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Abstract—We consider the group testing problem, in which
one seeks to identify a subset of defective items within a larger
set of items based on a number of noisy tests. While matching
achievability and converse bounds are known in several cases of
interest for i.i.d. measurement matrices, less is known regarding
converse bounds for arbitrary measurement matrices. We address
this by presenting two converse bounds for arbitrary matrices
and general noise models. First, we provide a strong converse
bound (P[error] → 1) that matches existing achievability bounds
in several cases of interest. Second, we provide a weak converse
bound (P[error] 6→ 0) that matches existing achievability bounds
in greater generality.

I. INTRODUCTION

The group testing problem consists of determining a small
subset of “defective” items within a larger set of items
{1, . . . , p}. This problem has a history in areas such as
medical testing and fault detection, and has regained signifi-
cant attention with following new applications in areas such
as communication protocols [1], pattern matching [2], and
database systems [3], and new connections with compressive
sensing [4], [5].

Let the items be labeled as {1, . . . , p}, and let S be the
subset of defective items. We consider a general group testing
model in the observation Y associated with a single test is
randomly generated according to

P[Y = y |X = x, S = s] = PY |XS
(y|xs) = PY |VS

(y|vs),
(1)

where
VS :=

∑
i∈S

Xi (2)

counts the number of defective items in the test, and where the
measurement vector X = (X1, . . . , Xp) ∈ {0, 1}p indicates
which items are included in the test. While our techniques
allow for arbitrary finite output alphabets, we focus on the
binary case Y ∈ {0, 1} for concreteness. In the noiseless
setting, we simply have Y = 1{VS > 0}. Additive modulo-
2 noise models of the form Y = 1{VS > 0} ⊕ Z are also
common, but (1) is more general, permitting other forms of
dependence on VS such as that of dilution noise [6].

The goal is to recover S based on a number n of inde-
pendent non-adaptive tests, with the i-th measurement vector
being X(i) and the i-th observation being Y (i). We henceforth
let X denote the n × p matrix whose i-th row is X(i), and
let Y be the n-dimensional binary vector whose i-th entry is

Y (i). We consider a fixed number k of defective items, and
assume that the support set S is uniform over the subsets of
{1, . . . , p} with cardinality k. For a fixed measurement matrix
X, the error probability is given by

Pe(X) = P[Ŝ 6= S], (3)

where Ŝ is the estimate of S based on X and Y, and the
probability is with respect to the randomness in S and Y.

The information-theoretic limits of this problem have been
studied for decades (e.g., see [7], [16]), and have recently
become increasingly well-understood [8]–[13]. In particular,
an exact asymptotic threshold is known in several cases
of interest when we consider the error probability P e :=
E[Pe(X)] averaged over an i.i.d. Bernoulli matrix X with
P[Xij = 1] = ν/k (ν > 0). Specifically, in a broad range
of scaling regimes with k = o(p), we have P e → 0 if [12]

n ≥ max
`=1,...,k

` log p
`

I(Xsdif ;Y |Xseq)
(1 + η), (4)

and P e → 1 if

n ≤ max
`=1,...,k

` log p
`

I(Xsdif ;Y |Xseq)
(1− η). (5)

In both of these equations, (sdif , seq) denotes an arbitrary
partition of a fixed defective set s with |sdif | = ` (see [12] for
further intuition), and the mutual information is with respect to
the independent random vectors (Xsdif , Xseq) of sizes (`, k−`)
containing independent Bernoulli(ν/k) entries, and the model
in (1) with s = sdif ∪ seq.

The main goal of this paper is to obtain variants of the
converse bound with an additional optimization over ν, i.e.,

n ≤ min
ν∈[0,k]

max
`=1,...,k

` log p
`

I(Xsdif ;Y |Xseq)
(1− η), (6)

in the case of arbitrary measurement matrices, rather than
i.i.d. measurement matrices.1 We briefly mention some exist-
ing works in this direction:
• For the noiseless setting Y = 1{VS > 0}, the threshold

in (6) simplifies to
(
k log2

p
k

)
(1 − η) [12], and the

converse holds for arbitrary matrices by the so-called
counting bound [14], [15].

