this thesis, for completeness we briefly describe symmet-

ric key cryptography, which is widely used today in situations where shared keys

amongst parties have already been established. The Data Encryption Standard

(DES) [37,38] and its replacement, the Advanced Encryption Standard (AES) [26,

40] are the most well known encryption schemes of this type.

LetM, C andK be the message, ciphertext and key spaces respectively for the

following scenario. Suppose two parties A and B wish to communicate over an

insecure channel, and assume that they have agreed upon a family of encryption

functions (indexed by k ∈ K)

Ek :M→ C,

with a family of corresponding decryption functions

Dk : C →M,

4

Introduction

in the sense that for each k ∈ K and every m ∈ M, Dk(Ek(m)) = m. If A and

B secretly agree a shared key k, then A can confidentially transmit a message m

to B as follows. First A computes the ciphertext c = Ek(m), and sends this to

B. To decrypt, B simply computes Dk(c) = m, recovering the original message.

Note that any unauthorised party E can read c, since the channel is insecure, but

without the key k, E should not be able to obtain any information regarding m.

Also note that the roles of A and B in this scenario can be reversed, so that B can

confidentially transmit a message to A using the same secret key k.

In actual systems, the decryption key may not be identical to the encryption

key, but it is always easily derivable from it (in polynomial time), and so both

encryption and decryption can be performed with the knowledge of a single key,

thus explaining the terminology.

While symmetric key based primitives can provide confidentiality, and amongst

the parties sharing a key, message authentication, one problem is the establishment

of pairwise secret keys. Thus when the number of communicating parties is large,

as has increasingly been the case since the advent of the internet, this becomes a

serious logistical problem, requiring a totally new idea to overcome it.

1.3 Public Key Cryptography

Up until the mid 1970’s, symmetric key based cryptographic techniques were the

only ones available. The major limitation of these methods was the key distribu-

tion problem: how should a large number of parties efficiently establish pairwise

secure keys, if they are potentially all over the world? In 1976 the revolutionary

paper of Diffie and Hellman [28] gave a method to solve this problem, with the

introduction of the notion of public key cryptography.

Rather than each pair of parties sharing a secret key, each party I now has a

pair of keys (eI , dI), where eI is published (the public key), and dI is secret. In

order for party A to securely send a message m to party B, using B’s public key

eB , A computes c = EeB
(m) and sends c to B. Since dB is assumed to be known

only to B, only B can apply the inverse transformation DdB
to c, thus recovering

5

1.3 Public Key Cryptography

m. Hence there is no need for parties to share keys at all, and the key distribution

problem is bypassed.

The essential assumption in this set-up, and what makes it substantially dif-

ferent to symmetric cryptography, is that it should be computationally infeasible

to determine dI from eI . This is why public key cryptography is also often called

asymmetric cryptography.

Another benefit of public key encryption is that if a system is reversible, mean-

ing that decryption can be performed before encryption (which implicitly assumes

that the message and ciphertext are the same), then one also naturally obtains dig-

ital signatures which provide both authentication and non-repudiation (see Sec-

tions 1.3.1 and 1.3.2 for examples).

Hence public key cryptography seems to provide an excellent solution not only

to the key distribution problem, but also to the issues information security sets out

to resolve. One disadvantage however is that asymmetric cryptosystems are usu-

ally several orders of magnitude slower than their symmetric counterparts, while

another more technical problem is that in using public keys, the keys themselves

must first be authenticated. The latter can be overcome with an appropriate public

key infrastructure [145], while the former is usually circumvented by combining

both types of system: one uses asymmetric cryptography for key establishment

and then symmetric cryptography for secure and efficient data transfer.

1.3.1 RSA

With the concept of public key cryptography having been established, in 1977 the

first concrete instantiation was proposed by Rivest, Shamir and Adleman [124],

called RSA, after its inventors. In RSA a public key consists of a pair (n, e).

Here n is a large integer which is usually chosen to be the product of two primes

of approximately equal size, and e is called the encryption exponent, which is

an integer in (Z/φ(n)Z)×. The corresponding secret key d is chosen such that

ed ≡ 1 mod φ(n). For party A to encrypt a message m ∈ Z/nZ to party B,

he computes c = meB mod nB, from which B recovers m as cdB ≡ meBdB ≡
m mod nB . The security of RSA encryption relies on both the difficulty of inte-

6

Introduction

ger factorisation and the difficulty of computing e-th roots modulo a composite

for which the prime factorisation is not known, which for security analyses are

generally presumed to be equivalent. However, remarkable work by Boneh and

Venkatesan [16] implies that for small encryption exponents, the two problems

are equivalent only if factorisation is easy, and so it is likely that the two problems

are in general not equivalent.

With a suitably chosen key-size, padding scheme, implementation, and with

proper usage, RSA is believed to be secure. In fact the RSA scheme was inde-

pendently designed some four years previously at GCHQ by Cocks [22], building

upon an idea of Ellis [33]. At the time GCHQ insisted on keeping the system

secret, and did not use it internally, purportedly due to the fact that they were not

at the time able to obtain digital signatures (and hence certificates), which in ret-

rospect now seems very easy [28]. Indeed, to sign a message m party A merely

publishes m and s = mdA mod nA, from which anyone can verify whether or not

A signed the message by checking if seA = mdA·eA = m mod nA, since eA is

public. Note that in this scheme, A is really only providing a proof of knowledge

of dA, which it is presumed only they know, hence uniquely identifying A as the

signer.

Since the difficulty of integer factorisation is not proven, and in fact may never

be [115], it is sensible to have more than one instantiation of public key cryptog-

raphy.

1.3.2 Discrete Logarithm Cryptography

Currently the only widespread public key crytptosystems other than RSA are

based on the discrete logarithm problem (DLP). For an arbitrary finite cyclic group

G, written multiplicatively, and for a fixed generator g ∈ G and an element h ∈ G,

the discrete logarithm problem with respect to g and h is to determine an integer

x which satisfies the equation

gx = h.

7

1.3 Public Key Cryptography

Assuming this problem is hard, one can instantiate key agreement, encryption and

digital signatures.

First proposed by Diffie and Hellman [28] using the multiplicative group of

finite fields, the security of the following key agreement protocol is related to the

difficulty of solving discrete logarithms. If two parties A and B wish to agree

upon a common key over an insecure channel, they first publicly agree upon a

finite cyclic abelian group G, and a fixed (generating) element g ∈ G. A then

chooses a random integer a mod #G and sends ga to B. Similarly B chooses a

random integer b mod #G and sends gb to A. With these elements exchanged,

A then computes (gb)a, and B computes (ga)b, which by the commutativity of

exponentiation provides a common key gab. An eavesdropper E only obtains

G, g, ga and gb, and if she can recover from this data gab, she is said to have solved

the Diffie-Hellman problem (DHP). It is easy to see that if E can solve discrete

logarithms in G, then she can break the protocol and can solve the DHP. For most

groups in use in cryptography it is believed that the DHP and DLP are equivalent,

though this has been proven for a restricted class of groups only [97].

It was not until 1985 that ElGamal proposed encryption and digital signature

schemes based on the DLP [32]. Encryption is achieved as follows. Suppose B

has a public key consisting of g and h = gx, where x is the private key. To encrypt

a message m, assumed to be encoded as an element of the group G, A generates

a random integer k ∈ {1, . . . ,#G − 1} and computes a = gk, b = hkm, and

sends (a, b) to B. The message is then recovered by B who computes ba−x =

hkmg−kx = gxk−xkm = m.

With regard to digital signatures, suppose B wants to sign a message m ∈
(Z/(#G)Z). We fix a bijection f : G → Z/(#G)Z. Then using the same

public and private key pair as for encryption, B generates a random integer k ∈
{1, . . . ,#G − 1}, and computes a = gk. He then computes a solution, b ∈
Z/(#G)Z, to the congruence m ≡ xf(a) + bk (mod#G), and sends the signa-

ture (a, b) and m to A. To verify the signature A checks whether the following

equation holds:

hf(a)ab = gxf(a)+kb = gm.

8

Introduction

Another example is the Digital Signature Algorithm (DSA), used in the Digi-

tal Signature Standard (DSS), first proposed and standardised by the U.S. govern-

ment’s National Institute of Standards and Technology in 1994, and revised most

recently in 2000 [39]. The DSA is almost identical to ElGamal signatures, except

that the verification procedure is computationally simpler.

1.3.3 Elliptic Curve Cryptography

The security of the schemes discussed in the previous section is related to the dif-

ficulty of the DLP in a given group. However from a representation perspective

using the multiplicative group of a finite field, as suggested by Diffie and Hell-

man, is not optimal. The reason for this is that current index calculus algorithms

can solve discrete logarithms in finite fields approximately six times the size of

groups to which generic algorithms apply [3, 52, 70, 142, 151]. As a consequence

this representation is about six times less efficient in terms of memory and band-

width than the information-theoretic limit. In the future this ratio will continue to

increase as recommended key sizes become larger, since algorithms to solve finite

field discrete logarithms are subexponential.

Inspired by H.W. Lenstra’s elliptic curve integer-factorisation algorithm [90],

elliptic curve cryptography (ECC), proposed independently by Miller [103] and

Koblitz [74] in 1985, overcomes this inefficiency. Besides a few easily identifiable

cases, solving the DLP in the group of rational points on an elliptic curve over a

finite field is believed to be a hard problem, for which the best known-algorithms

are in general exponential. This means that cryptosystems based on elliptic curves

are essentially optimal [142]. Relative to systems based on the DLP in the multi-

plicative group, one can therefore use much shorter keys and hence these systems

require less bandwidth, less power consumption and less silicon area, making el-

liptic curve based systems ideal in constrained environments such as smart cards,

for which such commodities are at a premium.

Elliptic curve cryptography has been thoroughly researched for the last twenty

years, and despite some recent advances in the elliptic curve DLP (ECDLP) for

curves defined over some extension fields [27, 47, 48], confidence in the difficulty

9

1.3 Public Key Cryptography

of the underlying computational problem remains high, with many modern cryp-

tosystems relying on the assumed intractability of the ECDLP. This confidence

was recently given a huge boost with the announcement by the NSA that they will

now be using ECC for both digital signatures and key exchange [112].

1.3.4 Identity-Based Cryptography

The concept of identity-based cryptography (IBC) was originally proposed by

Shamir [140] in 1984, in order to reduce the complexity of public key infrastruc-

ture systems, which must scale to process large numbers of authentications. The

basic idea behind IBC is that by using the notion of identity as a user’s public key,

the amount of infrastructure required is greatly reduced since a message sender

implicitly knows the public key of the recipient. An often used example is that of

an email address. Within this context, an identity for party A might be the string

alice@gmail.com.

If party B wants to send A secure email, B implicitly knows A’s email address

and hence their identity and public key. Therefore B can encrypt the email to A

without the same level of involvement from, for example, certificate and trust au-

thorities. IBC has thus been an attractive target for researchers since its inception.

One of the most important developments of the last decade was the realisation

that what had previously been used as a method of attack on the ECDLP [41,100],

could be used to instantiate IBC [14, 129]. The use of non-degenerate bilinear

maps, or pairings, most easily computed over elliptic curve groups, has caused

a minor revolution in cryptography, and there are now over 200 papers making

essential use of their properties (cf. [153]).

One initial drawback of these systems is that a pairing computation was typ-

ically ten times slower than a point multiplication on an elliptic curve. Much

research has thus focused on the efficient implementation of elliptic curve pairing

computation [7, 43]. In many protocols other field operations are required and

their efficiency can be improved with some of the techniques available in torus-

10

Introduction

based cryptography, which we now introduce.

1.3.5 Torus-Based Cryptography

The first instantiation of public key cryptography, the Diffie-Hellman key agree-

ment protocol [28], was based on the assumption that discrete logarithms in finite

fields are hard to compute. During the 1980’s, this protocol and the signature and

encryption schemes due to ElGamal [32], were formulated in the full multiplica-

tive group of a prime finite field Fp. To speed-up exponentiation and obtain shorter

signatures, Schnorr [134] proposed to work in a small prime order subgroup of the

multiplicative group of Fp. Most modern DLP-based cryptosystems, such as the

Digital Signature Algorithm (DSA) [39], follow Schnorr’s idea.

In 1995, Smith and Skinner described the cryptosystem LUC [146], which

eliminates some of the redundancy inherent in using subgroups of finite fields.

By representing elements of the order p + 1 subgroup of F×
p2 with their trace, one

needs just one element of Fp to identify an element, rather than two, thus providing

compression.

The next exploitation of these subgroups was due to Lenstra [85], who showed

that by working in the order Φn(p) cyclotomic subgroup of F×
pm , for extensions

that admit an optimal normal basis, one can obtain improved exponentiation times.

Then in 1999, building upon the idea behind LUC, Brouwer, Pellikaan and

Verheul [19] described a system achieving a compression factor of three for el-

ements in the order p2 − p + 1 subgroup of F×
p6 . They further conjectured that

one can attain a compression ratio of n/φ(n) for elements of the cyclotomic sub-

group of F×
pn . Later, Lenstra and Verheul developed XTR [88, 89], extending the

compression method in [19] to include cryptographic operations.

These considerations may seem superfluous in the presence of ECC, since for

ECC the representations are essentially optimal, but there are two basic reasons

why this is not the case. Firstly, it is unreasonable to presume that progress in

attacks for the ECDLP will not perhaps one day make these systems significantly

weaker, so it is prudent to have alternative systems to fall back on. Secondly, in

the efficient implementation of identity-based systems, one manipulates elements

11

1.4 Thesis Outline and Main Contributions

of fields of small extension degree, and hence it is of interest to have efficient

methods to perform these operations, and to reduce the redundancy inherent in

this representation.

In 2003, Rubin and Silverberg [127] showed how to interpret and generalise

the above cryptosystems, recasting the problem of compression for extension

fields in terms of algebraic tori. Torus-based cryptography (TBC) may be re-

garded as a natural extension of classical Diffie-Hellman and ElGamal in a finite

field Fp, where key agreement, encryption and signature schemes are performed

in the multiplicative group F×
p . For any positive integer n, one can define an alge-

braic torus Tn over Fp such that over Fpn , this variety is isomorphic to φ(n) copies

of F×
p , where φ(n) is the dimension of Tn. In fact Tn is nothing other than the cy-

clotomic subgroup of F×
pn [127]. When Tn is ‘rational’, it is possible to embed Tn

in φ(n)-dimensional affine space, and thus represent every element by just φ(n)

elements of Fp. The exploitation of the rationality of tori provides a compression

factor of n/φ(n) for elements in the cyclotomic subgroup of F×
pn , which explains

current interest in the area. If n is the product of at most two prime powers then

Tn is known to be rational [81,161]. Based on the rationality of T6, Rubin and Sil-

verberg [127] developed the CEILIDH public key cryptosystem, which achieves

the same compression factor of three as XTR.

Only recently was the connection between algebraic tori and the existing trace-

based systems LUC [146] and XTR [85] made explicit [127]. Of particular interest

is a current conjecture about algebraic tori that if true, implies the existence of

cryptosystems based in F×
pn with arbitrarily large compression ratio. In fact the

necessity of this conjecture has been bypassed [156,157] using alternative, proven

properties of tori, and various avenues in this field have yet to be fully explored.

1.4 Thesis Outline and Main Contributions

This thesis studies the implications of using public key cryptographic primitives

that are based in, or map to, the multiplicative group of finite fields with small

extension degree. A central observation is that the multiplicative group of exten-

12

Introduction

sion fields essentially decomposes as a product of algebraic tori, whose properties

allow for improved communication efficiency.

The motivation for these considerations comes from two related areas. Firstly,

such fields are the natural setting for the relatively new area of torus-based cryp-

tography, which until the work detailed in this thesis was commenced, were not

studied at all in terms of efficiency. Secondly, identity-based cryptosystems based

on pairings over algebraic groups map to algebraic tori, and so all of the techniques

available for TBC transfer to the implementation of IBCs. Hence any results re-

garding the former apply to both, whether they be developments in arithmetic or

weaknesses in security.

Broadly, the thesis is divided into two parts. In Part I, we describe algorithms

and representations for efficient arithmetic on algebraic tori, and apply these to

some identity-based schemes, improving their efficiency. We also describe new

efficient systems for high dimensional tori. Highly optimised implementations

and benchmark timings are provided for each of these systems.

In Part II we concern ourselves with the computational problem underlying the

security of these schemes, namely, the discrete logarithm problem. We first give

estimates of the effectiveness of the Function Field Sieve for the computation of

discrete logarithms in small characteristic fields. We then describe an implemen-

tation of this algorithm for characteristic three fields with composite extension

degree. In the final chapter, we present a new algorithm for solving the DLP on

algebraic tori, and analyse its performance.

In the next chapter, preceding Part I, we also give some relevant mathematical

background. The work contained in this thesis has led to a number of publica-

tions [54–57, 59, 156], and also [58], which we omit for reasons of space.

13

Chapter 2

Mathematical Background

This chapter fixes the notation used throughout the thesis, and briefly recalls the

relevant definitions and results required.

2.1 Finite Fields

For p a prime let Fp denote the prime Galois field consisting of p elements. For

an integer n > 1 we denote by Fpn the degree n extension of Fp, or some repre-

sentation thereof. We will often refer to a generic finite field simply as Fq, where

it is understood that q is a prime power pm, or to a specific degree n extension of

a generic finite field as Fqn . When referring to any field Fq, with q = pm, we call

the subfield Fp of Fq its prime subfield. We also write F×
qn for the group of units,

or multiplicative group of, Fqn , and Fq for an algebraic closure of Fq.

We denote by Gal(Fqn/Fq) the Galois group of the extension Fqn/Fq, which

is cyclic and of order n, and is generated by the Frobenius automorphism

ϕ :

{

Fq −→ Fq,

α 7−→ αq.

Two maps which arise naturally from the extension Fqn/Fq, and will be useful

to us, are the trace and norm maps, which we now define.

15

2.1 Finite Fields

Definition 2.1. For α ∈ Fqn , the trace TrFqn/Fq(α) of α over Fq is defined to be

TrFqn/Fq(α) = α + ϕ(α) + · · ·+ ϕn−2(α) + ϕn−1(α).

Definition 2.2. For α ∈ Fqn , the norm NFqn/Fq(α) of α over Fq is defined to be

NFqn/Fq(α) = α · ϕ(α) · · · · ϕn−1(α).

For elementary properties of the trace and norm, we refer the reader to pp. 51-55

of [92], and for a comprehensive introduction to finite fields in general, we refer

the interested reader to the same book, in which much of what follows can be

found.

2.1.1 Structure of Extension Fields

As before let Fqn be a degree n extension of Fq. Then for each positive divisor d

of n, Fqn contains exactly one subfield of order qd, namely, Fqd , and conversely,

every subfield of Fqn containing Fq has order qd, where d is a positive divisor of n

(see Theorem 2.6 of [92]).

For a given n, the subfields of Fqn can therefore be determined by listing

all the positive divisors of n, and the containment relations between subfields

correspond exactly to the divisibility relations among the positive divisors of n.

Subfield membership is characterised by the Frobenius automorphism, so that an

element α ∈ Fqn is in Fqd if and only if ϕd(α) = α. In fact one can define Fqd

to be the set of solutions to this equation, i.e., the splitting field of the polynomial

xq
d − x ∈ Fq[x].

2.1.2 The Multiplicative Group and Subgroup Embeddings

For certain applications in cryptography, of interest is not the full field Fqn , but

its multiplicative group, F×
qn . As we detail below, the polynomial xn − 1 ∈ Fq[x]

factors algebraically, leading to a simple classification for subfield membership

of subgroups of F×
qn . We first require some background on roots of unity and

16

Mathematical Background

cyclotomic polynomials.

Definition 2.3. The roots of xn− 1 ∈ Fq[x] are called the n-th roots of unity over

Fq.

The structure of the n-th roots of unity over Fq is the same as it is for the n-th

roots of unity over C, provided that n is coprime to the characteristic of Fq. In this

case, the set of all n-th roots forms a cyclic group of order n, and in analogy with

C, we call a generator of this group a primitive n-th root of unity.

We are now ready to introduce the following.

Definition 2.4. For n ∈ N not divisible by the characteristic of Fq, let ζn be

a primitive n-th root of unity. Then the n-th cyclotomic polynomial over Fq is

defined by

Φn(x) =
∏

1≤k≤n, gcd(k,n)=1

(x− ζkn).

Note that the degree of Φn(x) is just φ(n). The following elementary but

important result can be found in Theorem 2.45 of [92].

Theorem 2.1. For n ∈ N not divisible by the characteristic of Fq, we have:

xn − 1 =
∏

d|n

Φd(x).

Clearly, Φn(x) | xn−1 and so the subgroup of F×
qn of order Φn(q) embeds into

Fqn . Indeed, if one assumes that Φn(q) > n, which is always the case for crypto-

graphic parameter sizes, then this subgroup does not embed into a proper subfield

of Fqn [85]. Similarly, for each d|n, the subgroup of order Φd(q) embeds into

Fqd and no smaller field. Hence the subgroup of order Φn(q) may be regarded as

the ‘cryptographically strongest’ subgroup of F×
qn , and so this subgroup is always

used in applications.

17

2.2 Algebraic Tori

2.2 Algebraic Tori

In the following we shall assume the reader has at least an elementary understand-

ing of algebraic geometry, as can be found in Chapter 1 of [61], or Chapter 1

of [144], for example.

Let Gq,n denote the subgroup of F×
qn of order Φn(q). The starting point for

torus-based cryptography is the observation due to Rubin and Silverberg [127]

that Gq,n can be identified with an algebraic torus - a perspective which as we will

see during the course of the thesis allows new ideas to enter finite field arithmetic,

representation, and discrete logarithm algorithms.

2.2.1 The Torus Tn(Fq)

Definition 2.5. Let k = Fq and L = Fqn . The torus Tn is the intersection of the

kernels of the norm maps NL/F , for all subfields k ⊂ F (L:

Tn(k) :=
⋂

k⊂F(L

Ker[NL/F].

The following lemma provides some relevant properties of Tn [127]:

Lemma 2.1. 1. Tn(Fq) ∼= Gq,n, and thus #Tn(Fq) = Φn(q);

2. If h ∈ Tn(Fq) is an element of prime order not dividing n, then h does not

lie in a proper subfield of Fqn/Fq.

Note that part 2 of Lemma 2.1 essentially restates what was noted at the end

of Section 2.1.2, namely, that the security of Tn(Fq) is essentially equivalent to

the security of F×
qn (see Chapter 9 for a full justification of this fact).

2.2.2 Rationality of Tori over Fq

In order to compress elements of the variety Tn, we make use of rationality, for

particular values of n. The rationality of Tn means there exists a birational map

from Tn to φ(n)-dimensional affine space Aφ(n). This allows one to represent

18

Mathematical Background

nearly all elements of Tn(Fq) with just φ(n) elements of Fq, providing an effective

compression factor of n/φ(n) over the embedding of Tn(Fq) into Fqn . Since Tn

has dimension φ(n), this compression factor is optimal. Tn is known to be rational

when n is either a prime power, or is a product of two prime powers, and is

conjectured to be rational for all n [161]. This may seem somewhat bizarre, since

it has not been verified in a single other case. Nevertheless, formally, rationality

can be defined as follows.

Definition 2.6. Let Tn be an algebraic torus over Fq of dimension d = φ(n), then

Tn is said to be rational if there is a birational map ρ : Tn → Aφ(n) defined over

Fq.

That is, there are Zariski open subsets W ⊂ Tn and U ⊂ Aφ(n), and rational

functions ρ1, . . . , ρφ(n) ∈ Fq(x1, . . . , xn) and ψ1, . . . , ψn ∈ Fq(y1, . . . , yφ(n)) such

that ρ = (ρ1, . . . , ρφ(n)) : W → U and ψ = (ψ1, . . . , ψn) : U → W are inverse

isomorphisms. Furthermore, since W and U are open, the differences Tn \W and

Aφ(n) \U are varieties of dimension≤ (d− 1), which implies that W (resp. U) is

‘almost the whole’ of Tn (resp. Aφ(n)).

2.2.3 CEILIDH

The cryptosystem CEILIDH1 is based on the rational parametrisation of the torus

T6, as described in [127]. Strictly speaking, CEILIDH is a compression and de-

compression mechanism attached to the standard key exchange, encryption and

signature schemes one uses for arbitrary finite fields, and indeed cyclic groups, at

least as first described.

In this section we detail how one can obtain a rational parametrisation of T6

(which also provides a rational parametrisation for T2 en passant), which is taken

virtually unabridged from [127].

Fix x ∈ Fq2 \ Fq, so Fq2 = Fq(x), and let {α1, α2, α3} be a basis for Fq3

over Fq. Then {α1, α2, α3, xα1, xα2, xα3} is a basis for Fq6 over Fq. Let σ ∈
1CEILIDH, pronounced ‘kayley’, is derived from the acronym for Compact, Efficient, Im-

proves on LUC and Improves on Diffie-Hellman.

19

2.2 Algebraic Tori

Gal(Fq6/Fq) be the element of order two. Define ψ0 : A3(Fq) ↪→ Fq6 by

ψ0(u1, u2, u3) =
γ + x

γ + σ(x)
,

where γ = u1α1 + u2α2 + u3α3. Then NFq6/Fq3
(ψ0(u)) = 1 for every u =

(u1, u2, u3). Let U = {u ∈ A3 : NFq6/Fq2
(ψ0(u)) = 1}. By Definition 2.5,

ψ0(u) ∈ T6(Fq) if and only if u ∈ U , so restricting ψ0 to U gives a morphism

ψ0 : U −→ T6. It follows from Hilbert’s Theorem 90 that every element of

T6(Fq) \ {1} is in the image of ψ0, and so ψ0 defines an isomorphism

ψ0 : U
∼−−→ T6 \ {1}.

The equation defining U is a quadratic hypersurface in u1, u2, u3. Fix a point

a = (a1, a2, a3) ∈ U(Fq). By adjusting the basis {α1, α2, α3} of Fq3 if necessary,

one can assume without loss of generality that the tangent plane at a to the surface

U is just the plane u1 = a1. If (v1, v2) ∈ Fq × Fq, then the intersection of U

with the line a + t(1, v1, v2) consists of two points, namely a and a point of the

form a + 1
f(v1 ,v2)

(1, v1, v2) where f(v1, v2) ∈ Fq[v1, v2] is an explicit polynomial

independent of q. The map that takes (v1, v2) to the latter point is a birational

isomorphism

g : A2 \ V (f)
∼−−→ U \ {a},

where V (f) denotes the subvariety of A2 defined by f(v1, v2) = 0. Thus ψ0 ◦ g
defines an isomorphism

ψ : A2 \ V (f)
∼−−→ T6 \ {1, ψ0(a)}.

For the inverse isomorphism, suppose that β = β1 + β2x ∈ T6(Fq) \ {1, ψ0(a)}
with β1, β2 ∈ Fp3 . One can check that β2 6= 0, and if γ = (1 + β1)/β2, then

(γ + x)/σ(γ + x) = β. Write (1 + β1)/β2 = u1α1 + u2α2 + u3α3 with ui ∈ Fq,

and define

ρ(β) =

(

u2 − a2

u1 − a1
,
u3 − a3

u1 − a1

)

.

20

Mathematical Background

Then ρ : T6(Fq) \ {1, ψ0(a)} ∼−−→ A2(Fq) \V (f) is the inverse isomorphism of ψ,

and hence we have an efficient compression and decompression mechanism for

all (bar two) elements of T6(Fq).

2.2.4 XTR

In common with CEILIDH, XTR2 is based on the cyclotomic subgroup of F×
q6

of order Φn(q), i.e., the torus T6 - though this interpretation was not given (nor

needed) for its original exposition and subsequent development [88, 89, 149].

Let g be a generator for Gq,6. Rather than using rational maps to affine space,

in XTR elements of 〈g〉 are represented by their trace over Fq2

TrFq6/Fq2
(g) = g + gq

2

+ gq
4 ∈ Fq2 ,

and hence need only two elements of Fq to specify. The set of traces constitute

the XTR ‘group’. Clearly,

TrFq6/Fq2
(g) = TrFq6/Fq2

(gq
2

) = TrFq6/Fq2
(gq

4

),

and so given an element in the XTR group one can not distinguish between g and

its conjugates gq
2

and gq
4
. Hence decompression to Fq6 is not unique, though

this can easily be resolved. The analogue of the DLP is to compute n given

TrFq6/Fq2
(g) and TrFq6/Fq2

(gn). One can convert this to an ordinary DLP by map-

ping both back to F×
q6 by finding the correct root of

X3 − TrFq6/Fq2
(g)X2 + TrFq6/Fq2

(g)qX − 1 = (X − g)(X − gq2)(X − gq4),

and similarly for TrFq6/Fq2
(gn). The real benefit of the XTR representation is

the speed with which arithmetic can be performed. Let cn = TrFq6/Fq2
(gn). To

compute cn given c1, one uses some properties of third order addition chains over

2XTR, pronounced ‘X-T-R’, is the phonetic pronunciation of the acronym ECSTR, which
stands for Efficient Compact Subgroup Trace Representation.

21

2.3 Elliptic Curves

Fq2 applied to the recurrence

cu+v = cucv − cqucu−v + cu−2v.

As a consequence, exponentiations can be performed faster than with an optimal

representation of Fq6 [148, 149]. The main drawback of XTR is that one can not

perform straightforward multiplication since the set of traces is not a group (in

contrast with torus-based cryptography, since Tn is a group). By keeping track

of the correct conjugate however, this can be accomplished. Rather than being

based on the torus T6, XTR may in fact be viewed algebraically as a quotient of

T6 by an action of the symmetric group S3 [127]. What makes XTR possible is

that the trace map from this quotient variety to Fq2 provides an explicit rational

parametrisation.

2.3 Elliptic Curves

Elliptic curves have been studied for many centuries. Indeed, there exists an ex-

tensive literature on their properties, with their study constituting a significant

amount of modern research. We present only a parsimonious introduction which

covers the background essential for our cryptographic purposes. A good introduc-

tion to the arithmetic of elliptic curves is [144], and excellent references for the

cryptographic issues related to elliptic curves are [10, 11].

2.3.1 Background

Elliptic curves are curves of genus one, and can be described in a variety of ways.

Following Weierstrass, for an arbitrary field K, they can be defined as the set of

solutions in the projective plane P2(K) of a homogeneous Weierstrass equation

of the form

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (2.1)

with a1, a2, a3, a4, a6 ∈ K.

22

Mathematical Background

There are many other ways to define elliptic curves using weighted projec-

tive coordinates, see for example [10, 64]. Whatever the defining equation, in

order to be non-degenerate, i.e., of genus one rather than genus zero, such a

curve should be non-singular in the sense that, if the equation is written in the

form F (X, Y, Z) = 0, then the partial derivatives of the curve equation ∂F/∂X ,

∂F/∂Y , and ∂F/∂Z should not vanish simultaneously at any point on the curve.

One can alternatively use the affine version of the Weierstrass equation (2.1),

given by

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, (2.2)

where again ai ∈ K.

Regardless of the defining equation, for a field K̂ such that K ⊂ K̂ ⊂ K , one

refers to as K̂-rational points, those points in P2(K̂) or A2(K̂) that satisfy the re-

spective curve equation, or when the field of definition of the curve is understood,

these points are simply referred to as rational points. For any field K̂ we denote

the set of K̂-rational points on E by E(K̂).

In the projective case, the curve has exactly one rational point with coordinate

Z equal to zero, namely (0, 1, 0). This is the point at infinity, which we denote

by O. The K-rational points in the affine case are the solutions to E in A2(K),

and the point at infinity O. To transfer between the projective and affine versions

of E, one uses the following correspondence. For Z 6= 0, a projective point

(X, Y, Z) satisfying Equation (2.1) corresponds to the affine point (X/Z, Y/Z)

satisfying Equation (2.2), with the inverse map from affine to projective space

simply (X, Y) 7→ (X, Y, 1), or any K×-multiple thereof.

2.3.2 The Group Law

A fundamental fact in algebraic geometry is that to any smooth irreducible alge-

braic curve one can associate a corresponding group structure, namely, the divisor

class group [61]. However for an elliptic curve, one can obtain a very simple

group law without resorting to the language of divisors at all. Using the simple

observation that a line intersecting two K-rational points on E will intersect E

23

2.3 Elliptic Curves

at precisely one other K-rational point (since a line intersects a cubic at precisely

three points, and the line, the curve and the two initial points are all defined over

K as well), one can endow the set of rational points E(K) on the curve E with

a natural group structure. Much of the arithmetic theory of elliptic curves arises

from the study of this group. In this section we recall the group law for points in

E(K), and give explicit formulae for how the group operation is computed.

Assuming for convenience that char(K) 6= 2, 3, one can, with a linear trans-

formation of variables, write the defining equation for E as

E : Y 2 = X3 + aX + b,

for some a, b ∈ K. This form is also known as the short Weierstrass form of E.

Assuming for ease of visualisation that K = R, suppose we wish to ‘add’ two

distinct points P and Q in E(R). We draw a straight line passing through both P

and Q, which as we observed passes through a third point R, also in E(R). We

then reflect R in the x-axis, which we define to be P +Q (see Figure 2.1).

Similarly, to add a point P to itself, one performs the same operation as before

but in the limit as Q tends to P , so that the straight line passing through P and

Q then simply becomes the tangent line at P . Denote again by R the point on E

where this line intersects the curve at a third point (counting the tangent and curve

intersection as a double intersection). Then reflecting R in the x-axis gives us 2P

(see Figure 2.2). If the tangent to the point P happens to be vertical, then the third

‘intersection’ with E is just the point at infinity, so that P + P = O, i.e., P has

order 2.

It can be shown that the process just described for adding or doubling points

on E endows E(K̂) with an abelian group structure, for any field K ⊆ K̂ ⊆ K,

with the point at infinity, O, as the identity, or zero element [144]. Using this

geometric definition, one can determine explicit algebraic formulae for the above

group law, which is readily extended to all characteristics.

Lemma 2.2. Let E denote an elliptic curve given by

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

24

Mathematical Background

Figure 2.1: Adding two points on an elliptic curve

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

6

-

P
s

Q
s

R
s

P+Q
s

and let P1 = (x1, y1) and P2 = (x2, y2) denote points on the curve. Then

−P1 = (x1,−y1 − a1x1 − a3).

Set

λ =
y2 − y1

x2 − x1
, µ =

y1x2 − y2x1

x2 − x1

when x1 6= x2, and set

λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

, µ =
−x3

1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

25

2.3 Elliptic Curves

Figure 2.2: Doubling a point on an elliptic curve

(((((((((((((((((((((((((((((((((

6

-

P
s

R

s

[2]P
s

when x1 = x2 and P2 6= −P1. If

P3 = (x3, y3) = P1 + P2 6= O

then x3 and y3 are given by the formulae

x3 = λ2 + a1λ− a2 − x1 − x2,

y3 = −(λ+ a1)x3 − µ− a3.

26

Mathematical Background

2.3.3 Elliptic Curves over Finite Fields

As one would expect, the theory of elliptic curves over finite fields is far simpler

than it is in the characteristic zero case. Over Fq, the number of Fq-rational points

on an elliptic curve E is clearly finite, and we denote this number by #E(Fq).

