
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. J.-E. Moser, président du jury
Prof. B. M. J. Deveaud, Dr M. Portella Oberli, directeurs de thèse

Prof. S. Savasta, rapporteur
Prof. S. Cundiff, rapporteur

Prof. A. Imamoglu, rapporteur

On the physics of polariton interactions

THÈSE NO 6877 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 22 JANVIER 2016

À LA FACULTÉ DES SCIENCES DE BASE
LABORATOIRE D'OPTOÉLECTRONIQUE QUANTIQUE

PROGRAMME DOCTORAL EN PHOTONIQUE 

Suisse
2015

PAR

Naotomo TAKEMURA





Acknowledgements
I would like to thank all people who supported this work.

First of all, I am very grateful to my supervisor Benoît Deveaud for giving me the opportunity

to investigate the wonderful world of polariton physics. He has been a great supervisor and

given me the freedom in his lab. I was always inspired and learned a lot through discussions

with him. I would also like to thank a lot co-supervisor Portella Oberli Marcia. This thesis

would not have been possible without her endless supports and fruitful physics discussions.

I warmly thank the members of my thesis jury, Steven Cundiff, Salvatore Savasta, Atac

Imamoglu and Jacques-Edouard Moser for accepting my thesis through the careful read-

ing and providing critical remarks.

I am also grateful to have the opportunity to work with Stéphane Trebaol and Anderson

Mitchell David in both lab and office. They taught me many experimental, theoretical, and

communication skills during my PhD days. I owe many results of my work to their supports

and discussions. I deeply thank Oberli Daniel, Michiel Wouters, Yoan Léger and Verena Kohnle

for stimulating discussions, theoretical contributions, and a transfer of knowledges. I would

like to thank technical and IT staffs Roger Rochat, Yoan and Damian Trolliet, Nicolas Leiser,

and Florence Hagen for their invaluable supports.

I am also very happy that I spent four years with wonderful colleagues of LOEQ, Adiyatullin

Albert, Liu Wei, Navadeh Toupchi Morteza, Ouellet-Plamondon Claudéric, Hezam Mahmoud,

Jabeen Fauzia, Jacopin Gwénolé Jean, Sallen Grégory Chilpéric, Morier-Genoud François, Rita

Spano, Francesco Manni, Gabriele Grosso, Hadis Abbaspour, and Mehran Shahmohammadi.

I really enjoyed a fantastic time with them not only in the office, but also during lunch and

coffee times.

Many thanks to our secretary, Rouiller Claire-Lyse for her warm supports and kindness. From

finding an apartment to administrative issues, I owe my comfortable life in Lausanne largely

to her.

Finally, I would like to sincerely thank my friends and family for their endless support and

encouragement.

Lausanne, 10 Dec 2015 N. T.

i





Abstract
An exciton-polariton is a quasi-particle that emerges from the strong coupling between an

exciton and a photon. Recently, the studies of the exciton-polariton have been receiving a

great deal of attention in terms of both fundamental physics and potential applications. The

very small polariton effective mass and the interactions brought respectively by the photon

and excitonic content of polaritons enable a wide range of interesting physical phenomena

including the realization of Bose-Einstein condensate, superfluidity, and quantum vortices.

In addition to the interest in the basic physics, several device applications of semiconductor

microcavities such as polariton switching, bistability, and stochastic resonance have also

been proposed. In these researches, the interactions between exciton-polaritons, which is a

source of nolinearity, are central. In this thesis, we explore the various aspects of the polariton

interactions in semiconductor microcavities.

We employ nonlinear spectroscopies as experimental techniques and compare our experi-

mental results with different theoretical models. Firstly, we study lower-lower (upper-upper)

polariton self-interactions and lower-upper polariton cross interactions. The self- and cross-

interactions are identified in four-wave mixing two-dimensional Fourier spectra, which are

followed by theoretical analyses based on a third-order perturbation theory and on a non-

perturbative simulation of Gross-Pitaevskii equations. Secondly, using pump-probe spec-

troscopy, we measure the spin dependent nature of exciton-polariton interactions, which

is called spinor interaction. The two spin projections of exciton-polaritons give rise to a

spin anisotropy of the polariton interactions. In particular, we show that the polariton in-

teractions with anti-parallel spins presents a scattering resonance behavior via an exciton

molecule (biexciton), which we call polaritonic Feshbach resonance. The measurements of

the spinor polariton interactions are compared with numerical simulations based on spinor

Gross-Pitaevskii equations including the exciton-biexciton coupling. Finally, we explore the

decoherence effect induced by the interaction of polaritons. Focusing on the delay depen-

dence of the experimental pump-probe spectra, we find that the excitation induced dephasing

(EID) plays an important role in the dynamics of exciton-polaritons. The delay dependence

of the pump-probe spectra clearly probes that the coherent and incoherent parts of excitons

temporally behave in a different way. These experimental features can be well reproduced

only with the excitonic Bloch equations (EBE) approach, which is a theoretical framework

that can include the incoherent population of excitons. In the last part of this thesis, a future

perspective of the research is discussed while showing preliminary experimental results of

pump-probe spectroscopy with a spectrally narrowband pump pulse.
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Résumé
Un exciton-polariton est une quasi-particule qui provient du couplage fort entre un exciton et

un photon. Depuis quelques années, l’exciton-polariton est l’objet d’une intense recherche

à la fois en termes de physique fondamentale et d’applications potentielle. Leur masse ef-

fective très légère, et la possibilité d’interactions amenée par la composante excitonique des

polaritons permettent des recherches sur des phénomènes physiques très variées comme la

réalisation de condensats de Bose-Einstein, la superfluidité, et les vortex quantiques. En plus

de leur intérêt pour la physique de base, plusieurs applications pratiques des microcavités

semi-conductrices ont également été proposées. Par exemple, la commutation, la bistabilité

et la résonance stochastique sont des possibilités très intéressantes. Dans ces recherches,

l’interaction entre l’exciton-polariton, qui est la source des non-linéarités, est au cœur du fonc-

tionnement du système. Cette thèse est consacrée à l’étude des divers aspects de l’interaction

entre polaritons dans les microcavités semiconductrices.

Nous utilisons la spectroscopie non-linéaire comme technique expérimentale et nous compa-

rons nos résultats expérimentaux avec différents modèles théoriques. Dans un premier temps,

nous étudions l’auto-interaction entre deux polaritons bas (polaritons hauts) et l’interaction

mutuelle entre polaritons bas et hauts. L’auto interaction et l’interaction mutuelle sont identi-

fiées dans les spectres à deux dimensions, qui sont corroborés par des analyses théoriques de

perturbation développées jusqu’ à l’ordre 3 et une simulation non-perturbative d’équations de

Gross-Pitaevskii. Dans un deuxième temps, au moyen d’expériences de spectroscopie pompe-

sonde, nous mesurons la dépendance en spin des interactions entre exciton-polaritons, qui

s’appelle l’interaction spinor. L’existence des deux états de spin des polaritons contribue à

une anisotropie de spin de leurs interactions. En particulier, nous montrons que l’interaction

entre polaritons avec spins anti-parallèles présente une résonance via une molécule excito-

nique (biexciton), que nous appelons la résonance de Feshbach polaritonique. Les mesures

de l’interaction de spin entre polaritons sont comparées avec des simulations numériques

avec les équations de Gross-Pitaevskii en spin, qui considèrent le couplage entre un exciton et

un biexciton. Finalement, nous explorons les effets de décohérence induits par l’interaction

entre polaritons. Nous nous concentrons sur la dépendance en fonction du délai de spectres

pompe-sonde et démontrons que le dephasage induit par l’excitation (l’excitation induced

dephasing (EID)) joue un rôle important dans la dynamique des polaritons. La dépendance

temporelle des spectres pompe-sonde montre clairement que les parties cohérente et incohé-

rente des excitons sont temporellement dissociés. Ces résultats expérimentaux ne peuvent

être bien reproduits qu’avec les équations de Bloch excitoniques (EBE), ce qui est un cadre
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théorique qui permet d’inclure la population incohérente des excitons. Dans la dernière partie

de cette thèse, une perspective d’avenir sur les recherches est discutée avec des résultats expé-

rimentaux préliminaires d’une expérience pompe-sonde utilisant une impulsion de pompe

spectralement étroite.

Mots clefs : microcavité semi-conducteur, exciton-polariton, biexciton, nonlinéarité optique,

spectroscopie non linéaire, interférométrie hétérodyne, pompe et sonde, mélange à quatre

ondes, spectroscopie bidimensionnelle à transformée de Fourier, interaction lumière-matière,

spinor interaction, résonance de Feshbach, excitation induced dephasing, décohérence.
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1 Introduction

Light-matter interaction has always been an exciting area in physics. In particular, it is well

known that the quantum physics was born from Planck’s investigation of the black body

radiation spectrum (1900). After the construction of quantum mechanics, our understanding

of the light-matter interaction progressed explosively. In terms of basic science, the quanti-

zation of light paved the way to the establishment of quantum electrodynamics (QED) and

quantum optics. In parallel to the development of fundamental physics, the 20th century

witnessed various important inventions concerning the light-matter interaction. Among them,

the most important one might be the invention of "light amplification by stimulated emission

of radiation (LASER)" by Schawlow and Townes (1957). The laser is the first realization of a

bright “coherent" light source. The first generation of lasers are “gas lasers", which use atomic

or molecular gases such as helium–neon and CO2 as gain materials. One of the next important

steps in the history of lasers is the development of "light emitting diode" (LED) followed by

“semiconductor laser". Since the semiconductor laser is easy to implement with reasonably

simple technology, it acquired a wide range of applications and plays crucial roles in our daily

life. Furthermore, the advancement of the semiconductor optics technologies opened the way

to a solid-state based manipulation of the light-matter interaction in a single quantum state,

which has been traditionally investigated in atoms, molecules, and ions. In this thesis, we

study the physics of semiconductor strongly interacting with light.

Recent advancements of semiconductor growth technologies made it possible to realize a

system called “semiconductor microcavity". The semiconductor microcavity is a hybrid

system composed of quantum wells and distributed Bragg reflectors (DBRs). This type of

nano-structure is employed in a laser called “vertical-cavity surface-emitting laser (VCSEL)",

which already found its way to commercial applications. VCSELs are working in a regime where

the light and matter are weakly interacting (weak coupling). What is going on if we increase the

light-matter interaction by making the light confinement more tight? The first strong coupling

between a semiconductor and light in a high quality semiconductor microcavity was identified

by Weisbuch and co-authors [1]. In the strong coupling regime, the dipole in a quantum well

(excitons) and highly confined photon form quasi-particles called “polaritons". The dipole

1



Chapter 1. Introduction

in a quantum well is a hydrogen-like particle, the “exciton", composed of an electron and

a hole. Thus, the polariton in a semiconductor microcavity is the superposition state of

exciton and photons, which is refereed to as “exciton-polariton". Exciton-polaritons possess

mutual interactions originating from the excitonic content and the photonic content allows a

readout as well as an input of properties respectively from a light emission and an excitation.

These features make the semiconductor microcavity an attractive tool to investigate nonlinear

quantum optics including parametric amplification [2, 3, 4, 5, 6], bistability [7], and optical

switching [8, 9].

In addition to the interest in nonlinear optical applications, the exciton-polariton in semi-

conductor microcavities has recently raised a large attention as a playground to investigate

interacting quantum fluids. One of the striking achievements is the Bose-Einstein conden-

sation of exciton-polaritons [10, 11], which was followed by the observations of collective

quantum phenomena such as polariton superfluidity [12], quantum vortices [13], and, Bogoli-

ubov dispersion [14, 15, 16]. Moreover, the spin degree of freedom of exciton-polariton leads

to spinor interactions. Especially, the spin anisotropic nature of polaritons is the origin of a

wide range of nonlinear effects such as stimulated spin dynamics of polaritons [17, 18], the

transport of spin polarized polaritons [19], the optical spin Hall effect [20, 21, 22], the gener-

ation of polarization vortices [23, 24] and half quantum vortices [25], and the spontaneous

polarization buildup polariton condensates [26]. The spinor interaction also inspired device

applications of exciton-polaritons such as multistability [27, 28, 29] and polariton switching

[8, 9], spin stochastic resonance [30].

Although the physics of exciton-polaritons has been very actively investigated, there exist a

lot of basic questions left unanswered. For instance, the polariton mode has two branches

lower and upper polaritons. Usually, most of the theoretical and experimental activities

are focused only on the lower-polariton. The physical properties of the upper-polariton

branch has not been investigated intensively. In the viewpoint of many-body physics, in a

low density electron-hole phase, which is the regime we investigate with the high quality

semiconductor microcavity in strong-coupling condition, a bosonized exciton picture is

known to be a good starting point [31, 32]. It is important to notice that once we consider the

interaction between excitons, the complex Coulomb correlation effect plays an important

role [33], which makes the dynamical description of low-density excitons (polariton) non-

trivial. For example, bound exciton molecules called biexcitons plays a dominant role in

the spinor polariton interactions [34, 35]. This is in contrast to the case of VCSELs, which

are operating in the high density regime, thus the Coulomb correlation effects are screened

and Semiconductor-Bloch equation based on a fermionic electron-hole picture describes

the dynamics very well [36]. For describing the dynamics of exciton-polaritons, a meanfield

analysis based on a nonlinear Schrödinger equation is enjoying a wide range of success [37].

Since the nonlinear Schrödinger is formally same as the Gross-Pitaevskii equation in atomic

Bose-Einstein condensates, it is easy to find close analogies between the exciton-polaritons

and degenerate bosonic gases. At the same time, the deviation of the polariton dynamics from

the Gross-Pitaevskii equation is an interesting subject in order to go beyond the meanfied

2



description of many-body quantum fluids. As a first step in this direction, we focus on a

dephasing effect on exciton-polaritons.

In this thesis, we attempt to answer these questions via non-linear optical methods: pump-

probe and four-wave mixing spectroscopies. Non-linear spectroscopy is indeed a very power-

ful method in semiconductor microcavities, because we can directly excite exciton-polaritons

using coherent laser sources and readout them via spectroscopic detection. The lower and

upper-polariton interaction is probed by two-dimensional Fourier transform (2DFT) spec-

troscopy, while the spinor interactions and dephasing effects are investigated through the

pump-probe spectroscopy. The sample we investigate is a high quality GaAs-based microcavity

[38]. The thesis is organized in the following way.

Chapter 2 gives a brief review of semiconductor microcavities. We present the basic concepts

of excitons in a direct gap GaAs semiconductor and of semiconductor microcavity composed of

a single quantum well and distributed Bragg reflectors (DBRs). The idea of the strong-coupling

between excitons and photons and the emergence of the polaritons are also addressed in this

section.

Chapter 3 is devoted to theoretical description of exciton-polaritons. We introduce an interact-

ing bosonic exciton-photon Hamiltonian as a starting point, which is partly diagonalized by the

introduction of a polariton basis Hamiltonian. Both for the exciton-photon and polariton ba-

sis, we obtain the equations of motions: excitonic Bloch equations (EBE) and Gross-Pitaevskii

equations (GPE). In the last section of this chapter, we discuss Hamiltonians and equations of

motions including the biexciton state.

In Chapter 4, the experimental setup is explained. We address the properties of the GaAs-

based microcavity sample and optical setup including an excitation scheme and a heterodyne

detection technique. In particular, the principle of the heterodyne detection technique is

described in detail, which is important mainly for the two-dimensional Fourier transform

spectroscopy.

The subject of Chapter 5 is the investigation of the polariton interactions through two-

dimensional Fourier transform (2DFT) spectroscopy. Using 2DFT, we can selectively identify

the lower-lower and the upper-upper polariton self-interactions, as well as the lower-upper

cross interaction in two-dimensional spectra. The 2DFT spectra are analysed by a third-

order perturbation theory and “non-perturbative" Gross-Pitaevskii equations. We discuss the

physics behind the obtained 2DFT spectra by comparing the experiments and simulations.

In Chapter 6, we study the spinor polariton interactions using polarization dependent pump-

probe spectroscopy. The sign and strength of the polariton interactions with parallel and

anti-parallel spins are directly measured from the energy shift of the probe spectra. The

important role of the biexciton in polaritons with anti-parallel spins is addressed. Finally, we

discuss the modification of the polariton spinor interaction via a scattering resonance with

biexciton called “polaritonic Feshbach resonance". The experimental data are analysed with

3



Chapter 1. Introduction

the Gross-Pitaevskii equations including the biexciton effect.

Chapter 7 addresses the importance of the role of the dephasing effect in exciton-polaritons,

which is usually neglected in a coherent limit description. The dephasing processes trigger the

decoherence of excitons. We probe the signatures of incoherent excitons through the delay

dependence of the pump-probe spectroscopy. In order to understand the physics, we perform

numerical simulation based on excitonic Bloch equations (EBEs), which explicitly take into

account the incoherent population of excitons. The experimental results are well reproduced

by EBEs only when the dephasing is included.

Chapter 8 is a future perspective, where we overview the next directions of the experiment

such as a pump-probe spectroscopy with narrow spectral band pulse. In addition to this, we

discuss the possibility of a theory that can include both incoherent exciton and biexciton

effects. Finally, we address a concluding remark in Chapter 9.

The subject of Appendix A is the phase correction process, which is important experimental

technique in 2DFT spectroscopy. The detailed derivation of the third-order perturbation

theory and a double-sided Feynman diagram technique is provided in Appensix B. In Appendix

C, we discuss a biexciton formation process called “giant oscillator strength model". This

model is of a different type compared to the biexciton creation model employed in Chapter 6.

4



2 Microcavity polaritons

In this chapter, we briefly review the properties of semiconductor microcavities. The semi-

conductor microcavities are the systems that couple quantum-well excitons and microcavity

photons. In the first section, we explain the basics of a direct gap GaAs semiconductor and

excitonic quasiparticles. In the next section, we introduce a microcavity composed of dis-

tributed Bragg reflectors (DBRs), which allows the confinement of photons. Finally, we discuss

GaAs based semiconductor microcavity which we study in this thesis.

2.1 Bands in direct gap III-V semiconductor

In this section, we consider the band structure and photon absorption of a direct gap semi-

conductor such as GaAs [39, 40].

E 

k 

light-hole 

heavy-hole 

Egap

conduction band 

J=3/2

J=1/2

MJ=±3/2

split-off hole band

Δ

MJ=±1/2

MJ=±1/2

J=1/2 MJ=±1/2

E 

k 

light-hole 

heavy-hole 

Egap

conduction band 

J=3/2

J=1/2

MJ=±3/2

split-off hole band

Δ

MJ=±1/2

MJ=±1/2

J=1/2 MJ=±1/2

(a) bulk GaAs  (b) GaAs quantum well  

Figure 2.1: Scheme of the band structure of GaAs based semiconductor. Energy-momentum
dispersion of a bulk (a) and quantum well GaAs (b). The spin-orbit coupling makes the split-off
hole band lower than the heavy and light-hole. In the quantum well, the confinement leads to
a lift of the degeneracy between the light-hole and heavy-hole valence band.
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Chapter 2. Microcavity polaritons

The schematic of energy-momentum dispersion for small wave-vector k close to the Γ point

is presented in Fig. 2.1. As is shown in Fig 2.1, in a direct gap semiconductor, the energy

minimum of the conduction band and the energy maximum of the valence band have the

same momentum k = 0. Therefore, a direct gap semiconductor can directly absorb and emit

photons. On the other hand, in an indirect gap semiconductor such as Si, since the conduction

band energy minimum and the valence band energy maximum have different momenta, for

this transition both photon absorption and emission require phonon processes for conserving

momenta. Figure 2.1 shows that the valence band has a more complex structure than the

conduction band. This is because the valence and conduction bands originate respectively

from p- and s-like atomic states. The top of the valence band consists of three bands. The

heavy- and light-hole bands are degenerate at k = 0 in bulk GaAs (Fig. 2.1 (a)), while the energy

of the split-off hole band is lowered due to the spin-orbit coupling.

Now let us consider two-dimensional confinement structure called a quantum well. A quan-

tum well consists of the layers of different types of semiconductor materials grown on the top

of a substrate crystal, for example, by molecular beam epitaxy (MBE) [39]. When the layer of

a smaller energy gap semiconductor with a thickness comparable to the electron de Broglie

wavelength is located between two semiconductors with a large energy gap, this structure

realizes a well-type potential along the growth axis. Thus electrons and holes are confined

inside the two-dimensional layer. In the quantum well, the degeneracy of the heavy- and

light-hole no longer exists because of the difference of confinement energies of heavy- and

light-hole (Fig. 2.1 (b)) [39, 40]. We notice that in a quantum well GaAs, around k = 0 the

heavy-hole is lighter than the light-hole because of the avoided crossing of the two dispersion

curves (See Fig. 2.1 (b)).
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2.2. Excitons

2.2 Excitons

Until now, we have neglected the Coulomb interaction of electrons and holes, however, the

Coulomb interaction plays an important role in direct gap semiconductors mainly at a low

temperature. Figure 2.2 presents the schematics of the light absorption of a bulk direct gap

semiconductor. The sharp peaks are the signature of a quasi-particle called “exciton", which

is composed of an electron and a hole bound by the Coulomb interaction. The photon

absorption neglecting the Coulomb interaction is depicted as a dashed line in Fig. 2.2, which is

proportional to (E −Eg ap )1/2. The exciton behaves like a hydrogen atom. The exciton behaves

as a bosonic quasiparticle, it can absorb and emit light.

Photon energy

A
bs

or
pt

io
n

n=1

n=2

Egap

Bulk (3D)

Figure 2.2: Schematic band edge absorption spectrum for a bulk direct gap semiconductor
including the excitonic effect. The dashed line depicts the absorption without the excitonic
effect.

Depending on the Bohr radius of excitons, we can classify them into two types: Wannier and

Frenkel excitons. In Wannier excitons, electrons and holes are bound by a weak Coulomb

force, thus its Bohr radius is larger than the lattice constant. This is the case in semiconductors

such as GaAs, CdTe, GaN, ZnSe where the Coulomb interaction between electrons and holes is

weakened by the dielectric screening. On the other hand, in Frenkel excitons, since electron

and hole are tightly bound by a strong Coulomb interaction, its Bohr radius is smaller than the

lattice constant. Frenkel excitons are observed in organic semiconductor where the dielectric

constant is small. In this thesis, we focus only on Wannier excitons. In analogy with a hydrogen

atom, the energy of exciton is given by [39]

En = Egap − RX

n2 . (2.1)

RX is the Rydberg energy of the exciton defined as

RX = μ

m0ε
2
r

RH . (2.2)
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Chapter 2. Microcavity polaritons

RH is the Rydberg energy of the hydrogen atom (13.6 eV). μ and εr are respectively the exciton

reduced mass and the material dielectric constant. m0 is the free electron mass. Moreover, the

Bohr radius of the bulk 3D exciton for n = 1 is given by

a3D
X = m0εr

μ
aH . (2.3)

aH is the hydrogen Bohr radius (5.29×10−11 m). Similarly, in the two-dimensional quantum

well, the 2D Bohr radius of exciton for n = 1 reads,

a2D
X = m0εr

2μ
aH . (2.4)

The Bohr radius of 2D exciton is smaller than that of 3D one, and the binding energy of exciton

is larger in the two-dimensional quantum well than in the bulk semiconductor due to the

confinement. The band gap energy Egap, Rydberg energy RX , and 3D Bohr radius a3D
X of

various direct band gap semiconductors are listed in Table. 2.1.

crystal Egap (eV) RX (meV) a3D
X (nm)

GaN 3.5 23 3.2
ZnSe 2.8 20 4.5
CdS 2.6 28 2.7
CdTe 1.6 12 6.7
GaAs 1.5 4.2 13

Table 2.1: Table of the band gap energy Egap, Rydberg energy RX , and 3D Bohr radius aX of
direct band gap semiconductors [39].

Another important aspect of the exciton is its spin structure. Since both electron and hole

carry spins, the exciton displays a rich spin structure. Fig. 2.3 shows the schematics of the

spin structure of electron and holes in GaAs based quantum wells. In our experiments, we

are interested only in heavy-hole, we therefore focus on heavy-hole excitons. Depending on

the spin configuration, a heavy-hole exciton has four spin states: dipole-active states |Jz =
±1〉 = |J e

z = ±1/2, j h
z = ∓3/2〉 and dipole-forbidden states |Jz = ±2〉 = |J e

z = ±1/2, j h
z = ±3/2〉

[39, 41]. Here, Jz and J e(h)
z are respectively z-components of the total and electron (hole) spins.

The z-direction is defined along the quantum well growth axis, which is perpendicular to the

2D layer. The states |Jz =±2〉 are called dipole-forbidden because a photon has an angular

momentum ±1 and a single photon cannot excite |Jz =±2〉. Therefore, in this thesis we deal

only with the dipole-active states |Jz =±1〉. The state |Jz =+(−)1〉 is coupled to a photon with

a σ+(−) circular polarization. In the following, we call |Jz =+(−)1〉 simply as spin-up (-down)

exciton. The spin states of excitons play an important role in the spin-dependent interaction

of exciton-exciton interactions.
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valence band

conduction band
E

heavy hole
light hole light hole

heavy hole

J=3/2

J=1/2

σ+

σ+ σ-

σ-

3/2,+1/2 3/2,-1/2
3/2,+3/2 3/2,-3/2

1/2,-1/2 1/2,+1/2
electron electron

forbidden forbidden

Figure 2.3: Selection rules for transitions under circularly polarized light in GaAs quantum
wells. The heavy-hole and light-hole levels are non-degenerate due to the difference in
confinement energies. The dashed lines represent forbidden transitions because these would
require an angular momentum ±2.