1Although the measurement matrix X may be arbitrary, our final results are
still written in terms of random vectors Xsdif and Xseq having independent
Bernoulli entries. These are not directly related to X itself.



• For the symmetric noise model Y = 1{VS > 0} ⊕ Z
with Z ∼ Bernoulli(ρ) for some ρ ∈ (0, 1), the
threshold in (5) simplifies to k log2

p
k

log 2−H2(ρ) (1 − η) [12],
where H2(ρ) := −ρ log ρ − (1 − ρ) log(1 − ρ) is the
binary entropy function in nats. Moreover, the converse
remains valid for arbitrary matrices. This can be proved
by combining the analysis of [12] with a simple symmetry
argument on the information-density random variables,
or can alternatively be obtained from a non-asymptotic
bound given in [15].

• For general noise models, a weak converse statement
corresponding to ` = k (i.e., seq = ∅) is known for
arbitrary matrices [7] (i.e., showing Pe(X) 6→ 0 as
opposed to the strong converse Pe(X)→ 1).

• After the initial preparation of this work, we learned that
a result similar to our second one (Theorem 2 below)
was presented in the Russian literature [16, pp. 630-631],
giving a weak converse for the case seq 6= ∅. However,
the proof techniques appear to be significantly different,
and the focus therein is on the case that k does not scale
with p, in contrast with our work.

A. Contributions

In this paper, we prove a strong converse corresponding to
` = k for arbitrary matrices, and we prove a weak converse
for all ` = 1, . . . , k. Note that the former of these is of interest
since ` = k often achieves the maximum in (6); this is true
for the noiseless model and the symmetric noise model [7],
[12], and our numerical investigations suggest that it is also the
case when PY |VS

corresponds to passing 1{VS > 0} through
a Z-channel [17]. However, there are known cases where only
smaller values of ` achieve the maximum [18].

B. Notation

We write XS to denote the submatrix of X containing the
columns indexed by S. The complement with respect to the
set {1, . . . , p} is denoted by (·)c, and similarly for X(i)

S . For
a given joint distribution PXY , the corresponding marginal
distributions are denoted by PX and PY , and similarly for
conditional marginals (e.g., PY |X ). We use usual notations for
the entropy and mutual information (e.g. H(X), I(X;Y |Z)).
We make use of the standard asymptotic notations O(·), o(·),
Θ(·), Ω(·) and ω(·). We define the function [·]+ = max{0, ·},
and write the floor function as b·c. The function log has base
e. The total variation (TV) distance between two probability
mass functions is written as dTV(P,Q).

II. STRONG CONVERSE FOR seq = ∅
Our first main result is as follows.

Theorem 1. Consider any observation model PY |VS
,

and define I∗s := maxν∈[0,k] I(Xs;Y ), where Xs has
i.i.d. Bernoulli(ν/k) entries. For any sequence of measure-
ment matrices X (indexed by p), we have

Pe(X) ≥ 1−O
(

1

n(I∗s )2

)
(7)

provided that

n ≤
log
(
p
k

)
I∗s

(1− η), (8)

for arbitrarily small η > 0.

Remark 1. Typically in the case that seq = ∅ we have I∗s =
Θ(1), and hence the remainder term O

(
1

n(I∗s )2

)
behaves as

O
(

1
n

)
, in which case this lower bound on the error probability

yields the strong converse statement Pe(X)→ 1.

Proof of Theorem 1. Let X ∈ {0, 1}n×p be a fixed measure-
ment matrix. The analysis of [12] shows that

Pe(X) ≥
∑
s

1(
p
k

)P[ n∑
i=1

log
PY |XS

(Y (i)|X(i)
s )

QY (Y (i))
≤ log

(
p

k

)
+ log δ1

∣∣∣X, S = s

]
− δ1, (9)

where QY is an arbitrary auxiliary output distribution. Specif-
ically, this was proved in [12] for the case that X is i.i.d. and
QY is an induced output distribution, but the proof reveals this
more general form.