The quantity t defined by

#E(Fq) = q + 1− t

is called the trace of Frobenius at q.

A first approximation to the order ofE(Fq) is given by the well known theorem

of Hasse, which states that |t| ≤ 2
√
q, a proof of which can be found in [144,

Theorem V.1.1]. To be of use in cryptography, it is essential to be able to construct

or find elliptic curves over a given field with suitable group orders, and exploiting

the Frobenius map allows for sophisticated methods to be applied [158].

The basic operation underlying elliptic curve cryptography is point multipli-

cation. For a positive integer k, the multiplication-by-k map is a function which

takes inputs k and a point P ∈ E(Fq), and outputs kP = P + P + · · · + P (k

summands). For negative k one defines kP to be (−k)(−P), as one would expect.

The corresponding discrete logarithm problem, the ECDLP, is to compute k given

P and kP . Except for some easily identifiable curves, for large k this problem is

believed to be hard, and forms the basis of all elliptic curve cryptographic security.

2.4 Pairings

Pairings, or more correctly, non-degenerate bilinear maps, form the mathematical

basis for all efficient identity-based cryptosystems. For use in cryptography, it is

important that they can be computed efficiently. This area has developed signifi-

cantly from the time Miller first wrote down how one compute pairings on elliptic

curves over finite fields [102].

There are essentially two pairings that may be used for implementations in this

scenario: the Weil, and Tate pairings. The latter is usually preferred since it seems

27

2.4 Pairings

to be more efficiently implementable than the former, and so we describe only the

Tate pairing here. Note that recent work by Koblitz and Menezes suggests that

contrary to this common assumption, for much higher security levels the reverse

may be true [76].

2.4.1 The Tate Pairing

The Tate pairing on an elliptic curve is usually computed using a variant of Miller’s

algorithm [102]. For the special curves often used in cryptography however, it was

shown independently by Barreto et al. [7] and Galbraith et al. [43] that much of the

computation of the algorithm is redundant, making the use of identity-based cryp-

tosystems far more attractive. One small issue is that the output of the Tate pairing

belongs to a quotient group for which element representation is not unique. For

applications one therefore uses some method to remove this ambiguity, yielding

what is referred to as the reduced Tate pairing.

Let E be an elliptic curve over a finite field Fq, and let OE denote the iden-

tity element of the associated group of rational points on E(Fq), i.e., the point at

infinity. For a positive integer l | #E(Fq) coprime to q, let Fqk be the smallest

extension field of Fq which contains the l-th roots of unity in Fq. Also, letE(Fq)[l]

denote the subgroup of E(Fq) of all points of order dividing l. From an efficiency

perspective, k is usually chosen to be even [7]. For a fuller treatment of the fol-

lowing, we refer the reader to [11], and to [144] for an introduction to divisors.

Then assuming that l2 - #E(Fqk), the reduced Tate pairing of order l is the map

el : E(Fq)[l]× E(Fqk)/lE(Fqk)→ µl ⊂ F×
qk ,

given by el(P,Q) = fP,l(D)(qk−1)/l, where µl is the set of l-th roots of unity over

Fq. Here fP,l is a function on E whose divisor is equivalent to l(P)− l(OE), D is

a divisor equivalent to (Q)− (OE), whose support is disjoint from the support of

fP,l, and fP,l(D) =
∏

i fP,l(Pi)
ai , where D =

∑

i aiPi. It satisfies the following

properties [11]:

• For each P 6= OE there exists Q ∈ E(Fqk)/lE(Fqk) such that el(P,Q) 6= 1

28

Mathematical Background

(non-degeneracy);

• For any integer n, el([n]P,Q) = el(P, [n]Q) = el(P,Q)n for all P ∈
E(Fq)[l] and Q ∈ E(Fqk)[l] (bilinearity);

• Let L = hl. Then el(P,Q)(qk−1)/l = eL(P,Q)(qk−1)/L.

When one computes fP,l(D), the value obtained belongs to the quotient group

F×
qk/(F

×
qk)

l, and not F×
qk . In this quotient, for a and b in F×

qk , a ∼ b if and only if

there exists c ∈ F×
qk such that a = bcl. Clearly, this is equivalent to

a ∼ b if and only if a(qk−1)/l = b(q
k−1)/l,

and hence one ordinarily uses this value as the canonical representative of each

coset. The isomorphism between F×
qk/(F

×
qk)

l and the elements of order l in F×
qk

given by this exponentiation makes it possible to compute fP,l(Q) rather than

fP,l(D) [7]. It also removes the need to compute the costly denominators in

Miller’s algorithm. In Chapter 4 we give an overview of some of the techniques

employed to evaluate pairings efficiently.

29

Part I

Arithmetics

31

Chapter 3

A Comparison of CEILIDH and

XTR

In this chapter we develop efficient arithmetic for the torus-based cryptosystem

CEILIDH, and compare the resulting performance with XTR.

This chapter represents joint work with Dan Page and Martijn Stam, and appeared

in [56]. We thank Fréderik Vercauteren for suggesting this research, and for many

fruitful discussions.

3.1 Introduction

Underpinning both CEILIDH [127] and XTR [88] is the mathematics of the two

dimensional algebraic torus T6. However, while they both attain the same discrete

logarithm security and each achieve a compression factor of three for all data

transmissions, the arithmetic performed in each is fundamentally different. In its

inception, the designers of CEILIDH were reluctant to claim it offers any partic-

ular advantages over XTR other than its exact compression and decompression

technique. From both an algorithmic and arithmetic perspective, in this chapter

we develop an efficient version of CEILIDH and show that while it seems bound

to be inherently slower than XTR, the difference in performance is much smaller

than one might infer from the original description. Also, thanks to CEILIDH’s

33

3.2 Efficient Representations for T6(Fp)

simple group law, it provides a slightly greater flexibility for applications, and

may thus be considered a worthwhile alternative to XTR.

In both the following exposition and our implementation, we take as our base

field Fp, for two reasons. Firstly, as originally described, XTR is specified over

prime fields [88] (although extensions have been suggested [93]). Secondly, this

choice allows keys to be generated exactly as in XTR, which permits a fair com-

parison. The restriction to prime fields is therefore artificial, and naturally any

finite field would suffice.

3.2 Efficient Representations for T6(Fp)

In this section we develop suitable field representations and algorithms for the effi-

cient implementation of the CEILIDH cryptosystem. We base our implementation

on Example 11 of [127], since the rational maps specified are (clearly) convenient

to write down. Our main result is a multiplication-efficient representation of T6,

but we also make some basic observations that result in a considerable improve-

ment over the original arithmetic.

Depending on the particular protocol one wishes to implement, and even on

which part of the protocol, some representations of the underlying field Fp6 may

perform better than others. For example, in the first stage of a Diffie-Hellman

key agreement, both parties exponentiate a fixed public base g, so here one can

precompute some powers of g, and one should use a field representation that per-

mits fast multiplication. In the second stage, both parties exponentiate a random

element of F×
p6 , and so here one should use a representation which permits fast

squaring. As we show, optimising each consideration leads to different field rep-

resentations, whilst switching between them is a simple matter.

For the two operations of exponentiating a fixed and a random base, two field

representations suffice. The first is a degree six extension of Fp and allows us to

use many implementation tricks [148], which include very fast squaring in T6. We

refer to this representation as F1, the details of which we present in Section 3.2.1.

The second representation F2, presented in Section 3.2.2, fulfills two func-

34

A Comparison of CEILIDH and XTR

tions: built as a quadratic extension of a cubic extension of Fp, it firstly permits

the efficient use of the birational maps ψ and ρ which are essential to CEILIDH,

given our cheap inversion method based on the Frobenius automorphism; primar-

ily however, it provides the basis for arithmetic in F3.

What we refer to as F3, presented in Section 3.2.3, is a semi-compressed frac-

tional form of the torus T6, which is in fact the projective version of the torus T2.

Its utility is that one can perform the group operation, but with much better multi-

plication efficiency. Together, F1, F2, F3, A2 and the isomorphisms between them

constitute our implementation of CEILIDH, which may be depicted as follows:

F1

σ−−−−−→
←−−−−−−

σ−1

F2

τ−−−−−→
←−−−−−

τ−1

F3

ρ−−−−−→
←−−−−−

ψ

A2(Fp).

For F1 we give a brief description of the arithmetic, and for F2 and F3 we give full

details of all operations. In Lemma 3.2 we provide a simple cost analysis where

M ,A, and I represent the cost of an Fp multiplication, addition, and inversion

respectively. For our operation counts, we assume that a subtraction in Fp costs

the same as an addition, and also that squaring costs the same as a multiplication,

since the former operation is seldom used.

For (n, p) = 1, let ζn denote a primitive n-th root of unity over Fp, and as in

XTR let p ≡ 2 mod 9 throughout (p ≡ 5 mod 9 is equally valid).

3.2.1 The Representation F1

A full derivation of the results of this section can be found in [148]. Let z = ζ9,

so that Fp6 = Fp(z), and let our basis for Fp6 be {z, z2, z3, z4, z5, z6}. Using a

Karatsuba-type method for multiplication and squaring, these can be performed

in 18M + 53A and 12M + 42A respectively. However, working entirely within

T6, improvements can be made. For example, if g ∈ T6, inversion is just the cube

of the Frobenius automorphism, since Φ6(p) = (p2 − p + 1) | (p3 + 1), and so

g−1 = gp
3
. Also the condition gΦ6(p) = 1 gives a set of six equations on the six

coefficients of g, which remarkably enables squaring to be performed with a cost

35

3.2 Efficient Representations for T6(Fp)

of just 6M + 21A, see [148].

3.2.2 The Representation F2

Let x = ζ3 and y = ζ9 + ζ−1
9 . Then Fp3 = Fp(y), and Fp6 = Fp3(x). The bases

we use are {1, y, y2 − 2} for Fp3 , and {1, x} for the degree two extension. Note

that the minimal polynomials for y and x are y3 − 3y − 1 = 0, and x2 + x + 1

respectively. We now describe the basic arithmetic in each of these extensions.

Fp3 Frobenius :

For our basis, since p ≡ 2 mod 9, the Frobenius map gives yp = y2 − 2, and

(y2 − 2)p = −y − (y2 − 2). Hence for a = a0 + a1y + a2(y
2 − 2), ap =

a0 − a2y + (a1 − a2)(y
2 − 2).

Fp3 Multiplication :

Let a = a0 + a1y + a2(y
2 − 2), b = b0 + b1y + b2(y

2 − 2). Then ab = (a0b0 +

2a1b1 + 2a2b2 − a1b2 − a2b1) + (a0b1 + a1b0 + a1b2 + a2b1 − a2b2)y + (a0b2 +

a2b0 + a1b1 − a2b2)(y
2 − 2). Precompute t00 = a0b0, t11 = a1b1, t22 = a2b2, and

t01 = (a0 + a1)(b0 + b1), t12 = (a1− a2)(b2− b1), t20 = (a2− a0)(b0− b2). Then

ab = (t00 + t11 + t22 − t12) + (t01 + t12 − t00)y + (t20 + t00 + t11)(y
2 − 2).

Fp3 Inversion :

Usually, to invert an element in an extension field one must either use a GCD

algorithm on the polynomial representation, or one can simply exponentiate to

a power one less than the group order. However, since the extension degree is

small, we can perform inversion directly, reducing it to just one inversion in Fp

(along with a few other operations): one uses the multiplication formula and sets

the result to the identity, i.e., one solves









a0 2a1 − a2 2a2 − a1

a1 a0 + a2 a1 − a2

a2 a1 a0 − a2

















b0

b1

b2









=









1

0

0









36

A Comparison of CEILIDH and XTR

for b. This gives









b0

b1

b2









= 1
∆









−a2
0 + a2

1 + a2
2 − a1a2

a2
2 + a0a1 − 2a1a2

−a2
1 + a2

2 + a0a2









,

where ∆ = −a3
0 +a3

1 +a3
2 +3a0a

2
2 +3a0a

2
1 +3a1a

2
2−6a2

1a2−3a0a1a2. Computing

t00 = a2
0, t11 = a2

1, t22 = a2
2, t01 = a0a1, t12 = a1a2, t20 = a2a0, t012 = a0+a1+a2

and t = t12(a0 + a1), then ∆ = t3012 − t00(3t012 − a0)− 9t. To finish, we perform

one Fp inversion and obtain a−1 equals

∆−1((t11 + t22 − t00 − t12) + (t01 − 2t12 + t22)y + (t20 + t22 − t11)(y2 − 2)).

Fp6 Frobenius :

Let c = c0 + c1x. Then cp = (c0 + c1x)
p = (cp0 − cp1)− cp1x.

Fp6 Multiplication :

For c = c0+c1x, d = d0+d1x, we have cd = (c0d0−c1d1)+(c0d1+c1d0−c1d1)x.

If we compute t00 = c0d0, t11 = c1d1, and t01 = (c0 + c1)(d0 + d1), then cd =

(t00 − t11) + (t01 − t00 − 2t11)x.

Fp6 Squaring :

c2 = (c0 +c1x)
2 = (c20−c21)+c1(2c0−c1)x. We compute t01 = (c0 +c1)(c0−c1),

giving c2 = t01 + c1(2c0 − c1)x.

Fp6 Inversion :

Performing again a direct inversion as in Fp3 , we find

d0 + d1x = (c0 + c1x)
−1 =

1

c20 − c0c1 + c21

(

c1 − c0
−c1

)

,

so that we still only require one Fp inversion. Precomputing t0 = (c1 − c0),

t01 = c0c1, and ∆ = t20 + t01, the coefficients of the inverse d are given by

d0 = ∆−1t0, d1 = −∆−1c1.

37

3.2 Efficient Representations for T6(Fp)

If we are working in T6(Fp), then as in F1 inversions are essentially free thanks

to the cheap Frobenius automorphism.

σ : F1 → F2 :

In addition to the individual arithmetic of F1 and F2 we need to specify an effi-

ciently computable isomorphism between them. Writing x and y in terms of z we

find that x = z3, and y = z − z2 − z5, and so σ−1 : F2 → F1 can be evaluated

with just a few additions:

σ−1 =

























0 1 −1 0 0 1

0 −1 1 0 1 0

−1 0 0 1 0 0

0 0 −1 0 1 0

0 −1 0 0 0 1

−1 0 0 0 0 0

























.

Since σ−1 has determinant three, a naive evaluation of σ necessitates four divi-

sions by three. It is not possible to eliminate all of these since for our F1, writing

Fp6 as a quadratic extension of a cubic extension, all bases have determinant di-

visible by three. We can reduce this to just one division by three however, (or a

multiplication by its precomputed inverse) by writing

σ =

























1 0 0 0 0 0

0 1 −1 0 −1 1

0 0 1 0 1 −1

0 0 0 1 0 0

0 0 0 0 1 −1

0 0 0 0 0 1

















































0 0 0 0 0 −1

1 1 0 −1 −1 0

0 0 0 −1 0 0

0 0 1 0 0 −1

1 1 0 0 0 0
2
3

1
3

0 −1
3

1
3

0

























.

38

A Comparison of CEILIDH and XTR

3.2.3 The Representation F3

In our notation, the group operation in CEILIDH as originally described is per-

formed in F2 [127], and the inverse birational maps ψ : A2(Fp) \ V (f)
∼−−→

T6(Fp) \ {1, x2}, and ρ : T6(Fp) \ {1, x2} ∼−−→ A2(Fp) \ V (f), are given by

ψ(α1, α2) =
1 + α1y + α2(y

2 − 2) + (1− α2
1 − α2

2 + α1α2)x

1 + α1y + α2(y2 − 2) + (1− α2
1 − α2

2 + α1α2)x2
, (3.1)

where V (f) is the set of zeros of f(α1, α2) = 1−α2
1−α2

2 +α1α2 = 0 in A2(Fp);

and for β = β1 +β2x, with β1, β2 ∈ Fp3 , let (1+β1)/β2 = u1 +u2y+u3(y
2−2).

Then ρ(β) = (u2/u1, u3/u1).

Since the torus T6 is two-dimensional, given compressed points P1 = (α1, α2)

and P2 = (β1, β2), it would be aesthetically appealing to compute their composi-

tion directly without having to map the affine representation back to Fp6 , i.e., to

find the (γ1, γ2) ∈ A2 such that (α1, α2) ◦ (β1, β2) = (γ1, γ2), where ◦ refers to an

operation equivalent to multiplication in Fp6 . The drawback with this approach is

that the group law on T6 as we have presented it is defined only in terms of the

arithmetic of Fp6 , and so the decompression of P1 and P2 before multiplication

seems essential.

If one insists on representing intermediate results in their compressed form in

an exponentiation for example, we found that this costs 24M + 43A + I for a

multiplication, and 21M + 38A+ I for a squaring. Note that these are even more

costly than both a general elliptic curve add, or double for example. The reason

these operations are so expensive is that the rational representation of T6 does not

lend itself favourably to performing the group law operation: this statement does

not hold for the XTR representation, which is why the corresponding arithmetic

is so much faster (cf. Figure 3.1).

The arithmetic developed in the previous section shows that if one alterna-

tively performs a one-time decompression before performing an exponentiation,

and a re-compression at the end of an exponentiation, then the cost of a general

multiplication and squaring is only 18M + 54A and 12M + 33A respectively in

F2, and 18M + 53A and 6M + 21A respectively in F1. Clearly decompressing to

39

3.2 Efficient Representations for T6(Fp)

Fp6 seems to be the better method.

This is not the whole story though. Since T6(Fp) is by Definition 2.5 the

intersection of the kernels of the two norm mapsNFp6/Fp3
andNFp6/Fp2

, if we have

a good representation for either of these, we can save some work. The following

lemma emphasises the relevance to CEILIDH of the parametrisation of elements

in the kernel of the former norm map, which is implicit in the construction of ψ

given in Section 2.2.3.

Lemma 3.1. There is an isomorphism

τ : Ker[NFp6/Fp3
]

∼−−→
{

b+ x

b + x2
, b ∈ Fp3

}

∪ {O},

with O is the point at infinity, and where for a = a0 + a1x ∈ Ker[NFp6/Fp3
] \ {1},

τ(a) =

(

b + x

b+ x2

)

,

with b = (1 + a0)/a1 if a1 6= 0 and b = a0/(a0 − 1) otherwise, and

τ−1

(

b+ x

b + x2

)

=
b2 − 1

b2 − b+ 1
+

2b− 1

b2 − b+ 1
x.

Proof. For a ∈ Fp6 , NFp6/Fp3
(a) = a1+p3 , and so the kernel of this map has at

most 1 + p3 solutions. For each (b + x)/(b + x2), b ∈ Fp3 , the stated norm is

one, and counting also the identity, which maps to the point at infinity, we have all

1 + p3 solutions. Solving a0 + a1x = (b+ x)/(b+ x2) for b gives the second part,

while for the third, we solve the same equation for a0, a1, where we have used the

condition that a2
0 + a2

1 − a0a1 = 1⇔ a0 + a1x ∈ Ker[NFp6/Fp3
].

With this we can introduce the following:

Definition 3.1. F3 is the set of elements

{

a0 + a1x

a0 + a1x2
, ai ∈ Fp3

}

.

40

A Comparison of CEILIDH and XTR

When the coefficient a1 of this representation equals 1, we say the element is

reduced.

In order to obtain the reduced form of an element in F3, one just computes

a0/a1. Note that if we do not need the reduced form of an element in F3, then

evaluating τ simplifies to (1 + a0 + a1x)/(1 + a0 + a1x
2), and no inversion is

necessary. Mapping an unreduced element back to F2, we obtain

τ−1

(

a0 + a1x

a0 + a1x2

)

=
a2

0 − a2
1

a2
0 − a0a1 + a2

1

+
2a0a1 − a2

1

a2
0 − a0a1 + a2

1

x.

As we pointed out in Section 3.2, this construction is no more than the rational

parametrisation of T2(Fp3). As a result of the symmetry of x and x2 in the irre-

ducible polynomial defining the quadratic extension of F2, for all arithmetic oper-

ations between elements of F3, the coefficients of the numerator and those of the

denominator correspond exactly. Hence we need only work with the numerator,

which will in general have the form a = a1 + a2x. For expositional purposes, in

the following we still write elements of T6 as fractions but for our implementation

this is of course unnecessary.

Using this fractional form alone does not seem to offer any advantage over

the F2 representation. However, considering the exponentiation of a reduced el-

ement (g + x)/(g + x2) of T6, we already save one Fp3 multiplication for every

multiplication by this element, since

(

g + x

g + x2

)

×
(

a0 + a1x

a0 + a1x2

)

=

(

(ga0 − a1) + (ga1 + a0 − a1)x

(ga0 − a1) + (ga1 + a0 − a1)x2

)

, (3.2)

so we only need to compute ga0 and ga1, and a few additions, when our multiplier

is in this form.

Furthermore, one can exploit the fractional form of elements of F3 for squar-

ing and inversion. Furthermore, if additions are sufficiently cheap compared to

multiplications, one can actually reduce the cost of a basic Fp3 multiplication to

the theoretical minimum measured in the number of Fp multiplications, using a

Toom-Cook-style interpolation [72]. In this method one must divide by by a small

41

3.2 Efficient Representations for T6(Fp)

constant; in F3 one can simply ignore this. This possibility was not implemented

in this chapter however.

The reason this all works is that the rational representation of elements of T2

can be embedded efficiently as a fraction in the field extension. Noting that we

need only work with the numerator, the group law can be performed directly on

this compressed element.

The reduced form of an element of F3 may be viewed as the affine representa-

tion of T2, with the non-compressible identity element being the point at infinity.

The non-reduced form of an element of F3 corresponds to the projective represen-

tation, with identity λ for any λ ∈ F×
p3 . This point was essentially made in [127],

but without reference to its applicability to CEILIDH as well. There however, it

was suggested the group law be performed entirely in Fp3 , which would require

an F×
p3 inversion for every multiplication: this would be very inefficient.

One may also represent T2(Fp) as the isomorphic quotient group F×
p2/F

×
p . If

Fp2 = Fp(x), where x = ζ3, then elements are represented as a0 + a1x, and

a0 + a1x ≡ b0 + b1x iff a0/a1 = b0/b1. As a consequence, elements for which

a1 6= 0 can be represented by a0/a1, and all the arithmetic above follows mutatis

mutandis. Indeed, this quotient group arises in the (non-reduced) Tate pairing,

and this observation can be usefully exploited, see Chapter 4.

F3 Frobenius :

Let a ∈ F3. Then

(

a0 + a1x

a0 + a1x2

)p

=

(

ap0 + ap1x
2

ap0 + ap1x

)

=

(

(ap0 − ap1)− ap1x
(ap0 − ap1)− ap1x2

)

=

(

(ap1 − ap0) + ap1x

(ap1 − ap0) + ap1x
2

)

.

F3 Multiplication :

Multiplication by a reduced element is performed as in (3.2), or if by a non-

reduced element, exactly as in F2.

F3 Squaring :

This is performed as in F2.

F3 Inversion :

42

A Comparison of CEILIDH and XTR

This is straightforward, since elements are represented as fractions.

(

a0 + a1x

a0 + a1x2

)−1

=

(

a0 + a1x
2

a0 + a1x

)

=

(

(a1 − a0) + a1x

(a1 − a0) + a1x2

)

.

Also, since we use the intermediate representation F3 between A2(Fp) and

F2, we must adjust the map ρ : F3 \ {1, x2} ∼−−→ A2(Fp) \ V (f). Let β =

(β1 + β2x)/(β1 + β2x
2) ∈ F3, with β1/β2 = u1 + u2y + u3(y

2 − 2): then

ρ(β) = (u2/u1, u3/u1). We summarise the results regarding arithmetic in F1, F2

and F3 in the following:

Lemma 3.2. The cost of arithmetical operations in F1, F2 and F3 are:

Operation F1 F2 F3

Multiply 18M + 53A 18M + 54A 18M + 54A

Square 6M + 21A 12M + 33A 12M + 33A

Inverse 2A 6A 3A

Frobenius 1A 10A 10A

Reduce n/a n/a 19M + 35A+ I

Mixed Mul. n/a n/a 12M + 33A

Map Cost

F1 → F2 1M + 11A

F2 → F3 1A

F3 → A2 14M + 19A+ I

A2 → F3 2M + 3A

F3 → F2 25M + 41A+ I

F2 → F1 8A

Here the operation Reduce refers to obtaining the reduced form of an element of

F3, and a Mixed Mul. refers to multiplying a non-reduced element by a reduced

one. The cost of the map ρ : F3 → A2 assumes the element being compressed is

in non-reduced form, as this is the case after an exponentiation in both F1, or F3.

Also, for the map τ−1 : F3 → F2 we assume that the x-coefficient is in Fp only as

43

3.3 Exponentiation

in (3.1), and not Fp3 , as in practice one would only perform this operation when

decompressing from A2 to F1, and not from a non-reduced element.

3.3 Exponentiation

For F1, F2 and F3 one can use the Frobenius map to obtain fast exponentiation.

In a subgroup of order l where l | (p2 − p + 1), we write an exponent m as

m ≡ m1 + m2p mod l, where m1, m2 are approximately half the bitlength of

m [148]. One can find m1 and m2 very quickly having performed a one-time

Gaussian two dimensional lattice basis reduction, and using this basis to find the

closest vector to (m, 0)T . To compute am for a random a, we perform a double

exponentiation am1(ap)m2 using the Joint Sparse Form (JSF) of the integers m1,

m2 [147], which on average halves the number of pairs of non-zero bits in their

paired binary expansion, and Shamir’s trick, originally due to Straus [150]. The

use of the JSF is possible since we have virtually free inversion.

When the base of the exponentiation is fixed we also use the JSF and Shamir’s

trick but perform some precomputation as well. Fixed elements are important

since we can spend some time and space to precompute values. This allows one

to accelerate an operation if the values are reused often enough to make the cost

of doing so acceptable. We store (ai(ap)j)2k
for i, j ∈ {0,±1}, and k from 1 to

half the bit-length of l, where l is the size of the subgroup we work with. For a

1024-bit field, and with l approximately of length 160 bits, for the price of storing

4 × 80 = 320 field elements, we eliminate all squarings from the exponentia-

tion routine. In F3 the storage of 320 reduced elements requires about 22.5Kb,

whereas for F1 and F2 this amount is doubled to 45Kb, since elements can not be

reduced. In XTR only one element is precomputed (it is unclear how to exploit

more precomputation). This provides nearly as good a speed up as for CEILIDH,

but for XTR the cost of the precomputation is much cheaper in both time and

space. For cryptosystems where the group law is just ordinary multiplication in

a finite field though, one can always exchange space for time, so CEILIDH has a

slight advantage here over XTR, if these resources are available. We concede that

44

A Comparison of CEILIDH and XTR

more efficient precomputation methods can be applied given our chosen level of

storage [94], but are confident our method provides an accurate reflection of the

possible gains resulting from this approach.

For double exponentiation we assume that both bases are random, so that no

precomputation can be employed. Using the JSF for each exponent, we combined

the squarings for both exponentiations while performing the multiplications sep-

arately. It is possible to make this slightly more efficient [122], and to use some

precomputation, but again we are satisfied that our results are indicative of the

general performance of the algorithms.

3.4 Implementation Results

To demonstrate the different performance characteristics of the three representa-

tions of CEILIDH, we constructed an implementation of the entire system, based

on the algorithms described in the previous section. We also implemented the

fastest algorithms for the equivalent XTR protocols [149], so that our comparison

was made between the best possible implementations of both systems.

We based this implementation on a special purpose library for arithmetic in Fp

that represents and manipulates field elements using Montgomery reduction [105].

Montgomery arithmetic facilitates fast field operations given some modulus spe-

cific precomputation [18]. This is ideal for our purposes since after key-generation

the field Fp remains the same for all subsequent operations.

We used a GCC 3.3 compiler suite to build our implementation and ran tim-

ing experiments on a Linux based PC incorporating a 2.80 GHz Intel Pentium 4

processor. The entire system was constructed in C++ except for small assembly

language fragments to accelerate operations in Fp. We accept that further perfor-

mance improvements could be made through aggressive profiling and optimisa-

tion but are confident our results are representative of the underlying algorithms

and allow a comparison between them.

For our experiments we randomly chose 500 key pairs (p, l) with the field

characterisitc p of length 176 bits and subgroup size l 160 bits. These parame-

45

3.4 Implementation Results

Figure 3.1: Timing results for CEILIDH and XTR

Operation Time

F1 F2 F3 XTR
xR · yR 37.8 µs 41.2 µs 41.8 µs 8.7 µs
x2
R 16.8 µs 26.9 µs 27.7 µs 4.9 µs

Reduce n/a n/a 170.6 µs n/a
Mixed Mul. n/a n/a 28.4 µs n/a

xnR 2.99 ms 3.94 ms 3.94 ms 2.57 ms
xnR · ymR 4.71 ms 5.75 ms 5.79 ms 2.98 ms
xnF 1.56 ms 1.74 ms 1.21 ms 1.49 ms
Precomp. 5.89 ms 9.33 ms 63.65 ms 1.43 ms

Mapping Time

F1 → F2 7.1 µs
F2 → F3 1.9 µs
F3 → A2 161.7 µs

F1 ← F2 2.4 µs
F2 ← F3 222.8 µs
F3 ← A2 5.1 µs

ters heuristically provide the equivalent of 1024 bit RSA security. With the same

key pairs for both CEILIDH and XTR we performed 500 instances of each oper-

ation listed in Figure 3.1. For exponentiations, exponents were chosen randomly

modulo l in all cases.

The upper table shows timings for operations pertinent to use in real cryptosys-

tems. We use xR to denote a random element in a given representation and xF to

represent a fixed element. Thus, xnR represents a single exponentiation with a ran-

dom base and exponent while xnR.y
m
R represents a double exponentiation without

precomputation.

These timings are useful since they form the basis of all public key crypto-

graphic protocols, and so we have a good idea of the comparative performance of

the different representations of T6(Fp), and XTR. One can see that the results are

in general agreement with our arithmetic cost analysis. Indeed F1 provides the

46

A Comparison of CEILIDH and XTR

most efficient representation when exponentiating a random element, and with

precomputation, F3 offers a slight improvement over XTR, allowing for the cost

of ρ : F3 → A2 as well.

The lower table in Figure 3.1 demonstrates the cost of applying mapping oper-

ations on elements to transform them between our different representations. These

results represent the time taken to map a random element in the source represen-

tation and transform it into the corresponding element in the target representation.

One notes from these that it is unfortunately not advantageous to ‘mix’ repre-

sentations, so that in a single exponentiation squaring is performed in F1, and

multiplication in F3. This would be analogous to the use of mixed coordinate

systems in elliptic curve cryptography [23].

Note that it is possible to negate the necessity of F1 altogether by basing all

arithmetic in a field of characteristic two or three, since in these fields squarings

and cubings respectively are very low cost, and we need only then perform mul-

tiplication, which is very efficient in F3. With suitable keys, this would simplify

implementations of CEILIDH and far more efficient precomputation strategies

could be brought to bare. Indeed, this is precisely what we do for characteristic

three pairing-based cryptography in the next chapter.

47

Chapter 4

On Small Characteristic Algebraic

Tori in Pairing-Based Cryptography

In this chapter we transfer the techniques developed in Chapter 3, to pairing-

based cryptography, exploiting the simple observation that pairing values are

group elements of a torus. Note that throughout the chapter we focus almost

entirely on characteristic three fields.

This chapter represents joint work with Dan Page and Martijn Stam, and appeared

in [57]. The authors would like to thank Paulo Barreto, Steven Galbraith, Keith

Harrison, Karl Rubin, Mike Scott, Alice Silverberg, Nigel Smart and Fréderik

Vercauteren for many helpful comments and fruitful discussions.

4.1 Introduction

The use of pairings in cryptography is now a well-studied area, with resulting ap-

plications to identity-based encryption, key-agreement and signature schemes [14,

129], tripartite Diffie-Hellman key-agreement [66], and short signatures [15], to

name just a few amongst numerous others (see e.g. [29] for a recent survey).

To support these applications much research activity has focused on develop-

ing efficient and easily implementable algorithms for their deployment [7,30,43].

49

4.1 Introduction

Currently1 the fastest algorithm for pairing computation on elliptic curves is that

of Duursma and Lee [30], which applies to the class of supersingular elliptic

curves in characteristic three with so-called embedding degree six.

One is therefore free to use the trace-based methods found in LUC [146] and

XTR [88] for post-pairing arithmetic [160], resulting in the compression of pair-

ing outputs by a factor of two and three respectively. Scott and Barreto [137]

also describe the use of traces for the computation of the pairing itself, however

closer inspection of their work shows that their claim is misleading. Indeed, their

method is essentially a polynomial basis transformation and hence does not offer

any advantages during the computation of the pairing. Moreover, for characteris-

tic three, we demonstrate that contrary to the claims of Scott and Barreto [137],

the performance of their approach is inferior to a straightforward implementation.

Thus besides pairing compression, the method they advocate does not seem to

offer any benefits.

The contribution of this chapter is to achieve both efficient pairing arithmetic,

and also pairing compression. Our methods are based on the simple observation

that the quotient group to which the natural output of the Tate pairing belongs,

may be viewed as a special representation of an algebraic torus.

Using this observation and the efficient point multiplication method developed

for tori in Chapter 3, we are able to perform arithmetic with pairing values that

is on average 30% faster than previous methods. This is useful, for example, in

pairing-based protocols where one typically multiplies a point by an ephemeral

random value. By bilinearity, this multiplication may be performed either on the

curve before the pairing evaluation, or as an exponentiation in the extension field

afterwards. Given that a pairing evaluation is usually several times more costly

than either a point multiplication on the curve or an exponentiation in the field, if

a pairing value ever needs to be reused, it is beneficial to compute it once and for

1After the initial submission of a paper describing the work in this chapter and the dissemi-
nation of a preprint of it, generalizations of the Duursma-Lee algorithm were found [6, 80]. In
particular the η-pairing [6] can be faster than the Duursma-Lee algorithm optimized in this chap-
ter. However, both our methods of exploiting the sparsity of the multiplicands to be discussed in
Section 4.6, and the described techniques to deal with the final exponentiations and manipulate the
resulting pairing value, apply to these more recent results.

50

On Small Characteristic Algebraic Tori in Pairing-Based Cryptography

all and to perform each ephemeral exponentiation in the extension field.

Examples where this occurs include the the Boneh-Franklin identity-based

encryption scheme [14], the identity-based signature scheme of Hess [62], and

the certificate-based encryption scheme of Gentry [50].

The aforementioned compression methods can also be used during any inter-

active pairing-based protocol where pairing values are transmitted between par-

ties. Such schemes include the selective-ID identity-based encryption scheme of

Boneh and Boyen [12], the interactive proof of knowledge in the short group sig-

nature scheme of Boneh et al. [13], and various others [51, 136].

One may regard our methods as a characteristic three version of the results of

Chapter 3 tailored for pairings. However they may also be used for pairings on

any abelian variety possessing an even embedding degree, which for efficiency

reasons is the case for all contemporary pairing algorithms. As such they may

also be applied to supersingular binary elliptic curves, although we do not pursue

this application here.