2.3 Photon confinement in microcavity

In a semiconductor microcavity, a quantum well is sandwiched within two distributed Bragg

reflectors (DBRs). A DBR is a stack of λ/4 thick semiconductor layers with two different

refractive indices n1 and n2 (n2 > n1). n1 and n2 fulfil the Bragg interference condition,

n1L1 = n2L2 =λc /4. (2.5)

L1 and L2 are respectively the thickness of the layers with refractive index n1 and n2. λc

represents the center wavelength of the stop band of the DBR. Based on the transfer matrix

method the DBR reflectivity RDBR is calculated as

RDBR = n0n2N
2 −n3n2N

1

n0n2N
2 +n3n2N

1

, (2.6)

where N is the number of DBR pairs. n0 and n3 are respectively the refractive indices of a

surrounding medium and substrate of DBR. The above equation indicates that the higher the

contrast between the refractive indices of the two layers becomes, the larger the reflectivity

that is obtained. The bandwidth of the stop-band δλDBR is given by

δλDBR = 4λc

π
arcsin(

n2 −n1

n2 +n1
). (2.7)

This equation also indicates that the stop-band width increases as the contrast of two refractive

indices becomes higher. The calculation of a DBR based on the transfer matrix method is
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Chapter 2. Microcavity polaritons

presented in Fig. 2.4 [42]. For R � 1,a cavity quality factor Q is defined as

Q = 4

1−R
(2.8)

Using the relation γc = Ec /Q (Ec = hc/λc ), the photon decay rate γc is given by

γc = Ec
1−R

4
. (2.9)

Since the photon lifetime of the cavity τc is defined as τc =ħ/γc , in order to obtain a longer

photon lifetime, we need to increase the cavity quality factor Q (make the reflectivity R closer

to unity).
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Figure 2.4: Transfer matrix calculation of an electric field intensity inside DBR mirrors and
reflectivity from [42]. Given reflective index and calculated distribution of the electric field are
presented respectively as a blue and red lines (a). Calculated reflectivity is shown in (b). The
dip at 835 nm in the reflectivity is the cavity resonance.

2.4 Photon mass due to the cavity confinement

In this section, we will calculate the 2D energy-momentum dispersion and effective mass of a

photon confined in DBR microcavity in the growth direction z (See Fig. 2.4 (a)). In general, the
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2.5. Strong-coupling between exciton and photon

photon energy-momentum dispersion is given by

E = c

n
ħ|k | = c

n
ħ
√

k2
z +k2

∥ . (2.10)

kz represents the momentum of a photon along the axis of the cavity confinement z, while k∥
is the momentum vector parallel to the plane of the cavity defined as k∥ = (kx ,ky ). Since the

photon is confined along the z-axis, kz satisfies a resonance condition kz lc = Nπ, where lc is

the cavity length and N is a positive integer. Equation. 2.10 is rewritten as

E = c

n
ħ
(

Nπ

lc

)√
1+

(
lc

Nπ

)2

k2
∥

� c

n
ħ
(

Nπ

lc

)
+ c

2n
ħ
(

lc

Nπ

)
k2
∥

= 2πcħ
λc

+
ħ2k2

∥
2 n2h

cλc

= Ec +
ħ2k2

∥
2mc

. (2.11)

In the derivation of the above equation, we used another form of resonance condition 2nlc =
Nλc . The effective mass of a photon confined in the 1D microcavity mc is defined as

mc = n2h

cλc
. (2.12)

In conclusion, due to the confinement by a cavity, a photon acquires an effective mass and

parabolic energy-momentum dispersion along the cavity plane. The effective mass is deter-

mined only by the refractive index and resonance wavelength of the cavity.

2.5 Strong-coupling between exciton and photon

By placing a quantum well at the anti-node of the cavity electric field, we can realize the

coupling between a quantum well exciton and a cavity photon. If the coupling strength

between the exciton and the photon is strong enough, two new eigenstates called “polaritons"

appear, where the exciton and photon mode are no more eigenstates. The schematic of the

polariton formation from the exciton-photon coupling is presented in Fig. 2.5. The polariton

state with the lower energy is called “lower-polariton" and that with the higher energy is called

“upper-polariton". The lower- and upper-polaritons respectively can be seen as the bonding

and the anti-bonding molecular state composed of the exciton and photon. By defining the

exciton εx , photon εc energy and exciton-photon coupling Ω, the lower εL(k∥) and upper

11



Chapter 2. Microcavity polaritons

εU (k∥) polariton energies at k∥ = 0 are respectively given by

εL,0 = 1

2

(
εx +εc −

√
(εc −εx )2 + (2Ω)2

)
(2.13)

and

εU ,0 = 1

2

(
εx +εc +

√
(εc −εx )2 + (2Ω)2

)
(2.14)

The derivation of these equations will be addressed in the next chapter. Since, in reality both

cavity photon and the exciton have a finite lifetime, phenomenologically we add decay rates

to the energies of the photon and exciton as εx − iγx and εc − iγc . When the energy of the

photon state is equal to that of the exciton, εc = εx (zero cavity detuning), the lower and

upper-polariton energies read,

ε′L,0 =
1

2

(
2εx − i (γx +γc )−

√
(2Ω)2 − (γx −γc )2

)
(2.15)

and

ε′U ,0 =
1

2

(
2εx − i (γx +γc )+

√
(2Ω)2 − (γx −γc )2

)
. (2.16)

exciton photon

lower-polariton

upper-polariton

2Ω

εL

εU

εcεx γX γC

energy

Figure 2.5: Strong-coupling between exciton and photon. If the exciton-photon coupling Ω is
large enough compared to the decay rates of the exciton γx and photon γc , the normal-mode
splitting gives rise to the lower and upper polariton modes.

If 2Ω> |γx −γc |,
√

(2Ω)2 − (γx −γc )2 is a real value and the normal-mode splitting of the exci-

ton and photon energy gives rise to the lower- and upper-polaritons. This condition is called

“strong-coupling" regime. In addition to this, in order to observe a clear splitting, another con-

dition 2Ω> γx+γc should be required [43]. Meanwhile, if 2Ω< |γx−γc |,
√

(2Ω)2 − (γx −γc )2 is

an imaginary value and the energy splitting does not appear, instead, decay rates are enhanced.

This condition is called “weak-coupling" regime, which is employed in VCSELs (Vertical-cavity
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2.5. Strong-coupling between exciton and photon

surface-emitting lasers) [44]. In this thesis, we investigate the strong-coupling regime between

excitons and photons. Namely, the semiconductor microcavity sample which we will study

satisfies the two conditions: 2Ω> |γx −γc | and 2Ω> γx +γc .
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3 Theoretical framework

This chapter outlines the basic theoretical framework for describing the polariton dynamics

in semiconductor microcavities. Firstly, we introduce the starting point: bosonic exciton

Hamiltonian interacting with photons. Secondly, we will introduce two types of dynamical

equations, excitonic Bloch and Gross-Pitaevskii equations. These two formalisms respectively

describe the polariton dynamics with and without dephasing. Finally, we address the physics

of the system and their dynamics, within the lower and upper-polariton basis Hamiltonian.

3.1 Exciton-photon basis (local mode)

3.1.1 Exciton-photon Hamiltonian

The starting point of the description of excitons as bosons is the following exciton-photon

Hamiltonian without considering a spin degree of freedom [32]: Ĥ = Ĥlin + Ĥint + Ĥqm. The

linear coupling term Ĥlin is given by

Ĥlin =
∫

dx
[
ψ̂†

x (εx − ħ2∇2

2mx
)ψ̂x +ψ̂†

c (εc − ħ2∇2

2mc
)ψ̂c +Ω(ψ̂†

cψ̂x +ψ̂†
xψ̂c )

]
. (3.1)

The interacting Hamiltonian Ĥint and Ĥqm respectively read

Ĥint =
∫

dx
[

1

2
gψ̂†

xψ̂
†
xψ̂xψ̂x − gpae(ψ̂†

cψ̂
†
xψ̂xψ̂x +ψ̂†

xψ̂
†
xψ̂xψ̂c )

]
(3.2)

and

Ĥqm =
∫

dx Ωqm(ψ̂†
c F +F∗ψ̂c ). (3.3)
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Chapter 3. Theoretical framework

ψ̂x(c) and ψ̂†
x(c) are exciton (photon) field annihilation and creation operators at position x.

They satisfy Bose commutation relations,

[ψ̂x(c)(x),ψ̂†
x(c)(x′)] = δ(x−x′) (3.4)

and

[ψ̂(†)
x(c)(x),ψ̂(†)

x(c)(x′)] = 0 (3.5)

εx(c) and mx(c) respectively represent the eigenenergies and effective mass of exciton (photon).

Ω is the Rabi coupling between excitons and photons inside the microcavity, which corre-

sponds to half the energy of the splitting between the lower and upper-polariton branches

at zero cavity detuning. Ωqm in the Hamiltonian Ĥqm represents a “quasi-mode coupling"

between photons inside the microcavity ψ̂c and classical electric-fields outside the cavity F .

The interaction coefficients g and gpae are introduced as contact interactions [45, 37]. The

interaction g represents an exciton-exciton interaction associated with Coulomb exchange

scattering [41]. The Coulomb exchange interaction is the Coulomb scattering that involves

the exchange of an electron or an hole. This scattering arises from the cooperation of the

fermionic nature of excitons and the Coulomb interaction. The exciton-exciton interaction

term ψ̂†
xψ̂

†
xψ̂xψ̂x is schematically shown in Fig. 3.1 (a).

exciton

exciton

exciton

photon

photon

exciton exciton

excitonexciton

exciton

exciton

exciton

(b) photon-assisted exchange scattering gpae(a) exciton-exciton interaction g

g
gpae gpae

Figure 3.1: Schematic representation of the exciton-exciton interaction g (a) and photon-
assisted exchange scattering gpae (b) [46]. The solid and wavy lines respectively represent an
exciton and a photon. The dashed lines are the interactions.

On the other hand, gpae is called “photon-assisted exchanged scattering" 1. The term ψ̂†
cψ̂

†
xψ̂xψ̂x

(ψ̂†
xψ̂

†
xψ̂xψ̂c ) represents an annihilation (creation) of two excitons and creation (annihila-

tion) of a pair of exciton and photon (See Fig. 3.1 (b)). Phenomenologically, this term reduces

the Rabi coupling between exciton and cavity photon, which leads to a blue-shift of the

lower-polariton and a red-shift of the upper-polariton.

1In many articles, this term is referred to as “phase-space filling".
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3.1.2 Equations of motion in exciton-photon basis

In order to calculate the time evolution of the system, we derive the equations of motion of

the operators ψ̂x , ψ̂†
xψ̂x , and ψ̂c with the Heisenberg equation of motion iħ d

d t ψ̂= [ψ̂, Ĥ ].

Our objective is to obtain a closed set of equations of motion that consists of the expectation

values P (x, t) = 〈ψ̂x〉, N (x, t) = 〈ψ̂†
xψ̂x〉 and E(x, t) = 〈ψ̂c〉. We refer to P (x, t), N (x, t) and

E (x, t ) respectively as “polarization", “population", and “photon field". The interaction Hamil-

tonian Hint connects the term 〈ψ̂x〉 to higher-order terms such as 〈ψ̂xψ̂x〉 and 〈ψ̂†
xψ̂xψ̂x〉,

which connect to next higher-order terms. This infinite chain is called a hierarchy prob-

lem. Therefore, we cut the hierarchy by assuming truncations: 〈ψ̂†
xψ̂xψ̂x〉 � 〈ψ̂†

xψ̂x〉〈ψ̂x〉,
〈ψ̂†′

x ψ̂
′
xψ̂x〉 � 〈ψ̂†′

x ψ̂
′
x〉〈ψ̂x〉, 〈ψ̂xψ̂x〉 = 0, and 〈ψ̂†

xψ̂
′
xψ̂

′
x〉 � 〈ψ̂†

x〉〈ψ̂′
xψ̂

′
x〉 = 0 [32]. Finally,

from the Heisenberg equations of motion, we obtain excitonic Bloch equations (EBE):

EBE

iħṄ = −iΓx N −2i (Ω−2gpaeN )Im[PE∗] (3.6)

iħṖ = (εx + g0N − iγx (N ))P + (Ω−2gpaeN )E (3.7)

iħĖ = (εc − ħ2

2mc
∇2 − iγc )E + (Ω− gpaeN )P − fext. (3.8)

In order to derive the above equations, we assumed that the exciton mass mx is very large and

we therefore neglected the momentum-dispersion of the exciton. fext (=−ΩqmF ) represents

the excitation by the external electric field. γc represents photon decay rate from the cavity. Γx

and γx (N ) are respectively the decay and dephasing rate of excitons. Γx and γx (N ) respectively

correspond to the inverse of T1 and T2 time in atomic physics. The general form of γx (N ) is

given by

γx (N ) = Γx /2+γ∗x + g ′N . (3.9)

γ∗x is called pure dephasing. g ′ is the strength of excitation induced dephasing (EID) (also

referred to as “collisional broadening"). If neither pure dephasing nor EID exist (γ∗x and g ′ = 0),

the time evolution of the population is uniquely determined by the polarization according

to N (x, t) = |P (x, t)|2. Actually, we can easily show that |P (x, t)|2(= P (x, t)∗P (x, t)) follows the

same equation as Eq. 3.6 in case γx (N ) = Γx /2. Thus, in the coherent limit, we can reduce

the three coupled equations (EBE) to two coupled exciton-photon Gross-Pitaevskii equations

(GPE):

exciton−photon GPE

iħψ̇x = (εx + g0|ψx |2 − iγx )ψx + (Ω−2gpae|ψx |2)ψc (3.10)

iħψ̇c = (εc − ħ2

2mc
∇2 − iγc )ψc + (Ω− gpae|ψx |2)ψx − fext. (3.11)
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The symbols P and E are replaced respectively by ψx and ψc . In GPE, factorization 〈ψ̂†
xψ̂x〉 =

〈ψ̂†
x〉〈ψ̂x〉 is assumed [37]. GPE has enjoyed a wide range of success for describing the dy-

namics of resonantly excited polariton and we will use GPE in this thesis for analysing the

coherent aspects of polaritons. However, it is worth noting that in strict sense GPE holds only

in coherent limit. In order to include the EID effect and calculate the polarization and popula-

tion explicitly, EBE are necessary. In Chapter 7, we will describe femtosecond pump-probe

spectroscopy results that require EBE and examine the difference between EBE and GPE in a

detailed way.

3.2 Polariton basis (normal mode)

In the previous section, we described the system written in the exciton-photon basis. We

can call excitons and photons local modes, because the nonlinearity originates from the

“local" exciton-photon interaction (Ĥint). Actually, the exciton-photon basis is a very useful

basis for describing the strong non-linearity and incoherent effects associated with excitons.

However, due to the strong coupling between exciton and photon Ω, excitons and photons

are no more eigenstates of Ĥlin. In this section, we introduce the new eigenstates, polaritons,

which diagonalize exciton-photon linear coupling Hamiltonian Ĥlin.

3.2.1 Diagonalization in momentum-space

Firstly, in order to rewrite Ĥlin in k-space, we use the relations

ψ̂x(c)(x) =∑
k

1�
V

ei k ·x · âx(c)(k). (3.12)

and

F (x) =∑
k

1�
V

ei k ·x ·Fk . (3.13)

V is the volume occupied by excitons or photons. âx(c) satisfies the bose commutation

relations

[âx(c)(k), â†
x(c)(k ′)] = δk ,k ′ (3.14)

and

[â(†)
x(c)(k), â(†)

x(c)(k ′)] = 0. (3.15)

Ĥlin (Eq. 3.1) and Ĥqm (Eq. 3.3) in k-space are given by

Ĥlin =∑
k
εx (k)â†

x (k)âx (k)+εc (k)â†
c (k)âc (k)+Ω

(
â†

c (k)âx (k)+ â†
x (k)âc (k)

)
(3.16)
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3.2. Polariton basis (normal mode)

and

Ĥqm =∑
k
Ωqm(â†

c (k)Fk +F∗
k âc (k)). (3.17)

The energy-momentum dispersion εx(c)(k) is

εx(c)(k) = εx(c) + ħ2k2

2mx(c)
. (3.18)

We introduce new operators âL and âU defined as(
âx (k)

âc (k)

)
=
(

Xk −Ck

Ck Xk

)(
âL(k)

âU (k)

)

or inversely(
âL(k)

âU (k)

)
=
(

Xk Ck

−Ck Xk

)(
âx (k)

âc (k)

)
.

âL(U ) is the annihilation operator of lower (upper)-polariton. Xk and Ck are respectively called

excitonic (photonic) and photonic (excitonic) Hopfield coefficients of lower (upper) polaritons.

Their explicit forms are

Xk =
√√√√1

2

(
1+ εc (k)−εx (k)√

(εc (k)−εx (k))2 + (2Ω)2

)
(3.19)

and

Ck =−
√√√√1

2

(
1− εc (k)−εx (k)√

(εc (k)−εx (k))2 + (2Ω)2

)
. (3.20)

Xk and Ck satisfy the relation: |Xk |2 +|Ck |2 = 1. The polariton operators satisfy the bosonic

commutation relations: [âL(U )(k), â†
L(U )(k ′)] = δk ,k ′ and [âL(U )(k), âL(U )(k ′)] = 0.

Using the polariton operator âL and âU , Ĥl i n can be diagonalized as

Ĥlin =∑
k
εL(k)â†

L(k)âL(k)+εU (k)â†
U (k)âU (k). (3.21)

The lower εL(k) and upper εU (k) polariton dispersions are given by

εL(k) = 1

2

(
εc (k)+εx (k)−

√
(εc (k)−εx (k))2 + (2Ω)2

)
(3.22)
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and

εU (k) = 1

2

(
εc (k)+εx (k)+

√
(εc (k)−εx (k))2 + (2Ω)2

)
. (3.23)

εL(k) and εU (k) are plotted in Fig. 3.2 for three different cavity detunings, δ= εc − εx =-1, 0,

and 1 meV. For the plot, the Rabi coupling 2Ω is chosen to be 3.26 meV and we assume that

the exciton energy-momentum dispersion εx (k) is flat at 0 meV, because of the heavy mass of

exciton.

The quasi-mode coupling Hamiltonian Ĥqm is rewritten as

Ĥqm =∑
k
Ω∗

L,k â†
L(k)Fk +ΩL,k F∗

k âL(k)+Ω∗
U ,k â†

U (k)Fk +ΩU ,k F∗
k âU (k). (3.24)

Ĥqm in polariton basis indicates that lower (upper)-polaritons âL(U )(k) is “weakly" cou-

pled to the electric-field outside the cavity fext with the coupling strength ΩL(U ) defined as

ΩL,k =ΩqmCk and ΩU ,k =ΩqmXk . This formalism is important when we apply a third-order

perturbation theory to the strong-coupling system in Chapter. 5.
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cavity detuning of -1 meV cavity detuning of 0 meV cavity detuning of 1 meV
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Figure 3.2: Hopfield coefficients and energy-momentum dispersions of the lower and upper
polaritons for -1 (a), 0 (b), and 1 meV (c) cavity detunings. The dashed lines overlapped on
the polariton energy-momentum dispersions are harmonic approximations to the polariton
effective masses.
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3.2. Polariton basis (normal mode)

3.2.2 Polariton basis in real-space

If the momentum k is small, the lower and upper-polariton energy-momentum dispersion

can be approximated as parabolic dispersion:

εL(U )(k) � εL(U ),0 + ħ2k2

2mL(U )
(3.25)

εL(U ),0 is defined as εL(U ),0 = εL(U )(0). Using the Hopfield coefficients, the effective masses of

lower and upper polariton are represented as

1

mL(U )
= |X0|2

mx(c)
+ |C0|2

mc(x)
(3.26)

In Fig. 3.2, the harmonic approximation of the polariton energy-momentum dispersion (Eq.

3.25) is overlapped on the exact ones, which shows that the harmonic approximation is a good

approximation for small momentum values. Within this approximation, we can rewrite Ĥlin in

real space under a simple form:

Ĥlin + Ĥqm �
∫

dx
[
ψ̂†

L(εL,0 − ħ2∇2

2mL
)ψ̂L +ψ̂†

U (εU ,0 − ħ2∇2

2mU
)ψ̂U

+Ω∗
L,0ψ̂

†
LF +ΩL,0F∗ψ̂L +Ω∗

U ,0ψ̂
†
U F +ΩU ,0F∗ψ̂U

]
, (3.27)

where ΩL(U ),0 =ΩL(U ),k at k = 0. ψ̂L(U ) is connected to ψ̂x(c) as(
ψ̂x (x)

ψ̂c (x)

)
=
(

X0 −C0

C0 X0

)(
ψ̂L(x)

ψ̂U (x)

)

or inversely(
ψ̂L(x)

ψ̂U (x)

)
=
(

X0 C0

−C0 X0

)(
ψ̂x (x)

ψ̂c (x)

)
.

With a cavity detuning defined as δ= εc −εx

εL,0 = 1

2

(
2εx +δ−

√
δ2 + (2Ω)2

)
(3.28)

and

εU ,0 = 1

2

(
2εx +δ+

√
δ2 + (2Ω)2

)
. (3.29)
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Figure 3.3: The lower εL,0 and upper εU ,0 polariton energy at k = 0 as a function of the cavity
detuning (a). The excitonic (photonic) |X0|2 and photonic (excitonic) fraction |C0|2 of the
lower (upper) -polariton as a function of the cavity detuning (b).

Similarly, X0 and C0 can be represented as

X0 =
√√√√1

2

(
1+ δ√

δ2 + (2Ω)2

)
(3.30)

and

C0 =−
√√√√1

2

(
1− δ√

δ2 + (2Ω)2

)
. (3.31)

Figure 3.3 presents |X0|2, |C0|2, and εL(U ),0. At negative (positive) cavity detuning, the lower-

polariton is photonic (excitonic) and the upper-polariton is exciton (photon) like.

Now, it is instructive to compare the present polariton model with the Jaynes-Cummings

model, which models the strong-coupling between a two-level atom and photons [47]. In the

present polariton model, since bosonic exciton and photon are considered as two harmonic

oscillators, the eigenstates (normal modes) of the strong-coupling are also two harmonic

oscillators (bosons). As is shown in Fig. 3.4 (a), all transitions between different polariton states

always correspond either to the lower εL or the upper-polariton energy εU . The consequence

is that the strong coupling between bosonic excitons and photon does not give rise to a non-

linearity. Therefore, in order to introduce non-linearities in the polariton system, we need

to consider the exciton-exciton interaction or photon-assisted exchange scattering term in

Ĥint. This has a striking contrast to the strong-coupling between a single two-level atom

and photons (Jaynes-Cummings model). In the Jaynes-Cummings model (Fig. 3.4 (b)), the

energy of normal-mode splitting depends on the number of photons as 2
�

nΩ. Thus, the

energy ladder is not harmonic and there exists a non-linearity in the Jaynes-Cummings model.