Letting µn(s) and σ2
n(s) denote the mean and variance

of
∑n
i=1 log

PY |XS
(Y (i)|X(i)

s )

QY (Y (i))
for a given defective set s,

we obtain from Chebyshev’s inequality that Pe ≥ 1 −∑
s

1

(p
k)

σn(s)2

(n∆I∗s )2 − δ1 provided that log
(
p
k

)
+ log δ1 ≤ µn(s) +

n∆I∗s for all s; here ∆ ∈ (0, 1) is arbitrary for now.
The mean is directly computed as

µn(s) =

n∑
i=1

∑
y

PY |XS
(y|X(i)

s ) log
PY |XS

(y|X(i)
s )

QY (y)
(10)

=

n∑
i=1

∑
y

PY |VS
(y|V (i)

s ) log
PY |VS

(y|V (i)
s )

QY (y)
(11)

= n
∑
vs,y

P
(s)
VS

(vs)PY |VS
(y|vs) log

PY |VS
(y|vs)

QY (y)
. (12)

where V (i)
s :=

∑
j∈sX

(i)
j , and P (s)

VS
is the empirical distribu-

tion of VS across the n tests for a given choice of s. Choosing
QY to be the unique capacity-achieving output distribution of
the “channel” PY |VS

, it follows from (12) and a well-known
saddlepoint result on the mutual information [19, Thm. 4.4]
that, for all sets s having cardinality k, we have

µn(s) ≤ nI∗s , (13)

where I∗s is defined in the theorem statement.
We claim that the corresponding variance behaves as

σ2
n(s) = O(n). (14)

This was shown for the case that QY equals an induced output
distribution in [11, App. A], but the analysis reveals that the
same holds true for any QY such that min{QY (0), QY (1)} is
bounded away from zero.

The proof of Theorem 1 is concluded by combining (13)
and (14) with the above-mentioned application of Chebyshev’s



inequality, and choosing η such that 1 − η < 1
1+∆ , Since ∆

can be arbitrarily small, the same is true of η.

III. WEAK CONVERSE FOR seq 6= ∅
Our second main result is as follows.

Theorem 2. For any observation model PY |VS
and sequence

of measurement matrices X (indexed by p), we have Pe(X) 6→
0 provided that

n ≤ max
`=1,...,k

min
ν∈[0,k]

(
p−k+`
`

)
I(Xsdif

;Y |Xseq) + ∆`
(1− η) (15)

for some η > 0, where

∆` = C0
`(k − `)

p
max

{
1, log

p

`(k − `)

}
(16)

for some universal constant C0, and the mutual infor-
mation is with respect to the pair (Xsdif

, Xseq) having
i.i.d. Bernoulli(ν/k) entries, along with (1).

Remark 2. The remainder term ∆` is typically (but not
always) dominated by the mutual information; for example,
if the mutual information is Θ(1) then this is true when
k = O(pθ) for some θ < 1

2 , regardless of the value of `.

Remark 3. The min-max ordering in (15) is the opposite
of that in (6), thus making it a potentially weaker threshold.
However, in the proof we also show that the threshold can be
improved to

min
U,PU ,PX|U

max
`

log
(
p−k+`
`

)
I(Xsdif

;Y |Xseq , U) + ∆`
(1− η), (17)

thus recovering the correct min-max ordering, but with an
additional random variable U on a finite alphabet U . This
threshold can be shown to be achievable (hence establishing
that (17) is a tight bound) in a broad range of scaling regimes
using i-non-i.d. coding: Fix a sequence (u1, · · · , un) with
empirical distribution PU , and then generate the i-th row
according to an i.i.d. Bernoulli distribution PX|U (·|ui) whose
parameter ν may depend on ui. The achievability analysis then
follows that in [12].