The remainder of the chapter is organised as follows. In the next section we

briefly describe the Duursma-Lee algorithm, and introduce the supersingular el-

liptic curves upon which we base our implementation. In Section 4.3 we develop

fast arithmetic for pairing values, and in Section 4.5 we give algorithms for effi-

cient exponentiation. In Section 4.4, we describe the field representation we use,

while in Section 4.6 we detail our improvements to the Duursma-Lee algorithm.

In Section 4.7, we present implementation results, and in the final section, we

make some concluding remarks and present some open problems.

4.2 The Modified Tate Pairing

At Asiacrypt 2003, Duursma and Lee introduced an algorithm for pairing compu-

tation on a special family of supersingular hyperelliptic curves [30]. In common

with the authors of [137], for the elliptic case, which occurs only in characteristic

three, we refer to the algorithm as the modified Tate pairing.

The modified Tate pairing improves upon the reduced variant in three ways.

51

4.2 The Modified Tate Pairing

Figure 4.1: Field definitions and curve equations

Field Field Polynomial Curve MOV security

F379 t79 + t26 + 2 Y 2 = X3 −X − 1 750
F397 t97 + t12 + 2 Y 2 = X3 −X + 1 906
F3163 t163 + t80 + 2 Y 2 = X3 −X − 1 1548
F3193 t193 + t12 + 2 Y 2 = X3 −X − 1 1830
F3239 t239 + t24 + 2 Y 2 = X3 −X − 1 2268
F3353 t353 + t142 + 2 Y 2 = X3 −X − 1 3354

Firstly, using the third property listed in Section 2.4.1, instead of computing the

Tate pairing of order l, where l is the order of the subgroup of interest, one uses

the pairing of order q3 + 1, which eliminates the need for any point additions in

Miller’s algorithm. Secondly, while this apparently increases the trit-length of

the exponent by a factor of three, Duursma and Lee show that the divisor com-

puted when processing three trits at a time has a very simple form, and hence no

losses are incurred. Lastly, they provide a closed form expression for the pairing,

thus simplifying implementations. We give a full description of the Duursma-Lee

algorithm in Section 4.6, where we also make some elementary computational

improvements.

The particular curves for which we are interested in optimising the computa-

tion of the modified Tate pairing are listed in Figure 4.1 (though this list is clearly

not exhaustive). The first column gives the field over which each curve is defined,

and the second lists the corresponding irreducible polynomial defining the field

extensions. The third lists the curve equation and the final column gives the bit-

length of the smallest finite field into which the pairing value embeds, which is

a degree six extension for these curves. These parameter values were generated

simply by testing which prime extension degrees yielded orders for supersingu-

lar curves that are prime, or almost prime, i.e., those possessing a small cofactor,

some of which also appear in [42].

52

On Small Characteristic Algebraic Tori in Pairing-Based Cryptography

4.3 The Quotient Group

Throughout this section and the remainder of the chapter we assume we are work-

ing in characteristic three fields with prime extension degree (though the ideas

apply equally well to arbitrary finite fields) and so where relevant, all exponents

are written in ternary.

Let l | #E(Fq) and suppose we wish to compute the modified Tate pairing of

order l. Then invoking the third property of Section 2.4.1, one uses the Duursma-

Lee algorithm to first compute eq3+1, which is an element in the quotient group

G = F×
q6/(F

×
q6)

q3+1.

For any a ∈ F×
q6 we have aq

3+1 ∈ F×
q3 , and so G simplifies to F×

q6/F
×
q3 .

Let Gl ⊂ F×
q6 denote the subgroup of order l, and let e ∈ G. Then the two

properties

gcd(l, q3 − 1) = 1 and eq
3−1 ∈ Gl

imply that e = gh for some g ∈ Gl, h ∈ F×
q3 . Hence powering e by q3 − 1 gives

eq
3−1 = (gh)q

3−1 = gq
3−1,

which can then be used in protocols. If a particular protocol requires an exponen-

tiation of this value by some integer k mod l, this is performed in Fq6 .

In this section we give an alternative way to obtain unique representatives

of G easily, that furthermore permits fast multiplication, and provides automatic

compression by a factor of two. We then show that the natural embedding of G
into the extension field is just a special representation of an algebraic torus, as

given in Section 3.2.3, which also permits further compression, but surprisingly

without any further computation.

53

4.3 The Quotient Group

4.3.1 The Basic Idea

Let Fq6 = Fq3[σ]/(σ2 + 1) which is the degree two extension we use in the

Duursma-Lee algorithm. Writing e = e0 + e1σ and g = g0 + g1σ, by the above

we have

e = gh = g0h + g1hσ.

Since the represented coset remains invariant under multiplication by elements

of F×
q3 , we can divide by e1, giving

e′ = ee−1
1 = e0/e1 + σ = g0/g1 + σ.

This also eliminates h and may equally well be used as a canonical representative

of the coset to which e belongs.

This element of the quotient group can be represented simply by the Fq3 el-

ement e0/e1, and thus compresses the coset representation by a factor of two.

Computationally, this involves a division in Fq3 .

Comparing this to powering by q3 − 1, the saving is not significant, since

eq
3−1 =

e0 − e1σ
e0 + e1σ

,

and hence requires only a division in Fq6 , which easily reduces to an inversion in

Fq3 .

However if one exponentiates this value by some integer k mod l, this opera-

tion will be faster than if one had first powered e by q3 − 1, since multiplying a

generic element of G by this element is cheaper than multiplying two generic ele-

ments, for exactly the same reason as in Section 3.2.3. Letting g = g0/g1 = e0/e1

and a0 + a1σ ∈ G, we see that

(g + σ)(a0 + a1σ) = (ga0 − a1) + (ga1 + a0)σ,

which costs just two Fq3 multiplications, and not the three required if both ele-

ments are generic, in which case the arithmetic is identical to that of Fq6 . If one

54

On Small Characteristic Algebraic Tori in Pairing-Based Cryptography

assumes cubings and additions are essentially free, then this method will always

be roughly one third faster, for whatever practical method one uses to exponenti-

ate. The defining property of the quotient group G thus reduces the cost of arith-

metic performed on pairing values. One can then obtain a canonical representative

as before.

4.3.2 Arithmetic in G

We first introduce some terminology to clarify the operations available in G. The

property that a given coset is invariant under multiplication by elements of F×
q3 is

suggestive of the projective line

P1(Fq3) = {(x, y) ∈ (Fq3)
2 \ {(0, 0)}}∼

where (x1, y1) ∼ (x2, y2) if and only if a λ ∈ F×
q3 exists such that (x1, y1) =

(λx2, λy2). The reduction of e to e0/e1 may also be viewed as a map to the affine

line A1(Fq3). With this analogy we introduce the following.

Definition 4.1. GP is the projective line P1(Fq3) endowed with the group op-

eration (see Lemma 4.1) induced by the arithmetic of the quadratic extension

Fq6 = Fq3[σ]/(σ2 + 1) via the map (x, y) → x + yσ. The identity element is

represented by the points (λ, 0) for any λ ∈ F×
q3 .

GA is the affine part of the line GP . The affine point corresponding to (x,y) is

X = A(x, y) = (x/y). Via this map the identity element is the point at infinity

which we denote by OG .

With this terminology it should be clear that we can mimic mixed addition

methods for point multiplication on elliptic curves [23], and it also gives a proper

explanation for the representation F3 in Chapter 3: G is just T2(Fq3). It is clear that

all the techinques of that chapter transfer directly to this scenario, such as the use

of signed digit representations, or exponentiation using a split exponent method,

for example (see Section 4.5). Since in this chapter we are interested specifically

characteristic three arithmetic, some differences naturally arise.

55

4.3 The Quotient Group

Let P = (x, y) ∈ GP with corresponding affine representation (X) ∈ GA.

Again, applying the cube of the Frobenius automorphism gives the inverse of a

point, in this case P−1 = (x,−y), or (−X) in affine. Cubing is also straightfor-

ward since we are working in characteristic three: P 3 = (x3,−y3).

For multiplication of two points P1 = (x1, y1), P2 = (x2, y2) ∈ GP with affine

representations (X1), (X2) ∈ GA, we use the following easy lemma.

Lemma 4.1. Let M and I represent the cost of a multiplication and inversion

respectively in Fq3 . Then the group operation for combinations of point represen-

tations is computed as follows.

P1 P2 P1 · P2 Formula Cost

GA GA GA (X1X2 − 1)/(X1 +X2) 2M + I

GA GA GP (X1X2 − 1, X1 +X2) 1M

GP GP GA (x1x2 − y1y2)/(x1y2 + x2y1) 4M + I

GP GP GP (x1x2 − y1y2, x1y2 + x2y1) 3M

GA GP GA (X1x2 − y2)/(X1y2 + x2) 3M + I

GA GP GP (X1x2 − y2, X1y2 + x2) 2M

Squaring can naturally be performed with slightly fewer Fq3 muliplications

than above; the corresponding formulae are easily deduced. Besides the precom-

putation necessary for the exponentiation algorithms we present in Section 4.5

however, squarings are not required.

With regard to exponentiations, it is clear that the mixed multiplication shown

in the final row is the most efficient. If we want to compute P k for some k mod

l, we first convert P to affine and for each non-zero trit in the expansion of k

perform a mixed multiplication of this point with the projective representation

of the intermediate value. A multiplication with both points in projective form

is equivalent to an ordinary multiplication in Fq6 , so the mixed multiplication

is essentially what allows the savings over arithmetic in Fq6 . We exploit these

observations in the exponentiation algorithms detailed in Section 4.5.

56

On Small Characteristic Algebraic Tori in Pairing-Based Cryptography

4.3.3 Further Compression using T6(Fq)

Since the characteristic three supersingular elliptic curves we consider have em-

bedding degree six, one may ask why we use the arithmetic of T2(Fq3) when the

order l subgroup is in fact in T6(Fq)? The reason is that there seems no obvi-

ous way to utilise the extra structure provided by T6(Fq) [56], though we do not

rule out such a possibility. However we know that |T6(Fq)| = (q2 − q + 1) |
(q3 + 1) = |T2(Fq3)|, and so T6(Fq) ⊂ T2(Fq3). Thus one can use the properties

of the latter and apply them to the former, utilising the improvements derived over

the extension field representation.

While arithmetic improvements do not seem available with T6, one can exploit

it for better compression. As T6 is rational, one can map nearly all its elements to

the affine plane and use this representation instead for data transmissions.

Using the method described by Rubin and Silverberg [127], and thanks to

some serendipitous equations for characteristic three and the given field represen-

tation, one obtains this additional compression for free.

By Definition 2.5, we know that

T6(Fq) = Ker(NFq6/Fq3
) ∩Ker(NFq6/Fq2

) = T2(Fq3) ∩ Ker(NFq6/Fq2
).

To obtain a suitable representation one therefore only needs to parametrise

those elements of T2(Fq3) which have norm equal to one in the second factor.

Let e = (a − σ)/(a + σ) be the compressed representation for e, and let a =

a0 + a1ρ+ a2ρ
2 where ρ3− ρ± 1 = 0, which defines the cubic extension we later

use for the Duursma-Lee algorithm. Then we obtain an equation in a0, a1, and a2

by the condition
(

a− σ
a+ σ

)1+q2+q4

= 1.

Expanding and simplifying this is equivalent to 1 + a2
1 − a0a2 − a2

2 = 0, which

one can parametrise easily with just a1 and a2, since a0 = (1 + a2
1 − a2

2)/a2. It

is therefore sufficient to specify only a1 and a2, to describe all points on T6(Fq)

bar the identity, and this is essentially all that we need. We therefore have a map

57

4.4 Field Representation

ψ : A2(Fq) \ {(a1, 0)} → T6(Fq) \ {1} given by

ψ(a1, a2) =
((1 + a2

1 − a2
2) + a1a2ρ + a2

2ρ
2)− a2σ

((1 + a2
1 − a2

2) + a1a2ρ + a2
2ρ

2) + a2σ
.

The inverse map ψ−1 : T6(Fq) \ {1} → A2(Fq) \ {(a1, 0)} is given as above, i.e.,

we just take the second and third coefficients in the fractional expression for e.

Note that A2(Fq) \ {(a1, 0)} and T6(Fq) \ {1} both have cardinality q2 − q.

In terms of the quotient group G and an actual pairing computation, once e0/e1 is

computed, one can therefore use the second and third coefficients to parametrise

the element, without any further computation, as mentioned in Section 4.3.

Remark 4.1. In the context of compression, Rubin and Silverberg [126,128] have

shown how one can compress BLS short-signatures [15] by using the trace-zero

subvariety contained in the Weil restriction of scalars of an elliptic curve defined

over a composite field extension. This method provides a compression factor of

n/φ(n) also, where gcd(n, 2) = 1, and can be applied to any pairing-based pro-

tocol where one is required to transmit a point on the curve, such as [66]. How-

ever for n ≥ 5, building upon an idea of Semaev [138], Gaudry has shown that

such curves are weaker than those defined over a prime field [47]. Hence this

method should be regarded with some caution. We point out that this form of pre-

compression is distinct from the post-compression described here, and thus these

attacks do not apply.

4.4 Field Representation

We briefly describe efficient arithmetic for Fq and the required extensions, before

giving several exponentiation methods in Section 4.5.

Field Arithmetic in Fq

Let Fq = F3m . Let a = am−1x
m−1 + · · ·+ a1x + a0 be an element of Fq, held in

a polynomial basis, so that ai ∈ F3. We follow other work [43, 60] and represent

58

On Small Characteristic Algebraic Tori in Pairing-Based Cryptography

the element a as two bit-vectors aH and aL. If we let aH [i] and aL[i] denote bit i

of aH and aL respectively, the vectors aH and aL are constructed from a such that

for all i

aH [i] = ai div 2

aL[i] = ai mod 2.

That is, aH and aL are a bit-sliced representation of the coefficients of a where aH

holds the high bit and aL the low bit of a given coefficient. Given a representation

of this type, we can perform a component-wise addition ri = ai + bi of two

elements a and b using the following word-wise logical operations

rH [i] = (aL[i] ∨ bL[i])⊕ t
rL[i] = (aH [i] ∨ bH [i])⊕ t

where

t = (aL[i] ∨ bH [i])⊕ (aH [i] ∨ bL[i]).

Subtraction, and hence multiplication by two, are equally efficient since the nega-

tion of an element a simply swaps the vectors aH and aL over and can therefore

be implemented by the same function as addition.

On a given computer with word-size w, we hold the bit-vectors aH and aL that

represent a as two word-vectors of length n = dm/we and hence apply logical

operations in parallel to w coefficients at a time. However, since our representa-

tion remains bit-oriented we can borrow further techniques developed for fields of

characteristic two. Specifically, it is possible to construct multiplication using a

variation of the often cited comb method [95] and inversion by altering the binary

extended Euclidean algorithm. We used a Karatsuba method to aggressively split

the multiplication operands into word sized chunks, an option that provided signif-

icant performance improvements. Unlike elements in characteristic two, squaring

in characteristic three is only marginally less expensive than general multiplica-

59

4.4 Field Representation

tion. However, cubing can be performed very quickly using table-lookup in an

analogous way to the so called coefficient thinning method in characteristic two.

Field Arithmetic in Fq3

Let Fq3 = Fq[ρ]/(ρ
3 − ρ− b), with b = ±1 depending on the curve equation. Let

a = a0 +a1ρ+a2ρ
2 and b = b0 + b1ρ+ b2ρ

2 be two generic elements. We require

the following operations.

q-Frobenius:

Since ρ3 = ρ + b we have ρ3m
= ρ + (m mod 3)b and (ρ2)3m

= (ρ3m
)2 =

ρ2 + 2b(m mod 3)ρ + (m2 mod 3). Hence a3m
= (a0 + a1ρ + a2ρ

2)3m
= (a0 +

a1b(m mod 3) + a2b) + (a1 − a2b(m mod 3))ρ+ a2ρ
2.

Multiplication:

Let t00 = a0b0, t11 = a1b1, t22 = a2b2, t01 = (a0 + a1)(b0 + b1), t12 = (a1 +

a2)(b1 + b2), and t20 = (a2 + a0)(b2 + b0). Then ab = (t00 + (t12 − t11 − t22)b) +

(t01 − t00 + t11 + t12 + t22(b− 1))ρ+ (t20 − t00 + t11)ρ
2.

Cubing:

This is straightforward in characteristic three. Since a3 = (a3
0 + a3

2 + a3
1b)+ (a3

1−
a3

2b)ρ + a3
2ρ

2.

Inversion:

Since the extension degree is small, we can perform this directly. Let t00 = a2
0,

t11 = a2
1, t22 = a2

2, t01 = a0a1, t12 = a1a2, t20 = a2a0, and let ∆ = a3
0 + a3

1b +

a3
2 + t20(a2−a0)−a1(t01 + t22b). Then a−1 = ∆−1((t00− t20 + t22− t11− t12b)+

(t22b− t01)ρ+ (t11 − t20 − t22)ρ2).

Field Arithmetic in Fq6

Let Fq6 = Fq3[σ]/(σ2 + 1). Let c = c0 + c1σ and d = d0 + d1σ with ci, di ∈ Fq3

be two generic elements. The arithmetic is as follows.

60

On Small Characteristic Algebraic Tori in Pairing-Based Cryptography

q-Frobenius:

Since σ2 = −1, we have that σ3 = −σ and as m is odd, we obtain c3
m

=

c3
m

0 − c3
m

1 σ.

Multiplication:

Let t00 = c0d0, t11 = c1d1, and t01 = (c0 + c1)(d0 + d1). Then cd = (t00 − t11) +

(t01 − t00 − t11)σ.

Cubing:

c3 = c30 − c31σ.

Inversion:

Let ∆ = c20 + c21. Then c−1 = ∆−1(c0 − c1σ).

4.5 Exponentiation

Now that we have set up the basic arithmetic for G, we explore how one can op-

timise the basic operation of exponentiation in practice. For comparison, we also

describe fast algorithms for exponentation in the order l subgroup Gl of T6(Fq)

using techniques from [148], which is just the representation F1 of Chapter 3,

and also point multiplication in E(Fq), incorporating a technique similar to the

Gallant-Lambert-Vanstone method [44].

For ease of notation we write the group operation for all three groups multi-

plicatively, and for each of the above we compare four exponentiation methods,

which we detail in turn. The input to each algorithm is a base e and an integer

k mod l in standard ternary format. The output is ek. When applicable, precom-

puted values are stored in affine to facilitate the mixed multiplication. Note that

in all three groups inversions are essentially for free, so we consider signed digit

representations. Note that for the following methods, as stated previously, cubing

is fast, and so we consider ternary (and nonary) exponent expanions, rather than

binary. Timings are provided for all these methods in Section 4.7.

61

4.5 Exponentiation

For the remainder of the chapter, M represents the cost of one Fq multiplica-

tion, rather than a multiplication in Fq3 as in Section 4.3.

Method 1: Signed Ternary Expansion

Using the generalised non-adjacent form, or G-NAF [21], one can take the ternary

expansion of an exponent k mod l and transform it into an equivalent signed

ternary representation. Such a representation is easy to compute and reduces the

average density of non-zero trits from two thirds to one half. The precomputation

involves just a single squaring of the base.

Method 2: Signed Nonary Expansion

This is the same as Method 1 except we use a base nine expansion of k. This

essentially halves the trit-length of k for the cost of precomputing ei, i = 1, ..., 8.

Again using the G-NAF, the average density of non-zero ‘nits’ in this expansion

is four fifths.

Method 3: Sliding Window Ternary Expansion

We use an unsigned ternary expansion of k with a sliding window of width three

(see Algorithm 14.85 of [101]). To do so one needs to precompute and store ei for

0 < i < 27 and i 6= 0 mod 3.

Method 4: Frobenius Expansion

For e ∈ G the q-th power Frobenius automorphism is easily computed. Moreover,

the Frobenius of a compressed element is itself compressed. Since the Frobenius

map satisfies q2 − q + 1 = 0 (as maps) and the group order divides q2 − q + 1,

one can as in Chapter 3 split the exponent k in two halves k1 and k2 where k1, k2

are approximately half the trit-length of l and satisfy k ≡ k1 + k2q mod l [148].

One can find k1 and k2 very quickly having performed a one-time Gaussian two

dimensional lattice basis reduction.

62

On Small Characteristic Algebraic Tori in Pairing-Based Cryptography

Thus a single exponentiation can be transformed into a double exponentiation

for half the trit-length of k, for the cost of performing a double exponentiation

instead. To compute ek for a random k mod l, we perform the double exponenti-

ation ek1(eq)k2 using Shamir’s trick, originally due to Straus [150]. We detail the

required precomputation in the next section.

For each of k1, k2 we invoke the G-NAF. The average density of non-zero

trits in each of their ternary expansions is 1/2 and hence the average number of

non-zero trits in the paired ternary expansion of k1, k2 is 1 − (1/2)2 = 3/4. We

therefore expect to perform on average (3/4) ·m/2 = (3/8)m multiplications of

mixed type during an exponentiation.

This method also works for the elliptic curve, using a method similar to the

GLV technique [44] using fast automorphisms. Clearly, one can use the same ex-

pansion of k on E(Fq), replacing powering by q in the field extension with scalar

multiplication by q. On the curve, multiplication by q is an efficiently computable

automorphism since [q]P = (x − (m mod 3)b,−y) for P = (x, y) on the curve

(where the curve equation is Y 2 = X3 −X + b).

We note that for supersingular curves over characteristic three there is also an

efficient scalar multiplication algorithm due to Koblitz [74] based on the curve

automorphism mapping the point (x, y) to (x3, y3).

4.5.1 Precomputation

The necessary precomputation for Methods 1, 2 and 3 is straightforward. For

Method 4 we can take advantage of the Frobenius map to reduce the cost. For the

following we use the notation of G. Let e = e0 + e1σ. In order to use Shamir’s

trick, we need to know the values

(e0/e1 + σ)i+qj i, j ∈ {0,±1,±2} (4.1)

in affine. Let (i, j) represent the corresponding term in (4.1). Then we can use the

fact that for any e ∈ G, we have eq
2−q+1 = OG to generate most of the required

terms easily. To achieve this, one applies the q-Frobenius iteratively to obtain

63

4.5 Exponentiation

(i, j)q = (−j, i + j). We list these operations in Algorithm 1. In Gl we use the

same method, having first powered e by q3 − 1, but clearly without needing to

obtain affine representatives.

4.5.2 Comparison with Trace-Based Exponentiation

The cost of a mixed multiplication in G is 12M . Since l ≈ 3m, an exponentiation

using Method 4 costs on average about 4.5mM . This improves considerably on

the 12mM required by the trace method of [137]. Even without mixed multipli-

cation, this exponentiation still only requires 6.75mM , and with neither the expo-

nent splitting nor the mixed multiplication, this cost is only about 9mM . Hence

ordinary field arithmetic outperforms the proposed trace method of Scott and Bar-

reto, which in fact can be reduced further to about 10.3mM using a Euclidean

algorithm [149], but is still over twice as slow.

4.5.3 Application to other Pairings

We have focused primarily on small characteristic tori because the Duursma-Lee

algorithm is currently2 the most efficient for pairing computation. In the future,

the preferred embedding degree of a curve will increase in order to maintain a

good security/efficiency trade-off, and thus it is likely that ordinary curves over

large characteristic fields will be used.

Since the embedding degree n of a pairing on a given abelian variety is min-

imal, the output of any pairing may be considered an element of the torus Tn.

Hence all of the techniques developed for torus-based cryptography may be ap-

plied, certainly for any embedding degrees up to thirty (cf. Chapter 5), if such

curves can be efficiently found.

However, the results of Chapter 3 show that for large characteristic, the trace-

based methods such as LUC [146] (for degree two extensions), and XTR [88,149]

(for degree six extensions), are slightly faster than the torus approach. For the near

future however, our methods are likely to remain near-optimal.

2See footnote in the chapter introduction.

64

On Small Characteristic Algebraic Tori in Pairing-Based Cryptography

Algorithm 1: Online Pre-computation for Double Exponentiation
input : e = e0 + e1σ ∈ G
output : Representatives in GA of

(i, j) := (e0 + e1σ)i+jq, i, j ∈ {0,±1,±2}

(1, 0)← A(e)
(0, 1)← −(1, 0)q

(−1, 1)← −(0, 1)q

(−1, 0)← −(−1, 1)q

(0,−1)← −(−1, 0)q

(1,−1)← −(0,−1)q

(2, 0)← mul((1, 0), (1, 0))
(2, 0)← A((2, 0))
(0, 2)← −(2, 0)q

(−2, 2)← −(0, 2)q

(−2, 0)← −(−2, 2)q

(0,−2)← −(−2, 0)q

(2,−2)← −(0,−2)q

(1, 1)← mul((1, 0), (0, 1))
(1, 1)← A((1, 1))
(−1, 2)← −(1, 1)q

(−2, 1)← −(−1, 2)q

(−1,−1)← −(−2, 1)q

(1,−2)← −(−1,−1)q

(2,−1)← −(1,−2)q

(1, 2)← mul((1, 0), (0, 2))
(1, 2)← A((1, 2))
(−1,−2)← −(1, 2)

(2, 1)← mul((2, 0), (0, 1))
(2, 1)← A((2, 1))
(−2,−1)← −(2, 1)

(2, 2)← mul((2, 0), (0, 2))
(2, 2)← A((2, 2))
(−2,−2)← −(2, 2)

65

4.6 Computing the Modified Tate Pairing

4.6 Computing the Modified Tate Pairing

In this section we detail how to efficiently implement the Duursma-Lee algorithm

for the computation of the modified Tate pairing [30].

Let P = (x1, y1) and Q = (x2, y2) be points of order l on the supersingular

curve E(Fq) : Y 2 = X3−X+ b, for b ∈ {−1, 1}. Then the modified Tate pairing

on E is the mapping fP (φ(Q))q
3−1 where φ : E(Fq) → E(Fq6) is the distortion

map φ(x2, y2) = (ρ− x2, σy2), where fP is as defined in Section 2.4.1, and ρ and

σ are as defined in Section 4.4. Algorithm 2 gives a closed form expression for

this computation, as given by Duursma and Lee, but without the final powering:

making use of the techniques of Section 4.3, we do not need to perform this op-

eration, as we presume the output will be stored and transmitted in compressed

form.

Algorithm 2: The Duursma-Lee Algorithm
input : point P = (x1, y1), point Q = (x2, y2)

output : fP (φ(Q)) ∈ G
f ← 1
for i = 1 to m do

x1 ← x3
1, y1 ← y3

1

µ← x1 + x2 + b, λ← −y1y2σ − µ2

g ← λ− µρ− ρ2, f ← f · g
x2 ← x

1/3
2 , y2 ← y

1/3
2

return f

4.6.1 Cost Analysis

Let M denote the cost of an Fq multiplication. Each iteration of the loop requires

2M to compute µ2 and y1y2, and an Fq6 multiplication to compute f · g. Since a

generic Fq6 multiplication costs 18M , Scott and Barreto [137] state that besides

the necessary cubings and cube roots, each loop iteration costs 20M . However, in

each iteration g is sparse, i.e., not all of its terms are non-trivial. One can exploit

this to reduce the cost of multiplying g and f , which is not sparse in general,

66

On Small Characteristic Algebraic Tori in Pairing-Based Cryptography

to 13M . This total of 15M improves on the trace-based method suggested by

Scott and Barreto. In fact one can reduce the cost for each loop iteration in the

ordinary Duursma-Lee algorithm to just 14M , by unrolling the main loop and

better exploiting the sparsity of g.

Algorithm 3: A Refined Duursma-Lee Algorithm.
input : point P = (x1, y1), point Q = (x2, y2)

output : fP (φ(Q)) ∈ G
f ← 1
for i = 1 to (m− 1)/2 do

x1 ← x3
1, y1 ← y3

1

µ← x1 + x2 + b, λ← −y1y2σ − µ2

g1 ← λ− µρ− ρ2

x2 ← x
1/3
2 , y2 ← y

1/3
2

x1 ← x3
1, y1 ← y3

1

µ← x1 + x2 + b, λ← −y1y2σ − µ2

g2 ← λ− µρ− ρ2

g ← g1g2, f ← f · g
x2 ← x

1/3
2 , y2 ← y

1/3
2

x1 ← x3
1, y1 ← y3

1

µ← x1 + x2 + b, λ← −y1y2σ − µ2

g ← λ− µρ− ρ2, f ← f · g
return f

We demonstrate this technique in Algorithm 3 which provides a saving since

in each loop, multiplying g1 by g2 costs only 6M . Multiplying g by f in each loop

costs 18M since they are both generic Fq6 elements. Both µ2 and y1y2 are com-

puted twice in each loop: once for g1 and once for g2. In total the cost therefore

is (6M + 4M)(m− 1)/2 + 18M(m− 3)/2 + 13M = 14mM − 19M , which is

equivalent to about 14M per loop iteration of Algorithm 2.

This analysis ignores the cost of computing cubings and cube roots. Because

of the large number of times each of these operations are invoked, it has been sug-

gested that one should use normal bases to accommodate them efficiently, since

they are then implemented using cyclic shifts. Normal bases are well-studied in

even characteristic, but for characteristic three one can not construct optimal, type

one normal bases with prime extension degree [45, 111], although type two bases

67

4.6 Computing the Modified Tate Pairing

are available for some values of m. As a result, the cost of general multiplication

in software is relatively large, even when variations of high performance meth-

ods in characteristic two are used [110, 123]. For example, we found that when

m = 239 normal basis multiplication is between two and three times slower than

a polynomial basis multiplication [58]. However, in hardware implementations on

a smart-card for example, normal bases still seem the obvious choice since they

can match the multiplication speed of polynomial basis while offering inexpensive

cube and cube root operations, although perhaps at the cost of flexibility.

To reduce the cost of computing cube roots using a polynomial basis, we ob-

serve that the successive cube roots of x2 and y2 can be computed more easily in

reverse order and stored for the duration of the algorithm. Since for any x2 ∈ Fq,

we have x2 = x3m

2 , the required values x1/3i

2 can be computed as x3m−i

2 , and thus

one does not need to compute any cube roots at all. The memory requirement for

this is only about 2−11m2 Kb and the time taken is just the cost of 2m cubings. If

memory is at a premium, one can reduce this to about 2−4.5m3/2 Kb with double

the number of cubings using further loop unrolling and pebbling strategies.

Remark 4.2. As already mentioned, Scott and Barreto’s method [137] is effec-

tively a change of basis and not a compressed method of computing a pairing.

Hence it is unsurprising that the loop unrolling strategy of Algorithm 3 can be

used to reduce the cost of the trace method given there, as kindly pointed out by

Barreto [5].

Remark 4.3. Scott and Barreto [137] also suggested an open problem asking if

it is possible to perform the pairing computation directly in compressed form for

some compression factor ≥ 3 on ordinary (non-supersingular) curves in char-

acteristic p > 3. A compression factor larger than 3 is extremely unlikely. For

pairing-based applications, the desirable extension degrees in the near future are

likely to remain small, and no larger than twenty. By Lemma 1, the maximum

compression factor possible for a given extension degree n is n/φ(n), and for

n < 20, this maximum is three, which is already achieved for the modified Tate

pairing.

68

On Small Characteristic Algebraic Tori in Pairing-Based Cryptography

Figure 4.2: Pairing and exponentiation timings (ms).

F379 F397 F3163 F3193 F3239 F3353

Pairing
BKLS 13.96 23.60 79.11 123.21 179.30 527.56
Algorithm 3 4.67 8.41 29.26 45.67 65.73 197.58

Exponentiation in Gl

Method 1 3.65 6.14 20.98 33.21 44.72 130.27
Method 2 4.57 7.25 21.53 31.61 43.56 119.16
Method 3 3.67 5.79 17.85 26.69 36.45 101.75
Method 4 3.06 5.10 16.55 24.67 34.74 99.56
Exponentiation in G
Method 1 2.55 4.27 14.15 21.67 30.69 88.06
Method 2 2.62 5.21 13.21 20.38 26.97 74.90
Method 3 3.69 4.72 15.78 22.96 37.96 73.29
Method 4 2.32 4.07 11.84 17.63 24.73 69.30
Point Multiplication in E(Fq)
Method 1 1.83 3.11 10.62 16.94 24.11 69.78
Method 2 1.72 2.84 9.47 14.73 21.15 60.70
Method 3 1.82 3.01 9.66 14.95 21.19 58.70
Method 4 1.18 1.95 8.11 12.75 19.04 55.93

4.7 Implementation Results

In order to provide some concrete idea of the practical cost of these and other

methods, the proposed field arithmetic, pairing algorithms and exponentiation

methods were implemented. A GCC 3.3 compiler suite was used to build the

implementation, which was run on a Linux based PC incorporating a 2.80 GHz

Intel Pentium 4 processor to perform timing experiments. The entire system was

constructed in C++. While it would be possible to make further performance

improvements through aggressive profiling and optimisation, these results are in-

tended to be representative of the underlying algorithms and to allow a fair com-

parison between them.

Figure 4.2 shows the result of timing this implementation using a variety of

different base field sizes. In the pairing section, Algorithm 3 refers to the aug-

69

4.7 Implementation Results

Figure 4.3: Field operation timings (µs).

F379 F397 F3163 F3193 F3239 F3353

Fq
Add 0.55 0.53 0.58 0.63 0.61 0.64
Square 4.42 6.07 12.99 16.48 19.48 40.97
Cube 0.85 0.84 0.96 1.26 1.24 1.77
Invert 23.18 33.26 70.10 97.20 136.86 303.27
Multiply 4.06 6.02 12.80 17.83 19.42 43.11
Fq3

Add 0.60 0.60 0.80 0.90 0.90 0.50
Cube 2.10 2.10 2.30 2.50 3.20 4.20
Invert 65.00 94.70 204.40 275.90 350.60 741.80
Frobenius 1.10 0.90 1.10 1.00 1.30 1.40
Multiply 26.10 37.80 74.20 98.00 115.50 249.00
Fq6

Add 0.90 0.90 0.90 1.10 1.00 1.10
Cube 2.80 4.60 4.40 4.00 5.00 5.60
Invert 165.50 237.20 497.40 670.10 817.10 1709.50
Frobenius 2.00 2.10 1.90 2.00 2.10 2.10
Multiply 75.70 106.10 227.10 296.80 347.30 745.10

mented version of Duursma-Lee presented in this paper, with the cube root pre-

computation strategy and the loop unrolling. The BKLS method is included as a

reference. We do not include timings for the methods of [137] since our operation

count clearly shows they will be slower than our alternatives. Figure 4.3 gives

timings for the underlying field operations.

We note first that the implementation of Algorithm 3 is between two to three

times faster than the BKLS algorithm. With regard to exponentiation, Method 4

is the most efficient for all field sizes and in all three groups, and in G is nearly

twice as fast as Method 1 in Gl. An early estimate of Koblitz [74] states that

the ratio of the time required for an exponentation in Fq6 to the time required

for a point multiplication in E(Fq) is 12; these results demonstrate that for fields

of a cryptographic size, this value is in fact closer to 1.3. Thus the techniques

from [148], together with the fast multiplication in G, improve the efficiency of

70

On Small Characteristic Algebraic Tori in Pairing-Based Cryptography

post-pairing arithmetic considerably.

