000215128 001__ 215128
000215128 005__ 20190317000355.0
000215128 020__ $$a978-1-5090-1806-2
000215128 02470 $$2ISI$$a000390098702187
000215128 037__ $$aCONF
000215128 245__ $$aConverse Bounds for Noisy Group Testing with Arbitrary Measurement Matrices
000215128 269__ $$a2016
000215128 260__ $$bIeee$$c2016$$aNew York
000215128 300__ $$a5
000215128 336__ $$aConference Papers
000215128 490__ $$aIEEE International Symposium on Information Theory
000215128 520__ $$aWe consider the group testing problem, in which one seeks to identify a subset of defective items within a larger set of items based on a number of noisy tests. While matching achievability and converse bounds are known in several cases of interest for i.i.d.~measurement matrices, less is known regarding converse bounds for arbitrary measurement matrices. We address this by presenting two converse bounds for arbitrary matrices and general noise models. First, we provide a strong converse bound ($\mathbb{P}[\mathrm{error}] \to 1$) that matches existing achievability bounds in several cases of interest. Second, we provide a weak converse bound ($\mathbb{P}[\mathrm{error}] \not\to 0$) that matches existing achievability bounds in greater generality.
000215128 6531_ $$aGroup testing
000215128 6531_ $$ainformation-theoretic limits
000215128 6531_ $$aconverse bounds
000215128 6531_ $$aFano's inequality
000215128 700__ $$0248483$$g248798$$aScarlett, Jonathan
000215128 700__ $$aCevher, Volkan$$0243957$$g199128
000215128 7112_ $$dJuly 10-15, 2016$$cBarcelona$$aInternational Symposium on Information Theory (ISIT)
000215128 773__ $$t2016 Ieee International Symposium On Information Theory$$q2868-2872
000215128 8564_ $$uhttps://infoscience.epfl.ch/record/215128/files/GT_ISIT.pdf$$zPublisher's version$$s253393$$yPublisher's version
000215128 909C0 $$xU12179$$0252306$$pLIONS
000215128 909CO $$qGLOBAL_SET$$pconf$$ooai:infoscience.tind.io:215128$$pSTI
000215128 917Z8 $$x248798
000215128 917Z8 $$x248798
000215128 917Z8 $$x248798
000215128 917Z8 $$x248798
000215128 937__ $$aEPFL-CONF-215128
000215128 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000215128 980__ $$aCONF