This originates from the fact that two-level system such as a single atom and quantum-dot is

intrinsically optically non-linear because of its “fermionic" nature (“fermionic in a sense that

two quanta cannot occupy the same excited state).
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|+, 2>

2Ω

4Ω

2Ω

2  2 Ω

LP UP 

εL

εL + εU

2εU

2εL

εL

εLεU

εU

εU

εL

εU εC + Ω

εC  - Ω
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(a) Bosonic exciton-photon coupling
(polariton model)

(b) Two-levels atom-photon coupling
(Jaynes-Cummings model)

Figure 3.4: Energy levels of polariton mode (a) and Jaynes-Cummings model (b). In the
polariton model, all the ladder transition energies correspond to either εL or εU , therefore the
system is linear. On the other hand, in the Jaynes-Cummings model, the ladder transition
energies strongly depend on the level of the rang, which originates a optical nonlinearity.
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3.2.3 Interaction Hamiltonians in polariton basis (polariton-polariton interac-
tions)

The interaction Hamiltonian Hi nt is separated into the exciton-exciton and photon-assisted

scattering term as Ĥi nt = Ĥxx + Ĥpae. Ĥxx and Ĥpae are respectively

Ĥxx =
∫

dx
[

1

2
gψ̂†

xψ̂
†
xψ̂xψ̂x

]
(3.32)

and

Ĥpae =
∫

dx
[
−gpae(ψ̂†

cψ̂
†
xψ̂xψ̂x +ψ̂†

xψ̂
†
xψ̂xψ̂c )

]
. (3.33)

Firstly we rewrite the interaction Hamiltonian associated with the exciton-exciton interaction

term Ĥxx in polariton basis as

Ĥxx =
∫

dx [
1

2
g X 4

0ψ̂
†
Lψ̂

†
Lψ̂Lψ̂L (xx a1)

+ 1

2
g |C0|4ψ̂†

Uψ̂†
Uψ̂Uψ̂U (xx a2)

+2g X 2
0 |C0|2ψ̂†

Lψ̂
†
Uψ̂Lψ̂U (xx a3)

+ g X 3
0 |C0|ψ̂†

Lψ̂
†
Lψ̂Lψ̂U (xx b1)

+ g X0|C0|3ψ̂†
Lψ̂

†
Uψ̂Uψ̂U (xx b2)

+ g X 3
0 |C0|ψ̂†

Uψ̂†
Lψ̂Lψ̂L (xx b3)

+ g X0|C0|3ψ̂†
Uψ̂†

Uψ̂Uψ̂L (xx b4)

+ 1

2
g X 2

0 |C0|2ψ̂†
Lψ̂

†
Lψ̂Uψ̂U (xx c1)

+ 1

2
g X 2

0 |C0|2ψ̂†
Uψ̂†

Uψ̂Lψ̂L ] . (xx c2)

Similarly, Ĥpae reads in the polariton basis,

Ĥpae =
∫

dx [ 2gpaeX 3
0 |C0|ψ̂†

Lψ̂
†
Lψ̂Lψ̂L (pae a1)

−2gpaeX0|C0|3ψ̂†
Uψ̂†

Uψ̂Uψ̂U (pae a2)

+4gpaeX0|C0|(|C0|2 −X 2
0 )ψ̂†

Lψ̂
†
Uψ̂Lψ̂U (pae a3)

− gpae(X 4
0 −3X 2

0 |C0|2)ψ̂†
Lψ̂

†
Lψ̂Lψ̂U (pae b1)

− gpae(3X 2
0 |C0|2 −|C0|4)ψ̂†

Lψ̂
†
Uψ̂Uψ̂U (pae b2)

− gpae(X 4
0 −3X 2

0 |C0|2)ψ̂†
Uψ̂†

Lψ̂Lψ̂L (pae b3)

− gpae(3X 2
0 |C0|2 −|C0|4)ψ̂†

Uψ̂†
Uψ̂Uψ̂L (pae b4)

+ 1

2
gpaeX0|C0|(|C0|2 −X 2

0 )ψ̂†
Lψ̂

†
Lψ̂Uψ̂U (pae c1)

+ 1

2
gpaeX0|C0|(|C0|2 −X 2

0 )ψ̂†
Uψ̂†

Uψ̂Lψ̂L ] . (pae c2)
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3.2. Polariton basis (normal mode)

The exciton-exciton interaction g0 works as a repulsive interaction both for lower and upper

polaritons (See the signs of (xx a1) and (xx a2)). On the other hand, the photon-assisted ex-

change scattering is a repulsive (attractive) interaction for lower (upper) polariton interaction

(See the signs of (pae a1) and (pae a2)). The terms (xx a3) and (pae a3) are mutual interaction

between lower and upper-polariton, which contribute to the energy shift of a polariton branch

induced by the other branch. These terms are interpreted as cross phase modulations [48].

When only the lower-polariton branch is excited, we neglect the terms that involve the upper-

polariton operator. In this approximation, the Hamiltonian for the lower-polariton is given by

[49]

Ĥint,LP =
∫

dx
[

1

2
g X 4

0ψ̂
†
Lψ̂

†
Lψ̂Lψ̂L +2gpaeX 3

0 |C0|ψ̂†
Lψ̂

†
Lψ̂Lψ̂L

]
(3.34)

3.2.4 Equation of motion of lower-polariton

The Hamiltonian for the lower polariton HLP is

ĤLP = Ĥlin,LP + Ĥint,LP + Ĥqm,LP

=
∫

dx
[
ψ̂†

L(εL,0 − ħ2∇2

2mL
)ψ̂L

+(
1

2
g X 4

0 +2gpaeX 3
0 |C0|)ψ̂†

Lψ̂
†
Lψ̂Lψ̂L

+Ω∗
L,0ψ̂

†
LF +ΩL,0F∗ψ̂L

]
. (3.35)

Hlin,LP and Hqm,LP are respectively the linear Hamiltonian and the quasi-mode coupling of

lower-polaritons. The Heisenberg equation of motion for the lower-polariton is obtained as

iħψ̇L = (εL ,0− ħ2

2mL
∇2 + gLP |ψL |2 − iγL)ψL − fext. (3.36)

This is the commonly used Gross-Pitaevskii equation for lower-polaritons. ψL is the expec-

tation value of the lower-polariton annihilation operator, ψL = 〈ψ̂L〉. In order to derive this

equation, we apply the coherent limit approximation as 〈ψ̂†
Lψ̂Lψ̂L〉 = 〈ψ̂†

L〉〈ψ̂L〉〈ψ̂L〉. The

term fext = (−Ω∗
L,0F ) represents a driving term due to the electric-field outside the cavity. The

lower-polariton interaction gLP is given by

gLP = g X 4
0 +4gpaeX 3

0 |C0|. (3.37)

γL is the effective dephasing rate of the lower-polaritons defined as γL = |X |2γx +|C |2γc .
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Chapter 3. Theoretical framework

3.3 Spin-dependent interactions

Until now, we have neglected the spin-degree of freedom by assuming that only a single

direction of spin configuration is involved. In this section, we consider the spin-dependence

of the exciton-exciton interactions. As stated in the previous chapter, a quantum well exciton

has two-spin projections: spin up and down. Moreover, there is a one-to-one correspondence

between the spin of the exciton and the polarization of the cavity photon. An exciton with a

spin-up (-down) ψ̂x,↑(↓) couples cavity photon with a σ+(−) polarization ψ̂c,↑(↓). In particular,

when two excitons have opposite spins (spin-up and -down), an exciton molecule called

“biexciton" can be formed. Defining the bosonic biexciton operator ψ̂B , a spin-dependent

Hamiltonian including biexciton coupling is given by [50]

Ĥ = Ĥlin + Ĥint + Ĥqm. (3.38)

The three parts are respectively

Ĥlin = ∑
σ={↑↓}

∫
dx

[
ψ̂†

x,σ(εx − ħ2∇2

2mx
)ψ̂x,σ+ψ̂†

c,σ(εc − ħ2∇2

2mc
)ψ̂c,σ+εBψ̂

†
Bψ̂B

+Ω(ψ̂†
c,σψ̂x,σ+ψ̂†

x,σψ̂c,σ)
]

, (3.39)

Ĥint = ∑
σ={↑↓}

∫
dx [

1

2
gψ̂†

x,σψ̂
†
x,σψ̂x,σψ̂x,σ+ 1

2
g+−ψ̂†

x,σψ̂
†
x,−σψ̂x,−σψ̂x,σ

+1

2
gbx (ψ̂Bψ̂

†
x,σψ̂

†
x,−σ+ψ̂x,σψ̂x,−σψ̂†

B )

−gpae(ψ̂†
c,σψ̂

†
x,σψ̂x,σψ̂x,σ+ψ̂†

x,σψ̂
†
x,σψ̂x,σψ̂c,σ) ] , (3.40)

and

Ĥqm = ∑
σ={↑↓}

∫
dx Ωqm(ψ̂†

c,σFσ+F∗
σψ̂c,σ). (3.41)

here, the spin-dependent operators satisfy the following commutation relations,

[ψ̂x(c),σ(x),ψ̂†
x(c),σ′(x′)] = δσ,σ′δ(x−x′) (3.42)

and

[ψ̂(†)
x(c),σ(x),ψ̂(†)

x(c),σ′(x′)] = 0. (3.43)

The bosonic biexciton operator ψ̂B satisfies

[ψ̂B (x),ψ̂†
B (x′)] = δ(x−x′) (3.44)
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3.3. Spin-dependent interactions

and

[ψ̂(†)
B (x),ψ̂(†)

B (x′)] = 0. (3.45)

The constants g+− and gbx respectively represent exciton-exciton interaction with anti-parallel

spins and exciton-biexciton coupling. The exciton-biexciton coupling term represents the

formation of biexciton from two-excitons with opposite spins as schematically shown in Fig.

3.5. It is worth noting that the photon-assisted exchange scattering occurs only between

excitons and photons with parallel spins because it is originated from the fermionic nature of

the excitons.

exciton with spin-up

biexciton

exciton-biexciton coupling gbx

gbx

exciton with spin-down

gbx

exciton with spin-up

exciton with spin-down

biexciton

Figure 3.5: Schematic representation of the exciton-biexciton coupling gbx . The diagrams
show that the coupling gbx converts two excitons with opposite spins into a bound state
biexciton and the opposite process.

With the Heisenberg equation of motion and coherent limit assumption, we obtain the equa-

tions of motion of the exciton, photon, and biexciton fields. Since the biexciton effect is a

four-particle correlation, the inclusion of the incoherent effect of biexciton is theoretically

extremely difficult. Therefore, here we consider only the coherent limit and rewrite the exciton,

photon, and biexciton operator into c-numbers. Finally, the equations of motion read,

iħψ̇x,↑ = (εx + g |ψx,↑|2 + g+−|ψx,↓|2 − iγx )ψx,↑
+gbxψBψ

∗
x,↓ + (Ω−2gpae|ψx,↑|2)ψc,↑ (3.46)

iħψ̇c,↑ = (εc − ħ2

2mc
∇2 − iγc )ψc,↑ + (Ω− gpae|ψx,↑|2)ψx,↑ − fext,↑ (3.47)

iħψ̇B = (εB − iγB )ψB + gbxψx,↑ψx,↓. (3.48)

The equations of motion above indicate that g+− contributes to the mean-energy shift in-

duced by the exciton population with anti-parallel spins. Within the second-order Born
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approximation, the term g+− is zero because of the lack of the Coulomb exchange interaction

between excitons with opposite spins [41], but an inclusion of the higher-order scattering

matrices results in a negative value of g+− (the exciton continuum correlations) [51, 52, 53, 54].

Although the effect of exciton-biexciton coupling gbx is not intuitive, gbx has a significant

contribution to the effective polariton interaction through a biexciton resonant scattering

(Feshbach resonance) [50, 55, 56]. In order to investigate the effect of the biexciton on the

lower-polariton, we rewrite the spin-dependent Hamiltonian and equations of motion into

the lower-polariton basis.

Ĥint,LP = ∑
σ={↑↓}

∫
dx [ (

1

2
g X 4

0 +2gpaeX 3
0 |C0|)ψ̂†

L,σψ̂
†
L,σψ̂L,σψ̂x,σ

+g+−X 4
0ψ̂

†
L,σψ̂

†
L,−σψ̂L,−σψ̂L,σ

+1

2
gbx X 2

0 (ψ̂Bψ̂
†
L,σψ̂

†
L,−σ+ψ̂L,σψ̂L,−σψ̂†

B ) ] . (3.49)

The equations of motion of the lower-polariton considering the spin dependence and biexciton

are written as

iħψ̇L,↑ = (εL,0 − ħ2

2mL
∇2 + gL |ψL,↑|2 + gL,+−X 4

0 |ψL,↓|2 − iγL)ψL,↑

+gbx X 2
0ψBψ

∗
L,↓ − fext,↑ (3.50)

iħψ̇B = (εB − iγB )ψB + gbx X 2
0ψL,↑ψL,↓. (3.51)

The scattering resonance and resulting enhancement of the polariton-polariton interaction

occur when the lower-polariton’s energy is close to the half of biexciton’s energy. This is

possible by changing the cavity detuning (see Eq. 5.3) and make the energy 2εL,0 close to

εB . In Chapter 6, we will describe the details of the scattering resonance of the polaritons

(polaritonic Feshbach resonance) with anti-parallel spins. Our experimental results indicate

the existence of both g+− and gbx .
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4 Experimental setup and technique

The details of the experimental set-up and measurement technique will be given in this

chapter. In the first section, we will give details about the semiconductor microcavity sample

used in this thesis. In the next section, the optical set-up for a non-linear optics experiments

and heterodyne detection technique will be addressed.

4.1 High-quality GaAs based semiconductor microcavity

The sample used for the experiments in this thesis is a high-quality semiconductor microcavity

composed of a single quantum well and two DBR mirrors. The sample was grown in the group

of M. Ilegems by U. Oesterle at EPFL in 1998 [38]. The bottom mirror includes 26.5 pairs, while

the top mirror has 20 pairs of DBRs. The quantum well is 8 nm In0.04Ga0.96As quantum well

and the DBR consists of GaAs/AlAs. Since light can be transmitted through the substrate of

In0.04Ga0.96As quantum well, we can employ a transmission measurement configuration. All

our experiments are performed at the cryogenic temperature of 4 K.

In0.04Ga0.96As Single quantum well

20 pairs of top GaAs/AlAs DBR

26.5 pairs of bottom GaAs/AlAs DBR

Spacer layer

z
Growth axis

Figure 4.1: Schematic of semiconductor microcavity. The single In0.04Ga0.96As quantum well
(represented as a red colour) is sandwiched by two GaAs/AlAs DBRs
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Chapter 4. Experimental setup and technique

Since the sample is wedged during a sample growth process, we can tune the cavity resonance

energy by changing the position of the laser spot over the sample. Therefore, by sweeping

the position of the laser spot at zero incidence angle and observing the transmitted beam,

we can obtain a cavity detuning dependence of the lower- and upper-polariton energies (Fig.

4.2 (a)). The 1s exciton energy is extracted as εx =1.4867 eV. The Rabi splitting energy at zero

cavity detuning is about 2Ω=3.45 meV. In Fig. 4.2 (b), the energy-momentum dispersion of

the lower and upper-polariton is shown. This figure is obtained at a zero cavity detuning with

a non-resonant excitation by a continuous-wave helium-neon laser (1.96 eV) and a far-field

image of a photo-luminescence.
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photon
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en
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lower-polariton
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Figure 4.2: (a) The energies of the lower and upper-polaritons as a function of the cavity
detuning. The splitting between the two branches at zero cavity detuning is about 3.45 meV.
(b) The energy-momentum dispersion of the lower and upper-polariton obtained with a non-
resonant excitation and far-field imaging of the photo-luminescence at zero cavity detuning
from [42] (b).
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4.2. Pump-probe excitation configuration

4.2 Pump-probe excitation configuration

Figure. 4.3 is the scheme of the experimental setup. A Ti:sapphire laser TSUNAMI with a

broadband few hundreds femtosecond pulse and 80 MHz repetition rate is used. The laser

source is divided into three beams: k1 (probe or trigger), k2 (pump), and reference pulses with

two acousto-optic modulator (AOM). The optical setup is divided into three parts: a pulse

shaper, excitation of the sample, and detection of the signal. The pulse shaper reshapes the

broadband pump pulse into a narrowband pulse, which is used to excite a single branch of

polariton.

spectrometer

grating

Ti:sapphire laser

sample

pulse shaperheterodyne detection

reference

k1 (probe)

 k2 (pump)

delay stage

real-space imaging

k-space
imaging

AOM 1

AOM 2

AOM 3

 PBS

 PBS

 BS
λ/4

λ/4

λ/4

ND filter

ND filter

ND filter

PZT

Figure 4.3: Scheme of an experimental setup. The meanings of abbreviations are the follow-
ing. AOM: acousto-optic modulator. PZT: piezo-electric device ,which blurs the mirror and
introduce an artificial noise. ND filter: neutral density filter, which adjusts the intensity of
beams. BS: beam splitter. PBS: polarization beam splitter, which extracts a linear component
of an elliptic polarization. λ/4: quarter wave plate, which converts a linear polarization to
σ+(−) circular polarization. Real and k-space imaging is used for alignments of the setup. A
pulse shaping with the pulse shaper is used only when we excite a single polariton branch,
otherwise, the slit of pulse shaper is opened and k2 pulse width is same as that of k1

For the excitation of the sample, a two-pulse configuration is employed (See the schematic

in Fig. 4.4). The k2 and k1 pulses are respectively referred to as “pump" and “probe" in a
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Chapter 4. Experimental setup and technique

pump-probe experiment (See Chapters 6 and 7). The wave-vector of the k2 pulse is always

zero (k2 = 0 μm−1). Meanwhile, the wave-vector of k1 pulse is tunable by changing the angle

between the two pulses (See Fig. 4.4). The pulses k1 and k2 arrive on the sample at times

tk1 and tk2 respectively. A time delay τ = tk1 − tk2 between the two pulses is called positive

(negative) when the k2 (k1) pulse arrives before the k1 (k2) pulse. In the experiment, the delay

τ is controlled by the delay stage in Fig. 4.3 with LabVIEW. All measurements are performed

in the transmission configuration. In the pump-probe experiment, we spatially select the

transmitted probe beam with a pinhole and sent it to the heterodyne detection path (Fig. 4.3).

The polarization of the k1 and k2 pulses can be controlled by the λ/4 plates (shown in Fig.

4.3) in co- and counter-circular polarization configuration. In the two-pulses configuration

with co-circular polarization, four-wave mixing signal (also referred to as “idler") appears with

a wave vector kFWM (Fig. 4.4). The four-wave mixing with this configuration is degenerate

four-wave mixing, because the pulse k2 (pump) is considered as two degenerate pulses with

k2 = 0 μm−1. Since, the momentum conservation must be satisfied, the momentum of the

four-wave mixing signal is kFWM = 2k2 −k1 =−k1 μm−1. In the four-wave mixing experiment,

similarly to the pump-probe one, the four-wave mixing signal is spatially selected with the

pinhole and interfered with the reference beam for the heterodyne detection.

k1

k2=0

kFWM= 2k2- k1=- k1
τ

k1  pulse
k2  pulse

sample

pump

probe (trigger)

four-wave mixing signal (idler)

cryostat

Figure 4.4: Scheme of the excitation of the sample and the probe and FWM signal directions.
The delay τ represents the delay time between the k1 and k2 pulse. The wave vector of the
FWM signal is given by kFWM = 2k2 −k1 =−k1 μm−1.

4.3 Heterodyne Pump-probe and four-wave mixing technique

Here, we describe the heterodyne measurement technique employed in both pump-probe

and four-wave mixing experiments [57, 42, 16]. The idea of the heterodyne measurement

is to interfere a signal electric field with a local oscillator and amplify it. The employment

of the heterodyne technique has two advantages. Firstly, we can obtain both the amplitude

and the phase of the measured electric fields. This is indispensable for two-dimensional

Fourier transformation spectroscopy, which requires the phase information for the Fourier
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4.3. Heterodyne Pump-probe and four-wave mixing technique

transformation. Secondly, since stray light does not interfere with the local oscillator, we can

obtain a large signal to noise ratio using heterodyne measurements. This is very important

because in a spatially degenerate pump-probe and four-wave mixing configuration, the

heterodyne measurement is an efficient way to remove the strong pump beam transmission.

Firstly, in order to understand the heterodyne technique, we should recall that the femtosecond

pulse can be considered as a frequency comb (See Fig. 4.5). Namely, in the energy axis, the

laser pulse is an ensemble of continuous-wave lasers with an interval of 80 MHz. Since the

pump and probe are up-converted by AOMs respectively with 75 MHz and 79 MHz from the

reference, the combs of the k2 (pump) and k1 (probe) pulses are also shifted from that of

the reference (See the inset of Fig. 4.5). Recalling the four-wave mixing in continuous-wave

regime, the angular frequency of the four-wave mixing signal is given by ωFW M = 2ωpu −ωpr .

Thus, the four-wave mixing signal is shifted with 71 MHz(=2×75 MHz -79 MHz) from the

reference. It is important to notice that these shifts do not affect the envelope of pulses and

the discussion of physics, because the pulse bandwidth (>10 meV) is much larger than the

energy shift (∼ 3.0×10−4 meV) induced by the AOM.

energy

laser pulse

80 MHz

79 MHz

75 MHz

71 MHz

reference
k1 probe 
k2 pump
FWM

frequency comb(a) pulse train(b)

time

time

k2 (pump)reference k1 (probe) 

15 ps τ

τr signal

reference

Figure 4.5: A broadband laser pulse can be considered as a frequency comb (a). In the inset,
the combs of the reference, k2, and k1 pulse is drawn. The comb of k2 and k1 are shifted from
that of the reference by AOM. The pulse train of the three beams is schematically shown in the
upper part of (b). The lower part of (b) displays that the delay time between the reference and
signal is defined as τr . The signal is FWM and probe respectively for FWM and pump-probe
measurements.

The idea of the heterodyne detection has a close similarity to a homodyne one. While, a

signal and reference (local oscillator) are mixed with beam splitter in the homodyne detection,

the beam splitter is replaced with the acoustic-optical modulator (AOM) in our heterodyne

detection scheme. We make use of AOM as a “frequency beam splitter" [58]. As shown in
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Fig. 4.6, when the driving radio frequency of AOM corresponds to the difference of the input

reference and signal frequencies, the two input beams are interfered with each other in the

output ports. As shown in Fig. 4.6 (a), the principle of AOM is a diffraction of a laser beam by

“a moving grating" driven by acoustic waves, which introduce a π phase shift between output

channel A and B.

AOM

signal ωsreference ωr

channel A channel B

ωr + ΩAOM = ωs ωs ωr ωs - ΩAOM = ωr

ΩAOM = ωs - ωr 

(a) (b)

Figure 4.6: (a): Scheme of acoustic-optical modulator, which represents that two input modes
are mixed in the output modes (channel A and B). AOM works as a “frequency beam splitter".
(b): CCD image of the spectrum of the channel A and B. (interferogram)

signal ΩAOM

k1 (probe) 79 MHz
k2 (pump) 75 MHz
four-wave mixing 71 MHz

Table 4.1: Table of the driving frequencies ΩAOM for AOM 3 (See Fig. 4.3) for detecting different
signals.

Assuming that Es(ωs) and Er (ωr ) are the complex amplitudes of input signal and reference

respectively. Here, the input signal is the probe or four-wave mixing signal. Using an analogy

with the beam splitter matrix in quantum optics, the output beams in channel A (E A) and B

(EB ) (See Fig. 4.6) are given by(
E A(ωs)

EB (ωr )

)
=
( �

η −√1−η√
1−η

�
η

)(
Es(ωs)

Er (ωr )

)
.

Here, η is a number between 0 and 1, which is determined by the properties and gain of

AOM. When the gain of AOM is turned off, η becomes 1 and the diffraction does not occur.

The important character of this technique is that we can select the signal by choosing the rf

frequency of the AOM, because the difference frequency between the signal and reference
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4.3. Heterodyne Pump-probe and four-wave mixing technique

must be the same as the driving frequency of the AOM. Therefore, with this technique we can

exclude the strong stray light coming from the pump beam. For example, in the case of pump-

probe measurement, the AOM is driven with rf-frequency of 79 MHz, which corresponds to

the modulation frequency of the probe. In Table. 4.1, we summarize rf-frequencies of the

AOM for three different signals.

From now on, since the energy difference between ωs and ωr is very small compared to the

energy scale of the physical phenomena which we investigate, we will discuss the heterodyne

technique neglecting this difference. The complex amplitude of output channels A and B is a

superposition of the signal and the reference as

E A(ω) =�
ηEs(ω)−√1−ηEr (ω,τr ). (4.1)

and

EB (ω) =√
1−ηEs(ω)+�

ηEr (ω,τr ). (4.2)

Here, the delay τr in Er (ω,τr ) represents the delay between the signal and reference pulses.

Figure. 4.5 (b) presents pulse trains in our experiments. The probe pulse is fixed and the pump

and reference pulses are moved simultaneously by the delay stage (See Fig. 4.3). The reference

pulse arrives before the signal which is measured. The delay between the pump and reference

pulse is kept around 15 ps. Er (ω,τr ) is related to Es(ω)(= Es(ω,0)) as Er (ω,τr ) = Er (ω)eiωτr .

The outputs channel A and B are transferred to a spectrometer, which records the amplitudes

I A(ω) = |E A(ω)|2 and IB (ω) = |EB (ω)|2 as interferograms. The example of I A(ω) and IB (ω) is

presented in Fig. 4.6 (b), where the term associated with the reference-signal delay eiωτr gives

rise to periodic interference fringes. The intensities I A(ω) and IB (ω) are calculated as

I A(ω) = |E A(ω)|2
= η|Es(ω)|2 + (1−η)|Er (ω,τr )|2 −2

√
(1−η)η Re

[
Es(ω) ·E∗

r (ω,τr )
]

(4.3)

and

IB (ω) = |EB (ω)|2
= (1−η)|Es(ω)|2 +η|Er (ω,τr )|2 +2

√
(1−η)η Re

[
Es(ω) ·E∗

r (ω,τr )
]

. (4.4)

In Eq. 4.3 and 4.4, the last term represents the interference term of the signal and reference.