We conceed that while Koblitz’s complex multiplication exponentiation method

has not been implemented, due to the estimated large preprocessing time required,

we do not think it would affect this comparison significantly.

Furthermore, due to our direct inversion method, the ratio of inversion time

to multiplication time in Fq3 is under three for all field sizes. This means our

compression method in G costs roughly 4/3 multiplications in Fq6 , and is therefore

also very efficient.

4.8 Conclusion and Open Problems

In this chapter we have shown how to take advantage of the quotient group to

which a pairing value naturally belongs in order to speed up exponentiations, and

to obtain fast compression of pairing values. We have also proposed some sim-

ple refinements to the Duursma-Lee algorithm to improve efficiency. Our results

strongly indicate that there are definite advantages to implementing pairing-based

cryptographic protocols in characteristic three: the often quoted value of ten for

the ratio of the speed of a pairing evaluation to a point multiplication on the curve

is really closer to three or four.

Some issues remain. One could certainly improve the exponentiation times for

all three groups if there exists an efficiently computable ternary analogue of the

Joint Sparse Form [147]. With regard to side channel attacks, such a method may

be undesirable since one can not render cubing and multiplication in charcteristic

three fields indistinguishable without a serious detriment to performance. As such,

a cube-and-multiply-always method using the exponent splitting of Method 4 will

half the cost of a secure full length expansion.

Also the exact security of the discrete logarithm problem in characateristic

three using the ternary analogue of Coppersmith’s method has yet to be investi-

gated [24, 25]. Preliminary research into this problem using Adleman’s Function

Field Sieve has been conducted - see Chapters 7 and 8 - but the problem should

still be considered open.

71

4.8 Conclusion and Open Problems

Lastly, do there exist methods for faster pairing evaluation using so-called

MNT curves [104], which form a family of non-supersingular elliptic curves over

large prime fields with embedding degree six also? Work by Page, Smart and Ver-

cauteren [118] indicates that which method works best depends on the application.

Recently however, special methods developed for supersingular curves [6,30,80],

have to some extent been adapted to ordinary elliptic curves, see [63].

72

Chapter 5

Practical Cryptography in High

Dimensional Tori

In this chapter we present practical and efficient methods for the compression

of sequences of elements of arbitrary algebraic tori, which are asymptotically

optimal with the number of elements to be transmitted.

This chapter represents joint work with Marten van Dijk, Dan Page, Karl Rubin,

Alice Silverberg, Martijn Stam and David Woodruff, and appeared in [156].

5.1 Introduction

At Crypto 2004, van Dijk and Woodruff introduced a new way of using the alge-

braic tori Tn in cryptography, and obtained an asymptotically optimal n/φ(n) sav-

ings in bandwidth and storage for a number of cryptographic applications. How-

ever, the computational requirements of compression and decompression in their

scheme were impractical, and it was left open to reduce them to a practical level.

We give a new method that compresses orders of magnitude faster than the origi-

nal, while also speeding up the decompression and improving on the compression

factor (by a constant term). Further, we give the first efficient implementation that

uses T30, compare its performance to CEILIDH, XTR and ECC, and present new

applications. Our methods achieve better compression than CEILIDH and XTR

73

5.1 Introduction

for the compression of as few as two group elements. This allows us to apply our

results to ElGamal encryption with a small message domain to obtain ciphertexts

that are 10% smaller than in previous schemes.

Although Tn is not known to be rational in general, van Dijk and Woodruff

[157] show that one can obtain key agreement, signature and encryption schemes

with a compression factor asymptotically n/φ(n) as the number of keys, signa-

tures, or messages grows, without relying on the rationality of Tn. The key prop-

erty of tori they use is that Tn is stably rational [161], i.e., for every n there is an

m such that there is an “almost bijection”1 between Tn(Fq)× Fmq and F
φ(n)+m
q .

Using the fact that Tn is stably rational, van Dijk and Woodruff [157] devel-

oped bijections between Tn(Fq) × Fmq and F
φ(n)+m
q with m =

∑

d|n, µ(n/d)=−1 d,

where µ is the Möbius function, leading to asymptotically optimal n/φ(n) savings

in bandwidth and storage. However, a major drawback of their solution is its large

computational requirements.

The present chapter gives a new and efficient construction of bijections be-

tween Tn(Fq) × Fmq and F
φ(n)+m
q with significantly smaller m than in [157], as

well as an optimised implementation when n = 30. The latter builds upon the

techniques developed in Chapter 3 to efficiently implement CEILIDH.

Note that n = 30 = 2 · 3 · 5 is the next cryptographically interesting case,

since its compression is up to 20% better than that of systems based on n = 6.

In addition to our computational savings, in this case we are able to reduce the

original affine surplus m = 32 [157] to m = 2. As we show, this reduction has

immediate practical implications.

Since we are interested in the practicality of our construction, we perform

timings for exponentiations, compression and decompression for both the new

T30(Fq) system and for a CEILIDH-based T6(FqL) system with qL ≈ q5. For the

equivalent of 1024-bit RSA security, the computational costs of the operations in

both systems are comparable, while the compression of our scheme is better by a

factor of 5/4 = (30/φ(30))/(6/φ(6)).

The chapter is organised as follows. In Section 5.2 we describe the central idea

1The maps may be undefined on a small number of points.

74

Practical Cryptography in High Dimensional Tori

behind the compression method of van Dijk and Woodruff [157]. In Section 5.3

we present our new mapping, and in Section 5.4 give some cryptographic applica-

tions. In Section 5.5 we show how to implement our mapping, and in Section 5.6

we present implementation results.

5.2 Asymptotically Optimal Torus-Based Cryptog-

raphy

Since Tn is known to be rational only for special values of n, one can not use

rationality to achieve a compression factor greater than three for a single torus

element. Van Dijk and Woodruff [157] overcome this problem in the case where

several elements of Tn are to be compressed. They construct a bijection:

θ : Tn(Fq)× (×d|n,µ(n/d)=−1F
×
qd)→ ×d|n,µ(n/d)=1F

×
qd. (5.1)

Specializing their map to the case n = 30 gives

T30(Fq)× F×
q × F×

q6 × F×
q10 × F×

q15 → F×
q2 × F×

q3 × F×
q5 × F×

q30 ,

which can be reinterpreted as an “almost bijection” (see [157])

T30(Fq)× A32(Fq)→ A40(Fq).

One can use this map to achieve an asymptotic compression factor of 30/8. In-

deed, to compress m elements of T30(Fq), one can compress an element x and

split its image into y1 ∈ A8(Fq) and y2 ∈ A32(Fq). Then y1 forms the affine input

of the next compression. In the end, 8m+ 32 elements of Fq are used to represent

m elements of T30(Fq). Observe that their map comes from the equation

Φ30(x)(x−1)(x6−1)(x10−1)(x15−1) = (x2−1)(x3−1)(x5−1)(x30−1), (5.2)

75

5.3 The New Construction

relating the orders of all the different component groups of domain and range.

Since these groups are cyclic, one can map to and from their products as long as

the orders of the component groups are coprime. For the map above there are

some small primes that occur in the order of several component groups, but van

Dijk and Woodruff are able to isolate and handle them separately.

5.3 The New Construction

The bijection (5.1), while asymptotically optimal, leaves open the question of

whether one can obtain better compression for a fixed number of elements. Our

new compression map, given by (5.4) below (see Theorems 5.1 and 5.3), has this

property. Using the fact that Φn(x) =
∏

d|n(x
d − 1)µ(n/d), we have

Proposition 5.1. If p is a prime, and a is a positive integer not divisible by p, then

Φap(x)Φa(x) = Φa(x
p).

The following result can be deduced from Proposition 5.1 above, using Lemma

6 of [157] (see also pp. 60–61 of [161]). Here, Res denotes the Weil restriction of

scalars (see for example [161] or [125]).

Theorem 5.1. If p is a prime, q is a prime power, a is a positive integer, qa is not

divisible by p, and gcd(Φap(q),Φa(q)) = 1, then

Tap(Fq)× Ta(Fq) ∼= (ResFqp/FqTa)(Fq)
∼= Ta(Fqp).

The next result follows from Proposition 5.1, by doing double induction on

the number of prime divisors of n and the number of prime divisors of m.

Theorem 5.2. If n is square-free and m is a divisor of n, then

Φn(x)
∏

d| n
m
, µ(n

md
)=−1

Φm(xd) =
∏

d| n
m
, µ(n

md
)=1

Φm(xd).

76

Practical Cryptography in High Dimensional Tori

The next result follows from Theorem 5.2, using the ideas in the proof of

Theorem 3 of [157].

Theorem 5.3. If n is square-free andm is a divisor of n, then there is an efficiently

computable bijection (with an efficiently computable inverse)

Tn(Fq)×
∏

d| n
m
, µ(n

md
)=−1

Tm(Fqd)→
∏

d| n
m
, µ(n

md
)=1

Tm(Fqd).

Note that [157] is based on the case m = 1 of Theorem 5.3. Theorem 5.3 is

most useful to us when Tm is rational. If Tm is rational, then Theorem 5.3 gives

efficiently computable “almost bijections” between Tm and Aφ(m), and we have

Tn × AD(m,n) ∼ Aφ(n)+D(m,n) (5.3)

where

D(m,n) = φ(m)
∑

d| n
m
, µ(n

md
)=−1

d

and ∼ denotes efficient “almost bijections”. The smaller D(m,n) is, the better

for our applications. Given the current state of knowledge about the rationality of

the tori Tm, we take m with at most two prime factors. Ideally, m = 6. One could

also take m = 2. When m = 6, then (5.3) gives

T30 × A2 ∼ A10 and T210 × A24 ∼ A72.

As a comparison with the original bijection (5.1) for n = 30 which requires 8m+

32 elements of Fq to represent m elements in T30(Fq), we see that this provides a

considerable improvement.

Even better, using Proposition 5.1 and induction on the number of prime divi-

sors of n, we also obtain the following.

Theorem 5.4. If n = p1 · · ·pk is a product of k ≥ 2 distinct primes, then

Φn(x)

k−1
∏

i=2

Φp1···pi
(xpi+2···pk) = Φp1p2(x

p3···pk).

77

5.3 The New Construction

Applying this to n = 210 = 2 · 3 · 5 · 7, one can similarly show

T210(Fq)× T30(Fq)× T6(Fq7) ∼ T6(Fq35).

Now since T6 ∼ A2, we obtain T210×T30×A14 ∼ A70. Using T30×A2 ∼ A10 now

gives T210×A22 ∼ T210×A10×A12 ∼ T210×(T30×A2)×A12 ∼ T210×T30×A14 ∼
A70, so

T210 × A22 ∼ A70.

More generally, the above reasoning shows that if n = p1 · · ·pk (square-free),

then

Tn × Aφ(p1p2)p3···pn−φ(n) ∼ Aφ(p1p2)p3···pn,

which for 6 | n gives

Tn × An/3−φ(n) ∼ An/3. (5.4)

Using (5.4), one can compress m elements of Tn(Fq) down to just (m− 1)φ(n)+

n/3 elements of Fq by either sequential or tree-based chaining as explained in

Section 5.4.

5.3.1 Applying the Construction to T30

Henceforth we focus on n = 30 since this improves upon previous schemes,

has a straightforward parameter generation (see Section 5), and will be compu-

tationally efficient. Note that gcd(Φ30(q),Φ6(q)) = 1. Indeed, using the first

paragraph of the proof of Lemma 6 of [157], the only possible prime divid-

ing gcd(Φ30(q),Φ6(q)) is 5, but it is easy to see that regardless of q we have

Φ6(q) mod 5 ∈ {1, 2, 3}, which proves our claim. By Theorem 5.1 we now have

T30(Fq)× T6(Fq) ∼= T6(Fq5).

The compression is based on a sequence of maps

T30(Fq)× (A2(Fq) \ V (f))→ T30(Fq)× T6(Fq)→ T6(Fq5)→ A2(Fq5) \ V (f5),

78

Practical Cryptography in High Dimensional Tori

where V (f5) denotes V (f) over Fq5 . We denote by θ the forward composition of

the three maps above, and by θ−1 the composition of the inverses. Note that if

we have m elements in T30(Fq), we compress them down to 8m + 2 elements of

Fq. Thus the compression outperforms CEILIDH and XTR when as few as two

elements are compressed.

The first and last maps are based on CEILIDH decompression and compres-

sion, respectively. We discuss some possibilities for the map

σ : T30(Fq)× T6(Fq) −→ T6(Fq5)

in Section 5.5 below.

5.3.2 Missing Points

With regard to the functionality of θ, the only remaining issue is that the outer two

maps based on CEILIDH do not give everywhere-defined injections.

We can slightly modify the CEILIDH maps, so that for compression we get

an injection ψ′ : A2(Fq) → T6(Fq) × {0, 1} and for decompression an injection

ρ′ : T6(Fq)×{0, 1} → A2(Fq). Note that ψ′ and ρ′ need not be inverses. The two

missing points in ρ’s domain can easily be added by using a table lookup into two

arbitrarily chosen points in V (f). The resulting map is ρ′.

Given the different cardinalities of T6(Fq) (namely q2 − q + 1) and A2(Fq)

(namely q2), there are certain points in A2(Fq) that do not decompress. If we

concentrate on the case q ≡ 2 mod 9 or q ≡ 5 mod 9, then the variety V (f) is

defined by f(v1, v2) = 1 − v2
1 − v2

2 + v1v2. For fixed v2 this has at most 2 roots,

and if this is the case then their difference is (4−3v2
2)

1/2. If this expression equals

2 then v2 = 0, in which case v1 ∈ {−1, 1}. Thus we have a map ψ′ : A2(Fq) →
T6(Fq)× {0, 1}:

• If f(v1, v2) 6= 0, then ψ′(v1, v2) = (ψ(v1, v2), 0),

• Else if v2 6= 0, then ψ′(v1, v2) = (ψ(v1 + 2, v2), 1),

• Else ψ′(v1, v2) = (ψ(v1 + 1, v2), 1),

79

5.4 Applications

where the extra bit indicates whether the input landed in the variety.

5.4 Applications

Our new map saves a significant amount of communication in applications where

many group elements are transmitted. For instance the compression can be used to

agree on a sequence of keys using Diffie-Hellman as in Section 5.1 of [157]. Other

applications include verifiable secret sharing, electronic voting and mix-nets, and

private information retrieval.

In our applications we compress many elements. This is done by using part of

the output of the i-th element as the affine input for the compression of the (i+1)-

st element. This sequential chaining is simple, but has the drawback of needing

to decompress all elements in order to obtain the first element. Alternatively, one

can use trees to allocate the output of previous compressions. For instance, the

output of the first compression is split into five pieces, which are subsequently

used as the affine input when compressing elements two through six. The output

of the second compression is used to compress elements seven through twelve,

etc. When compressing m elements, decompressing a specific element now takes

O(logm) atomic decompressions on average.

5.4.1 ElGamal Encryption

Our first application is ElGamal encryption with a small message domain, where

we obtain an additional 10% compression over CEILIDH even for the encryption

of a single message, since in ElGamal one transmits two elements. This contrasts

starkly with the original mapping of [157] that cannot be used to achieve any

savings for single-message encryption.

Let q and l be primes such that l | Φ30(q). Let g ∈ F×
q30 have order l, so that

〈g〉 ⊆ T30(Fq). For random a, 1 ≤ a ≤ l−1, let a be Bob’s private key andA = ga

his public key. Without loss of generality, letM = {0, 1, . . . , m−1} be the set of

possible messages. We assume that m, the cardinality ofM, is small. We apply

the mapping of Section 5.3 to the generalized ElGamal encryption scheme.

80

Practical Cryptography in High Dimensional Tori

Encryption (M):

1. Alice represents the message M as gM ∈ 〈g〉.

2. Alice selects a random integer k, 1 ≤ k ≤ l, and computes d = gk.

3. Alice sets e = gM · (ga)k.

4. Alice expresses d ∈ T6(Fq5) as (d1, d2) ∈ A8(Fq) × A2(Fq) ∼= A2(Fq5)

by using CEILIDH. Alice compresses e ∈ T30(Fq) and d2 ∈ A2(Fq) as

θ(e, d2) = T , and outputs (d1, T).

Decryption (d1, T):

1. Bob computes θ−1(T) = (e, d2) and uses CEILIDH to reconstruct d.

2. Bob uses his private key a to recover gM = d−ae.

3. Bob recovers M from gM using the fact that M comes from a small domain

(e.g., using Pollard lambda or a table lookup).

The ciphertext is represented as 18 symbols in Fq, which is a 10% improvement

over a solution in which CEILIDH is used to compress both d and e. Note that

the mapping of [157] in Section 5.2 cannot be used to achieve any savings in this

case.

Our scheme preserves homomorphy, that is, without knowing the secret key

a one can compute the encryption of M1 + M2 given encryptions of M1 and

M2 separately. This is useful in applications such as the efficient two-party com-

putations proposed by Schoenmakers and Tuyls [135] which use homomorphic

ElGamal encryption for a small number of messages.

Exactly as for XTR and CEILIDH (with 6 replaced by 30), the security of

our schemes follows from the difficulty of the DDH problem in F×
q30 , the fact that

T30(Fq) is the primitive subgroup of F×
q30 , and the fact that our map and its inverse

are efficiently computable.

81

5.4 Applications

The representation of M as gM in 〈g〉 is not efficient when m is large. There

seems no obvious way to circumvent the issue of efficiently encoding m as an el-

ement of T30. We thus leave it as an open problem to adapt our scheme to handle

a larger message domain. We note that one solution is to use hybrid ElGamal 2

encryption instead. Indeed, we may apply the mapping of Section 5.3 to hy-

brid ElGamal encryption, adapting a protocol in Section 5.3 of [157]. In general,

though, this solution does not preserve the homomorphic property.

5.4.2 ElGamal Signatures

We apply the mapping of Section 5.3 to the generalized ElGamal signature scheme,

adapting a protocol in Section 5.2 of [157]. Here the signature has the form (d, e),

where d ∈ 〈g〉 and 1 ≤ e ≤ l − 1. The idea is to use part of e in the affine

component of θ, which can be done without any loss since log2 e ≈ 160 while

2 log2 q ≈ 70; see Section 5.5.5 for a discussion of parameters. Since the affine

component of [157] is much larger, this is not possible in their setting.

For a random a, 1 ≤ a ≤ l − 1, let a be Alice’s private key and A = ga her

public key. Let h : {0, 1}∗ → Zl be a cryptographic hash function. We have the

following generalized ElGamal signature scheme for input message M :

Signature Generation (M):

1. Alice selects a random secret integer k, 1 ≤ k ≤ l, and computes d = gk.

2. Alice then computes e = k−1(h(M)− ah(d)) mod l.

3. Alice expresses e as (e1, e2) ∈ F2
q × {0, 1}∗, computes θ(d, e1) = T , and

outputs (e2,M, T) as her signature.

Signature Verification (e2,M, T):

1. Bob computes θ−1(T) = (d, e1) and recovers e.

2A hybrid encryption scheme uses public key encryption to encrypt a random symmetric key,
and then encrypts the message using the symmetric key, thus overcoming the problem of compar-
atively slow public key encryption methods.

82

Practical Cryptography in High Dimensional Tori

2. Bob accepts the signature if and only if Ah(d)de = gh(M).

We note that in practice one has the alternative of using Schnorr’s signature scheme,

which already achieves optimal compression.

5.5 Representations and Algorithms for T30

In this section we discuss implementation issues concerning field representation,

key generation, and efficient exponentiation.

5.5.1 Field Representations

Since T30(Fq) ⊂ F×
q30 , we need a model of the latter that permits fast multipli-

cation, squaring, inversion and a fast Frobenius automorphism. We also require

arithmetic for T6, over both Fq and Fq5 . Since T30(Fq) ⊂ T6(Fq5), we may model

the arithmetic of T30(Fq) by the latter, possibly at the risk of losing some opti-

mizations.

The base field Fq

We base our implementation on high performance arithmetic in Fq using the rep-

resentational method of Montgomery [105]. For T30 one is likely to use character-

istics q between 32 and 64 bits long, corresponding to a 2-word value on a 32-bit

architecture. We are careful to distinguish between those small, 2-word values

required by T6(Fq5) and more general values of q (which we need for comparison

purposes). Essentially, we employ the trivial program specialisation techniques

described by Avanzi [4] to construct compact, straight line code sequences for the

2-word case. This affords a significant improvement over code for general sizes

of q. Other than the length, we do not rely on assumptions on the value of q, al-

though one could expect incremental improvements by doing so. Also, our choice

of extension degree poses some congruence conditions on q.

83

5.5 Representations and Algorithms for T30

The extension Fq5

We use a degree five subfield of the degree 10 extension Fq[t]/(Φ11(t)), and use

the Gaussian normal basis {t + t10, t7 + t4, t5 + t6, t2 + t9, t3 + t8}. For this to

work we require that q 6= ±1 mod 11 [111]. Since the extension degree is small,

we perform inversions using the Itoh-Tsujii algorithm [65].

The torus T6

For the torus T6 we take q ≡ 2 mod 9 or q ≡ 5 mod 9 and use arithmetic based

on the degree six extension field defined by adjoining a primitive ninth root of

unity to the base field, as in [127, 148] and Chapter 3. Note that in T6 we have

virtually free inversion, as it is just the cube of the Frobenius automorphism.

5.5.2 Compression and Decompression

Our new compression and decompression algorithms require two components:

CEILIDH and the Chinese Remainder Theorem. We use the implementation of

CEILIDH as given in Chapter 3.

Although it seems that Chinese remaindering is straightforward, there is some

flexibility in choosing the map σ : T30(Fq)× T6(Fq)→ T6(Fq5). Following [157]

we have σ(x, y) = xβyα, where αΦ30(q) + βΦ6(q) = 1. The inverse is given

by σ−1(z) = (zΦ6(q), zΦ30(q)). The cost of the forward computation (i.e., σ) is

an exponentiation in T30(Fq), an exponentiation in T6(Fq), and a multiplication.

Depending on the context, the exponentiation in T30(Fq) may be combined with

an exponentiation performed as part of a particular protocol. The inverse is a

double exponentiation.

Also attractive is the simple σ′(x, y) = xy with inverse (σ′)−1(z) = (zy−1, y)

where y = zαΦ30(q). Clearly the forward map only costs a multiplication. For the

inverse we first compute y using a single exponentiation. Note that the exponent

here is larger than in the case of σ, but the total amount of exponent is similar

in both cases (although asymptotically it is not the total amount that counts, it is

what is relevant in practice). Moreover, we are typically concerned with the case

84

Practical Cryptography in High Dimensional Tori

Fq5 T6(Fq) T6(Fq5)

Multiply 15M + 75A 18M + 53A 270M + 1615A
Square 6M + 21A 90M + 555A
Inverse 65M + 300A+ I 2A 10A
Frobenius 0 1A 5A

Compress 15M + 31A+ I 290M + 1580A+ I
Decompress 27M + 52A+ I 470M + 2585A+ I

Figure 5.1: Arithmetic costs of operations in T30.

where the preimage x ∈ T30(Fq) has an order l dividing Φ30(q) so we know that z

has order dividing l(q2−q+1), which we can use to reduce the exponent αΦ30(q).

As noted before, the computation of y−1 is virtually free, so this method is clearly

preferable to the first suggestion.

5.5.3 Arithmetic Costs

Let M,A, S and I represent the cost of multiplication, addition, squaring and

inversion in Fq, respectively. In Figure 5.1 (cf. Lemma 3.2) we detail the relative

costs for arithmetic in Fq5 , and for both T6(Fq) and T6(Fq5). Compression and

decompression are based on CEILIDH.

5.5.4 Exponentiation in T30

In protocols, one is required to perform one of three operations involving expo-

nentiation: a single exponentiation in T30(Fq), a double exponentiation in T30(Fq),

or a single exponentiation in T6(Fq5) (for the map (σ′)−1 described above). Since

T30(Fq) ⊂ T6(Fq5), we can perform all three of these in T6(Fq5) using the meth-

ods developed in [148]; the main properties one can exploit are the degree two

Frobenius automorphism and fast squaring.

In a subgroup of order l where l | (q10 − q5 + 1), in the same way as in Chap-

ters 3 and 4, we write an exponent m as m ≡ m1 + m2q
5 mod l, where m1 and

m2 are approximately half the bit-length of l, based on the method in [148], and

combine these using the JSF [147]. To perform a double exponentiation, we split

85

5.5 Representations and Algorithms for T30

both exponents as with the single exponentiation, and perform the necessary four-

fold multi-exponentiation as a product of two double exponentiations, combining

the required squarings.

In general one may also be able to exploit the additional structure of T30, which

possesses an automorphism of degree eight, namely, the Frobenius automorphism.

One can in principle employ exactly the same method as above and perform an

eight-fold multi-exponentiation. However for the parameter sizes we consider in

this chapter, we use a much simpler method based on the q-ary expansion of an

exponent m. Specifically, since our value of q will be small (fitting into either one

or two words), we can write an exponent m as m =
∑

miq
i.

For our implementation where q30 has size approximately 1024 bits, exponen-

tiating by a 160 bit exponent consists of five terms in the q-ary expansion, and

hence we perform a five-fold multi-exponentiation. To perform this one can use

ideas of Proos [122], which extend the JSF to more than two exponents. However

due to the amount of precomputation required, for exponents of cryptographic in-

terest we use a naive combination of the JSF and the non-adjacent form (NAF).

This results in an effective exponent length of around the same size as q, signifi-

cantly reducing the number of squarings needed for exponentiation.

With regard to decompression, the exponent in this case is slightly longer than

for a single exponentiation. Again we use a q-ary expansion, consisting of seven

terms in this instance, and apply the JSF to three pairs of them and the NAF to the

remaining one.

Note that for larger parameter choices, one can clearly construct more efficient

multi-exponentiation methods than those we have optimised for 1024 bit fields.

We omit the details.

5.5.5 Parameter Selection

Rubin and Silverberg discuss parameter selection for T30 in Section 3.10 of [128].

We followed their method, starting with primes p ≡ 1 mod 30 of about 30 (resp.,

61) bits, finding 32-bit (resp., 64-bit) primes q of order 30 mod p such that q ≡ 2

mod 9 and q ≡ 7 mod 11, then using the Elliptic Curve Method to remove small

86

Practical Cryptography in High Dimensional Tori

q l

2229155309 931607823866669709267930039057677132828697751771
2527138379 963373263959318090938089232997832791220899903311
2559356147 922800311037389261880873570251585702571121590451
2925130259 899122187666688780457417063691715267976198516591
3020282723 734463532846449031549478184170595775906318188901
3734718203 789572131486790156853093352977895757720566978441

Figure 5.2: Parameter examples with 32-bit primes q

prime factors from Φ30(q)/p, and checking to see if what remains is a prime of

about 160 (resp., 200) bits. This results in parameters with q a 32-bit (resp., 64-

bit) prime with the property that the order of T30(Fq) is divisible by a 160-bit

(resp., 200-bit) prime l. These choices give security equivalent to 960-bit (resp.,

1920-bit) RSA security.

By suitably optimizing the Elliptic Curve Method parameter choices, we were

able to generate parameters at a rate of about one example every minute or two

for 32-bit primes q (with 160-bit primes l), using a Macintosh G5 dual 2.5GHz

computer. For 64-bit primes q, we obtained examples with l a prime of between

198 and 202 bits at a rate of one every few hours. The parameters are like Diffie-

Hellman parameters, in the sense that the same parameters can be used for all

users, and for many applications do not need to be changed frequently. In Fig-

ure 5.2 we list some examples with 32-bit primes q and 160-bit primes l. In

Figure 5.3 we list some examples with 64-bit primes q and 200-bit primes l.

5.6 Implementation Results

In order to understand the real-world performance of our construction, we imple-

mented the entire system and ran a number of timing experiments. Our main goal

is to compare the performance of an implementation of T6(FqL) using CEILIDH

against an implementation of T30(FqS) of similar cardinality using our construc-

tion. Here, we denote the special cases of large and small q as qL and qS . We

used log2(qL) ≈ 5 · log2(qS) ≈ 176 bits, so that in both cases, there is a subgroup

87

5.6 Implementation Results

q1 9909125592335111369
q2 10640772970658245433
q3 11042402719715204339
q4 11391285666382073129
q5 11868436123416952031
q6 17174393702711641469

l1 1056384871088595423227115173568048528184621140903052910805301
l2 3170119585137777422832938014760851013504258723575431018642871
l3 1179345732085674283659621603717770735788409366766144466686061
l4 1293678412210548537320558698939727346786705884728706067133651
l6 1230352242796051691760643717809792393751225110105630495113071
l6 1070675878645369998848869455205552403869773154208635001001721

Figure 5.3: Parameter examples with 64-bit primes q and corresponding l of about
200-bits.

of roughly log2(l) ≈ 160 bits in size. These parameters heuristically provide the

equivalent of 1024-bit RSA security (cf. Chapter 9 for an analysis of this assump-

tion).

We constructed our implementation entirely in C++, apart from small se-

quences of assembly language to accelerate arithmetic in Fq, using the GCC 3.4.2

compiler suite. The timing experiments were carried out on a Linux based PC

housing a 2.8 GHz Intel Pentium 4 processor and 1 GB of memory. We selected

our system parameters as in Section 5.5.5. In all of our timing experiments we

generated random operands and averaged the timings of many experiments to get

a representative result. Note that exponents are reduced modulo l in all cases. Our

sliding window had a maximum size of four.

Figure 5.4 shows timings for basic field and torus arithmetic. Arithmetic in

FqL is used in T6(FqL) and arithmetic in FqS and FqS5 is used in T30(FqS). Fig-

ure 5.5 details the cost of mapping between different representations (compress

and decompress) and the cost of different exponentiation methods which might be

used within an actual cryptosystem.

It is difficult to get an exact comparison with other work on ECC and XTR,

partly because of differences in host processor and levels of optimisation used

88

Practical Cryptography in High Dimensional Tori

FqL FqS FqS5 T6(FqL) T30(FqS)

Addition 0.80µs 0.52µs 0.82µs
Frobenius 0.48µs 1.64µs 1.10µs
Square 2.51µs 0.61µs 13.80µs 21.61µs
Multiply 2.58µs 0.62µs 3.78µs 32.30µs 65.92µs
Inverse 92.71µs 2.04µs 16.03µs 1.82µs 1.29µs

Figure 5.4: Timings of basic field and torus arithmetic.

T6(FqL) T30(FqS)
Compression
Compress 131.30µs 0.13ms
Decompress 188.61µs 4.92ms
Exponentiation
Binary 5.21ms 9.12ms
Sliding Window 4.39ms 7.53ms
q-ary 3.11ms
JSF Single 2.79ms 4.57ms

Figure 5.5: Timings for compression, decompression and exponentiations.

by different authors in producing benchmark timings. However, a comparison

with the highly optimised ECC results of Avanzi [4], for example, gives some in-

sight. For similar levels of security, direct comparison shows an exponentiation in

T30(FqS) is only around twice as costly as an ECC point multiplication; correcting

for the difference in processors still means that T30(FqS) is at least competitive.

The case of XTR is easier to compare against since we essentially use the same ex-

perimental platform as that given in Chapter 3. It turns out that XTR is marginally

faster. Solely from the point of view of performance, we conclude that our con-

struction is a competitive alternative to existing cryptosystems.

5.7 Concluding Remarks

In this chapter we constructed an efficient “almost bijection” between T30(Fq) ×
A2(Fq) and A10(Fq) which achieves better compression than XTR and CEILIDH

89

5.7 Concluding Remarks

for the compression of as few as two group elements. In particular, we obtained

ElGamal ciphertexts that are 10% smaller than in previous schemes. We also

developed an efficient implementation, using a variety of techniques for reducing

the computational requirements and obtaining a scheme much more practical than

that in [157]. From experimental results we conclude that our construction is a

competitive alternative to the best existing public key cryptosystems.

90

Part II

Security Analysis

91

Chapter 6

The Discrete Logarithm Problem

In this expository chapter we provide a brief history of the study of the discrete

logarithm problem (DLP), make some pertinent observations, and put into context

the contributions detailed in Chapters 7, 8 and 9.

6.1 The Discrete Logarithm Problem

Given a finite cyclic group G with group operation ‘·’, written multiplicatively,

the DLP in (G, ·) is to compute, for a given element h ∈ G and generator g ∈ G,

the unique integer x mod #G − 1 such that gx = h. In analogy with logarithms

in R, we represent this equality also as logg h = x.

In the case that the group G is the multiplicative group of a finite field, which

is the main subject of Part II of this thesis, much can be said about the problem.

In Section 6.4 we give a brief synopsis of the subject’s rich history in this setting,

leaving the details of some contemporary methods to the following chapters, while

in this chapter we make some elementary statements regarding the DLP in an

arbitrary finite cyclic group.

One issue of primary importance for the DLP is that of group representation.

While all cyclic groups of order n are isomorphic (to (Z/nZ,+)), the particular

representation of elements in a given instantiation of the problem may obscure

this cyclic structure. Therefore it is the difficulty of computing this isomorphism

93

6.1 The Discrete Logarithm Problem

that makes some DLPs hard, such as in suitable elliptic curve groups, and some

easy, such as in (Z/nZ,+) itself.

The significance of this observation, which may not initially appear to be all

that deep, is motivated by a natural partitioning of the set of algorithms to solve

the DLP into two distinct classes. Firstly, we have the so-called generic algo-

rithms, which apply to any finite cyclic group and exploit only the existence of

the group operation, and are blind to the group representation. These are of ex-

ponential complexity, typically with exponent one half, and hence are also known

as ‘square-root algorithms’. The second class of algorithms, the index calculus

algorithms, make essential use of the group representation, and also some notion

of factorisation. These algorithms, having subexponential complexity, are gener-

ally far more efficient than their generic counterparts in cryptographically relevant

cases.

Before proceeding, we should specify the notion of subexponentiality we as-

sume. Essentially, the following function allows interpolations between polyno-

mial, and exponential complexity:

Lq[α, c] = exp((c+ o(1)) log(q)α log(log(q))1−α).

The value α ∈ [0, 1] gives a measure of subexponentiality, with α = 0 being

polynomial time in the size of q (and c the degree of this polynomial), and α = 1

corresponding to fully exponential run-time. Since α is the important variable,

sometimes we will drop the c from complexity statements.

A result of particular importance in this area is one due to Shoup [142] and

Nechaev [107], which asserts that within the generic group model, the best dis-

crete logarithm algorithms one can obtain are necessarily of full exponential com-

plexity, with exponent one half. This model is a formalisation of the notion alluded

to above, stipulating that group elements are arbitrarily, rather than naturally en-

coded, and hence one can utilise no information regarding element representation.

Shoup’s result therefore assures one that in order to obtain a subexponential algo-

rithm, one must exploit the given group representation. As a good rule of thumb,

the more ‘structure’ there is available in a particular group representation, the

94

The Discrete Logarithm Problem

more likely it is that there exists a corresponding algorithm that can exploit this

structure to solve DLPs more efficiently.