We have chosen to state the theorem in terms of the
weakened threshold (15) since it bears a stronger resemblance
to the more familiar threshold (6), and since we are not aware
of any cases in which there is a gap between the two.

Proof of Theorem 2. The proof is given in four steps.
Step 1 (Fano’s Inequality): The starting point of our analysis

is a necessary condition for Pe(X) → 0 based on Fano’s
inequality and a genie argument, which follows directly from
the analysis of [6] (see also [11, Sec. III-D]). Specifically,
fixing ` = 1, . . . , k and letting the revealed indices of S
(denoted Seq) be uniform on the set of subsets {1, . . . , p} of
size k− `, and letting the non-revealed indices of S (denoted
Sdif ) be uniform on the set of subsets of {1, . . . , p}\Seq of
size `, it is necessary that

1 ≥
log
(
p−k+`
`

)
I(Sdif ;Y|Seq)

(1 + o(1)). (18)

We upper bound the mutual information by writing

I(Sdif ;Y|Seq) ≤
n∑
i=1

I(Sdif ;Y
(i)|Seq) (19)

=

n∑
i=1

I(V
(i)
dif ;Y (i)|V (i)

eq ), (20)

where (19) is a standard property for independent observa-
tion models [17, Eq. (7.96)], and (20) follows by defining
(V

(i)
dif , V

(i)
eq ) to count the number of defective items in the i-

th test at the non-revealed and revealed indices, and recalling
from (1) that Y depends on the defective set S = Sdif ∪ Seq

only through VS :=
∑
i∈S Xi.

Step 2 (Approximate Distributions by Binomials): We pro-
ceed by showing that the pairs (V

(i)
dif , V

(i)
eq ) have a distri-

bution which is “close enough” to a product of Binomial
distributions with the same probability parameter. Since the
defective set is uniformly random, the joint distribution of
each pair (V

(i)
dif , V

(i)
eq ) (and hence the mutual information

I(V
(i)
dif ;Y (i)|V (i)

eq )) only depends on the number of non-zeros
in the i-th row X(i) of X, which we denote by m(i).

Before proceeding, we recall that the Hypergeometric(k, m,
p) distribution counts the number of “special items” obtained
when sampling k items from a population of p items without
replacement, m of which are labeled as special. A random
variable with this distribution has probability mass function

PH(i) =
(m

i )(p−m
k−i )

(p
k)

. Of course, sampling with replacement

simply gives the Binomial(k, m/p) distribution.
We have the following:

1) Recalling that Seq is uniform on the
(
p
k−`
)

sets having
cardinality k − `, the number of ones at the revealed
indices is distributed as

V (i)
eq ∼ Hypergeometric(k − `,m(i), p). (21)

We approximate this by the Binomial random variable

V (i)
eq ∼ Binomial

(
k − `, m

(i)

p

)
. (22)

Specifically, denoting the corresponding distributions by
PVeq

and PV ′eq respectively (omitting the superscripts
(·)(i)), the total variation distance between the two
satisfies [20]

dTV(PVeq
, PV ′eq) ≤ k − `− 1

p− 1
= O

(
k − `
p

)
. (23)

We denote this upper bound by δ1.
2) Suppose that we condition on some value veq of V (i)

eq .
Recalling that (Sdif |Seq = seq) is uniform on the(
p−k+`
`

)
possible realizations, we have

(V
(i)
dif |V

(i)
eq = veq)

∼ Hypergeometric(`,m(i) − veq, p− k + `). (24)



We approximate this by the conditional distribution

(V
†(i)
dif |V

(i)
eq = veq) ∼ Binomial

(
`,
m(i) − veq

p− k + `

)
,

(25)
which we further approximate by the unconditional
distribution

V
′(i)
dif ∼ Binomial

(
`,
m(i)

p

)
. (26)

Specifically, the corresponding distributions satisfy [20]

dTV(PVdif
(·|veq), PV †dif

(·|veq))