It is important that the phase information of the signal appears in the interference term as

a relative phase to the reference. The first two terms are the intensities of the signal and

reference respectively. The difference of the intensities between two channel IB (ω)− I A(ω) is
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given by

IB (ω)− I A(ω) = (1−2η)|Es(ω)|2 + (2η−1)|Er (ω,τr )|2 +4
√

(1−η)η Re
[
Es(ω) ·E∗

r (ω,τr )
]

= 2Re
[
Es(ω) ·E∗

r (ω,τr )
]

(if η= 0.5). (4.5)

As the above equation shows, if the intensity of the channel A and B are balanced, the sub-

traction IB (ω)− I A(ω) includes only the interference term (balanced detection). However, in

practice, the perfect balance is not easy. Therefore, in order to remove the residual intensity

terms |Es(ω)|2 and |Er (ω)|2 from the subtraction IB (ω)− I A(ω), we use the piezoelectric device

(PZT) in Fig. 4.3. When we add an artificial phase noise to the signal with the piezoelectric

actuator of the mirror (See PZT in Fig. 4.3), the interference term is averaged out and we can

obtain only the intensity terms. In order to reconstruct the signal Es(ω), firstly we perform

the balanced detection and obtain IB (ω)− I A(ω), then remove the residual intensity terms by

using the PZT noise method. Neglecting the constants and defining a function f (ω) as

f (ω) = Es(ω) ·E∗
r (ω), (4.6)

the extracted interference term Iin reads

Iin(ω) = 2Re
[
Es(ω) ·E∗

r (ω,τr )
]

= f (ω)eiωτr + f ∗(ω)e−iωτr . (4.7)

The Fourier transformation of Iin(ω) includes two time reversed parts as

F [Iin(ω)] (t ) = f̃ (t −τr )+ f̃ ∗(t +τr )

= f̃ (t −τr )+ f̃ (−t −τr ). (4.8)

The function f̃ (t) is the Fourier transformation of f (ω): f̃ (t) = F
[

f (ω)
]

(t). By applying a

Heaviside function Θ(t), we obtain only f̃ (t −τr ) term. Them, by removing the delay offset,

we obtain f̃ (t ). The inverse Fourier transformation of f̃ (t ) is the convolution of the signal and

reference f (ω) = Es(ω) ·E∗
r (ω). If the spectrum profile of the reference is broad enough, Es(ω)

is written as Er (ω) = |Er |eiφr . In this case, f (ω) reads, Es(ω)|Er |eiφr . This means that finally,

by obtaining f (ω) from the interferogram, we recover the signal Es(ω) except for the absolute

phase and absolute amplitude, which is written as

f (ω) = e−iωr τF−1 [Θ(t )F [Iin(ω)]] . (4.9)

If we have the complete information of the reference pulse, we can obtain the signal as

Es(ω) = f (ω)

E∗
r (ω)

. (4.10)

36



4.3. Heterodyne Pump-probe and four-wave mixing technique

However, we cannot know the amplitude and phase of E∗
r (ω), thus we need some assumptions

for E∗
r (ω). Firstly, since the linewidth of the reference pulse (≈15 meV) is much larger than the

Rabi splitting (3.45 meV) in our sample, we assume that the reference pulse is broad enough

and the amplitude does not have a frequency dependence: |E∗
r (ω)| = |Er |. Secondly, let us note

the absolute phase of the reference does not affect the amplitude of the spectrum of the signal

| f (ω)|2 = |Er | · |Es(ω)eiφr |2 ∝|Es(ω)|2, while it introduces a phase dependence to the real part

of f (ω) as Re
[

f (ω)
]∝|Es(ω)| ·cos(φs(ω)+φr ). This is why we will present only amplitude of

the experimental spectra, which is not affected by the absolute phase of the reference.
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5 Two-dimensional Fourier Transform
(2DFT) spectroscopy of polaritons

In this chapter, we discuss in detail two-dimensional Fourier Transform (2DFT) spectroscopy

of polaritons [59]. Using 2DFT spectroscopy, we reveal two types of interactions between the

polariton branches: lower-lower and upper-upper polariton self-interaction and lower-upper

polariton cross interaction. Firstly, we describe an experimental configuration necessary for

2DFT. Secondly, we analyse the experimental 2DFT spectra based on third-order perturbation

theory, where we introduce double-sided Feynman diagrams. The third-order perturbation

theory is the simplest and intuitive description of 2DFT. Actually, the appearance of main peak

groups in experimental 2DFT spectra can be explained with this theory. Finally, we compare

experiments with “non-perturbative" numerical simulations based on lower- and upper-

polariton basis Gross-Pitaevskii equations. We find that the full inclusion of the dispersion

effects, which is usually neglected in the case of heavy particles such as exctions, is possible

with this non-perturbative approach.

5.1 Concept of 2DFT spectroscopy

2DFT spectroscopy is a powerful tool to investigate coherent couplings and vibrational anhar-

monicities of molecular vibrational states [60, 61] and non-linear interaction between different

exciton states in semiconductor [62, 63, 64, 65, 66]. One advantage of this technique is that we

can know whether two oscillators are independent or coupled with a mutual anharmonicity

from the existence of off-diagonal peak in two-dimensional spectrum. This is very difficult

with a conventional one-dimensional (1D) spectroscopy. Additionally, we can associate each

peak of the 2DFT spectrum with different Liouville-space pathway through double-sided Feyn-

man diagrams [61, 67]. For example, let us consider two two-level systems with and without a

mutual anharmonicity (non-linearity) as shown in Fig. 5.1. The two systems have transition

energies ε1 and ε2. With a conventional one-dimensional spectroscopy we cannot distinguish

two cases, because the spectra from both systems present two peaks at the resonance energies

ε1 and ε2. On the other hand, in 2DFT spectrum, the two systems display a striking difference:

namely, the effect of the anharmonicity results in the appearance of the off-diagonal peaks

(See Fig. 5.1).
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Figure 5.1: An Example of 2DFT spectroscopy scheme. Two-level systems with and without
a mutual anharmonicity are considered. The transition energies are ε1 and ε2. While a
conventional one-dimensional spectroscopy displays spectrum with two peaks at the energies
ε1 and ε2 for both cases, 2DFT spectrum makes it possible to distinguish them based on the
presence or absence of off-diagonal peaks.

5.2 Experimental configuration and numerical process for 2DFT of

polaritons

For the 2DFT, two-pulses configuration stated in the Chapter 4 is employed. The k2 and k1

pulses respectively arrive on the sample in directions |k1| = 0.96 μm−1 and k2=0 μm−1 (See Fig.

5.2 (a)). We detect the four-wave mixing (FWM) signal in the direction kFWM = 2k2 −k1 =−k1.

The pulses k1 and k2 arrive on the sample at times tk1 and tk2 respectively. A time delay
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5.2. Experimental configuration and numerical process for 2DFT of polaritons

τ = tk1 − tk2 between two pulses is called positive (negative) when the k2 (k1) pulse arrives

before the k1 (k2) pulse. The 2DFT experiments are performed in the low-density regime with

k1 and k2 pulse intensities of 6.7×1012 photons pulse−1 cm−2. The polarization of the two

pulses are co-circular to avoid the possible effects of biexcitons [55, 56] (Chapter 6). The center

energy of the pulse spectrum is set between the lower and upper polariton energies in order

to excite the two branches with a similar intensity. Figure. 5.2 (b) presents the scheme of the

polariton dispersion with k1 and k2 pulses and the kFWM signal. The transmission spectra

of k2 and k1 pulses are shown in 5.2 (c). The difference of the energy peaks of the k1 and k2

pulses is due to the polariton dispersion.
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Figure 5.2: Scheme of excitation configuration and pulse sequence for 2DFT experiments (a).
The lower- (LP) and upper-polariton (UP) energy-momentum dispersions at slight negative
cavity detuning (δ=-0.38 meV) (b). The dashed black lines represent exciton and photon
energy-momentum dispersion. Transmission spectra of the k2 and k1 beams (c). εL(k) and
εU (k) are respectively lower and upper-polariton enegy at wave-vector k.

The heterodyne detection technique (See Chapter 4) allows us to record the electric field of

the FWM signal S(t ,τ) as a function of two independent time periods. The time τ is the delay

time between the k1 and k2 pulses, while t is the real evolution time of the FWM signal after

the arrival of the two pulses. An example of the FWM signal S(t ,τ) is presented in Fig. 5.3 (b),

which evidences the fact that the FWM signal appears after the incidence of the two pulses
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(See Fig. 5.3 (a)).
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Figure 5.3: (a) Pulse trains for a negative (τ< 0) and positive (τ> 0) delays. FWM signal appears
after the incident of two pulses. (b) The amplitude of a FWM signal as a function of real time t
and delay τ, S(t ,τ). (c) After the modification of coordinate, we obtain two parts: a negative
delay Sneg(t ,τ) and positive delay Spos(t ,τ) regimes. The Fourier transformation with respect
to times t and τ leads to one-quantum S1Q(εt ,ετ) and two-quantum S2Q(εt ,ετ) spectra.

Firstly, a conventional delay dependent 1D FWM signal spectrum S(εt ,τ) is obtained by

performing a Fourier transformation of S(t ,τ) with respect to t . Secondly, we obtain the

2D spectrum through a Fourier transformation with respect to both the τ and t axes. To do

this, we modify the coordinate of FWM signal S(t ,τ) as presented in Fig. 5.3 (c). After the

modification of the coordinate, the FWM signal is classified into two parts: a negative Sneg(t ,τ)

and positive delay regime Spos(t ,τ). In Sneg(t ,τ) and Spos(t ,τ), the real time t and delay τ are

redefined as presented in Fig. 5.3 (c). Finally, the Fourier transformation of Sneg(t ,τ) and

Spos(t ,τ) with respect to the two time axes respectively leads to “one-quantum" S1Q(εt ,ετ) and

“two-quantum" S2Q(εt ,ετ) 2DFT spectra. Here ετ and εt respectively represent the absorption

and emission energies.
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Experimentally, in the 2DFT spectroscopy, we apply two types of phase correction processes.

The first one is applied when obtaining S(t ,τ) at each delay τ. We perform 20 acquisitions

for obtaining a single FWM signal S(t ,τ). During these 20 acquisitions, judging from phase

fluctuation, we apply a phase correction in order to remove the noisy part of the signal. The

second one is concerned with the absolute phase fluctuation between two different delay

points [68]. Due to the lack of phase stabilization, the absolute phase varies depending of

the delay time τ between two pulses. The second phase correction is performed using the

upper-polariton energy as a phase reference. The detailed explanation of these two phase

correction processes are given in Appendix A.

5.3 Experimental results and perturbative analysis

We will now study the experimentally obtained 1D and 2D FWM spectra and analyse them

based on third-order perturbation theory with the help of the double-sided Feynman diagrams.

In this section, the cavity detuning is set at δ=−0.38 meV. Fig. 5.4 (a) shows the amplitude

of the 1D FWM spectrum |S(εt ,τ)|, which results from the Fourier transformation of the real

time t of S(t ,τ) in Fig. 5.3 (b). In the 1D FWM spectrum, we find two branches: the lower (LP)

and the upper-polariton (UP) branch. The 1D FWM spectrum also shows a delay-dependent

oscillation. The delay-dependent oscillation period 1.2 ps corresponds to the Rabi splitting

between the lower and upper- polariton. We will find that this oscillation can be interpreted

as a quantum beat with the aid of the double-sided Feynman diagrams. Furthermore, fine

structures are found in the LP and UP branches. These fine structures are related to the

energy-momentum dispersion of polaritons. The detail of the fine structures is addressed in

the following through the 2DFT spectra.

Secondly, we perform the Fourier transformation of the 1D FWM spectrum with respect to

the delay τ and obtain a one-quantum spectrum S1Q(εt ,ετ) in the τ< 0 region and the two-

quantum 2DFT spectrum S2Q(εt ,ετ) in the τ> 0 region. The amplitude of these 2DFT spectra

|S1Q(εt ,ετ)| and |S2Q(εt ,ετ)|are shown in Fig. 5.4 (b) and (c) respectively. Due to the lack of

information on the absolute phase of the 2DFT signal, only the amplitudes are presented

in the figure. We will also analyse the 2DFT spectra in detail using third-order perturbation

theory in the next section.
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Figure 5.4: (a) Experimental amplitude of FWM spectrum as a function of emission energy and
k2-k1 pulse delay τ: |S(εt ,τ)|. (b) Amplitude of 2DFT spectrum for one-quantum |S1Q (εt ,ετ)|
and (c) two-quantum region |S2Q (εt ,ετ)|. Diagonal dashed lines represent −ετ = εt for (b) and
ετ = 2εt for (c). Horizontal and vertical dashed lines respectively represent different absorption
and emission energies. εL(k) and εU (k) are respectively LP and UP energy at a wavevector k.
ε′L(U )(k) is a virtual branch (VB). NB and MB refer to normal and middle branch respectively.
Colour scales are linear and normalized by the maximum and minimum of the amplitude.
The same normalization and colour bar are used in all figures of this section.

5.3.1 2DFT spectrum of one-quantum regime |S1Q(εt ,ετ)|
Firstly, we discuss the 2DFT spectrum in one-quantum regime |S1Q(εt ,ετ)| (See Fig. 5.4 (b)).

In one-quantum regime, the k1 pulse arrives before the k2 pulse. In Fig. 5.4 (b), we find two

diagonal groups, LP-LP and UP-UP, and two off-diagonal groups, LP-UP and UP-LP. Inside

each peak group, fine structures are observed. The fine structures are classified and named as

the virtual (VB), middle (MB), and normal (NB) branches going from lower to higher emission

energies.

We are going to analyse the origin of these peak groups based on the third-order perturbation

theory of four-wave mixing. The main idea of third-order perturbation theory is to calculate

44



5.3. Experimental results and perturbative analysis

the density matrix of polaritons within a third-order of incident electric fields (one k1 and

two k2 pulses). The detail of the theory and explicit calculation are presented in Appendix B.

Here, instead of going into the detailed calculation, we visualize the perturbative evolution of

the density matrix of polaritons using the double-sided Feynman diagrams [69, 61, 70]. The

double-sided Feynman diagrams for the one-quantum regime are presented in Fig. 5.5. These

diagrams represent Liouville-space pathways of the density matrix: each diagram corresponds

to the third-order perturbative evolution of the system’s density matrix. The FWM signal

Sneg(t ,τ) and its Fourier transformation S1Q(εt ,τ) are given as a summation of all pathways.

In each diagram in Fig. 5.5, the vertical line represents the time evolution of the density matrix

from bottom to top, with the time ordering of the arrival of k1, k2 pulses and the FWM signal

emission. In the one-quantum regime, the incident of the first electric field from k1 pulse

creates a coherence between the ground state and a single LP (0-LP) or UP (0-UP) state. In

terms of the density matrix representation, these coherences correspond to off-diagonal terms

in the density matrices ρ(1)
0,L(k1) and ρ(1)

0,U (k1). Here, the indexes 0, L and U respectively refer to

a vacuum |0〉, single lower |L〉 = â†
L |0〉 and upper-polariton state |U〉 = â†

U |0〉. The index k1 in

the density matrix indicates that the k1 pulse creates a coherence with momentum k1 (See

Appendix. B).

The second and third electric fields come from the same pulse k2 after a delay τ. Since the

degenerate second and third electric fields arrive simultaneously, the delay between them

is fixed as T = 0 in the diagrams. For example, in the pathway (A)-(C), as the double-sided

Feynamn diagram indicates, the second electric field converts the ρ(1)
0,L(k1) coherence into a

diagonal part of the density matrix ρ(2)
0,0(k2 −k1) or ρ(2)

L,L(k2 −k1), which represent respectively

the population in the ground and one-lower-polariton state. In the case of path (E),(G) and

(L),(N), the second electric field creates a coherence between the lower and upper-polariton:

ρ(2)
L,U (k2−k1) and ρ(2)

U ,L(k2−k1). Finally, the third electric field brings the population and LP-UP

coherence back to coherence with momentum kFWM: ρ(3)
L(U ),0(kFWM) or ρ(3)

2L(2U ),0(kFWM). Let

us recall that the wave vector kFWM is calculated as kFWM = 2k2 −k1 =−k1. Here, the index

2L(2U ) represent “two-polaritons" state defined as |2L〉 = â†
L â†

L |0〉 and |2U〉 = â†
U â†

U |0〉. Since

the four-wave mixing emission is proportional to the polarization induced by the third-order

coherence, the four-wave mixing signal Sneg(t ,τ) is obtained by calculating the ρ(3)
L(U ),0(kFWM)

and ρ(3)
2L(2U ),0(kFWM).
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Figure 5.5: (a) Computed 2D FT spectrum and (b) double-sided Feynman diagrams (b) in
one-quantum regime. Diagrams (A-C) and (H-J) respectively contribute to the diagonal peaks
LP-LP and UP-UP, while diagrams (D-G) and (K-N) respectively correspond to the off-diagonal
peaks UP-LP and LP-UP. gL(U ) and gX respectively represent self and cross-interaction of
polaritons.
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Diagonal peak groups: LP-LP and UP-UP

Let us now discuss the diagonal peak groups LP-LP and UP-UP. In the following, εL(k)(εU (k)) is

the energy of the lower (upper)-polariton, ΩL(ΩU ) represents the coupling constant between

the lower (upper)-polariton and the photon outside the cavity, and γL(γU ) is the dephasing

rate of lower (upper)-polariton. Performing the standard third-order perturbative calculation

of nonlinear optics [61, 67] (See the Appendix B), the FWM signal corresponding to the diagram

(A) is given by,

S(A)(t ,τ) ∝ ΩLρ
(3)
L,0(kFWM) = |ΩL |4e−(i /ħ)(εL (kFWM)−iγL )t e(i /ħ)(εL (k1)+iγL )|τ|.

In this pathway, during |τ| and t , the system evolves keeping coherence between its ground

state and a single lower-polariton state (0-LP and LP-0). In the “one-quantum regime", the first

order evolution, during time |τ|, is always a coherence between the ground state and single

lower or upper-polariton state (0-LP or 0-UP). The Fourier transformation of S(A)(|τ|, t ) reads,

S(A)(εt ,ετ) ∝ |ΩL |4
[i (εt −εL(kFWM))+γL][i (ετ+εL(k1))+γL]

.

Similarly, the contribution from diagrams (B) leads to

S(B)(εt ,ετ) ∝ |ΩL |4
[i (εt −εL(kFWM))+γL][i (ετ+εL(k1))+γL]

.

Since the signal corresponds to the path C is given by S(C )(t ,τ) ∝�
2ΩLρ

(3)
2L,L(kFWM)1,

S(C )(εt ,ετ) ∝ −2|ΩL |4
[i (εt −ε2L(kFWM)+εL(kFWM))+γL][i (ετ+εL(k1))+γL]

.

S(B) is the exactly same as S(A). In these perturbative calculations, the semiconductor mi-

crocavity system is treated as two-oscillators (lower and upper-polaritons) weakly coupled

to photons outside the cavity with the quasi couplings ΩL and ΩU (See Eq. 3.24 in Chapter

3). The detailed background of the polariton basis model will be readdressed in next section

on numerical simulations. While path (A) and (B) include only “single-quantum" state (L),

the path (C) includes the “two-quantum" state (2L). This two-quantum state (2L) is modi-

fied by the polariton-polariton self-interaction, making the energy of 2LP state ε2L(k) being

slightly blue-shifted from twice that of LP state 2εL(k) (i.e., ε2L(k) �= 2εL(k)). One of the im-

portant consequences is that, if the lower-polariton self-interaction were absent, the relation

1Let us note that since a non-interactive polariton is assumed to be boson (harmonic oscillator), the dipole
strength between the states |L〉 and |2L〉 (

�
2ΩL) is

�
2 larger than that between the states |0〉 and |L〉 (ΩL) [61].
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Chapter 5. Two-dimensional Fourier Transform (2DFT) spectroscopy of polaritons

ε2L(k) = 2εL(k) would hold and the sum S(A) +S(B) +S(C ) would be zero. This is intuitive if we

recall that a linear system does not produce a four-wave mixing signal.

We can apply the same description to the UP-UP group resulting from the paths (H)-(J) just

replacing the lower-polariton with upper one. The signal from the paths (H)-(J) are given by

S(H)(εt ,ετ) ∝ |ΩU |4
[i (εt −εU (kFWM))+γU ][i (ετ+εU (k1))+γU ]

,

S(I )(εt ,ετ) ∝ |ΩU |4
[i (εt −εU (kFWM))+γU ][i (ετ+εU (k1))+γU ]

,

and

S(J )(εt ,ετ) ∝ −2|ΩU |4
[i (εt −ε2U (kFWM)+εU (kFWM))+γU ][i (ετ+εU (k1))+γU ]

.

Off-diagonal peak groups: UP-LP and LP-UP

Now, let us discuss the paths (D)-(G), which contribute to the off-diagonal UP-LP peak group.

In the same way as for the diagonal peak groups, the signals associated with these diagrams

are given by,

S(D,E)(εt ,ετ) ∝ |ΩL |2|ΩU |2
[i (εt −εL(kFWM))+γL][i (ετ+εU (k1))+γU ]

and

S(F,G)(εt ,ετ) ∝ −|ΩL |2|ΩU |2
[i (εt −εLU (kFWM)+εU (kFWM))+γL][i (ετ+εU (k1))+γU ]

.

In the pathways (F) and (G) the FWM emission originates from the coherence between the two-

quantum state (L+U) and the single-quantum state (U), ρ(3)
L+U ,U (kFWM). The two-quantum

state L+P is defined as |L +U 〉 = â†
L â†

U |0〉. Similar to the pathways (A)-(C), the energy of

UP+LP state is blue-shifted due to the lower and upper-polariton cross-interaction, εLU (k) �=
εL(k)+εU (k). Again, if the lower and upper-polariton cross-interaction does not exist, εLU (k) =
εL(k)+εU (k) holds and the summation of the pathways (D)-(G) becomes zero, resulting in the

disappearance of the off-diagonal peaks.

We draw similar diagrams (K)-(N) for the LP-UP groups (See Fig. 5.5). The perturbative
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5.3. Experimental results and perturbative analysis

calculations of the FWM signals resulting from the path (K)-(N) are given by

S(K ),(L)(εt ,ετ) ∝ |ΩL |2|ΩU |2
[i (εt −εU (kFWM))+γU ][i (ετ+εL(k1))+γL]

and

S(M),(N )(εt ,ετ) ∝ −|ΩL |2|ΩU |2
[i (εt −εLU (kFWM)+εL(kFWM))+γU ][i (ετ+εL(k1))+γL]

.

Discussions on 2DFT spectrum in 1-quantum regime

The plot of the calculated 2DFT spectrum including all pathways in the one-quantum regime

is shown Fig. 5.5 (a). As we mentioned above, the diagonal and off-diagonal peaks arise

respectively from the polariton self and cross-interactions. Furthermore, the double-sided

Feynman diagrams help us to understand intuitively the delay time dependent oscillation in

the 1D FWM spectrum |S(εt ,τ)| in Fig. 5.4 (a). This oscillation is interpreted as a quantum beat:

an interference between the pathways (A)-(C) and (D)-(G) for the lower-polariton branch,

while it is an interference between the pathways (H)-(J) and (K)-(N) for the upper-polariton

branch. During the delay τ, in the pathways (A)-(C) and (K)-(N) the phase evolves as e(iεL /ħ)τ,

while in the pathways (D)-(G) and (H)-(J) it evolves as e(iεU /ħ)τ. Therefore, the amplitude of

the 1D FWM spectrum |S(εt ,τ)| presents a beat frequency corresponding to the Rabi splitting

energy: εU −εL � 3.45 meV.

Let us note that the lower and upper-polariton branches have energy-momentum dispersions:

εL(k) � εL,0 + ħ2

2mL
k2 and εU(k) � εU ,0 + ħ2

2mU
k2 (See Fig. 5.2 (b)). Here, mL and mU are the

mass of the lower and upper-polaritons respectively defined in Eq. 3.26. For example, due to

the relationship: εL(U )(kFWM) = εL(U )(−k1) = εL(U )(k1), the LP-LP (UP-UP) peaks are absorbed

and emitted at the same energy in the third-order perturbation theory and they are located

on the diagonal line. These peaks obtained from the third-order perturbation calculation

correspond to the normal branches (NB) of the experimental 2D spectrum in Fig. 5.4 (b).

It is important to note that the third-order perturbative model reproduces only the normal

branches (NB), which are resonant to the polariton energy-momentum dispersion. Namely, no

fine structure is found inside each group. This is because the polariton-polariton interaction

is treated only as a level-shift of the eigenstate energy within the third-order perturbation

theory. In order to reproduce the fine energy structures, the superposition between different

momentum states needs to be created by the polariton-polariton interaction [71]. To do this,

in the next Section, we employ non-perturbative numerical simulations based on polariton

Gross-Pitaevskii equations.
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5.3.2 2DFT spectrum of two-quantum regime |S2Q(εt ,ετ)|
In this section, we describe the two-quantum regime, where the k2 pulse arrives before the k1

pulse. The 2DFT spectrum in two-quantum regime |S2Q(εt ,ετ)| (Fig. 5.6 (a)) is obtained from

the Fourier transformation of the FWM signal Spos(t ,τ). Double-sided Feynman diagrams

contributing to |S2Q(εt ,ετ)| are presented in Fig. 5.6 (b). In all pathways, the two degenerate

k2 pulses create two-quantum coherence ρ(2)
0,2L(2U )(2k2) or ρ(2)

0,L+U (2k2) during time τ. Thus,

this regime is called “two-quantum" regime.

Diagonal peak groups: 2LP-LP and 2UP-UP

Firstly, we focus on the 2LP-LP peak groups. With the same calculation as in one-quantum

regime, the diagonal FWM signals corresponding to the diagram (O) is given by

S(O)(t ,τ) ∝ 2|ΩL |4e−(i /ħ)(εL (kFWM)−iγL )t e−(i /ħ)(ε2L (k2)−iγL )τ.