In the next section, we give a short description of a simple reduction of the

DLP, and provide suitable references to the generic, or square-root algorithms,

since these are not the focus of this chapter. Then in Section 6.3 we explain

in detail the principle of the index calculus method, and in Section 6.4, outline

specific algorithms for solving the DLP in finite fields.

6.2 General Methods

Besides the general methods available to solve the DLP, if the factorisation of the

group order is known, one can apply the following simple observation of Pohlig

and Hellman [119] to reduce the problem to one of prime order subgroups.

6.2.1 The Pohlig-Hellman Simplification

Let #G = n and suppose the prime factorisation of n is known. The idea is to

solve the DLP modulo each prime power dividing n, and then recover the full

discrete logarithm via the Chinese Remainder Theorem (CRT).

Suppose we want to solve gx = h for x. For p | n, we project the DLP into the

subgroup of order p by powering g and h by n′ = n/pe−1, giving g′ and h′ say,

where pe is the largest power of p which divides n. We then solve

g′x0 = h′,

for x0 ≡ x mod p. In order to find x mod pe we proceed as follows. Suppose we

know x ≡ xi mod pi. Then x = xi + λpi for some λ ∈ Z. Consequently,

r = (h · g−xi) = (gp
i

)λ = sλ,

where s has order n/pi. Then powering r and s by n/pc−i−1, one can compute

λ mod p by employing the same method as before. Therefore each coefficient

95

6.2 General Methods

of the base p expansion of x mod pe can be computed by solving a DLP for an

element of order p only. Combining the modular information with the CRT then

solves the original DLP.

If n =
∏

pei
i and we use one of the square-root algorithms described in the

next subsection, the complexity of the method is O(
∑

ei(logn+
√
pi)) group op-

erations. One can deduce from this that for cryptographic purposes, one necessary

requirement of a secure group is that its order is divisible by a prime of a sufficient

size to ensure the desired level of security. So for instance, groups whose orders

are divisible by small primes only, are completely insecure.

6.2.2 Square-root Algorithms

The two square root algorithms we mention here are general purpose, in that they

can be applied to arbitrary finite cyclic groups. From Shoup’s result [142], one

might conclude that for a DLP based in any real instantiation of a group, there

should exist a more efficient algorithm to solve the DLP. Surprisingly, for the

DLP on elliptic curves defined over prime fields, square root algorithms are the

best known (except for a few easily identified cases - see [10]), simply because

no one has yet thought of a sufficiently intelligent method to exploit the group

representation employed.

Broadly speaking, there are essentially only two flavours to the square root

algorithms. Firstly, we have a deterministic method, known as the baby step/giant

step (BS/GS) method, which is due to Shanks in the context of integer factori-

sation algorithms and class group computations [141]. This utilises a standard

space/time trade-off, and has deterministic complexity O(
√
n) for a group of or-

der n. The drawback of this method is that it requires O(
√
n) memory, which

imposes serious hardware demands. We refer the reader to chapter 5 of [10] for a

description of both the BG/GS method, as well as the following method.

In order to overcome this constraint, in 1978 Pollard [120] suggested a prob-

abilistic method, based on the Birthday Paradox. Also known as Pollard’s Rho

Method, because the random walks employed to find a collision may be visualised

as tracing out the Greek letter ρ, the expected time for the method to compute

96

The Discrete Logarithm Problem

discrete logarithms is O(
√
n) group operations also, however the algorithm has

virtually no memory overhead. Hence with any hardware constraints the method

is preferable to BS/GS. While we choose not to go into the details here, we note

that like BS/GS, the method can be efficiently parallelised [151].

Since parallelised Pollard rho is the best publically known method to solve

the ECDLP over prime fields (and binary fields with prime extension degree),

much research has focused on developing optimised implementations. Indeed,

several large scale experiments have been conducted [152], lending assurance of

the expected hardness of solving the ECDLP, at least when using this method.

6.3 The Index Calculus Method

Currently the most effective principle for computing discrete logarithms for non-

trivial group representations is the Index Calculus Method (ICM). The term her-

alds from the 18th century when the discrete logarithm of an integer modulo p

relative to a primitive root was also known as its index, and it is this index which

is being calculated.

The use of the definite article is perhaps a misnomer since there are many

ways to compute logarithms, however the principle underlying the method which

is now synonymous with the name is currently the best known and applies in a

broad range of circumstances, and so in this sense the term is justified, if a little

overstated.

Crucially, the method relies on the ability to factorise into some notion of

‘primes’, elements in a particular representation of the group in which logarithms

are to be computed. One also requires a notion of size for elements, or a norm

function N : G 7→ N, and typically a suitable norm can be defined as soon as one

has a suitable notion of primes.

Using these two concepts, for an integer B, one defines an element to be ‘B-

smooth’ if it factors into a product of primes, all of whose norms are less than or

equal to B. It is the existence of a ‘sufficient proportion’ of smooth elements in a

group which makes the ICM work, as follows.

97

6.3 The Index Calculus Method

At a high level, the ICM consists of three phases. Fix a group G of order n as

before. For the first phase one first fixes a subset F of G called the factor base,

F = {p1, . . . , p|F|},

consisting of all prime elements with norm ≤ B for some bound B. The reason

the factor base is chosen as such is that the number of elements of G generated

by this set is larger than that generated by any other set of the same cardinality.

Hence, with this choice, heuristically the probability that a random element of G

factors over F is maximised. One then generates multiplicative relations between

elements of G in the hope that they factor completely over F . This can be per-

formed simply by computing random powers of a generator gk and checking these

for smoothness or in some situations, such as for finite fields, more sophisticated

methods can be brought to bare.

The purpose of the second phase is then to compute the discrete logarithms of

all the factor base elements, as follows. Upon taking logarithms with respect to a

generator g one obtains a set of equations of the form

∑

(ji,pi)∈Z×F

ji logg pi ≡ 0 mod n. (6.1)

Presuming the resulting linear system is of full rank, i.e., sufficiently many rela-

tions have been collected during the first phase, one inverts this system modulo

n to obtain the quantities logg pi for each pi ∈ F . If the prime factors of n are

known this computation can be simplified by solving for the pi modulo each prime

divisor of n, and then reconstructing their values modulo n using the CRT.

The final phase then consists of computing discrete logarithms for arbitrary

elements of G, and once the first two phases are complete, can be usually be

performed relatively quickly. For h ∈ G \ F , one computes g lh for random

integers l until one factors over F , yielding the solution

logg h =

{

− l +
∑

(ki,pi)∈Z×F

ki logg pi

}

mod n.

98

The Discrete Logarithm Problem

This is the core technique underlying all index calculus methods, although the

details for a given group representation involve various notions of factorisation,

and correspondingly different norms. From an efficiency perspective, there are

three main issues to address. By what method should one collect relations? What

is the most time-efficient size for the factor base? Can one do better than randomly

guessing in the third phase? For different groups these issues naturally lead to

different considerations and techniques.

The central idea of using a factor base and exploiting smoothness is straight-

forward and consequently, has been independently discovered many times (see [87,

98,113,114] and the references therein). In the context of the DLP in prime fields,

it was first published by Kraitchik in the 1920’s [78, 79].

As an example of the applicability of the ICM, Enge and Gaudry [34] have

unified its various instantiations in several contexts, using a sufficently general

description of the problems. Within this framework, they proved an expected

L[1/2] running time for several algorithms simultaneously. While for finite fields,

the Number Field Sieve and Function Field Sieve algorithms have heuristic L[1/3]

expected running time, the ICM principle is still used, and barring a dramatic

development in DLP algorithms, appears to be the best currently available method.

6.4 The Discrete Logarithm Problem in Finite Fields

The most successful algorithms for solving the discrete logarithm problem in a

finite field Fpm are the Number Field Sieve (NFS) [52, 86, 132], and the Function

Field Sieve (FFS) [1,3], which are applicable form < (log p)1/2 andm > (log p)2

respectively1. Both have conjectured complexity L[1/3, c], where c ranges be-

tween (32/9)1/3 and (64/9)1/3 for the NFS [130], and is (32/9)1/3 for the FFS [70].

The reason the subexponentiality constant is smaller than one half, as seems

to be the bound for all other discrete logarithm problems, is essentially due to

the fact that in a field, there exists a second binary operation between elements,

namely addition, which can be exploited.

1See Section 9.6 for comments regarding recent advances in this area.

99

6.4 The Discrete Logarithm Problem in Finite Fields

One naive way to exploit this second operation is to express the discrete loga-

rithm function as a polynomial [99] (which is always possible for a function from

a field to itself):

logg h =
n−1
∑

m=0

{ q−2
∑

i=1

hi(1− gi)−pm

}

pm,

although this is clearly less effective than a naive enumeration of powers of g, as

promising as it may look at first sight. Fortunately, more sophisticated methods

are available.

In order to beat the ‘L[1/2] barrier’, one needs a better way to generate rela-

tions than simply choosing random elements and trying to factor them over the

factor base. In 1984 Coppersmith gave the first heuristic L[1/3] algorithm in the

case of characterstic two fields [24, 25, 113]. For the DLP over large prime fields,

Gordon observed in 1992 that the well-known NFS could be adpated to com-

pute logarithms in Fp [52], obtaining a complexity of L[1/3] also. Then in 1994,

Adleman designed the FFS in analogy with the NFS [1]. Later work by Schi-

rokauer [132] then generalised the NFS method to compute logarithms in finite

fields with very small extension degree. These last two results are responsible

for the aforementioned constraints on the base field size, and extension degree,

p and m. It is still an open problem to find an algorithm with heuristic L[1/3]

complexity for all finite fields. We note that Nguyen has given an interpretation

of both the NFS and FFS in the context of computing discrete logarithms in finite

fields, in terms of the arithmetic of relative Brauer groups [109], which may lead

to developments in answers to this problem.

This part of the thesis is dedicated to the security aspects of the systems de-

tailed or proposed in Part I. In Chapters 7 and 8 we give a detailed description of

the FFS, a probablistic model of its behaviour, and a corresponding implementa-

tion in characteristic three. In Chapter 9 we propose a completely new approach

to solving the discrete logarithm on algebraic tori (and hence in extension fields),

which is independent from the described field-based methods, and analyse its per-

formance.

100

Chapter 7

Estimates for Discrete Logarithm

Computations in Finite Fields of

Small Characteristic

Motivated by the use of characteristic two and three fields in identity-based cryp-

tography, using an elementary probabilistic model of a version of the Function

Field Sieve (FFS), in this chapter we give estimates for the running-time of dis-

crete logarithm computations in F×
pn , for small p.

The results of this chapter appeared in [54].

7.1 Introduction

The proposed use of elliptic curves with low embedding degree for identity-based

cryptography has caused some consternation within the cryptographic commu-

nity, primarily due to the uncertain security assurances they provide. Indeed,

when Menezes, Okamoto and Vanstone [100] proved in 1993 that the ECDLP

is no harder than the DLP in some extension field, one immediate unaminous pre-

sumption was that supersingular elliptic curves, which have embedding degree

≤ 6, are weak, and hence are unsuitable for cryptographic purposes.

However, the proposal of the first efficient identity-based key agreement, sig-

101

7.1 Introduction

nature and encryption schemes [14,129] relied upon the existence of elliptic curves

with low embedding degree. Therefore cryptographers were forced to re-examine

the presumption of insecurity previously made about such curves, if they were to

benefit from the radically new functionality afforded by pairings (see [153] for an

impressive collection of pairing-related references).

For contemporary security parameters, there are two types of elliptic curves

to consider. The use of supersingular elliptic curves in identity-based cryptogra-

phy has been proposed since they can provide some efficiency and implemention

advantages [6, 7, 30, 43] over, and differing properties from, the so-called MNT

curves [104], which form a family of elliptic curves over prime fields with em-

bedding degree six. Indeed, a comparison between characteristic three pairings

and pairings on MNT curves suggests that each have advantages for different ap-

plications [118]. For prime fields of characteristic p > 3, supersingular curves

have maximum embedding degree two, while for characteristics two and three,

the maximums are four and six, respectively [43]. The latter two are therefore

preferable from an efficiency perspective since one can then keep the field of def-

inition of the elliptic curve relatively small.

Despite these potential advantages, the central drawback of using small char-

acteristic fields is that in anology with the relationship between the special, and

general NFS [86], discrete logarithms can be computed much faster in these fields

than for prime fields of a similar size [24,25,131]. Thus in order to attain the same

level of security, one must increase the size of the field of definition of the curve.

By how much one should do so has yet to be fully analysed.

It is the goal of this chapter to help provide a method to establish the level

of security provided by a given field. While we do not conclusively assess the

security of various small characteristic fields relative to the best known algorithm

- the Function Field Sieve (FFS), which has complexity L[1/3, (32/9)1/3] - we

do describe a model of its behaviour which can be specialised for a particular

implementation, and adjusted accordingly.

In any large-scale implementation of the FFS it is essential to solve many small

example DLPs to gain an idea of what parameter choices are most effective. This

102

Estimates for Discrete Logarithm Computations in Finite Fields of Small
Characteristic

initial understanding of the performance of an implementation can then be used to

extrapolate optimal parameter choices to the larger, more costly example. To date

there are only very few published accounts of discrete logarithm computations

undertaken in reasonably large fields in characteristic two [53, 70, 155], and none

in fields of other small characteristics. Considering that the current record for

the field F2607 [155] was the result of over a year’s worth of highly parallelised

computation, rather than implementing another example, we develop a detailed

model of the behaviour of the FFS that allows one to make practical estimates of

optimal parameters and expected running-times for any Fq where the FFS applies.

In particular, we obtain sharp probability estimates that allow us to select

optimal parameters in cases of cryptographic interest, without appealing to the

heuristics commonly relied upon in an asymptotic analysis. We also consider

the possible effect of different field representations, when the extension degree is

composite, and indicate that in some cases these may offer an advantage to the

attacker.

Currently the linear algebra step is considered to be a bottleneck in the in-

dex calculus method, due to the difficulty of parallelising this stage efficiently,

although some progress has been made [116, 162]. Although the situation is im-

proving, the heuristically optimum factor base sizes are still beyond what can

adequately be accommodated in the matrix step. One question we answer is how

varying the size of the factor base, which is the main constraint in the linear al-

gebra step, affects the efficiency of the FFS. It is the notion of ‘smoothness’ that

allows us to assess the probability that a random element will factor in the factor

base, and this is based solely on the degree of that element. Consequently if the

factor base is chosen to consist of all monic irreducible polynomials up to a certain

degree bound, then although we can make good estimates of smoothness proba-

bilities, we are restricted in the choice of the size of the factor base. In higher

characteristics this problem renders typical estimates of smoothness probabilities

useless.

Ideally for an optimisation analysis we would like to allow the size of the fac-

tor base to vary over N, but it is essential that we have highly accurate estimates for

103

7.2 The Function Field Sieve

the probabilities involved. Such an interpolation is often used in practice, yet no

formal analysis has been given. We give such an analysis, allowing implementors

to decide whether such an interpolation is useful in practice.

We also give evidence that for any fixed field size some may be weaker than

others of a different characteristic or field representation, and compare the relative

difficulty of computing discrete logarithms via the FFS in such cases.

The model we assume in our running-time estimates is the version of the FFS

as detailed in [3]. In order to assess these times accurately, it is necessary to

provide in detail an analysis of how we expect a basic implementation of the FFS

to behave in practice. In the next section we briefly explain the general principle

of the FFS. In Section 7.3 we give the revised probability estimates we need and

describe our model. In Section 7.4 we present our results, and in Section 7.5, we

draw some conclusions.

7.2 The Function Field Sieve

The idea of using a function field to obtain relations of the form (6.1) is originally

due to Adleman [1] and generalises Coppersmith’s early algorithm [24,25] for the

characteristic two case. Here we give a brief overview of the algorithm. Note that

in Chapter 8 we give a more detailed description of the FFS method.

Letting q = pn, we choose as our representation of Fq the set of equivalence

classes in the quotient of the ring Fp[t] by one of its maximal ideals f(t)Fp[t],

where f(t) is an irreducible polynomial of degree n. Each equivalence class can

then be uniquely identified with a polynomial in Fp[t] of degree strictly less than

n. Arithmetic is performed as in Fp[t], except that when we multiply two elements

we reduce the result modulo f(t).

To begin with one selects a polynomialµ in Fp[t], and an absolutely irreducible

bivariate polynomial H(t, X) such that H(t, µ(t)) = 0 mod f(t), where f(t) is

the irreducible polynomial in Fp[t] which defines Fq. This condition provides a

map φ from the ring Fp[t, X]/(H) to F×
q induced by sending X 7→ µ. Given

H(t, X), its function field L is defined as the field of fractions of (Fp[t, X]/(H)).

104

Estimates for Discrete Logarithm Computations in Finite Fields of Small
Characteristic

In the FFS we have two factor bases. The small degree monic irreducible

polynomials in Fp[t] form the rational factor base FR, while those places in L that

lie above the primes of FR and are of degree ≤ the maximum degree of elements

of FR, form the algebraic factor base FA. For a given coprime pair (r, s) ∈ Fp[t]
2,

we check if rµ + s decomposes on the rational side as a product of primes from

FR, and also whether the divisor associated to the function rX + s decomposes

as a sum of places in FA on the algebraic side. To verify the second condition we

need only compute the norm of rX + s over Fp[t], rdH(t,−s/r), where d is the

degree in X of H , and check this for smoothness in FR.

Provided that H(t, X) satisfies eight technical conditions given by Adleman,

we obtain a relation in F×
q by raising the function rX+s to the power hL, the class

number of L, and applying the morphism φ to the components of its associated

divisor, and also to rX + s, giving rµ + s. One point to note is that for each

element of the algebraic factor base FA occuring in the decomposition of the

divisor associated to (rX + s)hL , applying the morphism φ gives an additional

logarithm for an element of F×
q which is unlikely to be in the rational factor base

(and which we need not compute explicitly). Therefore, with regard to the linear

algebra step of the algorithm, we expect the matrix to have about FR + FA rows,

and once the elimination has been performed, we may disregard the logarithms of

these superfluous elements.

The sieving stage of the FFS refers to various methods which may be em-

ployed to enhance the probability that the pairs (r, s) will be coprime and ‘doubly

smooth’, see [24, 46, 113]. For simplicity we do not incorporate these methods

into our probabilistic model, although one does expect them to be a significant

factor in actual run times. With regard to estimating suitable parameter choices

for discrete logarithm computations in various fields, the results of Chapter 8 im-

ply that this simplification still preserves the accuracy of these estimates, if not

their complete precision.

In Section 7.3.2, we describe the properties of the curve H(t, X) that are es-

sential to our model. Note also that we ignore phase three of the index calculus

method, since in practice the time for computing individual logarithms is negligi-

105

7.3 Methodology of our Analysis

ble [1, 24, 113, 131],

7.3 Methodology of our Analysis

In this section we describe the methodology of our calculations. Our goal here

is twofold: primarily we want to ensure that our model portrays as accurately as

possible the behaviour of a practical implementation of the FFS; and secondly

to ensure that the full spectrum of choice for the relevant variables is thoroughly

investigated. With regard to the former, we first give a refinement of the well-

known smoothness probability function [113].

7.3.1 Some Factorisation Probabilities

Let η = |FR| and let

Ip(j) =
1

j

∑

d|j

µ(d)pj/d (7.1)

be the number of monic irreducible polynomials in Fp[t] of degree j, where µ is

the mobius function. This then determines a unique m ∈ N such that

m
∑

j=1

Ip(j) ≤ η <
m+1
∑

j=1

Ip(j)

so that while we have all irreducible polynomials in Fp[t] of degrees ≤ m in our

factor base, we are also free to select a fraction α of primes of degree m+ 1, with

α = (η −
m
∑

j=1

Ip(j))/Ip(m + 1).

Such a proportion α is used in some implementations of the FFS, and in the fol-

lowing we investigate the practical implications of such a parameter. We assume

that the additional degree m + 1 members of the factor base have been chosen at

random, before sieving begins. In an implementation these would probably be se-

lected dynamically, as the sieve progressed, though we do not believe this would

106

Estimates for Discrete Logarithm Computations in Finite Fields of Small
Characteristic

affect these estimates significantly.

Definition 7.1. Let ρp,α(k,m) be the probability that a given monic polynomial

in Fp[t] of degree k has all of its irreducible factors of degrees ≤ m+ 1, and that

those of degree m + 1 are contained in a proportion α of preselected irreducible

polynomials of degree m+ 1.

We implicitly assume throughout, as do all authors on this subject, that ele-

ments of Fp[t] behave like independent random variables with respect to the prop-

erty of being smooth. Provided we have a process to generate elements uniformly,

this is reasonable. Note that the case p = 2, α = 0 is the definition of ρ(k,m)

in [113], which can be computed using the counting function we introduce in Def-

inition 7.2, and with which we derive an exact expression for ρp,α(k,m). When

a given polynomial factors within this extended factor base we say it is (m,α)-

smooth.

Definition 7.2. Let Np(k,m) be the number of monic polynomials e(t) ∈ Fp[t] of

degree k such that e(t) has all of its irreducible factors of degrees ≤ m, i.e.,

e(t) =
∏

i

ei(t)
βi, deg(ei(t)) ≤ m.

For exactness we further define Np(k, 0) = 0 for k > 0, Np(k,m) = pk if k ≤ m,

and Np(k,m) = 0 if k < 0 and m ≥ 0.

We are now ready to state

Theorem 7.1.

i. Np(k,m) =
m
∑

n=1

∑

r≥1

Np(k − nr, n− 1)

(

r + Ip(n)− 1

r

)

,

ii. ρp,α(k,m) =
∑

r≥0

Np(k − r(m+ 1), m)

pk

(

r + Ip(m+ 1)− 1

r

)

αr.

Proof. The proof of (i) is virtually identical to the derivation of ρ2,0(k,m) in

[113], since in F2[t] all non-zero polynomials are monic. For (ii) let e(t) be any

107

7.3 Methodology of our Analysis

monic polynomial in Fp[t] of degree k, all of whose irreducible factors are of

degrees ≤ m+ 1. Such a polynomial can be written uniquely as

e(t) = g(t)
∏

u(t)

u(t)βu(t),

where the u(t) are monic and of degree m + 1,
∑

βu(t) = r for some r ∈ N, and

g(t) is a monic polynomial of degree k− r(m+1), all of whose prime factors are

of degrees≤ m. Givenm+1 and r, there are Np(k−r(m+1), m) such g(t), and

the number of such
∏

u(t)βu(t) is the number of Ip(m+ 1)-tuples of non-negative

integers which sum to r (since we have Ip(m+1) possibilities for the u(t)), which

is just (

r + Ip(m+ 1)− 1

r

)

.

So for a given r, the probability that a monic polynomial e(t) ∈ Fp[t] of degree

exactly k has all its irreducible factors of degrees ≤ m + 1, exactly r of its irre-

ducible factors having degree m + 1, and that these are in the preselected factor

base is then

Np(k − r(m+ 1), m)

pk

(

r + Ip(m + 1)− 1

r

)

αr,

since there are pk monic polynomials of degree k. Hence the total probability that

e(t) has all its irreducible factors in the chosen factor base is

∑

r≥0

Np(k − r(m+ 1), m)

pk

(

r + Ip(m + 1)− 1

r

)

αr,

which is our theorem.
�

Remark. We have noted already that for α = 0, we obtain ρp(k,m) (assuming

00 = 1; while for α = 1, we obtain

ρp(k,m) +
∑

r≥1

Np(k − r(m+ 1), m)

pk

(

r + Ip(m + 1)− 1

r

)

,

108

Estimates for Discrete Logarithm Computations in Finite Fields of Small
Characteristic

which, by the recurrence (i) is equal to

ρp(k,m) +
1

pk
{Np(k,m+ 1)−Np(k,m)} = ρp(k,m+ 1),

verifying our calculation.

We will also need the following simple theorem in the next section.

Theorem 7.2. Let aR,S be the number of coprime pairs of polynomials (r, s) of

degrees 0 ≤ R ≤ S with r monic. Then

aR,S =

{

(p− 1)2pR+S−1 R, S > 0

(p− 1)pS otherwise.
(7.2)

Proof. Considering first just monic polynomials, let 0 ≤ R ≤ S. Since there

are pR monic polynomials of degree R, and pS monic polynomials of degree S,

there are pR+S pairs of monic polynomials in this range. Let âR,S be the number

of monic polynomial pairs (r, s) with degrees R and S such that gcd(r, s) = 1,

and for each pair (r, s), let h = gcd(r, s) where 0 ≤ k = δ(h) ≤ R. There are pk

possible such monic h. Furthermore since gcd(r/h, s/h) = 1, there are âR−k,S−k

possibilities for the pair(r/h, s/h). Summing these possibilities over k we obtain

the recurrence relation

pR+S =

R
∑

k=0

âR−k,S−kp
k.

Noting that â0,S−R = pS−R we see this has the solution

âR,S =

{

(p− 1)pR+S−1 0 < R ≤ S

pS R = 0

If we allow s to be non-monic then we simply multiply âR,S by |F×
p |, giving the

stated result.

�

109

7.3 Methodology of our Analysis

7.3.2 Model of the Function Field Sieve

In this section we describe the details of the model we use in our estimates, which

is based on the FFS as set forth in [3].

Let d be the degree in X of the curve H(t, X), and let d′ = dn/de, where

n is the extension degree of Fq over Fp. Let δ(·) be the degree function. The

irreducible polynomial f of degree n which defines Fq is chosen to be of the form

f(t) = tn + f̂(t), where δ(f̂) ≈ logp n. We make this last assertion since by

(7.1) the proportion of degree n monic polynomials in Fp[t] that are irreducible is

about 1/n, and so we expect to be able to find one satisfying δ(f̂) ≤ logp n. A

further condition on f̂ is that it has at least one root of multiplicity one, so that

the curve H(t, X) = Xd + tdd
′−nf̂(t) is absolutely irreducible. We let µ(t) = td

′

and it is easily checked then that H(t, µ(t)) ≡ 0 mod f . Lastly we assume that

we can easily find such curves for each set of parameter values we analyse, that

furthermore satisfy the remaining technical requirements.

Within the model itself, we are slightly conservative in some approximations.

This means our final estimates for the running-times will tend to err on the upper

side of the average case, so that we know with a fair degree of certainty that given

a final estimate, we can compute discrete logarithms within this time. We take as

the unit run-time of our calculations the time to perform a basic field operation

in Fp, but do not discriminate between which ones as this will only introduce a

logarithmic factor into the estimates. Furthermore, for a real implementation the

computational difference for different p will often be irrelevant, since all small p

will fit in the word size, and for characteristics two and three, there will be only a

small constant difference in performance.

Given a factor base size η as in Section 7.3.1, we determine the corresponding

m, and α. We assume that FA has the same cardinality as the set of primes we

use in the factor base FR on the rational side. So the set of useful logarithms that

we obtain is only half the size of the matrix that we can theoretically handle in the

linear algebra step.

We now consider the number of relations we expect to obtain. Since we wish

to minimise the degree of the polynomials we generate, we consider those pairs

110

Estimates for Discrete Logarithm Computations in Finite Fields of Small
Characteristic

(r, s) ∈ Fp[t]
2 where δ(r) = R, δ(s) = S are as small as possible, and R ≤ S.

We refer to this collection of elements as the sieve base, and it is typically chosen

to consist of all relatively prime pairs of polynomials with degrees bounded by l, a

parameter to be selected. We observe though that since we are looking to generate

pairs (r, s) such that rµ+ s and rX + s give useful relations, we may assume that

either r or s is a monic polynomial, as otherwise we will obtain p − 1 copies of

each useful pair rµ+ s and rX + s.

For a givenµ ∈ F×
q of degree dn/de and a given pair (r, s) with degrees (R, S),

0 ≤ R, S ≤ l, the degrees of the rational and algebraic sides are respectively

bounded by

δRATd
(R, S) ≤ max{R + dn/de, S},

δALGd
(R, S) ≤ max{dR + d+ logp n, dS}.

As discussed above we assume both these bounds are equalities.

The probability that each of these is (m,α)-smooth, assuming they are inde-

pendent, is

ρp,α(δRATd
(R, S), m).ρp,α(δALGd

(R, S), m),

and the number of suitable pairs (r, s) is aR,S , given in (7.2). Since 0 ≤ R ≤ S ≤
l, the number of (m,α)-smooth relations we expect to obtain is

M(l) =
l
∑

S=0

S
∑

R=0

ρp,α(δRATd
(R, S), m).ρp,α(δALGd

(R, S), m)aR,S

For each such set of relations we assume that we obtain the same number of lin-

early independent equations amongst the corresponding logarithms. To obtain a

matrix of full rank we require that this number exceeds |FR| + |FA|. A basic

constraint therefore is

M(l) ≥ 2η. (7.3)

When this is the case, we calculate the expected running-time as follows. We

estimate the running-time of a gcd calculation for a pair r, s simply as RS, as we

111

7.3 Methodology of our Analysis

do not presume any fast multiplication algorithm. The time for this part of the

computation is therefore
l
∑

S=1

S
∑

R=1

RSpR+S, (7.4)

as for each (R, S) there are pR+S such pairs of monic polynomials (r, s). Fur-

thermore, with regard to factoring both the rational and algebraic sides, it only

makes sense to factor both if the first one factored possesses factors lying entirely

within the factor base, which cuts down the number of factorisations to be per-

formed considerably. With this in mind and noting the form of δALGd
and δRATd

,

we choose the rational side to be the first factored. Again we suppose a naive

polynomial factoring algorithm and simply estimate the running time as δ3. For

this part of the computation the running-time is therefore

l
∑

S=0

S
∑

R=0

aR,S

{

δRATd
(R, S)3 + ρp,α(δRATd

(R, S), m)δALGd
(R, S)3

}

. (7.5)

This is essentially all that we need. The process of minimising the expected

running-time for each factor base size is to compute, for various pair values (d, l),

the value of (7.4) and (7.5) provided the constraint (7.3) is satisfied, and simply

choose the pair which gives the smallest result.

In performing a few prelimary parameter estimates with this model, it was

apparent that the estimated running-times altered considerably when the optimal

value for l was changed by just one. A little reflection will reveal that the process

of varying l, the bound of the degrees of the sieve base elements, is analogous to

the way in which we initially regarded m, the bound of the degrees of the factor

base elements. To remedy this problem we interpolate between successive values

of l. Let

Ll(i) = bpl+1i/100c, i = 0, ..., 100,

and suppose that we have Ll(i) additional monic sieve base polynomials of degree

l + 1. The choice of 100 here is arbitrary, but we did not want to extend running-

times excessively, and we can view this number simply as the percentage of monic

112

Estimates for Discrete Logarithm Computations in Finite Fields of Small
Characteristic

polynomials of degree l+1 in the sieve base, since there are pl+1 monic polynomi-

als of degree l+1. This gives us an additional number of expected doubly-smooth

relations M+(Ll(i)) equal to

l+1
∑

R=0

ρp,α(δRATd
(R, l + 1), m).ρp,α(δALGd

(R, l + 1), m)aR,l+1Ll(i)/p
l+1,

where here we have implicitly assumed that the proportion of pairs that are co-

prime is propagated uniformly for each interpolation value. Our constraint (7.3)

then becomes

M(l) +M+(Li(l)) ≥ 2η,

and the total expected running-time is then

T (m,α, l, d, i) =

l
∑

S=0

S
∑

R=0

{

RSpR+S + δRATd
(R, S)3aR,S+

+ ρp,α(δRATd
(R, S), m)δALGd

(R, S)3aR,S

}

+
l+1
∑

R=0

{

R(l + 1)pRLl(i) + δRATd
(R, l + 1)3aR,l+1Ll(i)/p

l+1+

+ ρp,α(δRATd
(R, l + 1), m)δALGd

(R, l + 1)3aR,l+1Ll(i)/p
l+1

}

.

(7.6)

This equation accounts for the effect of the differing degrees in sieve base pairs,

the necessary gcd and factorisation computations, and for the l value interpola-

tions. Note that this differs considerably from the

2η/ρp,0(dl + d+ l + dn/de + logp n,m)

typically assumed in an asymptotic analysis.

113

7.4 Empirical Results

7.4 Empirical Results

In the following computations we looked at fields of characteristics 2,3 and 107,

with bitsizes of 336, 485, 634, and 802. We let the size of the factor base vary

from 100,000 to 2,000,000, with increments of 50,000. The correspondence was

as follows:

F2336 ∼ F3212 ∼ F10750

F2485 ∼ F3306 ∼ F10772

F2634 ∼ F3400 ∼ F10794

F2802 ∼ F3506 ∼ F107119

These bit-lengths were chosen so that for each pair of characteristics p, r and for

each corresponding pair of extension degrees n, b, | log(pn)/ log(rb)− 1| ≤ 10−2

holds. This restriction on the field sizes is superficial and was chosen only to

permit a fair comparison of the characteristics, and as such, these fields may not

be directly of cryptographic interest. This is because in practice the group order

pn − 1 should possess a large prime factor dividing Φn(p), the n-th cyclotomic

polynomial evaluated at p, to prevent the Pohlig-Hellman attack [85, 119] (cf.

Chapter 2 for an explanation of, and Chapter 9 for a discussion of, this issue). For

all three characteristics, we let d, the degree of the function field, vary from 3 to 7.

The maximal degree of the sieve base elements was 70 for characteristic two, 60

for characteristic three, and 20 for characteristic 107. In none of the calculations

we performed were these bounds reached, and so we can be confident that the

time-optimal parameters we found in each case were optimal over all feasible

parameters. The figures below compare the minimum expected running-times for

the three characteristics, for each factor base size tested.

7.4.1 Discussion

We observe first that for each field size investigated, there appears to be a negli-

gible difference between the difficulty of computing discrete logarithms in char-

acteristics 2 and 3. For characteristic 107 however, the difference is significant.

Furthermore, for the two smaller characteristics, the sieving time continues to fall

114

Estimates for Discrete Logarithm Computations in Finite Fields of Small
Characteristic

50

52

54

56

58

60

62

64

66

68

70

72

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

lo
g[

E
st

im
at

ed
 R

un
ni

ng
-t

im
e

fo
r

S
ie

ve
 (

~
op

er
at

io
ns

 in
 b

as
e

fie
ld

)]

Factor base size (millions)

2^336
3^212

107^50

Figure 7.1: Minimum sieving times: 336 bits

60

65

70

75

80

85

90

95

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

lo
g[

E
st

im
at

ed
 R

un
ni

ng
-t

im
e

fo
r

S
ie

ve
 (

~
op

er
at

io
ns

 in
 b

as
e

fie
ld

)]

Factor base size (millions)

2^485
3^306

107^72

Figure 7.2: Minimum sieving times: 485 bits

115

7.4 Empirical Results

70

80

90

100

110

120

130

140

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

lo
g[

E
st

im
at

ed
 R

un
ni

ng
-t

im
e

fo
r

S
ie

ve
 (

~
op

er
at

io
ns

 in
 b

as
e

fie
ld

)]

Factor base size (millions)

2^634
3^400

107^94

Figure 7.3: Minimum sieving times: 634 bits

quite smoothly as the factor base size is increased, whereas for p = 107, the op-

timum factor base size is reached for η ≈ 4.0 × 105, with the sieving time then

remaining almost constant beyond this number. The asymptotic analysis of [3] ap-

plied to the field F10750 implies that the optimum factor base size is about 4.0×106,

and for the larger extension degrees is far larger than this still. Note however that

for this p and n, this version of the FFS is an L[1/2, c]-algorithm, and so the results

of [3] do not properly apply. Clearly though, if we are faced with this problem,

we can not rely solely on asymptotic arguments if we are trying to optimise time-

efficiency in using the FFS.