≤ `− 1

p− k + `− 1
= O

(
`

p

)
, (27)

and (proved in the Appendix)

dTV(PV †dif
(·|veq), PV ′dif

) = O

(
`(k − `)

p

)
(28)

uniformly in m(i) and veq. Denoting these bounds by
δ2,1 and δ2,2, we obtain from the triangle inequality that

dTV(PVdif
(·|veq), PV ′dif

) ≤ min{1, δ2,1 + δ2,2} =: δ2,
(29)

where the upper bound of one is trivial.
Step 3 (Infer Bounds on the Mutual Informations)
Next, we formalize the statement that if two joint distri-

butions are close in TV distance, their (conditional) mutual
informations are also close. Using the above definitions of
(Vdif , Veq), (V ′dif , V

′
eq) and (δ1, δ2), we have the following:

1) We prove in the Appendix that∣∣I(Vdif ;Y |Veq)− I(Vdif ;Y |V ′eq)
∣∣ ≤ δ1 log 2. (30)

2) We also prove in the Appendix that∣∣I(Vdif ;Y |V ′eq)− I(V ′dif ;Y |V ′eq)
∣∣ ≤ δ2 log

4

δ2
. (31)

In fact, we show that the logarithmic term can usually
be improved to a constant and sometimes even o(1); see
Remark 4. We focus on the slightly looser bound (31)
for the sake of simplicity.

3) Combining these with (23), (27) and (28) gives∣∣I(Vdif ;Y |Veq)− I(V ′dif ;Y |V ′eq)
∣∣

= O

(
`(k − `)

p
max

{
1, log

p

`(k − `)

})
. (32)

Substituting (32) into (18) and (20), and maximizing over `,
we obtain the necessary condition

n ≥ max
`

log
(
p−k+`
`

)
1
n

∑n
i=1 I(V

′(i)
dif ;Y (i)|V

′(i)
eq ) + ∆`

(1 + o(1)) (33)

where ∆` = O
( `(k−`)

p max{1, log p
`(k−`)}

)
.

Step 4 (Form a Single-letter Expression)

By defining a random variable U equiprobable on
{1, . . . , n}, we can write the average in the denominator of
(33) as

1

n

n∑
i=1

I(V
′(i)
dif ;Y (i)|V

′(i)
eq ) = I(V ′dif ;Y |V ′eq, U), (34)

where the conditional distributions of V ′dif and V ′eq given U = i
are independent Binomial random variables with (`, k − `)

trials and a common parameter m(i)

p . Thus, the overall bound
becomes

n ≥ max
`

log
(
p−k+`
`

)
I(V ′dif ;Y |V ′eq, U) + ∆`

(1 + o(1)) (35)

Upper bounding the right-hand side by maximizing over PU
and PX|U yields (17); once again, since the output depends
on the measurement vector X only through

∑
i∈S Xi, we can

safely replace the Binomial random variables (V ′dif , V
′
eq) by

the corresponding i.i.d. Bernoulli vectors (Xseq , Xsdif ) in the
mutual information. Further weakening (17) by swapping the
min-max ordering yields (15), thus concluding the proof of
Theorem 2.

IV. CONCLUSION

We have provided two converse bounds for noisy group
testing with arbitrary measurement matrices. Our first result
strengthens an existing result [7] to obtain a strong converse
statement Pe(X)→ 1, and our second result provides a (weak)
converse with a potentially improved threshold. In several
cases, these converse bounds are known to be achievable using
i.i.d. matrices when k scales sufficiently slowly compared to
p [12], and thus our results support the use of such matrices
in these regimes. In contrast, it is known that i.i.d. matrices
can be suboptimal in other settings, such as the linear scaling
k = Θ(p) [13]. In such cases, there may be room to improve
the converse bounds presented in this paper.

Another direction for future work is to determine to what
extent our bounds remain valid in the case of adaptive group
testing, where each test can be designed based on past obser-
vations. Some work in this direction is given in [15], but the
most conclusive results therein are limited to symmetric noise.