The Fourier transformed 2DFT spectrum reads,

S(O)(εt ,ετ) ∝ · 2|ΩL |4
[i (εt −εL(kFWM))+γL][i (ετ−ε2L(k2))+2γL]

Similarly,

S(P )(εt ,ετ) ∝ −2|ΩL |4
[i (εt −ε2L(kFWM)+εL(kFWM))+γL][i (ετ−ε2L(k2))+2γL]

.

For the 2UP-UP group,

S(U )(εt ,ετ) ∝ · 2|ΩU |4
[i (εt −εU (kFWM))+γU ][i (ετ−ε2U (k2))+2γU ]

and

S(V )(εt ,ετ) ∝ −2|ΩU |4
[i (εt −ε2U (kFWM)+εU (kFWM))+γU ][i (ετ−ε2U (k2))+2γU ]

.
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Figure 5.6: (a) Calculated 2DFT spectrum and (b) double-sided Feynman diagrams in two-
quantum regime. Diagrams (O-P) and (U-V) respectively contribute to the diagonal peaks 2LP-
LP and 2UP-UP, while diagrams (Q-T) and (W-Z) respectively correspond to the off-diagonal
peaks LPUP-LP and LPUP-UP. gL(U ) and gX respectively represent self and cross-interactions
between polaritons.
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Off-diagonal peak groups: LPUP-LP and LPUP-UP

For LPUP-LP groups, the FWM contributions read,

S(Q),(S)(εt ,ετ) ∝ |ΩL |2|ΩU |2
[i (εt −εL(kFWM))+γL][i (ετ−εLU (k2))+γL +γU ]

and

S(R),(T )(εt ,ετ) ∝ −|ΩL |2|ΩU |2
[i (εt −εLU (kFWM)+εU (kFWM))+γL][i (ετ−εLU (k2))+γL +γU ]

In the same way, for the LPUP-UP peak group, the signals are given by

S(W ),(Y )(εt ,ετ) ∝ |ΩL |2|ΩU |2
[i (εt −εU (kFWM))+γU ][i (ετ−εLU (k2))+γL +γU ]

and

S(X ),(Z )(εt ,ετ) ∝ −|ΩL |2|ΩU |2
[i (εt −εLU (kFWM)+εL(kFWM))+γU ][i (ετ−εLU (k2))+γL +γU ]

In Fig. 5.6 (a), we plot the calculated 2DFT spectrum of the two-quantum regime. Similarly

to the one-quantum regime, the energy shifts induced by self and cross-interactions ε2L(k) �=
2εL(k) and εLU (k) �= εL(k)+εU (k) are necessary for the appearance of the on and off-diagonal

peaks respectively. Again, the diagonal and off-diagonal groups are associated with the self

and cross-interactions respectively. In the two-quantum regime, the diagonal line is defined

as ετ = 2εt . Namely, the absorption energy is twice larger than the emission energy. This is

characteristic of a “two-quantum regime", where the degenerate k2 pulses create two-quantum

state such as 2LP, 2UP and LP-UP. In Fig. 5.6 (a), the dashed diagonal line does not pass through

the normal branches (NB) of 2LP-LP and 2UP-UP peaks. This is understood in terms of the

polariton energy-momentum dispersion: εL(U )(kFWM) = εL(U )(k1) > εL(U )(k2) = εL(U )(0) (See

Fig. 5.2 (b)). Namely, the FWM emission energy at kFWM(=−k1) is higher than the absorption

energy at k2 = 0.
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5.4 Numerical simulation and detailed study of 2DFT spectra

In this section, we perform non-perturbative numerical simulations based on polariton Gross-

Pitaevskii equations. Our starting point of the numerical simulation is polariton basis Hamil-

tonian explained in Chapter 3.

Firstly, the linear part of the Hamiltonian is given by (Eq. 3.27)

Ĥlin + Ĥqm �
∫

dx
[
ψ̂†

L(εL,0 − ħ2∇2

2mL
)ψ̂L +ψ̂†

U (εU ,0 − ħ2∇2

2mU
)ψ̂U

+Ω∗
L,0ψ̂

†
LF +ΩL,0F∗ψ̂L +Ω∗

U ,0ψ̂
†
U F +ΩU ,0F∗ψ̂U

]
. (5.1)

Ĥlin+ Ĥqm is written under a parabolic approximation of polariton energy-momentum disper-

sion:

εL(U)(k) � εL(U ),0 + ħ2

2mL(U )
k2. (5.2)

ΩL =CΩqm and ΩU = XΩqm are the polariton quasi-mode coupling to the classical electric-

field outside the cavity (See Chapter. 3). The polariton mass is given by 1/mL(U ) = |X |2/mx(c)+
|C |2/mc(x). For a cavity detuning δ= εc −εx , the energies εL,0 and εU ,0 are respectively defined

as

εL,0 = 1

2

(
2εx +δ−

√
δ2 + (2Ω)2

)
(5.3)

and

εU ,0 = 1

2

(
2εx +δ+

√
δ2 + (2Ω)2

)
. (5.4)

The above linear Hamiltonian is formally the same as that of two oscillators coupled to classical

electric fields with the constant ΩL(U ). Therefore, the third-order perturbation theory and

double-sided Feynman diagrams, which are normally used in a weak-coupling system, can be

applied to the system in which exciton and photon are strongly coupled inside a microcavity.

Secondly, we introduce polariton-polariton interactions. As is explained in Chapter 3, in the

polariton basis, the exciton-exciton interaction term includes nine components (See Eq. (xx

a1)-(xx c2) in Chapter 3). For simplicity, we extract only the first three terms in Eq. (xx a1)-(xx

a3) of Chapter 3: LP-LP (UP-UP) self and LP-UP cross-interaction terms,

Ĥpint =
∫

dx
[

1

2
gLψ̂

†
Lψ̂

†
Lψ̂Lψ̂L + 1

2
gUψ̂†

Uψ̂†
Uψ̂Uψ̂U + gX ψ̂

†
Lψ̂Lψ̂

†
Uψ̂U

]
. (5.5)

Only when the kinetic term (energy-momentum dispersion) in Eq. 5.1 is neglected, we can jus-
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tify this approximation in the low density regime by using a second-order perturbation theory

(For details, please see [59]). With the Hopfield coefficients, we set gL = g0|X |4 , gU = g0|C |4,

and gX = 2g0|X |2|C |2. Here, g0 is the exciton-exciton interaction constant. Since the objective

of the numerical simulation is a qualitative understanding of physical phenomena, here we

neglect the photon-assisted exchange scattering terms. Using the Heisenberg equations of

motion: iħ d
d t ψ̂L(U ) = [ψ̂L(U ), Ĥlin + Ĥint] and factorizations:

〈ψ̂†
L(U )ψ̂L(U )ψ̂L(U )〉 = 〈ψ̂†

L(U )〉〈ψ̂L(U )〉〈ψ̂L(U )〉

and

〈ψ̂†
L(U )ψ̂L(U )ψ̂U (L)〉 = 〈ψ̂†

L(U )〉〈ψ̂L(U )〉〈ψ̂U (L)〉,

lower and upper polariton Gross-Pitaevskii equations read,

iħψ̇L = (εL,0 − ħ2

2mL
∇2 + gL |ψL |2 + gX |ψU |2 − iγL)ψL +Ω∗

L fext

iħψ̇U = (εU ,0 − ħ2

2mU
∇2 + gU |ψU |2 + gX |ψL |2 − iγU )ψU +Ω∗

U fext. (5.6)

ψL(U ) = 〈ψ̂L(U )〉 is lower (upper) polariton wave function. The polariton decay rate is phe-

nomenologically introduced as γL(U ) = |X |2γx(c) +|C |2γc(x), where γx and γc are chosen to be

the same (0.33 meV). The k2 and k1 pulse excitations are introduced in the external photon

field fext(=ψb) as

fext(x, t ) = Fk1 exp

(
− (t − tk1 )2

τ2
p

)
exp(−iωk1 t+i k1·x)+Fk2 exp

(
− (t − tk2 )2

τ2
p

)
exp(−iωk2 t+i k2·x).

(5.7)

ωk1(k2) is the center frequency of the k1(k2) pulse and always set at the center between the

lower and upper-polariton branches. τp is the pulse duration. The constant gL(U ) represents

a self-interaction of lower (upper) polaritons, while gX is the cross-interaction constant

between the lower and upper-polariton. In analogy with non-linear optics, gL(U ) and gX can

be called self-phase modulation (SPM) and cross-phase modulation (XPM) terms respectively.

Again, similarly to non-linear optics, the XPM term gX is twice as strong as the SPM term

gL(U ) [48]. In the simulation, the excitation fext is a Gaussian pulse with a peak intensity of

|Ω∗
qmFk1 |2 = |Ω∗

qmFk2 |2 = 1/g0 and a pulse duration of τp =250 fs. With this simplified model,

we can directly investigate the contribution of self- and cross-polariton interactions through

the three non-linear interaction constants: gL , gU , and gX . This is a major advantage of using

the polariton basis (normal-mode basis) compared with the exciton-photon basis (local mode

basis) Gross-Pitaevskii equations. Since in the local mode basis, the non-linear interaction is

represented only by the exciton-exciton interaction constant g0, we cannot change the self

and cross-interaction independently.

54



5.4. Numerical simulation and detailed study of 2DFT spectra

We present simulated FWM spectra in Fig. 5.7. All numerical simulations are performed in

one-dimensional space. The simulated 2DFT spectra in Fig. 5.7 (b) and (c)) clearly present

fine structures (NB and VB) inside the four peak groups. In the following three subsections, we

will explain the characteristic physical phenomena behind the experiments and simulations.
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Figure 5.7: (a) Simulated amplitude of FWM spectrum as a function of emission energy and
k2-k1 pulse delay τ: |S(εt ,τ)|. (b) Amplitude of 2DFT spectrum for one-quantum |S1Q (εt ,ετ)|
and (c) two-quantum region |S2Q (εt ,ετ)|. Diagonal dashed lines represent ετ = εt for (b) and
ετ = 2εt for (c).

5.4.1 Different interaction contributions

For the purpose of a better insight into the importance of the self and cross-interaction, we

show two sets of 2DFT spectra in Fig. 5.8 by turning off either self or cross-interaction.
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Firstly, Fig. 5.8 (a) is a set of spectra when considering only self-interactions gL(U ). The figure

presents two main LP-LP (2LP-LP) and UP-UP (2UP-UP) groups along the diagonal line in one

(two)-quantum 2DFT spectrum, while we cannot find any peak in the off-diagonal part. This

simulation results indicate that the LP-LP (2LP-LP) and UP-UP (2UP-UP) groups originate

from the lower-lower and upper-upper self-interactions respectively.

Meanwhile, the 2D spectra which include only the lower-upper cross-interaction gX (Fig. 5.8

(b)) present only the off-diagonal peak groups UP-LP (LPUP-LP) and LP-UP (LPUP-UP) in

one- (two-) quantum 2D spectrum. Only when we include both the self gL(U ) and cross gX

interactions, we can reproduce the observed experimental 2D spectra presented in Fig. 5.4. Let

us note that, since the cross-interaction constant gX is twice stronger than the self-interaction

constant gL(U ), around zero cavity detuning, the off-diagonal peak groups are brighter than

the diagonal ones (Fig. 5.4 (b,c)). A similar tendency is observed in the experimental 2DFT

spectra (Fig. 5.7 (b,c)).

5.4.2 Fine structures inside peak groups

In this subsection, we discuss the origin of the fine structure in 2DFT spectra. The experimental

2DFT spectra in Fig. 5.4, fine structure (the normal (NB), middle (MB), and virtual branch (VB))

is found inside each peak group. We classify them according to the FWM emission energies. For

instance, in the LP-LP group, the emission energies of NB, MB and VB respectively correspond

to εL,0 + ħ2

2mL
k2

1, εL,0 and εL,0 − ħ2

2mL
k2

1. As stated in the previous section, this fine structure

is related to the unique polariton energy-momentum dispersion associated with the small

polariton mass (Eq. 5.2). The scheme of the four-wave mixing with the polariton energy-

momentum dispersion is shown in Fig. 5.9 (one-quantum regime) and 5.10 (two-quantum

regime) as energy diagrams. Note that, in the energy diagrams for one-quantum regime

(Fig. 5.9), the first arrow representing k1 pulse is always resonant to the energy-momentum

dispersion. The first pulse creates a coherence which evolves with the eigenenergy determined

by the polariton energy-momentum dispersion. Meanwhile, the second and third arrows

corresponding to k2 pulse are not always resonant to the energy-momentum dispersion for

two reasons. These pulses convert the coherence into a population which does not evolve

necessarily with a specific eigenenergy. The k2 arrows are drawn in such a way as to satisfy the

energy conservation.

In the following, for explanations, we focus on the fine structure only in the one-quantum

regime, however a similar discussion can be applied to the two-quantum regime. Energy

diagrams for the two-quantum regime (Fig. 5.10) are drawn in a similar way to one-quantum

ones, but the first two k2 arrows are always resonant to the energy-momentum dispersion in

this regime.
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Normal branch (NB)

Firstly, let us discuss the normal branches and associated processes. As shown in Fig. 5.9(I)

and (IV), NB emission is an on-branch FWM emission. Namely, its FWM emission energy

corresponds to εL(U )(kFWM) = εL(U )(−k1) = εL(U ),0+ ħ2

2mL(U )
k2

1 for both diagonal and off-diagonal

peak groups. Third-order perturbative calculations of FWM signal in Fig. 5.5 and 5.6 display

only this branch, because, in the perturbative theory, the third-order coherence associated

to the FWM signal evolves with the eigenenergy of the polaritons, which corresponds to

εL(U )(−k1) (See the previous section and Appendix B).

Virtual branch (VB)

We can understand the appearance of the VB in a framework of off-resonant scattering induced

by polariton-polariton interactions [71, 59]. The VB results from the processes where the k1

and k2 arrows are resonant to the polariton energy-momentum dispersion as consequence of

the energy and momentum conservation. As the energy diagrams of the VB, in Fig. 5.9. (II)

and (V) show, if the k1 and k2 pulses are on-resonant excitation, the energy and momentum

conservations demand that the FWM signal emits in an off-resonant way. For example, in

the LP-LP group (See Fig. 5.9 (II)), the energy of VB emission is given by ε′L(kFWM) = 2εL(�k2)−
εL(�k1) = εL,0 − ħ2

2mL
k2

1. Since NB emission energy is εL,0 + ħ2

2mL
k2

1, the separation between NB

and VB emission is 2 ħ2

mL
k2

1, which is twice larger than the energy difference between the k2

and k1 transmission peak of the lower polariton (See Fig. 5.2 (c)). In the experimental 2DFT

spectrum, the energy separation between NB and VB emission is 0.58 meV (See Fig. 5.4

(b) and (c)). This energy separation is twice of the energy separation (0.29 meV) between

the k1 and k2 transmission peaks of the lower polariton presented in Fig. 5.2 (c). Moreover,

this relation holds for both negative and positive cavity detuning (see the next subsection).

Thus, we can safely say that the origin of VB peak in LP-LP group can be understood in this

framework. We note that although the VB energy-momentum dispersion ε′L(k) is a mirror

image of NB energy-momentum dispersion εL(k), in the weak intensity excitation regime,

the dispersion is still parabolic. Therefore, we do not consider linearisation of the dispersion

due to the Bogoliubov transformation [15]. However, the Bogoliubov theory [45, 15, 71] gives

us an insight for understanding the physical origin of the off-resonant scattering in the non-

perturbative Gross-Pitaevskii equations. The common feature of the VB and the ghost branch

in the Bogoliubov theory is a mixing of different momentum wave-functions, or a creation of

a superposition state with different ks. In the Bogoliubov theory, this is explicitly described

as the creation of a quasi-particle called “bogolon" such as âbog(k) = uk â(k)− vk â†(−k) [45].

In our numerical calculations, the non-linear interaction term |ψL(U )|2ψL(U ) gives rise to the

mixing of wave-functions with different momenta. This mixing process is possible only in non-

perturbative way, thus the numerical simulation in Fig. 5.7 shows VB, while the third-order

perturbation in Fig. 5.5 and 5.6 does not.

In the UP-LP group, similar to the LP-LP group, we can draw energy diagrams of VB emission
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based on the momentum and energy conservation (See Fig. 5.9 (V)). In this case, the VB

emission energy corresponds to ε′LU (kFWM) = εL(�k2)+ εU (�k2)− εU (�k1) = εL,0 − ħ2

2mU
k2

1. Let us

notice that, in Fig. 5.9 (V), the higher energy-momentum dispersion is the sum of two different

energy-momentum dispersions εL(�k) and εU (k). While the VB of the UP-LP group is visible in

the simulation, Fig. 5.7, we cannot find the VB in the UP-LP group of the experiment (See Fig.

5.4). The reason for this is not clear yet and further investigation is an issue for the future. We

skip the discussion of the LP-UP and the UP-UP groups, which is completely same as that of

the UP-LP and LP-LP peak groups. Again, experimentally, we cannot find the VB in the the

LP-UP and UP-UP peak groups.

Middle branch (MB)

Finally, we focus on the MB. In the UP-LP group of the experimental 2DFT spectra in Fig.

5.4, a strong peak is found next to NB both in one and two-quantum regime. Since the FWM

emission energy of this peak, which corresponds to εL(�k2) = εL,0, is located in the middle

of NB and VB, we name this peak MB. In Fig. 5.4, a weak MB is identified in the LP-LP

group. Additionally, the experimental spectra, the peak in UP-UP is also classified as a MB,

because the emission energy of the UP-UP peak is εU (�k2) = εU ,0. On the other hand, the

numerical simulations in Fig. 5.7 do not display MB at all. This makes the interpretation of

MB difficult. Finally, schematically, we associated the origin of MB to the processes depicted

in Fig. 5.9(III) and (VI). Again, these processes are drawn in such a way as to satisfy the energy

and momentum conservation, but, one of the degenerate fields of the second pulse is not

resonant to the energy-momentum dispersion. However, the microscopic explanation of MB

is still missing. For a complete understanding of the detailed mechanism of the MB, further

investigation and an improved model are required. For instance, taking into account effects

such as, excitation induced dephasing (EID) and relaxation from the upper-polariton into

exciton reservoirs. The importance of EID in polariton dynamics will be discussed in Chapter

7.

5.4.3 2DFT spectrum at a negative (δ=-2 meV) and positive (δ=2.7 meV) cavity
detuning

In order to obtain more insight into the effect of the polariton energy-momentum dispersion

on the 2DFT spectra, we perform 2DFT spectroscopy at a negative δ=-2.0 meV and positive

δ=2.7 meV cavity detuning. In Fig. 5.11 we display the amplitude of the 2DFT spectra at

the two different detunings. Fig. 5.11 (a) and (b) present the same feature as the spectrum

obtained at cavity detuning δ=-0.38 meV (Fig. 5.4), however the emission energy separation

between the NB and the VB varies with the cavity detuning, which is due to the change of the

curvature of the polaritons energy-momentum dispersion.
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Figure 5.11: Experimental 1D FWM spectrum |S(εt ,τ)|, one-quantum |S1Q(εt ,ετ)|, and two-
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At negative cavity detuning δ=-2.0 meV, where the cavity photon energy is far below the

exciton one, the lower-polariton becomes photon-like and acquires a lighter mass, while the
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upper-polariton becomes exciton like and becomes heavier. This results in a larger (smaller)

curvature of the energy-momentum dispersion for the lower (upper) polariton than the upper

(lower) one. Therefore, at the cavity detuning δ=-2.0 meV, the emission energies of NB and

VB in the LP-LP group are more separated than at the cavity detuning δ=−0.38 meV. Let us

compare the energy separation of the NB and VB in the LP-LP group between Fig. 5.11 (a) and

5.4.

On the contrary, at positive detuning δ = 2.7 meV (Fig 5.11 (b)), the energy-momentum

dispersion for the lower-polariton acquires a heavier mass than the upper one. Since the

heavier mass results in a smaller curvature of the lower-polariton dispersion, the fine structures

in the LP-LP group are almost degenerate and impossible to resolve. In Fig 5.11 (b), we also

find three fine structure peaks in UP-UP (2UP-UP) group. This can be associated to the lighter

mass and a large curvature of the upper-polariton dispersion. However, the MB peak cannot

be described within our simple model. This might be linked to the dynamic red-shift of the

upper-polariton’s mean field energy [15, 16]. Again, the confirmation of their origin is the

subject of further investigations .

We present the numerical simulations for negative (δ=−2 meV) and positive (δ= 2.7 meV)

cavity detuning in Fig. 5.12. As expected, for negative detuning (Fig. 5.12 (a)), the energy

separation of fine structures (NB and VB) in the LP-LP group increases due to the large

curvature of the lower-polariton energy-momentum dispersion. Conversely, for positive

detuning (Fig. 5.12 (b)), we cannot resolve the fine structure in the LP-LP group because the

energy-momentum dispersion of the lower-polariton has a small curvature. The fine structure

of UP-UP group displays the inverse detuning dependence compared to the LP-LP group.

Namely, for the UP-UP group, a small energy separation for δ=−2 meV and a large separation

for δ= 2.7 meV. Now, it is worth mentioning that the energy separations between NB and VB

in UP-LP (LPUP-LP) and LP-UP (LPUP-UP) groups are the average of those of LP-LP (2LP-LP)

and UP-UP (2LP-LP) groups. This can be understood by recalling the energy diagrams for NB

and VB in the LP-UP (LPUP-UP) group in Fig. 5.9 and 5.10.
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Figure 5.12: Simulated 1D FWM spectrum |S(εt ,τ)| and one-quantum |S1Q(εt ,ετ)| and two-
quantum 2DFT spectrum |S2Q(εt ,ετ)| (a) for negative (δ=−2 meV) and (b) for positive (δ= 2.7
meV) cavity detuning.
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5.4. Numerical simulation and detailed study of 2DFT spectra

5.4.4 Comparison with experiments

When we compare the experiment (Fig. 5.4) with the numerical simulation (Fig. 5.7), we can

easily notice that a striking asymmetry exist between UP-LP (LPUP-LP) and LP-UP (LPUP-UP)

groups in the experiment. On the other hand, the numerical simulation does not display

such an asymmetry. In particular, while in the simulation the fine structure inside the LP-UP

(2LP-UP) group is present in the same way as inside UP-LP (LPUP-LP) group, experimentally

the LP-UP (LPUP-UP) group is too weak to resolve the fine structure. This type of asymmetry

along the off-diagonal axis has already been reported in a semiconductor microcavity system

[66] and in bare quantum wells [70, 65].

Although a microscopic model completely describing these observations is still missing, we

can attempt to phenomenologically fit the asymmetric amplitude of the experimental 2DFT

spectra at the cavity detuning δ = −0.38 meV (Fig. 5.4) with the following polariton Gross-

Pitaevskii equations:

iħψ̇L = (εL,0 − ħ2

2mL
∇2 + g ′

L |ψL |2 + g ′
U L |ψU |2 − iγL)ψL +Ω∗

L fext (5.8)

iħψ̇U = (εU ,0 − ħ2

2mU
∇2 + g ′

U |ψU |2 + g ′
LU |ψL |2 − iγU )ψU +Ω∗

U fext. (5.9)

The above equations are the same as Eq. 5.6, but the interaction constants: g ′
L , g ′

U , g ′
LU , and

g ′
U L are no more linked to the exciton-exciton interaction Hamiltonian Ĥi nt . Instead, we deal

with these interaction constants as fitting parameters. Therefore, in Eq. 5.9, g ′
LU needs not

to be equal to g ′
U L . Actually, this shows the advantage of the polariton basis Gross-Pitaevskii

equations compared to the conventional exciton-photon Gross-Pitaevskii equations (Eq. 3.10

and 3.11), in which the non-linearity is mediated by the single exciton-exciton interaction

constant g0 and the amplitude of LP-UP group is always equal to that of UP-LP groups. In Fig.

5.13, we show simulated 2DFT spectra with interaction constants as g ′
L : g ′

U : g ′
LU : g ′

U L = 1 :

0.6 : 0.3 : 1.6 (meV/n0), which correspond to the ratio of the integrated amplitudes of peaks

groups LP-LP, UP-UP, LP-UP and UP-LP in Fig. 5.4(b). The other parameters are the same as

those in Fig. 5.7. It is clear that the phenomenological model displays a better reproduction of

the asymmetric peak intensities along the diagonal axis.