The question of whether or not increasing η improves the efficiency of a dis-

crete logarithm computation can be seen from the figures to depend on the the

field size, its characteristic, and the factor base size. The case p = 107 just men-

tioned shows that it is not necessarily beneficial to increase the factor base size as

far as possible, though with the two smaller characteristics, we probably should

increase η. However to make a fair assessment we need to analyse not only the

sieving time but also the running-time for the linear algebra step. There are no

references however which for sparse matrices give a precise complexity estimate,

although it is commonly estimated to be O(η2). We note though that the linear al-

116

Estimates for Discrete Logarithm Computations in Finite Fields of Small
Characteristic

80

90

100

110

120

130

140

150

160

170

180

190

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

lo
g[

E
st

im
at

ed
 R

un
ni

ng
-t

im
e

fo
r

S
ie

ve
 (

~
op

er
at

io
ns

 in
 b

as
e

fie
ld

)]

Factor base size (millions)

2^802
3^506

107^119

Figure 7.4: Minimum sieving times: 802 bits

gebra step for larger characteristics will in general be faster than for smaller ones;

the degree of the relations generated among field elements is bounded by the ex-

tension degree of Fq over Fp, and hence will on average be smaller in the former

case, and so the corresponding matrix will be sparser and more easy to compute

with. Moreover the probability of an element having a square factor is also dimin-

ished (it is ≈ 1/p), and so most non-zero entries will be ±1, further reducing the

time needed for this step. The cut-off point at which the reward for increasing η

becomes negligible will naturally depend on the implementation being used.

These results raise the obvious question of why in the fields F107n is the opti-

mum factor base size seemingly much lower than that predicted by the asymptotic

analysis, presuming it is adequate? To this end, we define a simple measure of the

smoothness of a field in the usual representation. For a given factor base size η,

let S(η,F×
q) be the proportion of η-smooth monic polynomials in F×

q , where here

η-smooth means the (m,α)-smoothness corresponding to a factor base of size η.

The point of this measure is to obtain an idea of how increasing η affects the ‘to-

tal’ smoothness of a given field. In Figure 7.5 we show the computations of this

measure for some η in our range for fields of bit-length 802 and characteristics 2,

3, 107, and also 199.

117

7.4 Empirical Results

-260

-250

-240

-230

-220

-210

-200

-190

-180

-170

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

lo
g(

P
ro

po
rt

io
n

of
 S

m
oo

th
 P

ol
yn

om
ia

ls
 in

 F
ie

ld
)

Factor Base Size (millions)

2^802
3^506

107^119
199^105

Figure 7.5: Smoothness measure S(η,F×
pn) for various 802-bit fields

We notice immediately that ignoring the characteristic 199 example, this graph

is almost Figure 7.4 inverted. This is intuitive since the time needed for sieving

is inversely related to the smoothness probabilities involved. It also suggests a

reason why within the range of factor base sizes we ran estimates for, increasing

this size did not yield a significant reduction in the running-time for F107119 : the

total smoothness of F107119 does not increase much for η from 4.0×105 to 2.0×106.

Since this measure is independent of any particular implementation of the FFS,

we can be fairly confident that for any index calculus computation there would be

very little benefit in increasing the size of the factor base beyond 4.0×105 for this

field, as a huge saving of time is gained in the linear algebra step.

In contrast, for p = 199 we found a significant reduction in our estimates

for the minimum running-times over the same range of η. The improvement of

running-time estimates for η = 2.0 × 106 over η = 4 × 105 for p = 199 is in

fact by a factor of about 1.5 × 1015. For p = 2, 3, and 107, the corresponding

improvements are 1.0 × 104, 3.2 × 104, and 1.1 respectively. The running-time

estimates themselves for F199105 are however still slower than those for F2802 by a

factor of 300 for η = 2×106. Again, this may just reflect the improper application

118

Estimates for Discrete Logarithm Computations in Finite Fields of Small
Characteristic

-270

-260

-250

-240

-230

-220

-210

-200

-190

-180

-170

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g(

P
ro

po
rt

io
n

of
 S

m
oo

th
 P

ol
yn

om
ia

ls
 in

 F
ie

ld
)

Factor Base Size (millions)

3^474
9^237

27^158
729^79

Figure 7.6: Comparison of S(η,F×
3474) for different field representations

of this version of the FFS to the DLP with these parameters.

Figure 7.5 indicates though that we may obtain useful information regarding

the use of the FFS simply from this smoothness measure, in that while it does not

take into account the details of any particular implementation the FFS, it may be

used as a good heuristic for its behaviour.

Of course, given a system whose security is based on the DLP in a finite field,

one can not choose the characteristic, and so these results may not seem applica-

ble. However, for fields with a composite extension degree, we are free to choose

which representation to work with, since every representation can be efficiently

converted to any other [91, 92]. Figure 7.6 gives a comparison of S(η) for four

representations of the field F3474 . The graphs suggest that for fields with a com-

posite extension degree, it may be the case that some representations are more

susceptable to attack than others. Whether this translates into a noticible speed-

up in practice remains to be seen. In the next chapter we present the results of

an efficient implementation of the FFS in characteristic three to investigate these

ideas.

119

7.5 Concluding Remarks

7.5 Concluding Remarks

The purpose of this chapter was to gain an idea of how different parameter choices

affect the performance of a basic probabilistic FFS model. The model we devel-

oped permits the easy computation of optimal parameter estimates that should be

used in implementations, for any finite field where the FFS applies. This model

may be developed or specialised to a particular implementation as needed.

Furthermore the question of whether finite fields with a composite extension

degree are potentially weaker than others due to the multiple representations avail-

able was shown, with some heuristic evidence, to warrant further research. We

present some research in this direction in the next chapter.

120

Chapter 8

Function Field Sieve in

Characteristic Three

In this chapter we investigate the practical efficiency of the Function Field Sieve to

compute discrete logarithms in finite fields of the form F36m , which arise from, and

are essential to the security of, supersingular elliptic curves used in identity-based

cryptography.

This chapter represents joint work with Andrew Holt, Dan Page, Nigel Smart and

Fréderik Vercauteren, and appeared in [55].

8.1 Introduction

In light of the speculative results of Chapter 7, and motivated by attacks on identity

based cryptosystems that use supersingular elliptic curves in characteristic three,

in this chapter we report on the first implementation of the Function Field Sieve

in this characteristic. Since the curves of interest have embedding degree six [43],

we pay special attention to the fields F36m . A key observation is that this allows

one to represent the function field over different base fields, which from the results

presented in Chapter 7, leads one to expect differing performances for computing

discrete logarithms.

Our practical experiments appear to show that a function field over F3 gives

121

8.2 The Function Field Sieve

the best results, which is perhaps not too surprising. We show also that the exact

analysis of Chapter 7 is more able to predict the behaviour, and thereby parameter

choices, than the naive simple analysis. Finally, the results of this chapter give

confidence that the key sizes one would use in a simple pairing-based system are

likely to be secure against current algorithms and computing power.

8.2 The Function Field Sieve

The finite fields of interest to pairing based cryptography in characteristic three are

given by K = F3n where n = 6 ·m. In what follows we set q = 3m. In practice,

we limit ourselves to finite fields which could arise as the MOV embedding of a

supersingular elliptic curve over the field Fq whose group order is divisible by a

prime l of size comparable to that of q. Such elliptic curves have group orders

given by

q ±
√

3q + 1.

We wish to investigate not only the practicality of the function field sieve for

the field extension F3n/F3, but also the effect of taking different base fields, i.e.,

looking at the extension F3n/F3e where e = 1, 2, 3 or 6. To this end we let k =

F3e , N = n/e and p = 3e.

We assume we are given α, β ∈ K, both of order l, such that

β = αx

for some unknown x ∈ {1, . . . , l − 1}. The discrete logarithm problem then is to

compute x given α and β.

We will use a function field F = k(X)[Y]/(H) defined by the polynomial

H(X, Y) ∈ k[X, Y] over the rational function field k(X). Note, we shall abuse

notation slightly and refer to the polynomial H(X, Y) as the curve H , by which

we mean the curve defined by H(X, Y) = 0. For practical reasons [96], one usu-

ally selects a Cab-curve for H . However, in our examples we used a superelliptic

122

Function Field Sieve in Characteristic Three

curve of the form

H(X, Y) = Y d +R(X)

where R(X) is a polynomial in k[X] of degree b. This enables more efficient

calculation of the functions on the algebraic side, at the expense of a little less

generality of our implementation. The class number of the function field F de-

fined by H , or equivalently the number of points on the Jacobian of the curve JH

defined by H over k, we shall denote by h = #JH(k).

We assume that the field K is defined by a polynomial basis with respect to

the polynomial f ∈ k[X] of degree N , i.e.,

K ∼= k[X]/(f).

To define the function field sieve algorithm we need to specify two polynomials

u1, u2 ∈ k[X] such that the norm of the function u1 + u2Y , given by the resultant

ud2H(X,−u1/u2) = (−u1)
d + ud2R

is divisible by f . In such a situation we have a surjective homomorphism

φ :

{

k[X, Y]/(H) −→ K ∼= k[X]/(f)

Y 7→ −u1/u2.

We select a rational factor base R of small degree irreducible polynomials in

k[X] and an algebraic factor base A of small prime divisors in the divisor group

Div(F). Hence,R and A are therefore defined by

R = {p : deg p ≤ B, p irreducible } ,
A = {〈p, Y − r〉 : deg p ≤ B, p irreducible , r ≡ −u1/u2 (mod p)} ,

for some smoothness bound B.

The goal of the Function Field Sieve is to find relatively prime pairs of poly-

nomials (r, s), with deg r, deg s ≤ l, such that the polynomial (su2− ru1) and the

123

8.2 The Function Field Sieve

divisor 〈s+ rY 〉 simultaneously factor over the respective factor bases, i.e.,

su2 − ru1 =
∏

pi∈R

p
ai
i

〈s+ rY 〉 =
∑

〈pj ,rj〉∈A

bj 〈pj, Y − rj〉.

Determining the factorization of 〈s+ rY 〉 overA is easily done by examining the

factorization of the norm

N(〈s + rY 〉) = (−s)d + rdR.

Since h 〈pj, Y − rj〉 is a principal divisor, for each 〈pj, Y − rj〉 ∈ A there exists

a function λj ∈ F× with h 〈pj, Y − rj〉 = 〈λj〉 and such a function is unique up

to multiplication by an element in k×. We then have that our algebraic relation is

given by

(s+ rY)h = µ
∏

λj

λ
bj
j ,

with µ an element in k×. We then apply the homomorphism φ above to obtain

(s− ru1

u2
)h ≡

∏

λj

φ(λj)
bj ,

where ≡ denotes equality modulo a possible factor in k×. Assuming h is coprime

to (pN − 1)/(p − 1), we can take h-th roots of both sides of this equation and if

we write κj = φ(λj)
1/h we obtain

(s− ru1

u2

) ≡
∏

λj

κ
bj
j .

Combining the relation on the rational side with the above equation we find

1

u2

∏

pi∈R

p
ai
i ≡

∏

λj

κ
bj
j .

124

Function Field Sieve in Characteristic Three

Hence, we obtain the relation between discrete logarithms given by

∑

pi

ai logg pi − logg(u2) =
∑

γj

bj logg κj, (8.1)

where g is a multiplicative generator of the field K. Note that we do not need at

any point to compute the values of the κj , or for that matter the values of the λj,

all that we require is that they exist, so that whilst we do compute the logarthims

of the κj in the linear algebra elimination, the only logarithms we need are of

those elements in the rational factor base. This is guaranteed by the condition that

h should be coprime to (pN − 1)/(p− 1).

If sufficiently many independent relations of the form (8.1) have been ob-

tained, we can solve for the discrete logarithms themselves using structured Gaus-

sian elimination combined with the Lanczos method. Determining the discrete

logarithm of β with respect to α is then performed using a standard recursive

sieving strategy as explained in [131].

8.3 Choice of Parameters and Implementation De-

tails

The various parameters of the function field sieve, namely the size d of the func-

tion field extension, the size B of the largest factor base element and the size l

of the polynomials r and s, are approximated by a heuristic analysis [70] of the

function field sieve as

l = B,

B =

⌈

(

4

9

)1/3

N1/3 logp(N)2/3

⌋

,

d =

⌈

√

N

B + 1

⌋

.

125

8.3 Choice of Parameters and Implementation Details

Since we have restricted ourselves to superelliptic curves we need to ignore values

of d which are divisible by three. However, in the range of our experiments this

is not an issue and extending our results to the case where d ≡ 0 (mod 3) can be

accomplished usingCab-curves [96], at the expense of more complicated formulae

on the algebraic side.

8.3.1 Selection of f

Following Joux and Lercier [70] we first select u1 and u2 and then find a suitable

value of f . We set N ′ = N (mod d). However, since the degree N = n/e may

not be prime we split into three possible sub-cases:

• Case (i) : gcd(N ′, d) = 1.

We choose a curve H such that R(X) is of degree b = N ′ and such that

#JH(k) is coprime to (pN − 1)/(p − 1). If this is not possible we go

to Case (iii). We then select u1 and u2 of exact degrees m − 1 and m

respectively where m = (N − b)/d. The degree of the polynomial f(x) =

ud2H(X,−u1/u2) is then given by max{d · (m−1), d ·m+b} = N . Hence,

we keep selecting u1 and u2 until f is irreducible.

• Case (ii) : N ′ = 0.

We select R(X) of smallest possible degree b such that #JH(k) is coprime

to (pN −1)/(p−1). We then select u1 and u2 of exact degrees m and m−1

where m = N/d. The degree of the polynomial f(x) = ud2H(X,−u1/u2)

is then given by max{d ·m, d · (m − 1) + b} = N , assuming degR < d.

Hence, we keep selecting u1 and u2 until f is irreducible.

• Case (iii) : gcd(N ′, d) 6= 1, d, or no suitable curve found above.

Here we selectR(X) of degree b < d, with gcd(b, d) = 1, such that #JH(k)

is coprime to (pN − 1)/(p − 1) and for which one of t1 and t2 is minimal

where

t1 = max{N, d ·m, d · (m− 1) + b},
t2 = max{N, d · (m− 1), d ·m + b}.

126

Function Field Sieve in Characteristic Three

In the case of t1 being minimal we then select u1 and u2 of degree m and

m − 1 until ud2H(X,−u1/u2) if divisible by an irreducible polynomial f

of degree N . In the case of t2 being minimal we select u1 and u2 to be of

degree m− 1 and m, until we obtain an irreducible polynomial f of degree

N which divides ud2H(X,−u1/u2).

Note that Joux and Lercier [70] only considered Case (i) above, since they used

arbitrary Cab-curves (and not simply superelliptic ones), and because the exten-

sion degree N was always prime. Clearly, Case (iii) will lead to marginally less

efficient relation collection, since the degree of the algebraic side will be slightly

higher than if one was in Case (i) or (ii). However, if one is to deal with non-prime

values of N and superelliptic curves one is led to such a case.

8.3.2 Lattice Sieving

The finding of (r, s) is performed using a lattice sieve. In the lattice sieve one

selects a prime polynomial p ∈ R (resp. prime divisor 〈p, Y − r〉 ∈ A). Then

one looks at the sub-lattice of the (r, s) plane such that su2− ru1 (resp. 〈s+ rY 〉)
is divisible by the chosen polynomial (resp. divisor). We found it more efficient

to then sieve in the sub-lattice on a line-by-line basis, rather than sieve in a two-

dimensional manner in the sub-lattice.

The use of lattice sieving has a number of advantages over sieving in the (r, s)

plane. Firstly, it is better at yielding a large number of relations. Secondly, one

can target factor base elements for which one does not yet have a relation. This

enables one to obtain a matrix involving all elements in the factor base reasonably

efficiently. Thirdly, the use of lattice sieving is crucial in the final stage where one

wishes to target individual discrete logarithms using the recursive sieving strategy

mentioned earlier.

8.3.3 Factor Base Size

A major consideration is the balancing of the effort required for the sieving and

the matrix step. In theory one balances the two halves of the computation and

127

8.3 Choice of Parameters and Implementation Details

so derives the complexity estimates such as those above. The size of both factor

bases is approximated by pB/B, however one should treat this size as a continuous

function of a real variable B, as opposed to the discrete B above. See Chapter 7

for further analysis of this point.

However, sieving can be performed in a highly scalable manner. After all,

to move from using a single computer performing the sieving to around 100-200

computers is relatively easy given the resources of most organisations these days.

However, our code for the matrix step required the use of a single machine and

hence does not scale.

Hence, in practice we can devote less total time to the matrix step compared

to the sieving step. Since the matrix step has complexity approximately O(T 2)

where T = #R+#A ≈ 2pB/B, we see that we have a physical constraint on the

size of the factor bases we can accommodate. In our experiments we assumed that

solving a matrix with over half a million rows and columns was infeasible given

our resources and matrix code. This sometimes led us to choose non-optimal,

from a theoretical perspective, values for the other parameters.

8.3.4 Linear Algebra Step

Several studies involving use of index calculus-type methods discuss the linear

algebra step, since it is a major practical bottleneck in the procedure. This is

because parallelising existing algorithms is rather difficult. Various authors [82,

121], have identified several effective techniques for the solution of sparse linear

systems modulo a prime. These include iterative schemes such as the Lanczos,

Conjugate Gradient and Wiedemann algorithms, with or without a pre-processing

step involving structured Gaussian elimination. Recently attention has moved

onto attempting to perform this step in parallel, see for example [162] for the

case of Lanczos over the field F2.

In our implementation we followed [82] and used a basic structured Gaussian

elimination routine, such as that described in [8, 82, 121], so as to reduce the size

of the linear system whilst maintaining a degree of sparsity. This submatrix is

subsequently solved by the Lanczos algorithm [83], and a full result set is then

128

Function Field Sieve in Characteristic Three

recovered via back-substitution. Our implementation for this stage made use of

Victor Shoup’s NTL C++ library for multiprecision integers [143].

8.4 Experiments

As mentioned in Section 8.1, we are not only interested in how efficient the FFS

method is on fields of relevance to IBE based systems. We are also interested in

the effect of choosing a different base field k = F3e in the FFS. Usually for tra-

ditional discrete logarithm systems this would not be an issue since the extension

degree is often prime. One should note that the theoretical analysis of Chapter 7

of the FFS shows that for a fixed field size the effect of the size of the base field is

not as one would expect. This strange effect of the base field size 3e on the overall

performance for a fixed field size 3n can be explained due to the non-continuous

behaviour of various parameters, in particular the function field extension degree

d. In the experiments below we selected field sizes q = 3n which arise from

supersingular elliptic curves with group orders which are “almost” prime.

8.4.1 Field Size 3186

This corresponds to a field size of approximately 295 bits. The rough theoretical

estimates, given above, for the various values of e = 1, 2, 3, 6 are in the table

below. A more careful analysis as in Chapter 7 reveals the following estimates,

where for the factor bases we take the first T/2 primes (resp. T/2 prime places)

on the rational (resp. algebraic side), in other words the value of B is not used

directly.

Rough Analysis Analysis of Chapter 7

e d B T ≈ d T ≈
1 4 12 89000 5 85000

2 4 6 180000 4 75000

3 4 4 270000 4 150000

6 3 2 530000 4 330000

129

8.4 Experiments

We compared these results to the yields provided by our implementation and

found that the best possible values seemed to be given by

e d T ≈
1 5 70000

2 4 90000

3 4 190000

This latter table was produced by comparing the yields of the implementation over

a fixed time period for various parameter sizes and then selecting the one which

would produce a full matrix in the shortest time period. We were however unable

to generate suitable experimental data for the case e = 6 since this field is really

too large to apply the FFS method in practice for such a value of n.

8.4.2 Field Size 3222

This corresponds to a field size of approximately 352 bits. The rough theoretical

estimates, given above, for the various values of e = 1, 2, 3, 6 along with the more

precise estimates of Chapter 7, are in the following table.

Rough Analysis Analysis of Chapter 7

e d B T ≈ d T ≈
1 4 13 250000 5 130000

2 4 6 180000 4 190000

3 4 4 270000 4 270000

6 4 2 530000 4 460000

We compared these results to the yields provided by our implementation and

found that the best possible values seemed to be given by

e d T ≈
1 5 100000

2 4 190000

3 4 320000

Again the values for e = 6 are not given since n is still too small for this base field

size to apply the FFS method successfully.

130

Function Field Sieve in Characteristic Three

8.4.3 Field Size 3582

We present this field since it is the first one which is usable in pairing based sys-

tems and which “could” be secure against current computing power on both the

elliptic curve and the finite field sides. It corresponds to a bit length of 923 bits.

The rough theoretical estimates are given below which should be compared to the

the analysis in Chapter 7.

Rough Analysis Analysis of Chapter 7

e d B T ≈ d T ≈
1 5 21 9.0 · 108 6 3.0 · 109

2 5 10 7.0 · 108 7 3.0 · 109

3 5 6 1.0 · 108 7 2.8 · 109

6 5 3 2.0 · 108 5 4.0 · 108

Note that these parameters would imply that such key sizes are currently out of

range of the FFS method.

To completely confirm both our theoretical estimates and our partial experi-

ments we ran a few experiments through to the final matrix stage and computation

of individual logarithms.

Our experiments were run on a network of around 150 Unix based worksta-

tions. The network contained a number of older Sparc 5s and 10s running Solaris,

plus a large number of Linux based machines with AMD1600 or Pentium 4 pro-

cessors. We only used idle cycles of the machines whilst other people were using

them, hence during the day we had the equivalent of 50 Pentium 4 machines work-

ing flat out. At night this increased to around 100 Pentium 4 machines. The matrix

step was run on a Sun Blade 1000 workstation.

In Figure 8.1 we present the wall clock time t1 needed to produce the relations,

the time t2 needed to solve the matrix step (divided into the time t′2 needed to

perform the structured Gaussian elimination and the time t′′2 to solve the reduced

system). We ran the sieving clients for time t1 producing a total of R relations on

Ta elements of the factor base. For many examples we did not try to find relations

on all the factor base elements, since finding the relations on the last few elements

131

8.5 Concluding Remarks

Figure 8.1: Timings for full discrete logarithm computations

n 186 186 186 222 222
N 186 93 62 222 111
e 1 2 3 1 2
d 5 4 4 5 4

R(X) X X X X3 + 2X + 1 X3 +X
T 70000 80000 140000 100000 160000
R 80045 96365 139376 96956 181675
Ta 69345 76425 137750 95169 158952
m 12634 13218 24746 20719 32148
t1 8h 7h 30h 48h 50h
t′2 43m 1h 2h 24m 3h 4h 20m
t′′2 13h 16h 1d 18h 2d 21h 4d 14h

can take a disproportionate amount of time. The line m denotes the approximate

row-size of the resulting (approximately square) matrix after the application of

structured Gaussian elimination. Note that our times for the linear algebra step

can be considerably improved, using the techniques in [116].

8.5 Concluding Remarks

In this chapter we have reported on the first implementation of the FFS in charac-

teristic three. We have paid particular attention to the case of finite fields which

arise in pairing based cryptosystems. In particular such fields are of a composite

nature and we have seen that this provides at best a marginal benefit in allowing

one to apply the function field sieve over either F3 or F32 : one should therefore

simply use F3 as one’s base field. This implies that fields of the form F36m are,

subject to this version of the FFS, as secure as characteristic three fields of a simi-

lar size but with prime extension degree, for example. The results of the following

chapter however put the assumption of equivavlent security of these fields, subject

to another attack, into question.

We have also shown that the exact analysis of Chapter 7 is more able to pre-

132

Function Field Sieve in Characteristic Three

dict the behaviour, and thereby parameter choices, than a naive simple analysis.

We have also shown how the key sizes one would use in a simple pairing based

system are likely to be secure against current algorithms and computing power.

However, the security of these fields, relative to charcteristic two, or large prime

characteristic fields, still requires futher research.

We hope that our work will encourage others to investigate discrete logarithm

algorithms in composite fields of characteristic three, and thereby allow the com-

munity to have greater faith in the security of pairing based systems which are

based over such fields.

133

Chapter 9

On the Discrete Logarithm Problem

on Algebraic Tori

In this chapter we propose the first index calculus algorithm for solving the DLP

on Algebraic Tori, and apply this to the scheme presented in Chapter 5.

This chapter represents joint work with Fréderik Vercauteren, and appeared in [59].

The authors would like to thank Daniel Lazard for his invaluable comments re-

garding the details of the complexity of the Gröbner basis computation in the

T6-algorithm.

9.1 Introduction

Having developed efficient arithmetic for the implementation of torus-based cryp-

tography in Part I of the thesis, we now focus on the security of these groups. The

attack described in Chapters 7 and 8 solved the DLP in the field Fqn . In solving

the DLP in this manner, one is also solving the DLP on the algebraic torus Tn(Fq),

which is the group of real importance in the associated cryptosystems. By an easy

argument, the security of Tn(Fq) and F×
qn are equivalent (cf. Section 9.2).

There is thus the possibility that there exist attacks that apply directly to the

torus, which conceivably may be more efficient than attacking the DLP via the

field embedding. The relative size of the torus and the smallest field into which it

135

9.1 Introduction

embeds is φ(n)/n, so one expects that if there is such an attack, then when this

ratio is low, as it is for fields of interest in torus-based cryptography, the attack will

be most efficient, relative to the full field attack. The situation is akin to attacking

an elliptic curve via the MOV embedding [100]: if the embedding degree is high,

then attacking the curve directly will be the more efficient option.

Until now, lacking any knowledge to the contrary, the security of Tn(Fq) has

been based on two assumptions: firstly, Tn(Fq) should be large enough such that

square root algorithms [101] are infeasible and secondly, the minimal finite field

in which Tn(Fq) embeds should be large enough to thwart index calculus type

attacks [101]. In these attacks one does not make any use of the particular form of

the minimal surrounding finite field, i.e., Fqn , but only its size and the size of the

subgroup of cryptographic interest.

In this chapter we develop an index calculus algorithm that works directly

on rational tori Tn(Fq) and consequently show that the hardness of the DLP can

depend on the form of the minimal surrounding finite field1. The algorithm is

based on the purely algebraic index calculus approach by Gaudry [47] and exploits

the compact representation of elements of rational tori. The very existence of such

an algorithm shows that the lower communication cost offered by these tori, may

also be exploited by the cryptanalyst.

In practice, the DLP in T2 and T6 are most important, since they determine the

security of the cryptosystems LUC [146], XTR [88], CEILIDH [127], and pairing-

based applications [43,104]. We stress that when defined over prime fields Fp, the

security of these cryptosystems is not affected by our algorithm. Over extension

fields however, this is not always the case. In this chapter, we provide a detailed

description of our algorithm for T2(Fqm) and T6(Fqm). Note that this includes

precisely the systems presented in [93], and also those described in [157] and

Chapter 5 via the inclusion of Tn(Fp) in T2(Fpn/2) and T6(Fpn/6) when n is divis-

ible by two or six, respectively, which for efficiency reasons is always the case.

Our method is fully exponential for fixed m and increasing q. From a complexity

theoretic point of view, it is noteworthy that for certain very specific combina-

1Since the content of this chapter first appeared, there have been significant developments
regarding the finite field DLP; see Section 9.6 for a short account of these.

136

On the Discrete Logarithm Problem on Algebraic Tori

tions of q and m, for example when m! ≈ q, the algorithms run in expected time

Lqm [1/2, c], which is comparable to the index calculus algorithm by Adleman and

DeMarrais [2]. However, our focus will be on parameter ranges of practical cryp-

tographic interest rather than asymptotic results.

A complexity analysis and prototype implementation of these algorithms, show

that they are faster than Pollard-Rho in the full torus T2(Fqm) for m ≥ 5 and in the

full torus T6(Fqm) for m ≥ 3. However, in cryptographic applications one would

work in a prime order subgroup of Tn(Fqm) of order around 2160; in this case, our

algorithm is only faster than Pollard-Rho for larger m.

From a practical perspective, our experiments show that in the cryptographic

range, the algorithm for T6(Fqm) outperforms the corresponding algorithm for

T2(Fq3m) and that it is most efficient whenm = 4 orm = 5. Furthermore, form =

5, both algorithms in practice outperform Pollard-Rho in a subgroup of T6(Fq5)

of order 2160, for q30 up to and including the 960-bit scheme based in T30(Fp)

proposed in Chapter 5. Compared to Pollard ρ our method seems to achieve in

practice a 1000 fold speedup; its practical comparison with Adleman-DeMarrais

is yet to be explored. Our experiments show that it is currently feasible to solve

the DLP in T30(Fp) with dlog2 pe = 20, where we assume that a computation of

around 245 seconds total work effort is feasible.

The remainder of this chapter is organised as follows. In Section 9.2 we ex-

plicate the relation between the DLP in extension fields and the DLP in algebraic

tori. In Section 9.3 we present the philosophy of our algorithm and explain how

it is related to classical index calculus algorithms. In Sections 9.4 and 9.5 we

give a detailed description of the algorithm for T2(Fqm) and T6(Fqm) respectively.

Finally, we conclude and give pointers for further research in Section 9.6.

9.2 Discrete Logarithms in Extension Fields and Al-

gebraic Tori

Extension fields possess a richer algebraic structure than prime fields, in particular

those with highly composite extension degrees. This has led some researchers to

137

9.2 Discrete Logarithms in Extension Fields and Algebraic Tori

suspect that such fields may be cryptographically weak. For instance, in 1984

Odlyzko stated that fields with a composite extension degree ‘may be very weak’

[113]. The main result of this chapter shows that these concerns may indeed be

valid. As we show below, a naive attempt to exploit the available subfield structure

of extension fields leads one to consider algebraic tori. While the following is

perhaps trivial and is certainly well-known, we include it for expository purposes.

9.2.1 A Reduction of the DLP

Let k = Fq and let K = Fqn be an extension of k of degree n > 1. Note that

an element α ∈ K is actually in k if and only if ϕ(α) = α, where ϕ is the

Frobenius automorphism, and recall from Chapter 2 that we have the norm map

NK/k : K → k given by

NK/k(α) = α · ϕ(α) · · ·ϕ(n−2)(α) · ϕ(n−1)(α) = α(qn−1)/(q−1).

Assume that g ∈ K is a generator of K× and let h = gs with 0 ≤ s < qn − 1

be an element we wish to find the discrete logarithm of with respect to g. The two

classical approaches to this problem would be to use

• a combination of the Pohlig-Hellman reduction [119] to prime power order

subgroups of K× and a square root algorithm, such as Pollard-Rho [120],

• an index calculus algorithm in the full multiplicative group K×.

Note that the first approach has running timeO(
√
p) with p the largest prime factor

of qn − 1, whereas the second has subexponential running time in qn.

However, by using the norm map, it is possible to combine both approaches.

Since g is a generator of K×, the norm NK/k(g) is a generator of k×. Taking

norms then gives

NK/k(h) = NK/k(g)
s̄,

with s̄ ≡ s (mod q − 1). Furthermore, both NK/k(g) and NK/k(h) are elements

of k, which allows us to use the index calculus approach in k× instead of a square

root algorithm.

138

On the Discrete Logarithm Problem on Algebraic Tori

If the extension degree n of K/k is composite, one can repeat the above norm

argument with each intermediate subfield and obtain further congruency infor-

mation regarding s, presuming one is able to solve the DLP in these subfields if

necessary.

So how close to solving the DLP in K× does this approach take us? For

each proper divisor d of n, let kd denote the degree d extension of k, so that

k ⊆ kd (K. Assuming we can solve the DLP in each of the groups k×d , the

Chinese Remainder Theorem shows that we can compute s modulo

M = lcm{qd − 1}d|n,d 6=n = lcm{Φd(q)}d|n,d 6=n.

However, since the integers {Φd(q)}d|n,d 6=n are not in general mutually coprime,

it makes sense to define a function f(n, q) as the quotient

f(n, q) =

∏

d|n,d 6=n Φd(q)

M
.

Using (2.1) then proves the following lemma.

Lemma 9.1. By applying the norm with respect to each proper subfield kd (K

and presuming one can solve the DLP in each of these subfields, one can deter-

mine the discrete logarithm of an element h ∈ 〈g〉 with g a generator of K×

modulo

M =
qn − 1

Φn(q) · f(n, q)
.

The above lemma shows the existence of two obstructions to recover the full

discrete logarithm. The first obstruction corresponds to the factor f(n, q). Not

much is known regarding the prime factorisation of the cyclotomic polynomials

evaluated at prime powers, so it is difficult to obtain a good bound on the growth of

f(n, q) with increasing n. However, for n the product of the first k primes, which

is the most important case in practice in torus based cryptography (cf. Section 2.2),

the authors of [157] give an estimate for the size of the smallest integer U(n, q)

for which gcd(Φd(q),Φe(q), (q
n − 1)/U) = 1 for all d 6= e with d | n and e | n.

Lemma 7 of [157] states that U = O(n2C), where C ≈ 0.374 is Artin’s constant,

139

9.2 Discrete Logarithms in Extension Fields and Algebraic Tori

which measures the density of primes for which p− 1 is squarefree.

The relation with f(n, q) is as follows: define yd = gcd(Φd(q), (q
n − 1)/U)

for d | n, then by the definition of U , we have gcd(yd, ye) = 1 for e 6= d with e | n
and d | n. Again using the definition of U and qn− 1 =

∏

d|n Φd(q), we conclude

that
∏

d|n yd = (qn − 1)/U . Clearly yd | Φd(q) and by the coprimality of the yd

we have
∏

d|n

yd = lcm{yd}d|n | lcm{Φd(q)}d|n ,

which implies that

qn − 1 =
∏

d|n

φd(q) | U · lcm{Φd(q)}d|n | U · lcm{Φd(q)}d|n,d 6=n · Φn(q) .

By the definition of f(n, q), we finally conclude that f(n, q) | U(n, q) and in par-

ticular, f(n, q) ≤ U(n, q), which from our cryptanalytic perspective is negligible.

The second obstruction corresponds to solving the DLP in the subgroup of

order Φn(q). Lacking an effective algorithm with which to solve the DLP in this

subgroup, contemporary wisdom has simply presumed that it can be no easier

than solving a DLP in K× using the Number Field Sieve or Function Field Sieve

algorithms, which exploit the ring structure of K, or using Pollard’s rho method.

However, as observed by Rubin and Silverberg [127], the subgroup of order

Φn(q) is isomorphic to the group of Fq-rational points Tn(Fq) on an algebraic

torus Tn (see Chapter 2). As a result, Rubin and Silverberg obtained bandwidth-

efficient protocols. In this chapter, we analyse the destructive implications of this

idea and obtain a new index calculus algorithm which works directly in the group

Tn(Fq) instead of in the finite field Fqn .