APPENDIX

A. Proof of (28)

Recall that we are considering the TV distance between
(V †dif |Veq = veq) ∼ Binomial

(
`,
m(i)−veq
p−k+`

)
and V ′dif ∼

Binomial
(
`, m

(i)

p

)
. We define the difference between the two

binomial parameters as

∆ :=
m(i)

p
− m(i) − veq

p− k + `
. (36)

By a simple asymptotic expansion and the fact that veq ∈
[0, k − `], this satisfies

∆ = O

(
k − `
p

)
(37)



uniformly in m(i) and veq. Moreover, the bound for comparing
Binomial distributions in [21, Eq. (16)] states that

dTV(PV †dif
(·|veq), PV ′dif

) ≤ c√η(1 +
√

2η)e2η, (38)

where c = (2π)1/4e1/242−1/2 and η = ∆2`(` + 2) =

O(∆2`2). This upper bound behaves as O(
√
η) = O

( `(k−`)
p

)
whenever η = O(1), thus establishing (28). If η = Ω(1), then
(28) is trivial anyway, since it gives `(k−`)

p = Ω(1), but an
upper bound of 1 always holds.

B. Proof of (30)

We obtain (30) by writing∣∣I(Vdif ;Y |Veq)− I(Vdif ;Y |V ′eq)
∣∣

=

∣∣∣∣∑
veq

(
PVeq

(veq)− PV ′eq(veq)
)
I(Vdif ;Y |veq)

∣∣∣∣ (39)

≤
∑
veq

∣∣PVeq(veq)− PV ′eq(veq)
∣∣ log 2 (40)

= dTV(PVeq
, PV ′eq) log 2, (41)

where (40) holds since the mutual information is upper
bounded by log 2 with binary outputs.

C. Proof of (31)

Since the conditional mutual information is an average of
unconditional mutual informations and (28) is uniform in veq,
it suffices to show that for any P (x) and Q(x) on some
common alphabet X, the inequality dTV(P,Q) ≤ δ implies
|IP (X;Y ) − IQ(X;Y )| ≤ δ log 4

δ . Here the subscripts P
and Q denote which distribution on X is used, whereas the
conditional distribution W (y|x) of Y given X is the same
in both cases. We use similar notations for entropies, such as
HP (Y ) and HP (Y |X).

Since I(X;Y ) = H(Y )−H(Y |X), we have∣∣IP (X;Y )− IQ(X;Y )
∣∣

≤
∣∣HP (Y )−HQ(Y )

∣∣+
∣∣HP (Y |X)−HQ(Y |X)

∣∣. (42)

For the second term, we follow (39)–(41) to deduce that∣∣HP (Y |X)−HQ(Y |X)
∣∣ ≤ dTV(P,Q) log 2. (43)

Moreover, the same reasoning along with the identities
PY (y) =

∑
x PX(x)PY |X(y|x) and PY |X(y|x) ≤ 1 gives

dTV(PW,QW ) ≤ dTV(P,Q), (44)

where PW denotes the Y -marginal of P (x)W (y|x), and
similarly for QW . We may thus apply the result on the
continuity of entropy in [22, Ch. 2] to obtain∣∣HP (Y )−HQ(Y )

∣∣ ≤ dTV(P,Q) log
2

dTV(P,Q)
. (45)

Combining the above estimates yields |IP (X;Y ) −
IQ(X;Y )| ≤ δ log 4

δ whenever dTV(P,Q) ≤ δ, as desired.

Remark 4. The logarithmic factor in (45) can be replaced by
a constant whenever P and Q yield probabilities of Y = 0

and Y = 1 that are strictly bounded away from one. This
is because the entropy has bounded derivatives except as
PY (y)→ 0. In fact, in the vicinity of PY = {0.5, 0.5} (which
is relevant for symmetric settings), we may even make the
bound in (45) behave as o(dTV(P,Q)), since the derivative of
the binary entropy function at 0.5 is zero.
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