65



Chapter 5. Two-dimensional Fourier Transform (2DFT) spectroscopy of polaritons

LP-LP LP-UP

UP-UPUP-LP

NB

VB NB

VB NB

VB NB

VBab
so

rp
tio

n 
en

er
gy

 -ε
τ   (m

eV
)

εL(k1)

εU(k1)

-2 10-3 -1 2 3

3

2

1

0

-1

-2

-3

εL(-k1)εL(0) εU(0)εU(-k1)ε’L(-k1) ε’U(-k1)

de
la

y 
τ   (p

s)

εL(-k1)εL(0) εU(0)εU(-k1)ε’L(-k1) ε’U(-k1)

-2 10-3 -1 2 3

10

5

0

-5

-10

(a) 1D FWM spectrum

LP UP

(b) One-quantum 2DFT spectrum

(c) Two-quantum 2DFT spectrum

Max

min
0

1

0.5

emission energy εt (meV)

emission energy εt (meV)

|S2Q(εt,ετ)|

|S1Q(εt,ετ)|

|S(εt,τ)|

2LP-LP

LPUP-LP

NBVB NB VB

LPUP-UP

2UP-UP

NBVB

NBVB

ab
so

rp
tio

n 
en

er
gy

 ε
τ   (m

eV
)

emission energy εt (meV)

2εL(0)

2εU(0)

εL(0)+εU(0)

-2 10-3 -1 2 3

4

2

0

-2

-4

εL(-k1)εL(0) εU(0)εU(-k1)ε’L(-k1) ε’U(-k1)

Figure 5.13: Simulation based on interaction constants as free parameters. The cavity detuning
is δ=−0.38 meV. The interaction constants set as g ′

L : g ′
U : g ′

LU : g ′
U L = 1 : 0.6 : 0.3 : 1.6 (meV/n0).

Simulated amplitude of FWM spectrum as a function of emission energy and k2-k1 pulse
delay τ: |S(εt ,τ)| (a). Amplitude of 2DFT spectrum for one-quantum |S1Q (εt ,ετ)| (b) and two-
quantum region |S2Q (εt ,ετ)| (c). Diagonal dashed lines represent ετ = εt for (b) and ετ = 2εt

for (c).

5.5 Conclusion

In conclusion, 2D Fourier transformation (2DFT) spectroscopy has been performed to in-

vestigate polariton-polariton interactions in a semiconductor microcavity. The measured

2DFT spectra display two important aspects. Firstly, the four peak groups of 2DFT spectra

both in one and two-quantum regime can be associated with lower-lower (upper-upper)

polariton self-interaction and lower-upper polaritons cross-interaction. In particular, the

lower-upper cross interaction is the consequence of the non-linearity between two normal

modes (lower and upper-polariton) mediated from a local mode non-linearity (exciton interac-

tion). Additionally, the energy-momentum dispersion associated with the light effective mass

of polaritons gives rise to complex fine structure inside the peak groups. Both features are anal-

ysed and captured through third-order perturbation theory and non-perturbative simulation

with polariton Gross-Pitaevskii equations. However, the deviations between the experiments
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and simulations leave issues for future investigation. The observed strong asymmetry of the

2DFT spectra along the diagonal axis and the middle branch of the fine structure indicate

complex many-body effects such as exciton-exciton correlation [33, 72, 66], photon-assisted

exchange scattering (PAE) [73] and population relaxation of the upper-polariton to reservoir

due to excitation induced dephasing (EID).
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6 Spinor polariton interaction

In this chapter, we investigate spin-dependent interaction of polaritons called “spinor po-

lariton interaction". As we have explained in Chapter 2, a quantum well exciton has two

spin projections, spin-up and spin-down. Therefore, we can consider two configurations for

polariton-polariton (exciton-exciton) collision: collision with parallel and anti-parallel spins.

Moreover, due to the one to one correspondence between an exciton and a photon, we can

investigate the spin-dependent interaction of polaritons via the polarization of light.

Actually, the spinor polariton interaction plays important roles in fundamental physical

processes of polaritons. For example, spin anisotropic nonlinearities result in unique spin

dynamics of polaritons [17, 18], the transport of spin polarized polaritons [19], the optical spin

Hall effect [20, 21, 22], multistability [27, 28, 29] and polariton switching [8, 9]. Additionally,

the polariton spinor interaction is important also in the context of non-resonant polariton

condensates, for instance, the generation of polarization vortices [23, 24], half quantum

vortices [25], spontaneous polarization buildup in polariton Bose-Einstein condensation [26].

Despite the importance of the polariton spinor interactions, they only have been investigated

through indirect ways. Several previous measurements indicates that polariton-polariton

interaction with parallel spins is repulsive, while the interaction with anti-parallel spins is

attractive due to the effect of exciton molecule called “biexciton" [34, 74, 75]. On the other

hand, other experiments suggest that polariton-polariton interaction with anti-parallel spins

can be repulsive [28, 29, 8, 76]. Therefore, it is very important to study the polariton spinor

interaction in a simple and direct way, namely with polarization dependent pump-probe

spectroscopy.

Firstly, we describe the experimental configuration of the polarization dependent pump-

probe spectroscopy. Secondly, we present the experimental results and analysis based on

spin-dependent Gross-Pitaevskii equation including a biexciton effect. Finally, we focus on

the polariton-polariton interaction with anti-parallel spins, where the biexciton plays a very

important role in the polariton interaction through resonance scattering named “polaritonic

Feshbach resonance". The results of this section are based on our articles [55, 56].
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Chapter 6. Spinor polariton interaction

6.1 Experimental setup for pump-probe experiment

We display the experimental configuration of the pump-probe spectroscopy in Fig. 6.1. This

configuration has a similarity to that of the four-wave mixing (FWM) spectroscopy in Chapter 5,

however, in the pump-probe spectroscopy the signal we measure is in the k1 direction instead

of the FWM direction. Moreover, in the excitation, the two pulses are almost degenerate and

we consider k1 � k2 = 0 μm−1. This degenerate configuration is employed in order to avoid

the effect of the polariton energy-momentum dispersion. The delay between the two pulses is

zero. In the pump-probe spectroscopy, we label k2 and k1 beams respectively as “pump" and

“probe".

Since our objective is to investigate the spin dependence of the polariton interaction, the

pump pulse is either σ+ or σ− circularly polarized, while the polarization of the probe pulse is

fixed as σ+. When the polarization is the same (opposite) between the pump and the probe,

we call it co- (counter-) circular polarization.

k1~0

k2=0

pump (k2 ) pulse

sample

cryostat

heterodyne detection

kFWMprobe (k1 ) 
pulse

pinhole

|Epr(ε,τ)|

Polarization: σ+ or σ-

Polarization: σ+ 

zero pump-probe delay
energy

energy
with pump

without pump

pump

σ+

pump

σ+

probe
σ+

σ- σ+

Figure 6.1: Scheme of excitation and detection configuration for the polarization dependent
pump-probe spectroscopy. The semiconductor microcavity sample is excited by two pulses:
pump (k2) and probe (k1) pulse. Since the angle between the two beams is small, the wave
vectors of the two beams are considered degenerate. The delay between pump and probe
pulses is zero. By changing the polarization of the pump pulse, we excite the sample with a co-
and counter-circular polarization configuration. Using a pinhole, we spatially select the probe
beam and transfer it to the heterodyne detection path (See Fig. 4.3 in Chapter 4). Depending
on the polarization of the pump, blue or redshift of the probe spectrum is observed.

As shown in Fig. 6.1, the transmitted probe beam is spatially selected and transferred to the

heterodyne detection path explained in Chapter 4. Using the heterodyne detection, we obtain

the amplitude of the transmitted probe spectrum |E pr (ε,τ = 0)| at zero pump-probe delay.

Finally, with the aid of a numerical low-pass filter, we remove the noise in the probe spectrum

coming from the spectrum envelope of the laser source.
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6.2 Pump-probe spectrum and polariton interaction

In this section, we describe the principle of the polariton interaction measurement based

on the pump-probe spectroscopy. The main idea is to measure the energy renormalization

induced by the polariton interactions through the energy shift of the probe spectrum (See Fig.

6.1). The circularly polarized strong pump pulse generates spin polarized polaritons, then they

are spectrally probed with the circularly polarized probe pulse. When the pump and probe

pulse are co-circularly polarized the energy shift of the probe pulse reflects the interaction

of polaritons with parallel spins, while the energy shift of the probe for the counter-circular

polarization pump-probe configuration is associated with the polariton interactions with

anti-parallel spins. Since the probe pulse is weak (ten times smaller than the pump) ∼ 1012

photons pulse−1cm−2, we neglect the energy shift induced by the probe population itself.
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Figure 6.2: Co- (blue) and counter- (red) circularly polarized pump-probe spectra at the cavity
detuning of δ = −1.5 meV. Spectra are for three different pump intensities: 3.0×1013 (a,b),
5.9×1013 (c,d) and 1.2×1014 (e,f) photons pulse−1 cm−2. Transmitted probe spectra without
pump and with pump pulse are respectively presented with dashed and solid lines. LP and UP
respectively represent the lower and upper polariton resonances.

We display the pump-probe spectra for co- and counter-circular polarization configuration

for three different pump intensities in Fig. 6.2. The cavity detuning is δ=−1.5 meV. Let us
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Chapter 6. Spinor polariton interaction

compare the pump-probe spectrum with and without the pump. As we can see from Fig. 6.2,

both lower (LP) and upper (UP) polariton present blue-shifts for the co-circular polarization

configuration (σ+−σ+), which is the signature of repulsive interaction between polaritons

with parallel spins. Additionally, as the pump intensity increases the blue-shift increases

because the energy renormalization is proportional to the population of the pump polaritons.

At negative cavity detuning the lower polariton is photon-like, while the upper-polariton is

exciton-like. Since the polariton interaction originates from the excitonic part of the polariton,

the blue-shift is larger for the upper-polariton than for the lower one. In counter-circular

polarization (σ+ −σ−), both lower and upper polariton present red-shifts and the energy

shift increases following the increase of the pump intensity, which indicates the attractive

interaction of polaritons with anti-parallel spins. However, in the following sections we will

find that the behaviour of the energy shift in counter-circular polarization configuration is

more complex than that in co-circular one, because of the presence of a biexciton resonance

when using polaritons with anti-parallel spins [77, 78]. The pump-probe spectra are obtained

at different cavity detunings in order to investigate the role of the excitonic content and the

biexciton effect on the polariton-polariton interactions.
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6.3 Experimental results: energy shifts vs cavity detuning

The energy shift is defined as a difference in peak energy position between the probe trans-

mitted spectrum with and without the presence of the pump pulse. In order to quantitatively

extract the peak energy of the polariton resonance, we fit the pump-probe spectra using a

Lorentzian function. We mutually analyse the energy shift of the lower and upper-polariton

and plot them as a function of the cavity detuning in Fig. 6.3 and 6.4.

6.3.1 Polariton interaction with parallel spins

Fig. 6.3 presents the energy shifts of the lower and upper polaritons for the co-circularly

polarization configuration. We can find in that both lower and upper polaritons show blue-

shifts. Additionally, the two branches form a mirror image as a function of the cavity detuning:

the blue-shift of the lower-polariton increases with the cavity detuning, while the upper-

polariton blue-shift behaves in the opposite way. This behaviour results from the excitonic

fraction of the lower and upper polaritons. Namely, from negative to positive cavity detuning,

the lower-polariton becomes more exciton-like, while the upper polariton becomes more

photon-like.
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Figure 6.3: Energy shifts of lower (a) and upper (b) polariton resonances in co-circularly polar-
ization configuration as a function of the cavity detuning. Four different symbols represent
different pump intensities.

In Fig. 6.3, we notice that the mirror symmetry axis is not at zero detuning but slightly at a

negative detuning (∼−0.7 meV). For the origin of this, we can consider two possibilities: the

photon-assisted exchange interaction (PAE) and a relaxation from the upper-polariton into an

exciton reservoir. The former one is related to the fact that PAE contributes to the attractive
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interaction between upper-polaritons as shown in Eq. (pae a3) in Chapter 3. Meanwhile, the

latter one is associated with the conversion of the upper-polariton into incoherent excitons

induced by a dephasing effect. In order to deal with both effect properly, the excitonic Bloch

equation approach is required, which will be discussed in Chapter 7. In this chapter, since

we analyse the experimental results in the framework of coherent limit approximation, we

neglect the reservoir effect. Therefore, in the next section, we analyse the energy shifts based

only on the exciton-photon Gross-Pitaevskii equations. We should note that this is a first

discussion because we are neglecting the cross interaction between the lower and upper

polaritons discussed in Chapter 5.

6.3.2 Polariton interaction with anti-parallel spins

Fig 6.4 shows the energy shifts of the lower and upper polaritons for the counter-circular

polarization configuration. Contrary to the co-circular polarization configuration, the lower

polariton energy red-shifts more with the increase of the pump intensity. This provides the

evidence for the attractive interaction of the lower-polaritons with anti-parallel spins. Interest-

ingly, we notice that the red-shift decreases with the positive detuning. We will find that this

behaviour can be explained as a resonant scattering of the lower-polariton through a biexciton

(Feshbach resonance) using the exciton-photon Gross-Pitaevskii equations including a biex-

citon coupling. On the other hand, the upper polariton presents a very complex behaviour:

at the low pump intensities (∼ 3.0×1013 photons pulse−1cm−2), the red-shift is small for all

cavity detunings, while at the high pump intensity a very large red-shifts are present in the

negative cavity detunings.
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Figure 6.4: Energy shifts of lower (a) and upper (b) polaritons for counter-circularly polar-
ization configuration as a function of the cavity detuning. Four different symbols represent
different pump intensities.
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Firstly, it is worth mentioning that the results at higher pump intensities (1.2× 1014 and

1.9×1014 photons pulse−1cm−2), the system can reach the transition from strong-to-weak

coupling regime. As we will find in Chapter 7, in this regime, the coherent limit description

based on the Gross-Pitaevskii does not explain the real experimental results at all. Instead,

the excitonic Bloch equations (EBEs) approach including incoherent exciton (or reservoir

effect) is indispensable. Since the EBE approach including the biexciton effects has not been

established yet, we are going to fit only the results in low pump intensity within the coherent

limit approximation in this chapter.

6.4 Theoretical model

We introduce the exciton-photon basis Hamiltonian which includes the exciton-biexciton

coupling (see Chapter 3) [50, 79, 80, 81],

Ĥ = Ĥlin + Ĥint + Ĥqm. (6.1)

The Ĥlin, Ĥint, and Ĥqm are respectively given by

Ĥlin = ∑
σ={↑↓}

∫
dx

[
ψ̂†

x,σ(εx − ħ2∇2

2mx
)ψ̂x,σ+ψ̂†

c,σ(εc − ħ2∇2

2mc
)ψ̂c,σ+εBψ̂

†
Bψ̂B

+Ω(ψ̂†
c,σψ̂x,σ+ψ̂†

x,σψ̂c,σ)
]

, (6.2)

Ĥint = ∑
σ={↑↓}

∫
dx [

1

2
gψ̂†

x,σψ̂
†
x,σψ̂x,σψ̂x,σ+ 1

2
g+−ψ̂†

x,σψ̂
†
x,−σψ̂x,−σψ̂x,σ

+1

2
gbx (ψ̂Bψ̂

†
x,σψ̂

†
x,−σ+ψ̂x,σψ̂x,−σψ̂†

B )

−gpae(ψ̂†
c,σψ̂

†
x,σψ̂x,σψ̂x,σ+ψ̂†

x,σψ̂
†
x,σψ̂x,σψ̂c,σ) ] , (6.3)

and

Ĥqm = ∑
σ={↑↓}

∫
dx Ωqm(ψ̂†

c,σFσ+F∗
σψ̂c,σ). (6.4)

Here, ψ̂x,↑(↓) represents an exciton with a spin-up (-down). Similarly, ψ̂c,↑(↓) is the cavity

photon operator with σ+ (σ−) polarization. The important property of the above Hamiltonian

is that the coupling constant gbx couples two excitons with opposite spins (spin-up and -

down) to a bosonic exciton molecular state called “biexciton" ψ̂B . g and gpae are respectively

the strength of the exciton-exciton interaction and photon-assisted exchange scattering. εx ,

εc , and εB are the eigen-energies of the exciton, photon, and biexciton respectively. The

commutation relations of these operators are written in Chapter 3. Another coupling constant
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g+− represents a “background" exciton-exciton interaction with anti-parallel spins.

Our biexciton formation model is called “bipolariton model" [80, 81], where the biexciton is

created from two excitons with opposite spins through the exciton-exciton interaction 1. The

idea lying in the Hamiltonian Hbx and the background interaction is to phenomenologically

approximate an interaction potential of excitons with anti-parallel spins [82] as a combination

of the bound state ψ̂B and residual delta-function like scattering potential represented by the

term g+−. This background scattering term g+− does not appear in the simplest calculation

of exciton-exciton scattering matrix based on the Born approximation [41]. However, several

state of the art theories beyond the Born approximation imply that the inclusion of the higher-

order scattering matrices gives rise to the background interaction g+−, which is referred to

as "continuum correlations" [51, 52, 53, 33]). In our study, the background interaction is

important because we cannot fit our data without the term g+−. Finally, let us note that

the Hamiltonian ψ̂B is formally the same as that of the two-channel model of the Feshbach

resonance in cold atoms, which results in a resonance scattering of atoms via a molecular

bound state [83, 84].

In the same way as in Chapter 5, with the aid of the Heisenberg equations of motion and

coherent state approximation, we obtain three coupled equations of motion for the exciton,

photon, and biexciton wave functions as

iħψ̇x,↑ = (εx + g |ψx,↑|2 + g+−|ψx,↓|2 − iγx )ψx,↑
+gbxψBψ

∗
x,↓ + (Ω−2gpae|ψx,↑|2)ψc,↑ (6.5)

iħψ̇c,↑ = (εc − ħ2

2mc
∇2 − iγc )ψc,↑ + (Ω− gpae|ψx,↑|2)ψx,↑ − fext,↑ (6.6)

iħψ̇B = (εB − iγB )ψB + gbxψx,↑ψx,↓, (6.7)

where γx , γc , and γB are respectively decay rates of exciton, photon, and biexciton.

The ratio between the constants gpae and g is estimated as gpae/g �ħΩ/6nsEb a2
0 [85]. Consid-

ering a Bohr radius aB=12 nm, a dielectric constant εm = 13.9ε0 (ε0 is the vacuum permittivity)

[86], the ratio reads, gpae/g0 � 0.22. Since the exciton-exciton interaction term is dominant

compared to PAE, in the following fitting, the photon-assisted exchange scattering (PAE) is

omitted, gpae = 0. Even if we include the PAE, it is impossible to obtain a better fitting. This is

probably because of the limitation of the coherent limit approximation of the Gross-Pitaevskii

equations.

1There exists another type of biexciton formation model called “giant oscillator strength model", where a
biexciton is formed from one exciton with spin-up (spin-down) and one photon with σ− (σ+) polarization. The
data analysis based on the giant oscillator strength model is discussed in [56] and in Appendix C.
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6.4. Theoretical model

6.4.1 A. Parallel spin polariton interaction

For the co-circularly polarization configuration, only the exciton-exciton interaction term g

is involved. Therefore, we will omit the index of spin. Now, we assume that the exciton and

photon wave function can be written as combinations of finite modes: pump (k2 = 0), probe

(k1), and idler modes (kFWM = 2k2 −k1 =−k1). Within this assumption, the wave functions

are written as

ψx(c)(x, t ) =ψ
pu
x(c)(t )+ψ

pr
x(c)(t ) ·ei k1·x +ψi d

x(c)(t ) ·e−i k1·x (6.8)

Here, “idler" or “id" has the same meaning as the four-wave mixing signal. Recalling |ψpu
x(c)| >>

|ψpr,i d
x(c) |, the feedback of the signal and idler wave functions to the pump can be neglected

(same as the Bogoliubov approximation [45, 87]). Under this approximation, the dynamics of

the set of wave functions

�u(t ) =
(
ψ

pr
x (t ),ψpr

c (t ),ψi d∗
x (t ),ψi d∗

c (t )
)

(6.9)

can be summarized as a simple equation given by [87]

iħ d

d t
�u = M++�u −�F pr . (6.10)

The vector �F pr represents the probe pulse excitation approximated as an instantaneous pulse

incident at a time t = 0.

�f pr = (0 ,F prδ(t )exp(−iωpr t ),0 ,0 ) (6.11)

The matrix M++ reads,

M++ =

⎛⎜⎜⎜⎜⎝
εx +2g |ψpu

x |2 − iγx Ω gψpu2
x 0

Ω εc − iγc 0 0

−gψpu∗2
x 0 −(εx +2g |ψpu

x |2)− iγx −Ω
0 0 −Ω −εc − iγc

⎞⎟⎟⎟⎟⎠ . (6.12)

Here we neglected the parabolic energy-momentum dispersion of the photon because k1 ∼ 0

is sufficiently small. Independently from the above probe dynamics, the dynamics of the

pump wave functions are calculated as

iħψ̇pu
x = (εx + g |ψpu

x |2 − iγx )ψpu
x +Ωψ

pu
c (6.13)

iħψ̇pu
c = (εc − iγc )ψpu

c +Ωψ
pu
x − f pu . (6.14)
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Chapter 6. Spinor polariton interaction

Since the pump is much stronger than the probe and idler, the pump wave functions can be

calculated self-consistently. The pump excitation f pu is given by

f pu = F puδ(t )exp(−iωpu t ) (6.15)

The numerical simulation is performed firstly for the pump wave function (Eq. 6.13). Secondly,

we calculate the probe and the idler wave function (Eq. 6.10) using the recorded time evolution

of the pump wave function dynamics. We set ωpu(pr ) as ωpu(pr ) = εx /ħ. The lower and upper

polaritons are excited with spectrally broad pump and probe pulses. We obtain the pump-

probe spectra through Fourier transformation of the temporal photon probe wave function.

Finally, we calculate the energy shifts of the peak energies from pump-probe spectra with and

without pump. Figure 6.5 displays the plots of the measured and simulated energy shifts as a

function of the cavity detuning in co-circularly polarization configuration. The comparison is

performed for the two lower pump intensities, 3.0×1013 and 5.9×1013 photons pulse−1 cm−2.
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Figure 6.5: Experimental and simulated energy shift for co-circular polarization configuration.
Measured energy shifts of the lower (a) and upper (b) polaritons as a function of the cavity
detuning. Simulation of the energy shift as a function of the cavity detuning for the lower (c)
and upper (d) polariton. The blue and green line respectively represents the experimental
(simulated) pump photon density: 3.0×1013 (|F pu |2 = 1) and 5.9×1013 (|F pu |2 = 2) photons
pulse−1 cm−2. |F pu |2 is a normalized excitation pump photon density. The parameters for the
simulations are g =2 meV/n0 and γx = γc = 0.265 meV.
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6.4. Theoretical model

For the fitting, the parameters γx = γc = 0.265 meV and Ω= 1.63 meV are used [56]. We obtain

the interaction constant g++ = 2 meV/n0 by simulating the lower and upper polariton energy

shifts for the two pump powers (Figure 4(c) and (d)). Here, n0 is a normalization particle

density for the excitation pump photon density |F pu |2 = 1. The simulation reproduces the

basic features of the experiments: from negative to positive cavity detuning, the blue-shift of

the lower polariton increases, while the upper polariton’s blue-shift decreases. This highlights

the role of the exciton fraction in polariton interactions with parallel spins.

6.4.2 B. Anti-parallel spin polariton interaction

In the counter-circular polarization configuration, we need to consider the exciton-biexciton

coupling. Meanwhile, the idler beam (four-wave mixing signal) does not appear in this spin

configuration, because the spin momentum conservation is not satisfied [88]. Thus, the

dynamics of the probe is described as a set of coupled equations of probe exciton, probe

photon, and biexciton wave functions. Firstly, we approximate the form of the wave functions

as

ψx(c)↑(x, t ) =ψ
pu
x(c)↓(t )+ψ

pr
x(c)↑(t ) ·ei k1·x (6.16)

and

ψB (x, t ) =ψB (t ) ·ei k1·x. (6.17)

We define that the polarization of the pump and probe pulse are respectively σ− and σ+.

Defining a vector �u as

�u(t ) =
(
ψ

pr
x,↑(t ),ψpr

c↑ (t ),ψB (t )
)

(6.18)

The dynamics of the vector �u follows an equation of motion:

iħ d

d t
�u = M+−�u −�F pr

↑ . (6.19)

The vector �F pr
↑ representing the incident probe pulse is defined as

�f pr = (0 ,F pr
↑ δ(t )exp(−iωpr t ),0 ,0 ) (6.20)

The matrix M+− is given by

M+− =

⎛⎜⎝ εx + g+−|ψpu
x,↓|2 − iγx Ω gbxψ

pu∗
x,↓

Ω εc − iγc 0

gbxψ
pu
x,↓ 0 εB − iγB

⎞⎟⎠ . (6.21)
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Chapter 6. Spinor polariton interaction

On the other hand, the pump wave functions independently obey the following equations:

iħψ̇pu
x,↓ = (εx + g |ψpu

x,↓|2 − iγx )ψpu
x,↓ +Ωψ

pu
c,↓ (6.22)

iħψ̇pu
c,↓ = (εc − iγc )ψpu

c,↓ +Ωψ
pu
x,↓ − f pu

↓ . (6.23)

The pump excitation pulse f pu is defined as

f pu = F pu
↓ δ(t )exp(−iωpu t ) (6.24)

ωpu(pr ) is set as ωpu(pr ) = εx /ħ. These Equations 6.22-6.24 are same as Eq. 6.13-6.15 for the

co-circular polarization configuration.