In this section we showed that solving the DLP in K = Fqn is almost equiv-

alent (except for the factor f(n, q)) to solving the DLP in all proper subfields

kd (K and the torus Tn(Fq). By repeating this argument for the fields kd, solv-

ing the DLP in K = Fqn is actually almost equivalent to solving the DLP in the

140

On the Discrete Logarithm Problem on Algebraic Tori

algebraic tori Td(Fq) for d | n. The missing factor equals

qn − 1

lcm{Φd(q)}d|n
| U(n, q) ,

which again is negligible in the cryptographic setting. Hence finding an efficient

algorithm to solve the DLP on algebraic tori enables one to solve DLPs in exten-

sion fields, as well as vice versa.

9.3 Algorithm Philosophy

The algorithm as presented in Sections 9.4 and 9.5 is based on an idea first pro-

posed by Gaudry [47], which itself is generalisation of an idea of semaev [138],

in reference to the DLP on general abelian varieties. While Gaudry’s method is

in principle an index calculus algorithm, the ingredients are very algebraic: for

instance one need not rely on unique factorisation to obtain a notion of ‘smooth-

ness’, as in finite field discrete logarithm algorithms.

As an introduction, in this section we consider Gaudry’s idea in the context

of computing discrete logarithms in F×
qm , and show how it is related to classical

index calculus.

9.3.1 Classical Method

Let Fqm = Fq[t]/(f(t)) for some monic irreducible degree m polynomial and let

the basis be {1, t, . . . , tm−1}. Let g be a generator of F×
qm and let h ∈ 〈g〉 be an

element whose logarithm to base g is desired. Suppose also, for this example, that

we are able to deal with a factor base of size q.

Classically, one would first reduce the problem to considering only monic

polynomials, i.e., one considers the quotient F×
qm/F×

q , and defines a factor base

F = {t + a : a ∈ Fq}.

Then for random j, k ∈ Z/((qm − 1)/(q− 1))Z one computes r = gjhk and tests

141

9.3 Algorithm Philosophy

whether r/lc(r) decomposes over F , with lc(r) the leading coefficient of r. This

occurs with probability approximately 1/(m − 1)! for large q since the set of all

products of m − 1 elements of F generates roughly qm−1/(m − 1)! elements of

F×
qm/F×

q .

Computing more than q such relations allows one to compute loggh mod

(qm − 1)/(q − 1) as usual with a linear algebra elimination (and one applies the

norm NFqm/Fq to g and h and solves the corresponding DLP in F×
q to recover the

remaining modular information).

9.3.2 Gaudry’s Method

Two essential points taken for granted in the above description are that there exist

efficient procedures to compute:

• whether a given r decomposes over F ; this happens precisely when r ∈
Fq[t] splits over Fq or equivalently when gcd(tq − t, r/lc(r)) = r/lc(r),

• the actual decomposition of r, i.e., to compute the roots of r ∈ Fq[t] in Fq.

One may equivalently consider the following problem: determine whether the

system of equations obtained by equating powers of t in the equality

m−1
∏

i=1

(t+ ai) = r/lc(r) = r0 + r1t+ · · ·+ rm−2t
m−2 + tm−1, (9.1)

has a solution (a1, . . . , am−1) ∈ Fm−1
q and if so, to compute one such solution. Of

course, in this trivial example the roots ai can be read off from the factorisation

of r/lc(r). However, one obtains a non-trivial example if the group operation

on the left is more sophisticated than polynomial multiplication, such as elliptic

curve point addition, which was Gaudry’s original motivation for developing the

algorithm. In this case the decomposition of a group element over the factor base

can become more sophisticated, but the principle remains the same.

The central benefit of this perspective is that it can be applied in the absence of

unique factorisation, since with a suitable choice of factor base, or more accurately

142

On the Discrete Logarithm Problem on Algebraic Tori

a decomposition base, one can simply induce relations algebraically. For example,

approaching the above problem from this slightly different perspective gives an

algorithm for working directly in F×
qm , which is perhaps more natural than the

stated quotient, F×
qm/F×

q . Define a decomposition base

F = {1 + at : a ∈ Fq},

and again associate to the equality

m
∏

i=1

(1 + ait) ≡ r ≡ r0 + r1t + · · ·+ rm−1t
m−1 (mod f(t)), (9.2)

the algebraic system obtained by equating powers of t.

Note that in (9.2) one must multiply m elements of F in order to obtain a

probability of 1/m! for obtaining a relation, rather than the m − 1 elements (and

probability 1/(m − 1)!) of (9.1). The reason these probabilities differ is simply

that the algebraic groups F×
qm/F×

q and F×
qm over Fq are m− 1 and m-dimensional

respectively.

Ignoring for the moment thatF essentially consists of degree one polynomials,

and assuming that we want to solve this system without factoring r/lc(r), we

are faced with finding a solution to a non-linear system, which would ordinarily

require a Gröbner basis computation to solve. However writing out the left hand

side in the polynomial basis {1, . . . , tm−1} gives

m
∏

i=1

(1 + ait) = 1 + σ1t + · · ·+ σmt
m

≡ 1 + σ1t+ · · ·+ σm−1t
m−1 + σm(tm − f(t)) (mod f(t)),

with σi the i-th elementary symmetric polynomial in the ai. Equating powers of t

then gives a linear system of equations in the σi for i = 1, . . . , m. Given a solution

(σ1, . . . , σm) to this system of equations, r will decompose overF precisely when

143

9.4 An Index Calculus Algorithm for T2(Fqm) ⊂ F×
q2m

the polynomial

p(x) := xm − σ1x
m−1 + σ2x

m−2 − · · ·+ (−1)mσm

splits over Fq. Thus exploiting the symmetry in the construction of the algebraic

system makes solving it much simpler. Although in this contrived example, solv-

ing the system directly and solving it using its symmetry are essentially the same,

in general the latter makes infeasible computations feasible.

Following from this example, a simple observation is that for an algebraic

group over Fq whose representation is m-dimensional, then using a decomposi-

tion base F of q elements, one must add m elements of F to obtain a constant

probability of decomposition 1/m!. Therefore, we conclude that the more effi-

cient the representation of the group is, the higher the probability of obtaining a

relation, and thus the corresponding index calculus algorithm will be more effi-

cient.

In the following two sections, we apply this idea to rational representations

of algebraic tori, and show that the above probability of 1/m! can be reduced

significantly to 1/(m/2)! when m is divisible by 2 and to 1/(m/3)! when m is

divisible by 6.

9.4 An Index Calculus Algorithm for T2(Fqm) ⊂ F×
q2m

For q any odd prime power, we describe an algorithm to compute discrete loga-

rithms in T2(Fqm).

9.4.1 Setup

With regard to the extension Fq2m/Fqm , by Lemma 2.1 we know that

#T2(Fqm) = Φ2(q
m) = qm + 1,

144

On the Discrete Logarithm Problem on Algebraic Tori

and hence we presume the DLP we consider is in the subgroup of this order. By

applying the reduction of the DLP via norms as in Section 9.2, it is clear that

the hard part actually is T2m(Fq) (T2(Fqm). Since in this section we use the

properties of T2 rather than T2m, we only consider T2(Fqm), or more accurately

(ResFqm/FqT2)(Fq), where here Res denotes the Weil restriction of scalars (see for

example [128] or [161]).

Let Fqm ∼= Fq[t]/(f(t)) with f(t) ∈ Fq[t] an irreducible monic polynomial

of degree m and take the polynomial basis {1, t, . . . , tm−1}. Assuming that q is

an odd prime power, we let Fq2m = Fqm [γ]/(γ2 − δ) with basis {1, γ}, for some

non-square δ ∈ Fqm \ Fq. Then using Definition 2.5, we see that

T2(Fqm) = {(x, y) ∈ Fqm × Fqm : x2 − δy2 = 1}.

This representation uses two elements of Fqm to represent each point. The torus

T2 is one-dimensional, rational, and has the following equivalent affine represen-

tation:

T2(Fqm) =

{

z − γ
z + γ

: z ∈ Fqm

}

∪ {O}, (9.3)

where O is the point at infinity.

Here a point g = g0 + g1γ ∈ T2(Fqm) in the Fq2m representation has a corre-

sponding representation as given above by the rational function z = −(1+ g0)/g1

if g1 6= 0, whilst the elements −1 and 1 map to z = 0 and z = O respectively.

The representation (9.3) thus gives a compression factor of two for the elements

of Fq2m that lie in T2(Fqm). Furthermore since T2(Fqm) has qm + 1 elements, this

compression is optimal (since for this example, including the point at infinity, we

really have a map from T2(Fqm)→ P1(Fqm)).

145

9.4 An Index Calculus Algorithm for T2(Fqm) ⊂ F×
q2m

9.4.2 Decomposition Base

As with any index calculus algorithm, we need to define a factor base, or in the

case of Gaudry’s algorithm, a decomposition base. Let

F =

{

a− γ
a+ γ

: a ∈ Fq

}

⊂ T2(Fqm), (9.4)

which contains q elements, since the map, given above, is a birational isomor-

phism from T2 to A1. Note that if δ ∈ Fq, then F would lie in the subvariety

T2(Fq) and would not aid in our attack, which is why we ensured that δ ∈ Fqm \Fq
during the setup.

9.4.3 Relation Finding

Writing the group operation multiplcatively, let P be a generator, and let Q ∈ 〈P 〉
be a point we wish to find the discrete logarithm of with respect to P . For a given

R = P j · Qk, we test whether it decomposes as a product of m points in the

decomposition base:
m
∏

i=1

Pi = R, (9.5)

with P1, . . . , Pm ∈ F . From the representation we have chosen for T2 we may

equivalently write this as

m
∏

i=1

(

ai − γ
ai + γ

)

=
r − γ
r + γ

,

where the ai are unknown elements in Fq, and r ∈ Fqm is the affine representation

of R. Note that the left hand side is symmetric in the ai. Upon expanding the

product for both the numerator and denominator, we obtain two polynomials of

degree m in γ whose coefficients are just plus or minus the elementary symmetric

polynomials σi(a1, . . . , am) of the ai:

σm − σm−1γ + · · ·+ (−1)mγm

σm + σm−1γ + · · ·+ γm
=
r − γ
r + γ

.

146

On the Discrete Logarithm Problem on Algebraic Tori

Therefore, when we reduce modulo the defining polynomial of γ, we obtain an

equation of the form

b0(σ1, . . . , σm)− b1(σ1, . . . , σm)γ

b0(σ1, . . . , σm) + b1(σ1, . . . , σm)γ
=
r − γ
r + γ

,

where b0, b1 are linear in the σi and have coefficients in Fqm . More explicitly, since

γ2 = δ ∈ Fqm , these polynomials are given by

b0 =

bm/2c
∑

k=0

σm−2kδ
k and b1 =

b(m−1)/2c
∑

k=0

σm−2k−1δ
k ,

where we define σ0 = 1.

In order to obtain a simple set of algebraic equations amongst the σi, we first

reduce the left hand side to the affine representation (9.3) and obtain the equation

b0(σ1, . . . , σm)− b1(σ1, . . . , σm)r = 0.

Since the unknowns σi are elements of Fq, we express the above equation on the

polynomial basis of Fqm to obtain m linear equations over Fq in the m unknowns

σi ∈ Fq. This gives an m×m matrix M over Fq such that

• the (m− 2k)-th column contains the coefficients of δk,

• the (m− 2k − 1)-th column contains the coefficients of −rδk.

Furthermore, let V be the m × 1 vector containing the coefficients of rδ(m−1)/2

when m is odd or−δm/2 when m is even, then Σ = (σ1, . . . , σm)T is a solution of

the linear system of equations

MΣ = V .

If there is a solution Σ, to see whether this corresponds to a solution of (9.5) we

test whether the polynomial

p(x) := xm − σ1x
m−1 + σ2x

m−2 − · · ·+ (−1)mσm

147

9.4 An Index Calculus Algorithm for T2(Fqm) ⊂ F×
q2m

splits over Fq by computing g(x) := gcd(xq − x, p(x)). If g(x) = p(x), then the

roots a1, . . . , am will be the affine representation of the elements of the factor base

which sum to R and we have found a relation.

9.4.4 Complexity Analysis and Experiments

The number of elements of T2(Fqm) generated by all sums of m points in F is

roughly qm/m!, assuming no repeated summands and that most points admit a

unique factorisation over the factor base. Hence the probability of obtaining a

relation is approximately 1/m!. Therefore in order to obtain q relations we must

perform roughly m!q such decompositions. Each decomposition consists of the

following steps:

• computing the matrix M and vector V takes O(m3) operations in Fq, using

a naive multiplication routine,

• solving for Σ also requires O(m3) operations in Fq,

• computing the polynomial g(x) requires O(m2 log q) operations in Fq,

• if the polynomial p(x) splits over Fq, then we have to find the roots a1, . . . , am

which requires O(m2 logm(log q + logm)) operations in Fq.

Note that the last step only has to be executedO(q) times. The overall complexity

to find O(q) relations is therefore

O(m! · q · (m3 +m2 log q)) .

operations in Fq.

Since in each row of the final relations matrix there will beO(m) non-zero ele-

ments, we conclude that finding a kernel vector using sparse matrix techniques [82]

requires O(mq2) operations in Z/(qm + 1)Z or about O(m3q2) operations in Fq.

This proves the following theorem.

148

On the Discrete Logarithm Problem on Algebraic Tori

Theorem 9.1. The expected running time of the T2-algorithm to compute discrete

logarithms in T2(Fqm) is

O(m! · q · (m3 +m2 log q) +m3q2)

operations in Fq.

Note that when m > 1 and the q2 term dominates, by reducing the size of the

decomposition base, the complexity may be reduced to O(q2−2/m) for q → ∞
using the results of Thériault [154], and a refinement reported independently by

Gaudry et al. [49] and Nagao [106].

The expected running time of the T2-algorithm is minimal when the relation

stage and the linear algebra stage take comparable time, i.e., when m! · q · (m3 +

m2 log q) ' m3q2 or m! ' q. The complexity of the algorithm then becomes

O(m3q2), which can be rewritten as

O(m3q2) = O
(

exp(3 logm+ 2 log q)
)

= O
(

exp(5(log q)1/2(log q)1/2)
)

= O
(

exp(5(m logm)1/2(log q)1/2)
)

= O
(

Lqm(1/2, c)
)

with c ∈ R>0. Note that for the first equality we have used logm < log q, and

for the second and third equality we have used that m! ' q, and thus by taking

logarithms log q ' m logm.

To assess the practicality of the T2 algorithm, we ran several experiments using

a simple Magma implementation, the results of which are given in Figure 9.1. This

table should be read as follows: the size of the torus cardinality, i.e., log2(q
m), is

constant across each row; for a given qm, the table contains for m = 1, . . . , 15,

the log2 of the expected running times in seconds for the entire algorithm, i.e.,

both relation collection stage and linear algebra. For instance, for qm ∼= 2300

and m = 15, the total time would be approximately 251 seconds on one AMD

1700+ using our Magma implementation. For the fields where the torus is less

than 160 bits in size, we use the full torus otherwise we use a subgroup of 160 bits

149

9.4 An Index Calculus Algorithm for T2(Fqm) ⊂ F×
q2m

Figure 9.1: log2 of expected running times (s) of the T2-algorithm and Pollard-
Rho in a subgroup of size 2160: bold for time < 245 and matrix of size < 223.

m
log2 |Fq2m | log2 |T2(Fqm)| ρ 1 2 3 4 5 6 7

200 100 34 88 40 52 36 26 20 16
300 150 59 138 66 87 62 48 38 31
400 200 65 188 92 121 88 68 55 46
500 250 66 238 117 155 114 89 73 61
600 300 66 289 142 189 139 110 90 76
700 350 66 339 168 223 165 130 107 91
800 400 66 389 193 256 190 150 124 105
900 450 68 439 219 290 215 171 141 120

1000 500 69 489 244 324 241 191 158 134

m
log2 |Fq2m | log2 |T2(Fqm)| ρ 8 9 10 11 12 13 14 15

200 100 34 17 18 21 23 26 31 33 37
300 150 59 26 25 26 28 31 34 37 40
400 200 65 39 34 32 33 35 38 41 44
500 250 66 52 45 40 38 40 42 44 47
600 300 66 65 57 51 45 44 46 48 51
700 350 66 78 69 61 55 50 50 52 54
800 400 66 91 80 71 64 58 56 55 58
900 450 68 104 92 82 74 67 62 61 62

1000 500 69 117 103 92 83 76 69 66 67

to estimate the Pollard ρ costs (cf. Section 9.4.5 for a full explanation).

Note that Figure 9.1 does not take into account memory constraints imposed

by the linear algebra step; since the number of relations is approximately q, we

conclude that the algorithm is currently only practical for q ≤ 223. Assuming

that 245 seconds total work effort, which is about 1.1× 106 years, is feasible and

assuming it is possible to find a kernel vector of a sparse matrix of dimension 223,

Table 9.1 contains, in bold, the combinations of q and m which can be handled

using our Magma implementation.

150

On the Discrete Logarithm Problem on Algebraic Tori

9.4.5 Comparison with other Methods

In this section we compare the T2-algorithm with the Pollard-Rho and the Adleman-

DeMarrais index calculus algorithm.

Pollard-Rho in the Full Torus

Using the Pohlig-Hellman reduction, the overall running time is determined by

executing the Pollard-Rho algorithm in the subgroup of T2(q
m) of largest prime

order l. Since #T2(q
m) = qm+1, we have to analyse the size of the largest prime

factor l. Note that the factorisation of xm + 1 over Z[x] is given by

xm + 1 =
x2m − 1

xm − 1
=

∏

d|2m Φd(x)
∏

d|m Φd(x)
=

∏

d|2m,d-m

Φd(x) ,

which implies that the maximum size of the prime l is O(qφ(2m)), since the degree

of Φ2m(x) is φ(2m). The overall worst case complexity of this method is therefore

O(qφ(2m)/2) operations in Fq2m or O(m2 · qφ(2m)/2) operations in Fq.

From a complexity theoretic point of view, we therefore conclude that for

m! ≤ q, our algorithm is as fast as Pollard-Rho whenever m ≥ 5, since then

φ(2m)/2 > 2. As a consequence, we note that the T2 algorithm does not lead to

an improvement over existing attacks on LUC [146], XTR [88] or CEILIDH [127]

over Fp. Furthermore, also the security of MNT curves [104] defined over Fp,

where p is a large prime remains unaffected.

Pollard-Rho in a Subgroup of prime order ' 2160

In cryptographic applications however, one would work in a subgroup of T2(Fqm)

of prime order l with l ' 2160. To this end, we measured the average time taken for

one multiplication for the various fields in Magma, and multiplied this time by the

expected 280 operations required by the Pollard-Rho algorithm. The results can

be found in the third column of Table 9.1. The column for m = 15 is especially

interesting since this determines the security of the T30 cryptosystem introduced in

151

9.5 An Index Calculus Algorithm for T6(Fqm) ⊂ F×
q6m

Chapter 5. In this case, the T2 is always faster than Pollard-Rho, and the matrices

occurring in the linear algebra step would be feasible up to 700-bit fields.

Remark 9.1. The linearity of the decomposition method in fact holds for any

torus Tpr , where by this we mean that to solve for the values of the symmetric

polynomials σi, one only needs to use linear algebra. However, amongst all such

tori the most efficient decomposition is for T2r , since pr/φ(pr) is maximal in this

case, and hence the probability of obtaining a relation is maximised. When one

considers Tn for which n is divisible by more than one distinct prime factor, the ra-

tional parametrisation becomes non-linear, and hence so does the corresponding

decomposition, as we see in the following section.

9.5 An Index Calculus Algorithm for T6(Fqm) ⊂ F×
q6m

In this section we detail our algorithm to compute discrete logarithms in T6(Fqm).

The main difference with the T2-algorithm is the non-linearity of the equations

involved in the decomposition step.

9.5.1 Setup

Again, let Fqm ∼= Fq[t]/(f(t)), with f(t) an irreducible polynomial of degree

m and where we use the polynomial basis {1, t, t2, . . . , tm−1}. Since T6 is two-

dimensional and rational, it is an easy exercise (see Section 2.2.3) to construct a

birational map from T6 to A2 for a given representation of Fq6m . For the following

exposition we make use of the the CEILIDH field representation and maps, as

described in [127].

Let qm ≡ 2 or 5 mod 9, and for (r, q) = 1 let ζr denote a primitive r-th root of

unity over Fqm . Define x = ζ3 and let y = ζ9 + ζ−1
9 , then clearly x2 + x + 1 = 0

and y3 − 3y + 1 = 0. Let Fq3m = Fqm(y) and Fq6m = Fq3m(x), then the bases we

use are {1, y, y2− 2} for the degree three extension and {1, x} for the degree two

extension.

152

On the Discrete Logarithm Problem on Algebraic Tori

Let V (f) be the zero set of f(α1, α2) = 1− α2
1−α2

2 +α1α2 in A2(Fqm), then

we have the following inverse birational maps:

• ψ : A2(Fqm) \ V (f)
∼−−→ T6(Fqm) \ {1, x2}, defined by

ψ(α1, α2) =
1 + α1y + α2(y

2 − 2) + (1− α2
1 − α2

2 + α1α2)x

1 + α1y + α2(y2 − 2) + (1− α2
1 − α2

2 + α1α2)x2
, (9.6)

• ρ : T6(Fqm) \ {1, x2} ∼−−→ A2(Fqm) \V (f), which is defined as follows: for

β = β1 +β2x, with β1, β2 ∈ Fq3m , let (1+β1)/β2 = u1 +u2y+u3(y
2− 2),

then ρ(β) = (u2/u1, u3/u1).

9.5.2 Decomposition Base

In this case the decomposition base consists of ψ(at, 0), where a runs through all

elements of Fq and t generates the polynomial basis, i.e.,

F =

{

1 + (at)y + (1− (at)2)x

1 + (at)y + (1− (at)2)x2
: a ∈ Fq

}

which clearly contains q elements, for much the same reason as given in Sec-

tion 9.4. The reason for considering ψ(at, 0) instead of ψ(a, 0) is that the min-

imal polynomials of x and y are defined over Fq. Note that this implies that

ψ(a, 0) ∈ T6(Fq) for a ∈ Fq and so does not generate a fixed proportion of

T6(Fqm), as is needed.

9.5.3 Relation Finding

Since (ResFqm/FqT6)(Fq) is 2m-dimensional, we need to solve

2m
∏

i=1

Pi = R , (9.7)

153

9.5 An Index Calculus Algorithm for T6(Fqm) ⊂ F×
q6m

with P1, . . . , P2m ∈ F . Assuming that R is expressed in its canonical form, i.e.,

R = ψ(r1, r2), we get

2m
∏

i=1

(

1 + (ait)y + (1− (ait)
2)x

1 + (ait)y + (1− (ait)2)x2

)

=
1 + r1y + r2(y

2 − 2) + (1− r2
1 − r2

2 + r1r2)x

1 + r1y + r2(y2 − 2) + (1− r2
1 − r2

2 + r1r2)x2
.

After expanding the product of the numerators and denominators, the left hand

side becomes the fairly general expression

b0 + b1y + b2(y
2 − 2) + (c0 + c1y + c2(y

2 − 2))x

b0 + b1y + b2(y2 − 2) + (c0 + c1y + c2(y2 − 2))x2
(9.8)

with bi, ci polynomials over Fqm of degree 4m in a1, . . . , a2m. In general, these

polynomials are rather large and thus difficult to work with.

Example 9.1. For m = 5, the number of terms in the bi (resp. ci) is given by

B = [35956, 30988, 25073] (resp. C = [35946, 31034, 24944]) for finite fields of

large characteristic.

However, note that these polynomials are by construction symmetric in the

a1, . . . , a2m so we can rewrite the bi and ci in terms of the 2m elementary sym-

metric polynomials σj(a1, . . . , a2m) for j = 1, . . . , 2m. This has quite a dra-

matic effect on the complexity of these polynomials, i.e., the degree is now only

quadratic and the number of terms is much lower, since the maximum number of

terms in a quadratic polynomial in 2m variables is 4m+
(

2m
2

)

+ 1.

Example 9.2. For m = 5, when we consider the symmetric functions in the ait

to be the variables instead of simply ai, the polynomials bi and ci are over the

154

On the Discrete Logarithm Problem on Algebraic Tori

integers:

b0 = σ2
2 + σ2σ5 − σ2σ8 − σ2

3 − σ3σ6 + σ3σ9 − σ3 + σ2
5 + σ5σ8 − σ2

6 − σ6σ9

+ σ6 + σ2
8 − σ2

9 + 2σ9 − 1

b1 = σ1σ2 + σ1σ5 + σ1σ6 + σ1σ9 − σ1 − σ2σ7 − σ2σ10 − σ3σ4 − σ3σ7 + σ4σ5

+ σ4σ8 + σ4σ9 − σ4 − σ5σ10 − σ6σ7 − σ6σ10 + σ7σ8 − σ9σ10 + σ10

b2 = σ1σ3 + σ1σ5 + σ1σ6 + σ1σ8 − σ2σ4 − σ2σ7 − σ3σ7 − σ3σ10 + σ4σ6

+ σ4σ8 + σ4σ9 − σ4 − σ5σ7 − σ5σ10 − σ6σ10 + σ7σ9 − σ7 − σ8σ10

c0 = σ2
1 + σ1σ4 − σ1σ7 − 2σ1σ10 − σ2

3 − σ3σ6 + σ3σ9 − σ3 + σ2
4 + σ4σ7

− σ4σ10 − σ2
6 − σ6σ9 + σ6 + σ2

7 + σ7σ10 − σ2
9 + 2σ9 + σ2

10 − 1

c1 = σ1σ2 + σ1σ5 − σ2σ3 − σ2σ6 − σ2σ7 − σ2σ10 + σ3σ8 + σ4σ5

+ σ4σ8 − σ5σ6 − σ5σ9 − σ5σ10 + σ5 + σ7σ8 − σ8σ9 + σ8

c2 = σ1σ5 + σ1σ8 − σ2σ4 − σ2σ6 − σ2σ7 − σ2σ9 + σ2 + σ3σ5 + σ3σ8

+ σ4σ8 − σ5σ7 − σ5σ9 − σ5σ10 + σ5 + σ6σ8 − σ8σ10

and the number of terms reduces to B = [16, 19, 18] and C = [20, 16, 16].

Note that the polynomials bi and ci only have to be computed once and can be

reused for each random point R.

To generate the system of non-linear equations, we can proceed in two ways.

The first method rewrites (9.8) in the canonical form (9.6) and then equates the

two corresponding coefficients. Instead of using the inverse map ρ symbolically,

we proceed as follows: multiplying both numerator and denominator of (9.8) by

the two conjugates of c0+c1y+c2(y
2−2) and taking into account that yq = y2−2

and (y2 − 2)q = −(y2 − 2)− y, we get

d0 + d1y + d2(y
2 − 2) + ∆ x

d0 + d1y + d2(y2 − 2) + ∆ x2
, (9.9)

155

9.5 An Index Calculus Algorithm for T6(Fqm) ⊂ F×
q6m

with

d0 = b0c
2
0 − b0c21 + b0c1c2 − b0c22 − 2b1c0c1 + b1c0c2 − b1c21 + 4b1c1c2 − b1c22

+ b2c0c1 − 2b2c0c2 + 2b2c
2
1 − 2b2c1c2 − b2c22 ,

d1 = − b0c0c1 + 2b0c1c2 − b0c22 + b1c
2
0 − b1c0c2 + b1c1c2 − 2b1c

2
2 − b2c0c1

+ b2c0c2 − b2c21 + 2b2c1c2 ,

d2 = − b0c0c2 + b0c
2
1 − b0c22 − b1c0c1 + 2b1c1c2 − b1c22 + b2c

2
0 + b2c0c2

− 2b2c
2
1 + b2c1c2 ,

∆ = c30 − 3c0c
2
1 + 3c0c1c2 − 3c0c

2
2 − c31 + 6c21c2 − 3c1c

2
2 − c32 .

(9.10)

The system of 2m non-linear equations in the 2m unknowns a1, . . . , a2m is then

given by the Weil restriction of the two equations

d1 = r1d0 and d2 = r2d0 .

Note that d0, d1, d2 are independent of R and thus only need to be computed once.

The downside of this approach is that by computing the di explicitly via (9.10), the

degrees and therefore also the numbers of terms explode. This makes it virtually

impossible to use Gröbner basis techniques [20] to find the solutions of this system

of non-linear equations. Hence we use the following method.

Instead, to solve the system of non-linear equations, we use the embedding of

T6(Fqm) into T2(Fq3m) and consider the Weil restriction of the following equality:

b0 + b1y + b2(y
2 − 2)

c0 + c1y + c2(y2 − 2)
=

1 + r1y + r2(y
2 − 2)

1− r2
1 − r2

2 + r1r2
.

The above equation leads to 3 non-linear equations over Fqm or equivalently, to

3m non-linear equations over Fq in the 2m unknowns σ1, . . . , σ2m. Note that

amongst the 3m equations, there will be at least m dependent equations, caused

by the fact that we only considered the embedding in T2 and not strictly in T6.

The efficiency with which one can find the solutions of this system of non-

156

On the Discrete Logarithm Problem on Algebraic Tori

linear equations depends on many factors such as the multiplicities of the zeros

or the number of solutions at infinity. For each random R, the resulting system

of equations has the same structure, since only the value of some coefficients

changes, but for finite fields of large enough characteristic, neither the degrees nor

the numbers of terms. To determine the properties of these systems of equations

we computed the Gröbner basis w.r.t. the lexicographic ordering using the Magma

implementation of the F4-algorithm [35] and concluded the following:

• The ideal generated by the system non-linear equations is zero-dimensional,

which implies that there is only a finite number of candidates for the σi.

• After homogenizing the system of equations, we concluded that there is

only a finite number of solutions at infinity. This property is quite important,

since we can then use an algorithm by Lazard [84] with proven complexity.

• The Gröbner basis w.r.t. the lexicographic ordering satisfies the so called

Shape Lemma, i.e., the basis has the following structure:

σ1 − g1(σ2m), σ2 − g2(σ2m), . . . , σ2m−1 − g2m−1(σ2m), g2m(σ2m) ,

where gi(σ2m) is a univariate polynomial in σ2m for each i. By reducing

modulo g2m we can assume that deg(gi) < deg(g2m) and by Bezout’s theo-

rem we have deg(g2m) ≤ 22m, since the non-linear equations are quadratic.

However, our experiments show that in all cases we have deg(g2m) = 3m.

• The polynomial g2m(σ2m) is squarefree, which implies that the ideal is in

fact a radical ideal.

To test if a random point decomposes over the factor base, we first find the

roots of g2m(σ2m) in Fq, and then substitute these in the gi to find the values of the

σi for i = 1, . . . , 2m− 1. If there is more than one solution for the σi, then each

is tested to see if it actually gives a relation, as follows. For each such 2m-tuple,

we then test if the polynomial

p(x) := x2m − σ1x
2m−1 + σ2x

2m−2 − · · ·+ (−1)2mσ2m

157

9.5 An Index Calculus Algorithm for T6(Fqm) ⊂ F×
q6m

splits completely over Fq. If it does, then the roots ai for i = 1, . . . , 2m lead to a

possible relation of the form (9.7).

9.5.4 Complexity Analysis and Experiments

The probability of obtaining a relation is now 1/(2m)! and since the factor base

again consists of q elements, we need to perform on average (2m)!q decomposi-

tions. Each decomposition consists of the following steps:

• Since the polynomials bi and ci only need to be computed once, generating

the system of non-linear equations requires O(1) multiplications of multi-

variate polynomials with O(m2) terms with an Fqm-element. Using a naive

multiplication routine, the overall time to generate one such system is there-

fore O(m4) operations in Fq.

• Computing the Gröbner basis using the F5-algorithm algorithm [36] re-

quires O(
(

4m
2m

)ω
) operations in Fq, with ω the complexity of matrix mul-

tiplication, i.e., ω = 3 using a naive algorithm. Using the fact that

(

2n

n

)

∼=
√

π

2
(2n)−1/222n = O(22n)

we obtain a complexity of O(212m) operations in Fq.

• Since deg(g2m) = 3m, computing gcd(g2m(z), zq−z) requiresO(32m log q)

operations in Fq. On average, the polynomial will have one root in Fq, so

finding the actual roots takes negligible time.

• Testing if the polynomial p(x) has roots in Fq requires O(m2 log q) opera-

tions in Fq. Since this only happens with probability 1/(2m)!, when it does

split, finding the actual roots is negligible.

The overall time complexity to generate sufficient relations therefore amounts to

O
(

(2m)! · q · (212m + 32m log q)
)

158

On the Discrete Logarithm Problem on Algebraic Tori

operations in Fq.

Finding an element in the kernel of a matrix of dimension q with 2m non-

zero elements per row requiresO(mq2) operations in Z/(Φ6(q
m)Z), which finally

justifies the following complexity estimate:

Run Time Heuristic 9.1. The expected running time of the T6-algorithm to com-

pute discrete logarithms in T6(Fqm) is

O((2m)! · q · (212m + 32m log q) +m3q2)

operations in Fq.

Again, the results of [49, 106, 154] imply that the complexity can be reduced

to O(q2−1/m) as q →∞, since in this case the dimension is 2m.

The expected running time of the T6-algorithm is minimal precisely when the

relation collection stage takes about the same time as the linear algebra stage, i.e.,

when (2m)!·212m ' q. Note that for such q andm, the term 32m log q is negligible

compared to 212m. The overall running time then again becomes

O(m3q2) = O
(

exp(3 logm+ 2 log q)
)

= O
(

exp(5(log q)1/2(log q)1/2)
)

= O
(

exp(5(2m log 2m+ 12m)1/2(log q)1/2)
)

= O
(

Lqm(1/2, c′)
)

with c′ ∈ R>0. Note that for the first equality we have used again logm < log q,

and for the second and third equality we have used log q ' 2m logm+12m log 2.

The practicality of the T6-algorithm clearly depends on the efficiency of the

Gröbner basis computation. Note that for small m, the complexity of the Gröbner

basis computation is greatly overestimated by the O(212m) operations in Fq.

Due to the use of the symmetric polynomials, the input polynomials are only

quadratic instead of degree 4m. As one can see from Figure 9.2, this makes the

algorithm quite practical. The table should be interpreted as for Figure 9.1, i.e.,

the torus size is constant across each row and for a given size qm, the table contains

159

9.5 An Index Calculus Algorithm for T6(Fqm) ⊂ F×
q6m

Figure 9.2: log2 of expected running times (s) of the T6-algorithm and Pollard-
Rho in a subgroup of size 2160: bold for time < 245 and matrix of size < 223.

m
log2 |Fp6m| log2 |T6(Fpm)| ρ 1 2 3 4 5

200 67 18 25 18 14 20 29
300 100 34 42 36 21 24 32
400 134 52 59 54 32 29 36
500 167 66 75 71 44 33 39
600 200 66 93 88 55 40 42
700 234 66 109 105 67 48 46
800 267 66 127 122 78 57 51
900 300 68 144 139 90 65 56

1000 334 69 161 156 101 74 60

for m = 1, . . . , 5, the log2 of the expected running times in seconds for the entire

algorithm. Taking into account the memory restrictions on the matrix, i.e., the

dimension should be limited by 223, the timings given in bold are feasible with the

current Magma implementation.