5.9 × 1013  photons pulse-1 cm-2

3.0 × 1013

(a) lower-polariton

Counter-circular σ+ - σ -

cavity detuning (meV)

en
er

gy
 s

hi
ft

 (m
eV

)

cavity detuning (meV)

en
er

gy
 s

hi
ft

 (m
eV

)

(b) Upper-polariton

(c) lower-polariton (d) Upper-polariton

experiment experiment

simulation simulation
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

-2.0 -1.5 -1.0 -0.5 0.0 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

-2.0 -1.5 -1.0 -0.5 0.0 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

-2.0 -1.5 -1.0 -0.5 0.0 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

-2.0 -1.5 -1.0 -0.5 0.0 0.5

Figure 6.6: Experimental and simulated polariton energy shifts as a function of the cavity
detuning for the counter-circularly polarization configuration. Measured energy shifts of the
lower (a) and upper (b) polaritons. Simulation of the energy shift for the lower (c) and upper
(d) polariton. The blue and green line respectively represents the experimental (simulated)
pump photon density: 3.0×1013 (|F pu |2 = 1) and 5.9×1013 (|F pu |2 = 2) photons pulse−1 cm−2.
The parameters for the simulations are g++ = 2/n0, g+− = −1.2/n0, gbx = 1.2/

�
n0 meV and

γx = γc = 1.06 meV.

Figure 6.6 presents measured and simulated energy shifts for the counter-circular polarization

configuration as a function of the cavity detuning. The plots are presented for the two lower
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6.5. Lower-polariton interaction constants

pump intensities, 3.0×1013 and 5.9×1013 photons pulse−1 cm−2. In the numerical simulation,

we set εB = 2εx −2.5 meV and γB = 2.2 meV. The interaction constants are gbx = 1.2 meV/
�

n0

and g+− = −1.2 meV/n0. The simulation displays the enhancement of the lower polariton

redshift energy with the decrease of the cavity detuning (see Fig. 6.6 (c)). The enhancement

of the red-shift of the lower-polariton can be understood as a scattering resonance of the

lower-polariton (LP) to the biexciton (BX) state (LP-LP → BX). Actually, the biexciton plays a

crucial role in the interaction of polariton with anti-parallel spins. The effect of the biexciton

scattering resonance is not only the renormalization of the lower-polariton energy but also

contributes to a strong non-linear loss of the lower-polariton (not shown in Fig. 6.6). Since this

is an analogue of the Feshbach resonance in cold atoms [83, 84] , we call this effect “polaritonic

Feshbach resonance" [55]. We will investigate the polaritonic Feshbach resonance more

deeply in the following sections. For the upper polariton mode, the very small energy redshift

observed in the experiment is reproduced by the simulation (Fig. 6.6 (d)). This behavior

might be related to the presence of biexcitons. However, further investigations are required

for its deep understanding. One of the important consequence of the measurement in the

counter-circularly polarization configuration is that the polariton interaction with anti-parallel

spins cannot be considered to be very small. In particular, when the two lower-polaritons’

energy comes close to that of the biexciton, the anti-parallel spin lower-polariton interaction

is enhanced and becomes comparable to that of parallel spins.

In order to understand the role of the biexciton in the lower-polariton, it is useful to move

to the lower-polariton basis. In the next section we discuss the polariton interactions in the

lower-polariton basis.

6.5 Lower-polariton interaction constants

Firstly we rewrite the exciton-photon Hamiltonian with a biexciton Eq. 6.1 in terms of a

polariton basis. As shown in Chapter 3, the lower polariton basis Hamiltonian coupled to

the biexciton state is given by ĤLP = Ĥlin,LP + Ĥint,LP + Ĥqm,LP. The linear, interaction and

quasi-mode couling terms of the Hamiltonian are respectively given by

Ĥlin,LP = ∑
σ={↑↓}

∫
dx

[
ψ̂†

L,σ(εL,0 − ħ2∇2

2mL
)ψ̂L,σ

]
, (6.25)

Ĥint,LP = ∑
σ={↑↓}

∫
dx [ (

1

2
g X 4

0 +2gpaeX 3
0 |C0|)ψ̂†

L,σψ̂
†
L,σψ̂L,σψ̂x,σ

+1

2
g+−X 4

0ψ̂
†
L,σψ̂

†
L,−σψ̂L,−σψ̂L,σ

+1

2
gbx X 2

0 (ψ̂Bψ̂
†
L,σψ̂

†
L,−σ+ψ̂L,σψ̂L,−σψ̂†

B ) ] , (6.26)
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Chapter 6. Spinor polariton interaction

and

Ĥqm,LP = ∑
σ={↑↓}

∫
dx

[
Ω∗

L,0ψ̂
†
LF +ΩL,0F∗ψ̂L

]
. (6.27)

Assuming coherent states for the lower-polariton and biexciton states, from the Heisenberg

equations of motion, the equations of motion read,

iħψ̇L,↑ =
[
εL,0 − ħ2

2mL
∇2 + (g X 4

0 +4gpaeX 3
0 |C0|

) |ψL,↑|2 + gL,+−X 4
0 |ψL,↓|2 − iγL

]
ψL,↑

+gbx X 2
0ψBψ

∗
L,↓ − fext,↑ (6.28)

iħψ̇B = (εB − iγB )ψB + gbx X 2
0ψL,↑ψL,↓. (6.29)

The eigenenergy of the lower-polariton at k = 0 as a function of the cavity detuning δ is given

by

εL,0 = 1

2

(
2εx +δ−

√
δ2 + (2Ω)2

)
(6.30)

6.5.1 Lower-polariton interaction constants α1 and α2

Now, we introduce the widely used lower-polariton interaction constants α1 and α2. The

constants α1 and α2 respectively represent the strengths of the lower-polariton interaction

with parallel and anti-parallel spins. We define them in terms of mean-field energy shifts. In

the case of the parallel spin configuration, the mean-field energy shift ΔE++, straightforwardly

written as ΔE++ =α1|ψL,σ|2, is

ΔE++ = (
g X 4

0 +4gpaeX 3
0 |C0|

) |ψL,σ|2, (6.31)

where |ψL,↓|2 is the lower polariton density. Thus, the lower polariton interaction constant

with parallel spins α1 is defined as

α1 = g X 4
0 +4gpaeX 3

0 |C0|. (6.32)

Note that the energy shift ΔE++ defined above is different from the energy shift of the probe in

pump-probe measurement, which is described in a similar way to Eq. 6.10 and 6.12.

On the other hand, obtaining the constant α2 of the lower-polariton interaction with anti-

parallel spins is more complicated than for α1. Here, we try to obtain α2 from the energy shift

of the lower-polariton in continuous-wave (CW) pump-probe spectroscopy in the counter-

circularly polarization configuration. Similarly to the previous section, we assume the wave

functions as ψL,↑(x, t) = ψ
pr
L,↑(t) · ei k1·x, ψL,↓(x, t) = ψ

pu
L,↓(t), and ψB (x, t) = ψB (t) · ei k1·x and
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6.5. Lower-polariton interaction constants

define the probe and biexciton wave functions �u:

�u(t ) =
(
ψ

pr
L,↑(t ),ψB (t )

)
. (6.33)

Using a matrix M+−
L defined as

M+−
L =

⎛⎝ εL,0 + g+−X 4
0 |ψ

pu
L,↓|2 − iγL gbx X ∗2

0 ψ
pu∗
L,↓

gbx X 2
0ψ

pu
L,↓ εB − iγB

⎞⎠ , (6.34)

the equation of motion for the vector �u is given by

iħ d

d t
�u = M+−

L �u −�F pr
↑ . (6.35)

Differently from the pulse excitation in the previous section, here we consider the continuous-

wave (CW) pump excitation resonant to the lower-polariton branch. Therefore, the pump

excitations is expressed as

ψ
pu
L,↓ = |ψpu

L,↓|e−iεL,0·t/ħ. (6.36)

We assume that the system is probed with a CW probe beam with energy ε, which reads,

�F pr = (1,0) ·e−iε·t/ħ. (6.37)

The steady state solutions is obtained analytically assuming the biexciton wave function as

ψB (t ) =ψB (ε)e−i (ε+εL,0)t/ħ. (6.38)

Substituting Eq. 6.36 and 6.37 in the equation of motion Eq. 6.34, thus replacing ψ
pu
L,↓ and

ψ
pu∗
L,↓ with |ψpu

L,↓| in the matrix M+−, the steady-state solution of the probe lower-polariton is

obtained as

ψ
pr
L,↑(ε) =

(
1 0

)[
M+−

L −
(

ε 0

0 εL,0 +ε

)]−1 (
1

0

)
. (6.39)

Finally, the analytic solution of ψpr
l p↑(ε) reads2,

ψ
pr
L,↑(ε) =

[
εL,0 −ε + g+−X 4

0 |ψpu
L,↓|2 − iγL −

g 2
bx X 4

0 |ψ
pu
L,↓|2

εB −εL,0 −ε− iγB

]−1

. (6.40)

This spectrum shows two-mode solution in the high density polariton regime. Assuming a

weak exciton-biexciton coupling and a low pump excitation density: gbx |ψpu
L,↓| < γB , the two-

mode solutions of ψpr
L,↑(ε) might be approximated by a single solution. Indeed, substituting

2A similar formula has been obtained with Green functions approach in [81]
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Chapter 6. Spinor polariton interaction

ε = εL,0 and taking the real-part of Eq. (6.40), the pump induced energy shift ΔE+− can be

approximated as

ΔE+− � g+−X 4
0 |ψpu

L,↓|2 −
g 2

bx X 4
0 |ψ

pu
L,↓|2(εB −2εL,0)

(εB −2εL,0)2 +γ2
B

. (6.41)
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Figure 6.7: The energy shift ΔE++ (blue) and ΔE+− (red) respectively obtained in Eqs. (6.31)
and (6.41) as a function of the cavity detuning for the pump polariton density |ψl p,↓|2 = 0.2 (a).
The ratio α2/α1 as a function of the cavity detuning (b). The imaginary part of the interaction
constant with anti-parallel spins is shown as α′

2|ψl p |2 (c). The lower polariton energy εL,0 as a
function of the cavity detuning and the biexciton energy (d).

Since the lower-polariton interaction constant with anti-parallel spins α2 is defined as ΔE+− =
α2|ψL,↓|2, removing the pump polariton density |ψpu

L,↓|2, the lower polariton interaction with

anti-parallel spins is defined as,

α2 � g+−X 4
0 − g 2

bx X 4
0 (εB −2εL,0)

(εB −2εL,0)2 +γ2
B

. (6.42)

There are two terms that contribute to the energy shift in Eq. 6.42. The first term is a contri-

bution from the background interaction g+−, which is a non resonant scattering term. The

constant g+− is negative as we shall see in the next section. The second term represents the

scattering resonance via the biexciton state. This term can be both negative and positive

depending on the energy of the lower-polariton with respect to that of biexciton.

Now it is interesting to obtain the imaginary part of Eq. 6.40 and to define the imaginary
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6.5. Lower-polariton interaction constants

interaction constant α′
2 as

α′
2 �

g 2
bx X 4

0γ
2
B

(εB −2εL,0)2 +γ2
B

. (6.43)

While the real part α2 contributes to the energy shift, the imaginary part α′
2 is associated with

the decay of the lower polariton due to the biexciton creation. Since the α′
2 has a Lorentzian

profile, the biexciton decay rate represents the width of the resonant scattering. The interaction

constants Eq. 6.42 and 6.43 has a strong similarity to the expressions for optical Feshbach

resonance in cold atoms [89].

Substituting the parameters extracted experimentally in the previous section, Fig. 6.7 (a)

presents the energy shift of the lower-polariton for co- (Eq. 6.31) and counter-circularly

polarization (Eq. 6.41) configuration and for the pump polariton density |ψl p |2 = 0.2. The

ratio α2/α1 is displayed in Fig. 6.7 (b). The imaginary part of the interaction constant with

anti-parallel spins is shown in Fig. 6.7 (c) as α′
2|ψl p |2. For the co-circularly polarization config-

uration, the energy shift ΔE++ increases monotonously following X 4
0 . For the counter-circular

polarization configuration, the energy shift ΔE+− displays a change of sign and amplitude

when the energy of two lower-polaritons crosses the biexciton energy, while the damping

represented by α′
2 shows a maximum at the crossing point[55] (See Fig. 6.7 (c) and (d)). Both

are the signature of the scattering resonance. The plot of the ratio α2/α1 shows that α2/α1

progressively increases until the resonance and |α2| becomes comparable to α1 as reported by

[75]. After the resonance, the ratio decreases suddenly and reaches a slightly positive value. All

these features are detailed in the next section when we demonstrate the polaritonic Feshbach

resonance.
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Chapter 6. Spinor polariton interaction

6.6 Polariton Feshbach resonance

6.6.1 Concept of Feshbach resonance

In this section, focusing on the counter-circular polarization configuration, we experimentally

investigate the resonance in the polariton scattering via the biexciton (polaritonic Feshbach

resonance) in detail. A Feshbach resonance is a scattering resoance which occurs when the

energy of two free particles reaches that of a molecular bound state [83]. In the vicinity of the

resonance, the interaction strength of the two interacting particles dramatically changes. In

cold atoms the Feshbach resonance is an essential tool to control the atom-atom interactions.

It is even possible to switch the sign of atomic interactions from repulsive to attractive. For

example, the instability and explosion of Bose-Einstein condensates have been realized with

an attractively interacting Bose gas [90]. Moreover, in degenerate fermionic cold atomic gases,

the BEC-BCS crossover has been observed by tuning the atomic interaction from repulsive

to attractive [91]. Here we demonstrate the existence of the Feshbach resonance in polariton

spinor interactions. It is characterized by the enhanced decay and the change of polariton

interaction: the enhancement of attractive interactions and the change to repulsive interaction

[55]3. As shown schematically in Fig. 6.8, the resonance is induced by tuning the energy of two

polaritons with opposite spins across the biexciton bound state energy. For the analysis, we

employ a mean field two-channel model. The polaritonic Feshbach resonance can be used as

a new tool to tune the spin anisotropic polariton interactions.

Probe +

Pump -

1LP

2LP
attractive interaction

repulsive interaction

en
er

gy

biexciton 
energy

Figure 6.8: Schematics of the pump-probe experiment inducing the polaritonic Feshbach
resonance. A large portion of polaritons with spin-down (blue) is created by the pump pulse,
then the probe introduces small portion of spin-up polaritons (violet) which interact with
the spin-down polaritons. The relative energy position with respect to the biexciton state
determines the sign of interactions: attractive (below the biexciton energy) or repulsive (above
the biexciton energy).

3Recently, the signature of the polaritonic Feshbach resonance is reported with two-dimensional Fourier
transform spectroscopy [92]
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6.6. Polariton Feshbach resonance

Firstly, let us recall the Hamiltonian representing the coupling between the lower-polariton

and biexciton used in the previous section (Eq. 6.26):

∑
σ={↑↓}

∫
dx

[
1

2
gbx X 2

0 (ψ̂Bψ̂
†
L,σψ̂

†
L,−σ+ψ̂L,σψ̂L,−σψ̂†

B )

]
, (6.44)

This term is schematically represented in Fig 6.9 (a). Differently from the exciton-biexciton

coupling, the energy difference between the lower-polariton and biexciton can be tuned by

the cavity detuning (See Fig. 6.7 (d) and 6.8). When the energy of two lower-polaritons reaches

the biexciton energy, the probability to form the biexciton increases.
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Coupling between lower-polariton and biexciton: gbx

Polaritonic Feshbach resonance

Figure 6.9: Schematic representation of the coupling between lower-polariton and biexciton
(Eq. 6.44) (a) and the polaritonic Feshbach resonance. The term gbx X 2

0 in Eq. 6.44 couples two
lower-polariton with anti-parallel spins to biexciton. When the energy of the lower-polariton
is tuned to that of the biexciton, the resonance occurs. The effective scattering of the lower-
polaritons is represented as a sum of all orders of processes, which include a biexciton creation,
dissociations, and recombination [93].

In this vicinity, as shown in the schematic in Fig. 6.9 (b), two lower-polaritons combine into a

biexciton, then the biexciton may dissociate into two lower-polaritons [93]. The scheme in Fig.

6.9 (b) includes higher order processes which include the recombinations and dissociations,
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Chapter 6. Spinor polariton interaction

which is the signature of a resonance. Finally, the processes depicted in Fig. 6.9 (b) contribute

to the effective interaction of the lower polaritons. This effective interaction is represented

by α2 in Eq. 6.42. Additionally, since the biexciton has a finite lifetime and behaves as an

additional decay channel, in the vicinity of the resonance the decay rate of the lower-polariton

increases. This is described as α′
2 in Eq. 6.43.

6.6.2 Measurements and model

We investigate both effects of the polaritonic Feshbach resonance with the same pump-probe

spectroscopy method as in the previous sections. However, here we measure at zero pump-

probe delay, both energy shift and change of the amplitude of the lower-polariton resonance

as a function of the cavity detuning. In the following experiments, the spot of the pump beam

is much larger than that of the probe, which allows for a homogeneous excitation of the probe

region. The examples of pump-probe spectra are presented in Fig. 6.10. The spectra are

obtained for low and high pump intensities in the vicinity of the biexciton resonance at the

cavity detuning of δ=0.25 meV (See Fig. 6.7 (d)). We observe a red-shift of the lower-polariton

resonance peak and a strong decrease of its amplitude in the transmitted probe spectra in the

presence of the pump beam. The energy shift and the absorption of the probe spectrum are

the signatures predicted respectively through the real and imaginary parts of the polariton

interaction with opposite spins (Eq. 6.42 and 6.43). Additionally, a new small peak can be

observed in the spectrum for the highest pump intensity (See Fig. 6.10 (b)). We associate this

feature with the effect of strong polariton-biexciton coupling induced by the strong pump

pulse.
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Figure 6.10: Probe spectrum with (red solid line) and without (black dashed line) the presence
of pump beam for low pump (a) and high pump intensities (b). The low and high pump
intensities are respectively 5.1×1010 and 1.6×1011 polariton pulse−1 cm−2. The arrow in
(b) indicates the appearance of a new resonance due to the strong coupling between lower-
polariton and biexciton. The cavity detuning is δ=0.25 meV.

In Fig. 6.11, we show the energy shift and absorption changes of the main peaks of the probe
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6.6. Polariton Feshbach resonance

spectra as a function of the cavity detuning. The pump polariton intensities are 5.1×1010 (a,b)

and 1.6×1011 polariton pulse−1 cm−2 (c,d). The green region is an expected range where the

energies of two-lower polaritons and biexciton overlap. We set the energy of biexciton 1.5 meV

below the exciton energy [35]. Firstly in the low polariton density (Fig. 6.11 (a)), the energy

shift clearly displays a dispersive shape, which is characteristic of the resonant scattering.

Additionally, the result directly shows that the energy shift switches from redshift to blueshift

at the resonance, which results from the modification of the interaction. Namely the sign of

the polariton interaction switches from attractive to repulsive.
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Figure 6.11: Energy shifts (a,c) and (b,d) absorption of the pump spectrum as a function of
cavity detuning. The intensities of pump polaritons are 5.1×1010 (a,b) and 1.6×1011 polariton
pulse−1 cm−2 (c,d). The blue circles are experimental results, solid lines and dashed lines are
numerical simulations respectively with and without the biexciton effect. The green shaded
areas represent the biexciton resonance vicinity (LP+LP→BX). For the numerical calculation,
we use the following parameters. The biexciton energy is defined as εB = εx −Ebin/2 and
Ebin = 1.5 meV. The biexciton linewidth is γB = 1.1 meV. The coupling between exciton and
biexciton is set to gbx = 0.36 meV/

�
n0. The background interaction is g+− =−0.18 meV/

�
n0,

where n0 is the normalized density of spin-up polaritons. The other parameters are the photon
linewidth γc = 0.3 meV, exciton linewidth γx = 0.6 meV. For the pump density, np = n0 is used.
n0 is a normalization density.
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Chapter 6. Spinor polariton interaction

Secondly, we present the absorption in Fig.6.11 (b). Here the absorption is defined as

ln

(
Aref

App

)
, (6.45)

where App and Aref represent the amplitude of the lower-polariton resonance respectively

with and without the pump pulse. With this definition, we can extract the absorption induced

by the presence of the pump. Figure 6.11 (b) shows that the absorption increases and reaches

a maximum at resonance. This is because at resonance, the biexciton formation from two

polaritons with anti-parallel spins is enhanced. Since the biexciton has a short lifetime,

the biexciton state works as an additonal decay channel and the increase of the biexciton

formation is accompanied by the enhancement of the absorption. In the higher polariton

density regime, as expected the redshift and the absorption are enhanced. This is displayed in

Fig. 6.11 (c) and (d).

In order to analyse the observations, we calculate energy shift and absorption based on a

mean-field two-channel model. For the simulation, we use the same Hamiltonian as the one

used in the previous section, but here we employ the simplest non-dynamical approach. The

effective Hamiltonian for the spin-up probe operators and the biexciton amplitude is given by:

Ĥeff = [ ψ̂x,↑ ψ̂c,↑ ψ̂B ]†

⎡⎢⎣ εx + g+−nx,↓ − iγx Ω gbx
�

nx,↓
Ω εc − iγc 0

gbx
�

nx,↓ 0 εB − iγB

⎤⎥⎦
⎡⎢⎣ ψ̂x,↑

ψ̂c,↑
ψ̂B

⎤⎥⎦ , (6.46)

where nx,↑ represents the density of the pump exciton assumed to be

nx,↑ =
np

2

(
1+ δ�

δ2 +Ω2

)
. (6.47)

Finally, the probe spectrum ψ
probe
c,↑ (ε) is calculated as

ψ
probe
c,↑ (ε) = ( 0 1 0 )

[
1

HMF −ε · 1
]⎛⎜⎝ 0

1

0

⎞⎟⎠ . (6.48)

The matrix HMF represents the 3× 3 matrix in Eq. 6.46. The simulated energy shift and

absorption changes are displayed in Fig. 6.11 as solid lines. On the other hand, the dashed

lines are simulations with gbx = 0, namely calculations considering only the background anti-

parallel spins interaction. From the fit, this background interaction is found to be attractive

g+− =−0.18 meV/
�

n0. Note that either with g+− = 0 or g+− > 0, we cannot fit the results [55].

The attractive background interaction with anti-parallel spins is used also in the dynamical

simulation in the previous section. As we expect, we cannot reproduce the dispersive shape of

the energy shift just with the background interaction. In order to fit the resonance, the exciton-

biexciton coupling constant gbx = 0.36 meV/
�

n0 has to be introduced. Here, we comment
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6.6. Polariton Feshbach resonance

that the small absorption exists only with the background interaction and it depends on the

cavity detuning (See the dashed line in Fig. 6.11 (b) and (d)). This is due to the reduction of the

photonic component of the polariton accompanied by the red-shift (in the other words, an

effective increase of the cavity detuning), which is reported in [94]. However, the background

interaction alone cannot reproduce the observed dispersive shape and the strong absorption.

In order to highlight the resonance due to the exciton-biexciton coupling, we plot energy

shift and absorption ratios in Fig. 6.12. These ratios are calculated from the numerical plots

in Fig. 6.11 (a) and (b). The interaction and absorption ratios are obtained dividing the

total contribution (solid curve) by the background contribution (dashed curves). The two

ratios show a familiar behavior of a scattering resonance. The interaction ratio (orange curve)

has a dispersive shape and a large variation both in sign and in amplitude with respect to

the resonance point. The profile of the absorption ratio (blue curve) also displays a typical

enhancement of the absorption at the resonance associated with the two-body loss process

of lower polaritons. A similar behaviour is reported for optical Feshbach resonance in 87Rb

condensate [89].
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Figure 6.12: Interaction (orange line) and absorption (blue line) ratios as a function of the
cavity detuning. The interaction and absorption ratios are the ratio between the solid (with
gbx �= 0) and dashed (gbx = 0) lines extracted respectively from Fig. 6.11 (a) and (b).

Secondly, let us focus on the coupling between polaritons and biexcitons in the matrix of

the effective Hamiltonian (Eq. 6.46). The coupling term gbx
√

nx ,↓ depends not only on the

constant gbx but also on the excitonic population of polariton
√

nx ,↓. At low pump power, the

coupling term gbx
√

nx ,↓ is much smaller than the decay rate of the biexciton: gbx
�

nx,↓ < γB .

Therefore, in this low density regime, the energy shift displays the smooth dispersive shape

(See Fig. 6.11 (a)). Now, we are going to investigate the high pump density region. In Fig. 6.13,

we plot as a function of the cavity detuning the two peaks (see Fig. 6.10 (b)) for the density

of 1.6×1011 polariton pulse−1 cm−2 polaritons density. For the simulation, we extracted the

second peak by setting γB = 0. Comparing the simulation and experiment, we associate the
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Chapter 6. Spinor polariton interaction

appearance of the two resonances as a “strong-coupling" between exciton and biexciton [35].

Since the biexciton coupling term depends on the pump polariton population as gbx
�

nx,↓,

in the high polariton density, the polariton-biexciton coupling becomes comparable to the

linewidths of the involved states (gbx
�

nx,↓ ∼ γB ). Figure 6.13 might be interpreted as an

“anti-crossing" between the lower-polariton and the biexciton resonance.
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Figure 6.13: Energy shifts of the two peaks of the pump spectrum as a function of cavity
detuning. The intensities of pump polaritons is 1.6×1011 polariton pulse−1 cm−2. The filled
and unfilled circles are experimental results of the double resonance (Shown in Fig. 6.10).
Solid lines and dashed lines are numerical simulations respectively with and without the
biexciton effect. For the pump density, np = 2.44n0 is used. n0 is a normalization density.