Remark 9.2. Note that the column for m = 5 provides an upper bound for the

hardness of the DLP in T30(Fq), since this can be embedded in T6(Fq5). This

group was proposed in Chapter 5 and also in [85] for cryptographic use where

keys of length 960 bits were recommended, i.e., with q of length 32 bits. Figure 9.2

shows that even with a Magma implementation it would be feasible to compute

discrete logarithms in T30(Fp) with p a prime of around 20 bits. The embedding

in T2(Fp15) is about 210 times less efficient as can be seen from the column for

m = 15 in Figure 9.1. In light of this attack, the security offered by the DLP in

finite fields of the form Fq30 should be completely reassessed. Note that by simply

comparing the complexities given in Theorem 1 and the above run time heuristic,

it is a priori not clear that the T6-algorithm is in fact faster than the corresponding

T2-algorithm. This phenomenon is caused by the overestimating the complexity of

the Gröbner basis computation.

160

On the Discrete Logarithm Problem on Algebraic Tori

9.5.5 Comparison with other Methods

In this section we compare the T6-algorithm with the Pollard-Rho and the Adleman-

DeMarrais index calculus algorithm.

Pollard-Rho in the Full Torus

Since the size of T6(Fqm) is given by Φ6(q
m) ' q2m, we conclude that the Pollard-

Rho algorithm takes, in the worst case, O(qm) operations in T6(Fqm) or O(m2qm)

operations in Fq. If we assume that q is large enough such that the term q2 deter-

mines the overall running time, i.e., (2m)!212m ≤ q, then the T6-algorithm will

be at least as fast as Pollard-Rho whenever m ≥ 3. Again we note that the T6 al-

gorithm does not lead to an improvement over the existing attacks on LUC [146],

XTR [88], CEILIDH [127] or MNT curves [104] as long as these systems are

defined over Fp. However, the security of XTR over extension fields, as proposed

in [93] and the proposals of Chapter 5, needs to be reassessed as shown below.

Pollard-Rho in a Subgroup of prime order ' 2160

As for the T2-algorithm, the third column of Figure 9.2 contains the expected

running time of the Pollard-Rho algorithm in a subgroup of T6(Fqm) of prime

order l with l ' 2160. In this case, the column for m = 5 gives an upper bound

of the security of the T30 cryptosystem of Chapter 5. As is clear from Figure 9.2,

for m = 5, our algorithm is always faster than Pollard-Rho, and the matrices

occurring in the linear algebra step would be feasible up to 700-bit fields.

However, as was the case for the T2-algorithm, the importance of Figure 9.2

is that it contains the first practical upper bounds for the hardness of the DLP in

extension fields F×
q6m .

9.6 Conclusion and Future Work

In this chapter we have presented an index calculus algorithm, following ideas of

Gaudry, to compute discrete logarithms on rational algebraic tori. Our algorithm

161

9.6 Conclusion and Future Work

works directly in the torus and depends fundamentally on the compression mech-

anisms previously used in a constructive context for systems such as LUC, XTR

and CEILIDH.

We have also provided upper bounds for the difficulty of solving discrete log-

arithms on the tori T2(Fqm) and T6(Fqm) for various q and m in the cryptographic

range. These upper bounds indicate that if the techniques in this chapter can be

made fully practical and optimized, then they may weaken the security of practical

systems based on T30, for fields in the 1000 bit range.

In the near future we wish to investigate the approach by Diem [27], who

allows a larger decomposition base when necessary. The disadvantage of this

approach is that it destroys the symmetric nature of the polynomials defining the

decomposition of a random element over the factor base, which makes Gröbner

basis techniques virtually impossible.

It is clear that the Magma implementations described in this chapter are not

optimised and many possible improvements exist. Two factors mainly determine

the running time of the algorithm: first of all, the probability that a random ele-

ment decomposes over the factor base and secondly, the time it takes to solve a

system of non-linear equations over a finite field. The first factor could be influ-

enced by designing some form of sieving, if at all possible, whereas the second

factor could be improved by exploiting the fact that many very similar Gröbner

bases have to be computed.

One possibility for overcoming the former problem would be to eliminate this

probability entirely, as follows. Using the T2-algorithm for this example, instead

of having just one factor base F as in (9.4), we use m factor bases F1, . . . ,Fm,

where

Fi =

{

ati−1 − γ
ati−1 + γ

: a ∈ Fq

}

⊂ T2(Fqm).

One then expects that every point R ∈ T2(Fqm) admits a unique decomposition

R = P1 + · · · + Pm, with Pi ∈ Fi, since the set of all sums of m elements from

the Fi has cardinality qm ≈ #T2(Fqm). The drawback of this method is that since

the system is no longer symmetric, the decomposition method no doubt becomes

far more costly.

162

On the Discrete Logarithm Problem on Algebraic Tori

Vercauteren and Lercier [159], using the approach described in this chapter,

were able to compute discrete logarithms in a field Fp18 of size 336 bits in less

than one week. At the time the research contained in this chapter was carried out,

the index calculus algorithm of Adleman and DeMarrais [2] was the best known

subexponential algorithm for fields of medium extension degree, i.e., those with

degrees from ten to thirty or so.

However, recently Joux and Lercier [67,68] extended Adleman’s FFS method

to fields of this type, resulting in an L[1/3, c] algorithm [?] for some combinations

of p and n, thus beating the complexity of the Adleman-DeMarrais algorithm.

Impressively, they were able to compute discrete logarithms in a field Fp30 of size

556 bits, in less than twelve hours on a 1.15 GHz 16-processors HP AlphaServer

GS1280. The main difference between their algorithm and the one presented here

is that the relation generation is far more efficient, while the linear algebra stage

for both isO(p2). It therefore seems that the approach of Joux and Lercier, as well

as being more generally applicable than the algorithm described in this chapter, is

more efficient in practice as well.

More recently, using several new ideas for the Number Field Sieve, Joux,

Lercier, Vercauteren and Smart [71] described a family of algorithms that have

L[1/3, c] complexity, for all remaining combinations of p and n that had until

then eluded an L[1/3] complexity. Thus there now exists an L[1/3, c] for all finite

fields, with various constants, as has been believed by several experts for some

time.

163

164

Final Remarks

In this thesis we have presented several techniques for improving both the time and

space efficiency of cryptographic systems that are based in, or map to, the multi-

plicative group of finite fields with small extension degree. We have also presented

a security analysis of the systems proposed, using both existing algorithms, and

developing our own, revealing weaknesses in current torus-based cryptographic

parameters that were not previously known.

The results of the thesis raise two obvious questions. While the torus inter-

pretation of subgroups of F×
qn allows for asymptotically optimal element repre-

sentation, do there exist any other algebraic interpretations that might allow faster

arithmetic? Secondly, while the algorithm presented in Chapter 9 demonstrates a

weakness in some medium degree extension fields, the methods employed are in

some sense artificial, since they rely on an imposed algebraic notion of smooth-

ness. Therefore, might there exist algorithms which exploit the torus arithmetic

more directly?

Naturally any method that offers a solution to the former problem has possible

implications for the latter, in that any algebraic interpretation may give rise to

an attack if there exists a corresponding DLP algorithm for the interpretation. In

fact a preprint by Kohel [77] suggests a possible method along these lines, by

modelling algebraic tori as subschemes of the generalised Jacobian of singular

hyperelliptic curves. Unfortunately the arithmetic obtained is less efficient than

that detailed in Part I of this thesis. Furthermore, it is not difficult to see that the

proposed method really only models T2, with the higher-dimensional tori arising

simply as subschemes. Hence an attack on the DLP via this approach will only

165

provide the same benefits as the T2 algorithm presented in Chapter 9. Indeed it

was the failure of this approach to give a compact representation of the higher tori

which led to the idea of using the rationality of T6 to gain a tighter representation,

and hence a higher probabilty of relation generation using Gaudry’s method [47].

The fact that such models exist however implies that it may be possible to

efficiently represent, and hence attack, systems based on higher-dimensional al-

gebraic tori, and hence extension fields, using more sophisticated ideas than are

presently known.

166

Bibliography

[1] L. M. Adleman. The function field sieve. In Algorithmic Number Theory

Symposium (ANTS-I), Springer LNCS 877, 108–121, 1994.

[2] L. M. Adleman and J. DeMarrais. A subexponential algorithm for discrete

logarithms over all finite fields. Mathematics of Computation, 61 (203),

1–15, 1993.

[3] L. M. Adleman and M. A. Huang. Function field sieve method for discrete

logarithms over finite fields. Journal of Information and Computation, 151

(1-2), 5–16, 1999.

[4] R. M. Avanzi. Aspects of Hyperelliptic Curves over Large Prime Fields

in Software Implementations. In Cryptographic Hardware and Embedded

Systems (CHES 2004), Springer LNCS 3156, 148–162, 2004.

[5] P. Barreto. Personal Communication.

[6] P. Barreto, S. Galbraith, C. Ó hÉigeartaigh, and M. Scott. Efficient Pair-

ing Computation on Supersingular Abelian Varieties. Cryptology ePrint

Archive, Report 2004/375. Available from http://eprint.iacr.

org/2004/375.

[7] P. Barreto, H. Kim, B. Lynn and M. Scott. Efficient Algorithms for

Pairing-Based Cryptosystems. In Advances in Cryptology (CRYPTO 2002),

Springer LNCS 2442, 354–368, 2002.

167

[8] E. A. Bender and E. R. Canfield. An approximate probabilistic model for

structured Gaussian elimination. Journal of Algorithms, 31, 271–290, 1999.

[9] G. Bertoni, J. Guajardo, S. Kumar, G. Orlando, C. Paar and T. Wollinger.

Efficient GF(pm) arithmetic architectures for cryptographic applications. In

Topics in Cryptology – CT-RSA, Springer LNCS 2612, 158–175, 2003.

[10] I. F. Blake, G. Seroussi and N. P. Smart. Elliptic Curves in Cryptography.

Cambridge University Press, 1999.

[11] I. F. Blake, G. Seroussi and N. P. Smart. Advances in Elliptic Curve Cryp-

tography. Cambridge University Press, 2005.

[12] D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity-Based En-

cryption Without Random Oracles. In Advances in Cryptology (EURO-

CRYPT 2004), Springer LNCS 3027, 223–238, 2004.

[13] D. Boneh, X. Boyen and H. Shacham. Short Group Signatures. In Advances

in Cryptology (CRYPTO 2004), Springer LNCS 3152, 41–55, 2004.

[14] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing.

SIAM Jounal on Computing, Volume 32, no. 3, 586-615, 2003.

[15] D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil Pairing.

In Advances in Cryptology (ASIACRYPT 2001), Springer LNCS 2248,

514–532, 2001.

[16] D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to factor-

ing (extended abstract). In Advances in Cryptology (EUROCRYPT 1998),

Springer LNCS 1403, 59–71, 1998.

[17] W. Bosma, J. Hutton and E. Verheul. Looking beyond XTR. In Advances in

Cryptology (ASIACRYPT 2002), Springer LNCS 2501, 46–63, 2002.

[18] A. Bosselaers, R. Govaerts and J. Vandewalle. Comparison of Three Mod-

ular Reduction Functions. In Advances in Cryptology (CRYPTO 1994)

Springer LNCS 773, 175–186, 1994.

168

[19] A. E. Brouwer, R. Pellikaan and E. R. Verheul. Doing more with fewer bits.

In Advances in Cryptology (ASIACRYPT 1999), Springer LNCS 1716,

321–332, 1999.

[20] B. Buchberger. A theoretical basis for the reduction of polynomials to canon-

ical forms. ACM SIGSAM Bull., 10 (3), 19–29, 1976.

[21] W. Clark and J. Liang. On arithmetic weight for a general radix representa-

tion of integers. IEEE Trans. Info. Theory, 19, 823–826, 1973.

[22] C. C. Cocks. A Note on Non-Secret Encryption (1973). Available from:

http://www.cesg.gov.uk/site/publications/media/notense.pdf

[23] H. Cohen, A. Miyaji and T. Ono. Efficient elliptic curve exponentiation

using mixed coordinates. In Advances in Cryptology (ASIACRYPT 1998).

Springer LNCS 1514 , 51–65, 1998.

[24] D. Coppersmith. Evaluating logarithms in GF(2n). In 16th ACM Symp.

Theory of Computing, 201–107, 1984.

[25] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two.

IEEE Trans. Info. Theory, 30, 587–594, July 1984.

[26] J. Daemen and V. Rijmen. The design of Rijndael: AES - the Advanced

Encryption Standard. Springer, 2002.

[27] C. Diem. On the discrete logarithm problem in elliptic curves over non-

prime fields. Talk at ECC 2004. Available from the author.

[28] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans.

Inform. Theory 22 (6), 644–654, 1976.

[29] R. Dutta, R. Barua and P. Sarkar. Pairing-Based Cryptographic Protocols:

A Survey. Cryptology ePrint Archive, Report 2004/064. Available from

http://eprint.iacr.org/2004/064.

169

[30] I. Duursma and H. Lee. Tate Pairing Implementation for Hyperelliptic

Curves y2 = xp − x + d. In Advances in Cryptology (ASIACRYPT 2003),

Springer LNCS 2894, 111–123, 2003.

[31] A. K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev.

Lett. 67, 661–663 (1991).

[32] T. ElGamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. In Advances in Cryptology (CRYPTO 1984), Springer

LNCS 196, 10–18, 1985.

[33] J. H. Ellis. The Possibility of Non-Secret Encryption (1970). Available from:

http://www.cesg.gov.uk/site/publications/media/possnse.pdf

[34] A. Enge and P. Gaudry. A general framework for subexponential discrete

logarithm algorithms. Acta Arithmetica, 102, 83-103 2002.

[35] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4),

J. Pure Appl. Algebra 139 (1-3), 61-88, 1999.

[36] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases with-

out reduction to zero (F5), In Proceedings of the 2002 International Sympo-

sium on Symbolic and Algebraic Computation, 75–83, 2002.

[37] FIPS 46. Data Encryption Standard. Federal Information Processing Stan-

dard (FIPS), National Bureau of Standards, U.S. Department of Commerce,

Washington D.C., 1977.

[38] FIPS 46-2. Data Encryption Standard. Federal Information Processing Stan-

dard (FIPS), National Bureau of Standards, U.S. Department of Commerce,

Washington D.C., 1993.

[39] FIPS 186-2. Digital Signature Standard. Federal Information Processing

Standards Publication 186-2, 2000.

170

[40] FIPS 197. Advanced Encryption standard. Federal Information Process-

ing Standards (FIPS), National Institute of Standards and Technology, U.S.

Department of Commerce, Washington D.C., 2001.

[41] G. Frey and H. Ruck. A Remark Concerning m-Divisibility and the Discrete

Logarithm Problem in the Divisor Class Group of Curves. Mathematics of

Computation, 62, 865-874, 1994.

[42] S. Galbraith. Supersingular Curves in Cryptography. In Advances in Cryp-

tology (ASIACRYPT 2001), Springer LNCS 2248, 495–513, 2001.

[43] S. Galbraith, K. Harrison and D. Soldera. Implementing the Tate pairing. In

Algorithmic Number Theory Symposium (ANTS-IV) Springer LNCS 2369,

324–337, 2002.

[44] R. Gallant, J. Lambert and S. Vanstone. Faster Point Multiplication on El-

liptic Curves with Efficient Endomorphisms. In Advances in Cryptology

(CRYPTO 2001), Springer LNCS 2139, 190–200, 2001.

[45] S. Gao. Normal Bases over Finite Fields. PhD Thesis, University of Water-

loo, 1993.

[46] S. Gao and J. Howell. A general polynomial sieve. Designs, Codes and

Crpyotgraphy, vol. 18, 149–157, 1999.

[47] P. Gaudry Index calculus for abelian varieties and the elliptic curve discrete

logarithm problem. Cryptology ePrint Archive, Report 2004/073. Available

from http://eprint.iacr.org/2004/073.

[48] P. Gaudry, F. Hess and N. P. Smart. Constructive And Destructive Facets Of

Weil Descent On Elliptic Curves. J. of Cryptology, 15(1), 19–46, 2002.

[49] P. Gaudry, E. Thomé, N. Thériault and C. Diem. A double large prime varia-

tion for small genus hyperelliptic index calculus. Cryptology ePrint Archive,

Report 2004/153. Available from http://eprint.iacr.org/2004/

153.

171

[50] C. Gentry. Certificate-Based Encryption and the Certificate Revocation

Problem. In Advances in Cryptology (EUROCRYPT 2003), Springer LNCS

2656, 272–293, 2003.

[51] P. Golle and A. Juels. Dining Cryptographers Revisited. In Advances in

Cryptology (EUROCRYPT 2004), Springer LNCS 3027, 456–473, 2004.

[52] D. M. Gordon. Discrete Logarithms inGF (p) Using the Number Field Sieve.

SIAM J. of Disc. Math., 6, 124–138, 1993.

[53] D. M. Gordon and K. S. McCurley. Massively parallel computation of dis-

crete logarithms. In Advances in Cryptology – CRYPTO 1992, Springer

LNCS 740, 312–323, 1993.

[54] R. Granger. Estimates for discrete logarithm computations in finite fields of

small characteristic. In Cryptography and Coding, Springer LNCS 2898,

190–206, 2003.

[55] R. Granger, A. Holt, D. Page, N. P. Smart and F. Vercauteren. Function Field

Sieve in Characteristic Three. In Algorithmic Number Theory Symposium

(ANTS-VI), Springer LNCS 3076, 223–234, 2004.

[56] R. Granger, D. Page and M. Stam. A Comparison of CEILIDH and XTR. In

Algorithmic Number Theory Symposium (ANTS-VI) Springer LNCS 3076,

235–249, 2004.

[57] R. Granger, D. Page and M. Stam. On Small Characteristic Algebraic Tori

in Pairing-based Cryptography. In LMS Journal of Computation and Math-

ematics, Volume 9: 64–85, 2006.

[58] R. Granger, D. Page and M. Stam. Hardware and Software Normal Basis

Arithmetic for Pairing-Based Cryptography in Characteristic Three. IEEE

Transactions on Computers 54(7), 852–860, 2005.

172

[59] R. Granger and F. Vercauteren. On the Discrete Logarithm Problem on Al-

gebraic Tori. In Advances in Cryptology (CRYPTO 2005), Springer LNCS

3621, 66–85, 2005.

[60] K. Harrison, D. Page and N. P. Smart. Software Implementation of Finite

Fields of Characteristic Three, for use in Pairing Based Cryptosystems. LMS

Journal of Computation and Mathematics, 5 (1), 181–193, London Mathe-

matical Society, 2002.

[61] R. Hartshorne. Algebraic Geometry, Springer, 1997.

[62] F. Hess. Efficient Identity based Signature Schemes based on Pairings. In

Selected Areas in Cryptography (SAC 2002), Springer LNCS 2595, 310–

324, 2003.

[63] F. Hess, F. Vercauteren and N. Smart. The Eta Pairing Revisited. Preprint,

March 2006.

[64] IEEE 1363, IEEE standard specifications for public key cryptography, 2000.

[65] T. Itoh and S. Tsujii. A Fast Algorithm for Computing Multiplicative Inverses

in GF (2m) Using Normal Bases. Info. and Comp., 78(3), 171–177, 1988.

[66] A. Joux. A One Round Protocol for Tripartite Diffie-Hellman. In Algorith-

mic Number Theory Symposium (ANTS-IV), Springer LNCS 1838, 385–

394, 2000.

[67] A. Joux and R. Lercier. Discrete logarithms in GF (6553725) – 120 digits –

400 bits: email to NMBRTHRY list, October 2005.

[68] A. Joux and R. Lercier. Discrete logarithms in GF (37080130) – 168 digits

– 556 bits: email to NMBRTHRY list, October 2005.

[69] A. Joux and R. Lercier. The Function Field Sieve in the Medium Prime Case.

To appear in Advances in Cryptology (EUROCRYPT 2006).

173

[70] A. Joux and R. Lercier. The Function Field Sieve is Quite Special. In Al-

gorithmic Number Theory Symposium (ANTS-V), Springer LNCS 2369,

431–445, 2002.

[71] A. Joux, R. Lercier, F. Vercauteren and N. Smart. The Number Field Sieve

in the Medium Prime Case. Preprint.

[72] D. E. Knuth. The Art of Computer Programming. Vol. 2, Addison-Wesley,

1981.

[73] N. Koblitz. An elliptic curve implementation of the finite field digital sig-

nature algorithm. In Advances in Cryptology (CRYPTO 1998), Springer

LNCS 1462, 327–337, 1998.

[74] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, 48,

203–209, 1987.

[75] N. Koblitz. Hyperelliptic Cryptosystems. In J. of Cryptology, 1, 139–150,

1989.

[76] N. Koblitz and A. J. Menezes. Pairing-Based Cryptography at High Security

Levels. Cryptology ePrint Archive, Report 2005/076. Available from http:

//eprint.iacr.org/2005/076.

[77] D. Kohel. Constructive and destructive facets of torus-based cryptography.

Available from the author.

[78] M. Kraitchik. Théorie des nombres. Vol. 1, Gauthiers-Villars, 1922.

[79] M. Kraitchik. Recherches sur la théorie des nombres. Gauthiers-Villars,

1924.

[80] S. Kwon. Efficient Tate Pairing Computation for Elliptic Curves over Binary

Fields. In Proc. of ACISP 2005, Springer LNCS 3574, 134–145, 2005.

[81] A. A. Klyachko. On the Rationality of Tori with Cyclic Splitting Field (Rus-

sian). Arithmetic and Geometry of Varieties, Kuybyshev Univ. Press, 73–78,

1988.

174

[82] B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems

over finite fields. In Advances in Cryptology (CRYPTO 1990), Springer

LNCS 537, 109–133, 1991.

[83] C. Lanczos. Solution of systems of linear equations by minimized iterations.

J. of Research of the National Bureau of Standards, 49, 33–53, 1952.

[84] D. Lazard. Résolution des systèmes d’équations algébriques, Theoret. Com-

put. Sci., 15 (1), 77–110, 1981.

[85] A. K. Lenstra. Using Cyclotomic Polynomials to Construct Efficient Dis-

crete Logarithm Cryptosystems over Finite Fields. In Proc. of ACISP ’97,

Springer LNCS 1270, 127–138, 1997.

[86] A. K. Lenstra and H. W. Lenstra Jr. The development of the number field

sieve. Springer LNM 1554, 1993.

[87] A. K. Lenstra and H. W. Lenstra Jr. Algorithms in number theory. Technical

Report 87-008, University of Chicago, 1987.

[88] A. K. Lenstra and E. Verheul. The XTR Public Key System. In Advances in

Cryptology (CRYPTO 2000), Springer LNCS 1880, 1–19, 2000.

[89] A. K. Lenstra and E. Verheul. An Overview of the XTR Public Key System.

In Public Key Cryptography and Computational Number Theory, Verlages

Walter de Gruyter, 151–180, 2001.

[90] H. W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of Math-

emetics (2), 126(3), 649–673, 1987.

[91] H. W. Lenstra Jr. Finding Isomorphisms Between Finite Fields. Mathematics

of Computation, 56, number 193, 329–347, 1991.

[92] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Appli-

cations, revised edition. Cambridge, England: Cambridge University Press,

1994.

175

[93] S. Lim, S. Kim, I. Yie, J. Kim and H. Lee. XTR extended to GF(p6m). In

Selected Areas in Cryptography (SAC 2001), Springer LNCS 2259, 301–

312, 2001.

[94] C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation.

In Advances in Cryptology (CRYPTO), Springer LNCS 839, 95–107, 1994.

[95] J. López and R. Dahab. High Speed Software Multiplication in F2m . In

Progress in Cryptography (INDOCRYPT 2000), Springer LNCS 1977, 203–

212, 2000.

[96] R. Matsumoto. Using Cab Curves in the Function Field Sieve. IEICE Trans.

Fundamentals, 82, March 1999.

[97] U. M. Maurer and S. Wolf. The Diffie-Hellman Protocol. Designs, Codes

and Cryptography (19), 147–171, 2000.

[98] K. McCurley. The discrete logarithm problem. Cryptology and computa-

tional number theory, Proc. Symp. in Applied Mathematics 42, American

Mathematical Society, pp. 49–74, 1990.

[99] G. C. Meletiou. Explicit Form for the Discrete Logarithm over the Field

GP(p, k). Archivum Mathematicum (BRNO) 29, 25–28, 1993.

[100] A. J. Menezes, T. Okamoto and S. A. Vanstone. Reducing elliptic curve

logarithms to logarithms in a finite field. IEEE Transactions in Information

Theory, 39, 1639–1646, 1993.

[101] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.

[102] V. Miller. Short programs for functions on curves. Unpublished manuscript,

1986. Available from http://crypto.stanford.edu/miller/

miller.pdf.

[103] V. Miller. Uses of Elliptic Curves in Cryptography. In Advances in Cryp-

tology (CRYPTO 1985), Springer LNCS 218, 417–426, 1985.

176

[104] A. Miyaji, M. Nakabayashi and S. Takano. New explicit conditions of el-

liptic curve traces for FR-reduction. IEICE Trans. Fundamentals E84-A (5),

1234–1243, 2001.

[105] P. L. Montgomery. Modular Multiplication Without Trial Division. Math-

ematics of Computation, 44, 519–521, 1985.

[106] K. Nagao. Improvement of Thériault algorithm of index calculus for Ja-

cobian of hyperelliptic curves of small genus. Cryptology ePrint Archive,

Report 2004/161. Available from http://eprint.iacr.org/2004/

161.

[107] V. Nechaev. Complexity of a determinate algorithm for the discrete log-

arithm. In Mathematical Notes, 55(2), 165–172, 1994. Translated from

Matematicheskie Zametki 55(2), 91–101, 1994.

[108] M. A. Neilsen and I. L. Chuang. Quantum Computation and Quantum

Information. Cambridge University Press, 2000.

[109] K. Nguyen. Explicit Arithmetic of Brauer Groups. PhD Thesis, Universität

Gesamthochschule Essen, 2001.

[110] P. Ning and Y. L. Yin. Efficient Software Implementation for Finite Field

Multiplication in Normal Basis. In Information and Communications Secu-

rity (ICICS), Springer LNCS 2229, 177–188, 2001.

[111] M. Nöcker. Data structures for parallel exponentiation in finite fields. PhD

Thesis, Universität Paderborn, 2001.

[112] See: http://www.nsa.gov/ia/industry/crypto_suite_b.

cfm

[113] A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic

significance. In Advances in Cryptology (EUROCRYPT 1984), Springer

LNCS 209, 224–314, 1985.

177

[114] A. M. Odlyzko. Discrete logarithms and smooth polynomials. Finite

Fields: theory, applications, and algorithms, Contemp. Math 168, Ameri-

can Mathematical Society, pp. 269–278, 1994.

[115] T. Okamoto and R. Kashima. Resource Bounded Unprovability of Compu-

tational Lower Bounds. Cryptology ePrint Archive, Report 2003/187. Avail-

able from http://eprint.iacr.org/2003/187.

[116] D. Page. Parallel Solution of Sparse Linear Systems Defined Over GF(p).

Technical Report, University of Bristol. November 2004.

[117] D. Page and N. P. Smart. Hardware implementation of finite fields of char-

acteristic three. In Cryptographic Hardware and Embedded Systems (CHES

2002), Springer-Verlag LNCS 2523, 529–539, 2002.

[118] D. Page, N. P. Smart and F. Vercauteren. A comparison of MNT curves and

supersingular curves. Cryptology ePrint Archive, Report 2004/165. Avail-

able from http://eprint.iacr.org/2004/165.

[119] G. Pohlig and M. Hellman. An improved algorithm for computing discrete

logarithms overGF (p) and its cryptographic significance. IEEE Trans. Info.

Theory 24, 106–110, 1978.

[120] J. Pollard. Monte Carlo methods for index computation (mod p). Math.

Comp., 32(143), 918–924, 1978.

[121] C. Pomerance and J. W. Smith. Reduction of huge, sparse linear systems

over finite fields via created catastrophes. Exper. Math., 1, 89–94, 1992.

[122] J. Proos. Joint Sparse Forms and Generating Zero Columns when Combing.

University of Waterloo, Technical Report CORR 2003-23,

[123] A. Reyhani-Masoleh and M. A. Hasan: Fast Normal Basis Multiplica-

tion Using General Purpose Processors. In Selected Areas in Cryptography

(SAC 2001), Springer LNCS 2259, 230–244, 2001.

178

[124] R. L. Rivest, A. Shamir and L. Adleman. A method for obtaining digi-

tal signatures and public-key cryptosystems, Communications of the ACM,

21(2):120–126, 1978.

[125] K. Rubin and A. Silverberg. Algebraic Tori in Cryptography. In High

Primes and Misdemeanours: Lectures in Honour of the 60th birthday of

Hugh Cowie Williams, Fields Institute Communications Series 41, Ameri-

can Mathematical Society, 317–326, 2004.

[126] K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology.

In Advances in Cryptology (CRYPTO 2002), Springer LNCS 2442, 336–

353, 2002.

[127] K. Rubin and A. Silverberg. Torus-Based Cryptography. In Advances in

Cryptology (CRYPTO 2003), Springer LNCS 2729, 349–365, 2003.

[128] K. Rubin and A. Silverberg. Using Primitive Subgroups to Do More with

Fewer Bits. In Algorithm Number Theory (ANTS-VI), Springer LNCS

3076, 18–41, 2004.

[129] R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems Based on Pairings.

In Symposium on Cryptography and Information Security 2000 (SCIS2000),

Okinawa, Japan, Jan 26–28, 2000.

[130] O. Schirokauer. The number field sieve for integers of low weight. Cryptol-

ogy ePrint Archive, Report 2006/107. Available from http://eprint.

iacr.org/2006/107.

[131] O. Schirokauer. The special function field sieve. SIAM Journal on Discrete

Mathematics, 16, 81–98, 2002.

[132] O. Schirokauer. Using number fields to compute logarithms in finite fields.

Mathematics of Computation, 69, 1267-1283, 2000.

179

[133] O. Schirokauer, D. Weber and T. Denny. Discrete logarithms: the effective-

ness of the index calculus method. In Algebraic Number Theory Symposium

(ANTS-II), Springer LNCS 1122, 337–361, 1996.

[134] C. P. Schnorr. Efficient signature generation by smart cards. J. Cryptology,

4, 161–174, 1991.

[135] B. Schoenmakers and P. Tuyls, Practical Two-Party Computation Based

on the Conditional Gate. In Advances in Cryptology (ASIACRYPT 2004),

Springer LNCS 3329, 119–136, 2004.

[136] M. Scott. Authenticated ID-based Key Exchange and remote log-in with in-

secure token and PIN number. Cryptology ePrint Archive, Report 2002/164.

Available from http://eprint.iacr.org/2002/164.

[137] M. Scott and P. Barreto. Compressed Pairings. In Advances in Cryptology

(CRYPTO 2004), Springer LNCS 3152, 140–156, 2004.

[138] I. Semaev. Summation polynomials and the discrete logarithm problem on

elliptic curves. Cryptology ePrint Archive, Report 2004/031. Available from

http://eprint.iacr.org/2004/031.

[139] I. R. Shafarevich. Basic Algebraic Geometry. Springer Verlag, 1974.

[140] A. Shamir. Identity-based cryptosystems and signature schemes. In Ad-

vanced in Cryptology (CRYPTO 1984), Springer-Verlag LNCS 196, 47–53,

1984.

[141] D. Shanks. The Infrastructure of Real Quadratic Field and its Applications.

In Proceedings of the 1972 Number Theory Conferecence: University of

Colorado, Boulder, Colorado, August 14–18, 1972.

[142] V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems.

In Advances in Cryptology (EUROCRYPT 1997), Springer LNCS 1233,

256–266, 1997.

180

[143] V. Shoup. NTL – A Library for Number Theory. Available from: http:

//www.shoup.net/ntl/.

[144] J. Silverman. The arithmetic of elliptic curves. Springer GTM 106, 1986.

[145] N. P. Smart. Cryptography: An Introduction. McGraw-Hill, 2003.

[146] P. Smith and C. Skinner. A public-key cryptosystem and a digital signature

system based on the Lucas function analogue to discrete logarithms. In

Advances in Cryptology (ASIACRYPT 1995), Springer LNCS 917, 357–

364, 1995.

[147] J. A. Solinas. Low-Weight Binary Representations for Pairs of Integers.

University of Waterloo, Technical Report CORR 2001-41,

[148] M. Stam and A. K. Lenstra. Efficient Subgroup Exponentiation in

Quadratic and Sixth Degree Extensions. In Cryptographic Hardware and

Embedded Systems (CHES 2002), Springer LNCS 2523, 318–332, 2002.

[149] M. Stam and A. K. Lenstra. Speeding Up XTR. In Advances in Cryptology

(ASIACRYPT 2001), Springer LNCS 2248, 125–143, 2001.

[150] E. G. Straus. Problems and Solutions: (5125) Addition Chains of Vectors.

In American Mathematical Monthly, 71, 806–808, 1964.

[151] E. Teske. Speeding up Pollard’s Rho Method for Computing discrete Log-

arithms. In Algorithmic Number Theory Symposium (ANTS-III), Springer

LNCS 1423, 541–554, 1998.

[152] The Certicom ECC Challenge: See http://www.certicom.com/

index.php

[153] The Pairing-Based Crypto Lounge: See http://paginas.terra.

com.br/informatica/paulobarreto/pblounge.html

[154] N. Thériault. Index calculus attack for hyperelliptic curves of small genus.

In Advances in Cryptology (ASIACRYPT 2003), Springer LNCS 2894, 75–

92, 2003.

181

[155] E. Thomé. Computation of discrete logarithms in F2607 . In Advances in

Cryptology (AsiaCrypt 2001), Springer LNCS 2248, 107–124, 2001.

[156] M. van Dijk, R. Granger, D. Page, K. Rubin, A. Silverberg, M. Stam and

D. Woodruff. Practical cryptography in high dimensional tori. In Advances

in Cryptology (EUROCRYPT 2005), Springer LNCS 3494, 234–250, 2005.

[157] M. van Dijk and D. P. Woodruff. Asymptotically optimal communication

for torus-based cryptography. In Advances in Cryptology (CRYPTO 2004),

Springer LNCS 3152, 157–178, 2004.

[158] F. Vercauteren. Computing zeta functions of cureves over finite fields. PhD

thesis, Katholieke Universiteit Leuven, 2003.

[159] F. Vercauteren and R. Lercier. Discrete logarithms in GF (p18) - 101 digits:

email to NMBRTHRY list, June 2005.

[160] E. Verheul. Personal Communication with Martijn Stam, 2001.

[161] V. E. Voskresenskiı̆. Algebraic Groups and Their Birational Invariants.

Translations of Mathematical Monographs, 179, American Mathematical

Society, 1998.

[162] L. T. Yang and R. P. Brent. The parallel improved Lanczos method for

integer factorization over finite fields for public key cryptosystems. In Inter-

national Conference on Parallel Programming Workshops (ICPPW), IEEE

Press, 106-114, 2001.

182