Finally, we comment on the relation between the polaritonic Feshbach resoance and atomic

Feshbach resonance. The Hamiltonian Eq. 6.44 is same as a two-channel model that describes

atomic Feshbach resonances. The scheme and characteristic signature of Feshnach resonance

in cold atoms is presented in Fig. 6.14. In the case of cold atoms, unbound atomic states and

bound molecular state belong to different channels (spin states), thus the relative energy of the

two states can be controlled by tuning the magnetic field (See Fig. 6.14 (a)). When the energy

of the unbound atomic state coincides with that of the molecular bound state at the magnetic

field B0, the enhancement of the interaction (scattering length) and atomic loss are observed

as signatures of the Feshbach resonance [83] (See Fig. 6.14 (b)). It is worth noting that the

origin of the atomic loss is not the decay of molecule but a three-body loss associated with

the increase of the scattering length, because the molecular state in cold atom has a very long

lifetime. Additionally, the long lifetime of the molecular state leads to the sharp divergence of

the atom-atom interaction (scattering length). This is a striking contrast with the polaritonic

Feshbach resonance, where the short lifetime of the biexciton is the origin of the polariton

decay at the resonance, thus the divergence of the interaction does not occur at resonance.

Actually, this is more similar to the case of optical Feshbach resonance, where the optically
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6.6. Polariton Feshbach resonance

excited molecular state has a finite life-time, thus the dominant mechanism of the atomic loss

at the resonance point is the radiative decay of the molecular state [89] (Fig. 6.14 (c)).
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Figure 6.14: Scheme and experimental signature of a magnetically tuned Feshbach resonance
(a) and (b) from [83]. The scattering length (solid line) and inelastic scattering rate (dashed
line) of optically induced Feshbach resonance from [89] (c). The relative energy of the unbound
atomic state and bound molecular state can be tuned by the Zeeman shift indyuced by the
magnetic field (a). At the resonance, the enhanced three-body loss rate leads to the atomic
loss. In the magnetically induced Feshbach resonance, the atom-atom interaction (scattering
length) displays a divergence at the resonance. On the other hand, in the optical Feshbach
resonance, the scattering length shows a smooth dispersive shape in the same way as in the
polaritonic Feshbach resonance
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6.6.3 delay dependence

Finally, in Fig. 6.15, we present the low pump intensity results with delays different from τ= 0.

Figure. 6.15 is the energy shift (left) and absorption (right) of the lower polariton resonance

as a function of cavity detuning for different delays. The results are obtained at negative,

zero, and positive delays: -3, -1.5, 0, 1.5, and 3 ps. The delay dependence of the energy shift

and absorption strongly reflect the coherent and incoherent natures of the system (See also

Chapter. 7). In the negative delay configuration (See Fig. 6.15 (a,b)), the pump pulse affects

the probe signal only within the polariton coherence. Therefore, the delay dependence of

the pump-probe signal in the negative delay configuration is proving the coherent aspect

of the polaritonic Feshbach resonance. Actually, the shifts and absorption decreases with

the increase of the negative delay, however the resonance feature is always present. In the

negative delays, the polaritonic Feshbach resonance persists during the coherence time of the

polariton system.
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Figure 6.15: Energy shifts and absorption of the lower polariton resonance as a function of
the cavity detuning for different pump-probe delays τ: τ=−3, −1.5, 0, 1.5, and 3 ps. In the
negative delay configuration (a,b), the energy shift and absorption gradually decreases as
the increase of the delay, while in the positive delay configuration (c,d), only the absorption
persists even at τ=3 ps due to a long living incoherent exciton population.

94



6.6. Polariton Feshbach resonance

On the other hand, in the positive delay configuration (See Fig. 6.15 (c,d)), the pump pulse

arrives first. The pump pulse creates not only the coherent exciton (exciton polarization) but

also incoherent exciton population. Since the incoherent exciton population is decoupled

from the light field, it has a long lifetime (>50 ps). The pump-probe signal, therefore, exists

even if the system loses its coherence. Thus, at positive delays, the pump-probe signal exhibit

features related to both coherent and incoherent effects [35]. Namely, with the increase of the

positive pump-probe delay, the resonance feature of the energy shift disappears due to the

loss of the exciton coherence, while the absorption persists due to the presence of incoherent

exciton population.
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Figure 6.16: Experimental probe transmission spectrum as a function of energy and time
delay between pump and probe pulse. The cavity detuning is set at δ=−0.5 meV. The pump
pulse intensity is 5.9×1013 photons pulse−1 cm−2. The black dashed lines are the lower and
upper-polariton peak energies without pump pulse. The experimental configuration is same
as that in Fig. 6.4.

Finally, we display in Fig. 6.16 the amplitude of the probe spectrum as a function of the

pump-probe delay τ at the cavity detuning δ=−0.5 meV. Figure 6.16 clearly presents that the

redshift and absorption remains for long delay time in the positive pump-probe delays. On the

other hand, at negative delays, the redshift and absorption decrease with the increase of the

delay, which is the expected behaviour in the coherent limit model. In order to simulate the

probe behaviour in the positive delay, we need to include the incoherent population effect of

excitons. Actually, by neglecting the coherent exciton, a sophisticated theory presented in [35]

succeeded in modelling the transition between incoherent exciton population and biexciton

in a long positive pump-probe delay. However, unfortunately, the theory that models both

coherent and incoherent exciton effects on biexcitons is not yet known. In Chapter 8, we will

discuss the possibility of the general theory which can include the two effects.
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6.7 Conclusion

In conclusion, we have performed pump-probe spectroscopy with co and counter-circular

polarization configuration in order to investigate the spinor polariton interactions. From

the energy shifts of the probe spectra induced by the pump, we clearly find the polarization

dependence of the polariotn interactions: the interactions are repulsive or attractive respec-

tively for parallel or anti-parallel spins. Additionally, we have investigated the important role

of the molecular bound state of excitons (biexciton) on the lower-polariton interaction with

the opposite spins. We found a dispersive shape of the energy-shift and an enhancement

of the absorption of the probe spectra with the counter-circular polarization configuration.

These behaviour can be associated with a scattering resonance of the lower-polaritons via the

biexciton (polaritonic Feshbach resonance). For the analysis, a spin-dependent Hamiltonian

including the coupling between excitons and biexciton has been employed. Finally, we briefly

discussed the effect of incoherent exciton on the spinor polariton interactions. In the next

chapter, we will investigate more deeply the incoherent exciton in the co-circular polarization

configuration. In this chapter, both pump and probe pulse are exciting the lower and upper

polariton branches and the coherent limit approximation is assumed in the modelling. In

the last chapter, we will discuss the new experiments with a narrow band pump pulse and

possibility of constructing a theoretical model including the incoherent exciton population

effect.
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7 Effect of dephasing in pump-probe
spectroscopy

Until this chapter, we described the coherent dynamics of exciton-polaritons with Gross-

Pitaevskii equations. In this chapter, we will now discuss the possible changes brought by an

incoherent exciton population. To this aim, we perform pump-probe spectroscopy and analyse

it in a theoretical framework called Excitonic Bloch equations (EBEs) [32, 95]. Actually, one of

the important properties of a semiconductor system is the dephasing [96, 97, 98]. The study of

dephasing, accompanied by decoherence, is important both for understanding the physics of

exciton-polaritons and for designing semiconductor microcavity devices such as nonlinear

optical devices and polariton-based qubits [99, 100]. Additionally, the effects of dephasing are

interesting in terms of the microscopic understanding of the “excitonic reservoir" in polariton

Bose-Einstein condensation. In order to model the polariton condensates under non-resonant

excitation, Gross-Pitaevskii equation coupled to two excitonic reservoirs (active and inactive

reservoir) are phenomenologically employed [101, 102]. Our findings are that, even when

we excite the lower and upper polariton branch resonantly with a coherent laser source, the

exciton-exciton interaction (more precisely excitation induced dephasing (EID)) convert the

coherent exciton into an incoherent exciton population, which does not couple to light. Our

experiment and analysis cast light on the link between the “inactive reservoir" and incoherent

exciton population.

7.1 Experimental setup for pump-probe experiment

The experimental configuration is same as that of the pump-probe experiment presented

in Chapter 6. As the scheme of Fig. 7.1 shows, the semiconductor microcavity is excited by

two pulses k2 and k1. The broadband pump and probe pulses excite both lower and upper

polariton branches. The center frequency of the pump and probe pulse is set at the middle of

the two branches. Since the angle between k2 and k1 pulses is small, we consider k1 � k2 = 0

μm−1 and neglect the effect of the polariton energy-momentum dispersion. In the same

way as in Chapter 6, the k2 and k1 pulses are respectively referred to as “pump" and “probe"

pulse. We select only the transmitted probe beam with a pinhole having a diameter of 3 μm

and transfer this probe beam to the heterodyne detection part. Finally, with the heterodyne
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Chapter 7. Effect of dephasing in pump-probe spectroscopy

measurement system, we obtain the amplitude of the electric field as a function of the pump-

probe delay |E pr (ε,τ)|. Additionally, with the aid of a numerical low-pass filter, we remove the

noise coming from the laser spectrum envelope. The important difference from Chapter 6 is

that here we obtain the probe spectrum as a function of the pump-probe (τ= tk2 − tk1 ) pulse

delay. In particular, the probe spectrum at positive delay, where the pump pulse arrives before

the probe, provides us information on long-lived incoherent exciton population.

k1~0

k2=0

τ

pump (k2 ) pulse

sample

cryostat

heterodyne detection

kFWM

probe (k1 ) 
pulse

pinhole

pump-probe delay

|Epr(ε,τ)|

Figure 7.1: Scheme of excitation configuration and pulse sequence for pump-probe experi-
ments. The semiconductor microcavity sample is excited by two pulses: pump (k2) and probe
(k1) pulse. Since the angle between the two beams is small, the wave vectors of the two beams
are considered degenerate. With a pinhole, we spatially select the probe beam and analyse it
with a heterodyne detection technique.
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7.2 Excitonic Bloch equations (EBE)

In this section, we repeat the discussion on excitonic Bloch equations (EBEs) mentioned in

Chapter 3 and explain it in detail. For the derivation of EBEs, we start from a Hamiltonian that

fully includes the exciton-exciton interaction and photon-assisted exchange scattering (PAE)

in the exciton-photon (local mode) basis (See Chapter. 3):

Ĥ = Ĥlin + Ĥint + Ĥqm. (7.1)

Firstly, the linear part Ĥlin representing the exciton-photon eigenmodes and the linear cou-

pling is given by (Eq. 3.1)

Ĥlin =
∫

dx
[
εxψ̂

†
xψ̂x +ψ̂†

c (εc − ħ2∇2

2mc
)ψ̂c +Ω(ψ̂†

cψ̂x +ψ̂†
xψ̂c )

]
. (7.2)

The energy-momentum dispersion of the exciton is neglected because of its large mass com-

pared the polariton mass.

Secondly the interaction part Ĥint (Eq. 3.2) is

Ĥint =
∫

dx
[

1

2
gψ̂†

xψ̂
†
xψ̂xψ̂x − gpae(ψ̂†

cψ̂
†
xψ̂xψ̂x +ψ̂†

xψ̂
†
xψ̂xψ̂c )

]
(7.3)

The interaction constants g and gpae respectively represent the exciton-exciton interaction

and photon-assisted exchange interaction. Finally, the quasi-mode coupling between the

cavity photon and classical electric field outside the cavity is written as (Eq. 3.3)

Ĥqm =
∫

dx Ωqm(ψ̂†
c F +F∗ψ̂c ). (7.4)

Using the Heisenberg equations of motion formalism iħ d
d t ψ̂= [ψ̂, Ĥ ], we obtain the equations

of motion for the operators ψ̂x , ψ̂†
xψ̂x , and ψ̂c . We can easily find that the non-linear

term Ĥint causes a “hierarchy" problem. For example, the time evolution of operator ψ̂x

is determined by the terms such as ψ̂†′
x ψ̂

′
xψ̂x , then the time evolution of 〈ψ̂†′

x ψ̂
′
xψ̂x〉 is

determined by the next order term, and this goes on to an infinite order. Therefore, we need to

truncate the hierarchy by assuming some sort of factorization. The simplest one is to use a

coherent state (coherent limit), where the expectation value 〈ψ̂†′
x ψ̂

′
xψ̂x〉 is simply factorized

as 〈ψ̂†′
x ψ̂

′
xψ̂x〉 = 〈ψ̂†′

x 〉〈ψ̂′
x〉〈ψ̂x〉. As we have seen in previous chapters, this factorization

is assumed in the derivation of the Gross-Pitaevskii equations. In this section, in order to

describe the incoherent population of excitons, we have to write the expectation value of the

exciton population as 〈ψ̂†
xψ̂xψ̂x〉 � 〈ψ̂†

xψ̂x〉〈ψ̂x〉, 〈ψ̂†′
x ψ̂

′
xψ̂x〉 � 〈ψ̂†′

x ψ̂
′
x〉〈ψ̂x〉, 〈ψ̂xψ̂x〉 = 0,

and 〈ψ̂†
xψ̂

′
xψ̂

′
x〉 � 〈ψ̂†

x〉〈ψ̂′
xψ̂

′
x〉 = 01. The last two parts are the assumption that “two-exciton

1When deriving the equation of motion for N (x, t), we apply the factorizations 〈ψ̂†′
x ψ̂′

xψ̂x 〉 � 〈ψ̂†′
x ψ̂′

x 〉〈ψ̂x 〉
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Chapter 7. Effect of dephasing in pump-probe spectroscopy

state" does not exist. Finally, we obtain equations of motion for exciton polarization P (x, t ) =
〈ψ̂x〉, exciton population N (x, t) = 〈ψ̂†

xψ̂x〉 and cavity photon field E(x, t) = 〈ψ̂c〉 [32]. This

leads to the excitonic Bloch equations (BE):

iħṄ = −iΓx N −2i (Ω−2gpaeN )Im[PE∗] (7.5)

iħṖ = (εx + g0N − iγx (N ))P + (Ω−2gpaeN )E (7.6)

iħĖ = (εc − ħ2

2mc
∇2 − iγc )E + (Ω− gpaeN )P − fext. (7.7)

The term fext (=−ΩqmF ) corresponds to the excitation by the external electric field. In EBEs,

the exciton-exciton interaction constant g in Eq. 7.3 is phenomenologically divided into a real

and imaginary part,

g = g0 + i g ′. (7.8)

The real part g0 contributes to a population dependent energy shift, while the imaginary part

g ′ is a population dependent damping of the polarization, which represents the strength of

excitation induced dephasing (EID). Actually, the imaginary part g ′ exists in the decay term of

the polarization γx (N ) as

γx (N ) = Γx /2+γ∗x + g ′N . (7.9)

Here, Γx is the decay rate of the exciton population (See Eq. 7.5), which could be called “life-

time" Γ−1
x of the exciton. γ∗x represents a pure dephasing rate of exciton. The pure dephasing

does not depend on the exciton population. If the pure dephasing would not exist (γ∗x = 0)

and the strength of EID would be zero (g ′ = 0), then the system would be in the coherent limit:

γx = Γx /2. In this limit, the factorization 〈ψ̂†
xψ̂x〉 = 〈ψ̂†

x〉〈ψ̂x〉 is satisfied and the EBEs are

reduced to the conventional exciton-photon Gross-Pitaevskii equations:

iħṖ = (εx + g0|P |2 − iΓx /2)P + (Ω−2gpae|P |2)E (7.10)

iħĖ = (εc − ħ2

2mc
∇2 − iγc )E + (Ω− gpae|P |2)P − fext. (7.11)

We can easily verify this factorization from the fact that iħ d
d t |P |2 = iħ(Ṗ∗P +P ∗ Ṗ ) has the

same form as the equation of motion for the population Eq. 7.5 in the coherent limit γx =
Γx /2. Consequently, it follows that, in the coherent limit, the dynamics of the population

is uniquely determined by N (x, t) = |P (x, t)|2. On the other hand, if there is pure dephasing

or EID, the dynamics of the exciton population and polarization evolve independently, thus

we need to follow the time evolution of both population and polarization with EBEs. It is

worth noticing the similarity between the EBEs and modified optical Bloch equations (OBE).

and 〈ψ̂†
xψ̂

′
xψ̂

′
x 〉 � 〈ψ̂†

x 〉〈ψ̂′
xψ̂

′
x 〉 = 0 before the spatial integral of the Hamiltonian Ĥint.
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7.3. Experimental results and analysis based on EBE

The OBEs are used to describe the dynamics of a two-level system coupled to an electric

field. The conventional OBEs include only saturation effect as a non-linearity, while several

articles [62, 98] developed modified OBEs in order to describe interacting exciton system. The

modified OBEs are given by

iħṄ = −iΓx N −2iΩIm[PE∗] (7.12)

iħṖ = (εx + g0N − iγx (N ))P +Ω(1−2N )E (7.13)

iħĖ = (εc − ħ2

2mc
∇2 − iγc )E +ΩP − fext. (7.14)

Like EBEs, the OBEs can calculate the incoherent and coherent part of two-level systems. This

analogy indicates that Γx and γx respectively correspond to the inverse of the lifetime T1 and

the coherence time T2 times. The difference between EBEs and OBEs is that OBEs are based

on a two-level system, while EBEs are based on a bosonic exciton basis [32] with a fermionic

correction through the term gpae. Therefore, the saturation effect always exists in the OBEs,

while in the EBEs we can turn it off by setting gpae = 0.

7.3 Experimental results and analysis based on EBE

7.3.1 Experimental results

In Fig. 7.2, we present the experimental probe spectra |E pr (ε,τ)| as a function of pump-probe

time delay τ. The results are obtained at a cavity detuning of δ= εc −εx = 0.8 meV. Firstly, let

us discuss the low pump intensity result (Fig. 7.2 (a)). If we focus on the energy shift of the

lower polariton branch, a maximum blueshift occurs at zero delay (τ= 0 ps). The remarkable

thing is that the delay dependence of the lower-polariton blue shift is asymmetric with respect

to zero delay. The blueshift gradually decreases toward negative delays, while it stays almost

constant at positive delays for long delay times. For high pump intensity, the spectra (Fig. 7.2

(c)) displays a triple peak structure at negative delays, while a single peak is found at positive

delays. For the upper-polariton, we cannot find a clear energy shift for all delays for both

low and high pump intensity regimes. The origin of this peak structure is addressed in the

following sections. Secondly, the bleaching and broadening of both lower and upper polariton

resonances are clearly visible (stronger effect on the upper polariton branch). Additionally,

the bleaching becomes strong with the increase of the pump intensity. This polariton density

dependent bleaching is a clear signature of the EID effect (See Eq. 7.9). Finally, we find that

the delay dependent oscillation of the pump-probe spectra corresponds to quantum beats,

which has the same origin as the delay dependent beat observed in four-wave mixing signals

(See Chapter 5).
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Figure 7.2: Experimental and simulated probe transmission spectra as a function of the
time delay between pump and probe pulses. The experimental spectra are obtained for
three different pump pulse intensities: 1.48×1013 (1 mW) (a), 3.7×1013 (2.5 mW) (b), and
7.4×1013 (5 mW) (c) photons pulse−1 cm−2. Corresponding simulated spectra are attached
next to the experiments: (b), (d), and (f). The black dashed lines are the lower and upper-
polariton energies without pump pulse. In the simulation, the parameters are g ′ = 0.4g0,
gpae = 0.3g0, γc = 0.1 meV, γ∗x = 0.1 meV and Γx = 0.01 meV. The white dashed lines represent
the cavity photon (εc ) and exciton (εx ) energies. In the simulation, the intensity I0 is defined
as I0 = 0.8/g0.

7.3.2 Details of simulations

In Fig. 7.2, the numerical simulation of pump-probe spectra based on EBEs are need to be

shown. Before, going into the comparison between experiments and simulation, we explain

the detailed method of numerical simulation with EBEs. In order to calculate pump-probe
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7.3. Experimental results and analysis based on EBE

spectra, we apply coupled-mode theory to EBEs. The coupled-mode theory is a standard

approximation in the calculation of four-wave mixing [103, 104]. The main idea of the coupled-

mode theory is to approximate the population, polarization and photon field as a combination

of finite modes: pump (k2 = 0), probe (k1), and idler modes (kFWM = 2k2 −k1 =−k1). Here,

the “idler" is another name of the four-wave mixing signal. More specifically, we approximate

the three components of EBEs as

N (x, t ) = N pu(t )+N pr (t ) ·ei k1·x +N pr∗(t ) ·e−i k1·x

P (x, t ) = P pu(t )+P pr (t ) ·ei k1·x +P i d (t ) ·e−i k1·x (7.15)

E(x, t ) = E pu(t )+E pr (t ) ·ei k1·x +E i d (t ) ·e−i k1·x.

The indices pu, pr , and i d respectively represent pump, probe, and idler (FWM) modes. For,

the population, N i d = N pr∗ because the population N (x, t) = 〈ψ̂†
xψ̂x〉 must be a real value.

Substituting Eq. 7.15 into EBEs in (Eq. 7.5, 7.6, and 7.7), we obtain eight coupled equations,

iħṄ pu = −iΓx N pu −Ωapu +2gpae(apu N pu +bi d N pr +bpr N pr∗)

iħṄ pr = −iΓx N pr −Ωbpr +2gpae(bpr N pu +apu N pr +cN pr∗)

iħṖ pu = (εx − iγx )P pu + g (N puP pu +N pr∗P pr +N pr P i d )

+ΩE pu −2gpae(N puE pu +N pr∗E pr +N pr E i d )

iħṖ pr = (εx − iγx )P pr + g (N puP pr +N pr P pu)

+ΩE pr −2gpae(N puE pr +N pr E pu) (7.16)

iħṖ i d = (εx − iγx )P i d + g (N puP i d +N pr∗P pu)

+ΩE i d −2gpae(N puE i d +N pr∗E pu)

iħĖ pu = (εc − iγc )E pu +ΩP pu − gpae(N puP pu +N pr P i d +N pr∗P pr )− f pu
ext

iħĖ pr = (εc − iγc )E pr +ΩP pr − gpae(N puP pr +N pr P pu)− f pr
ext

iħĖ i d = (εc − iγc )E i d +ΩP i d − gpae(N puP i d +N pr∗P pu).

Now the quantities apu , bpr , bi d and c are given by

apu = 2i Im(P puE pu∗ +P pr E pr∗ +P i d E i d∗)

bpr = P puE i d∗ −P i d∗E pu +P pr E pu∗ −P pu∗E pr

bi d = P puE pr∗ −P pr∗E pu +P i d E pu∗ −P pu∗E i d (7.17)

c = P pr E i d∗ −P i d∗E pr .
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Chapter 7. Effect of dephasing in pump-probe spectroscopy

In order to obtain the above equations, we neglected terms which have wave-vectors such

as e±i 2k1·x and e±i 3k1·x. Since the wave-vector k1 is sufficiently small, we also neglect the

energy-momentum dispersion of the cavity photon energy εc . The pump and probe pulses

are introduced from f pu and f pr as

f pu(t ) = F pu exp

(
− (t − tpu)2

τ2
pu

)
exp(−iωpu t ) (7.18)

f pr (t ) = F pr exp

(
− (t − tpr )2

τ2
pr

)
exp(−iωpr t ). (7.19)

In the numerical simulations a pulse width τpu(pr )=0.5 ps is used. The center frequency of the

laser is in the middle of the lower and upper polariton branches: ωpu(pr ) = (εc + εx )/2. The

probe spectrum E pr(ε) is obtained through the Fourier transformation of E pr(t ) with respect

to t . For the numerical simulation, Γx and γc are respectively set as 0.01 meV and 0.1 meV.

Note that the decay rate of the exciton population is much smaller than that of the cavity

photon. The pure dephasing is set to γ∗x = 0.1 meV [105]. The strength of EID and of the

photon-assisted exchange scattering are respectively g ′ = 0.4g0 and gpae = 0.3g0.
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7.3. Experimental results and analysis based on EBE

7.3.3 Comparison between experiments and simulation

Let us now compare the experiments and simulations presented in Fig. 7.2. We find that there

are striking similarity between the measured and simulated spectra.

low pump intensity

In the low pump intensity case (Fig. 7.2 (a) and (b)), both experiment and simulation displays a

long lasting blue-shift of the lower-polariton at positive delay, on the other hand, the blue-shift

builds up on a shorter time scale at negative delays. The decay rates used in the simulation

suggest that the long lasting decay rate at positive delays is determined by ∼ ħ/Γx , while

the short build time at negative delays is determined by ∼ 2ħ/(γc +γ∗x ). As far as the energy

shift of the upper-polariton is concerned, no shift is perceptible both in the experiment and

simulation, this due to the cancellation of the blue and red-shift contributions induced by g0

and gpae respectively.
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Figure 7.3: (a) The amplitude of the real-time evolution of the probe signal as a function of the
pump-probe delay τ: |E pr(t ,τ)|. The experiment is same as Fig. 7.2 (a). The time evolution of
the probe at the positive pump-probe delay τ=3.5 ps (b) and negative pump-probe delay τ=-3.5
ps (c) are presented. The arrival times of pump, probe, and reference pulses are schematically
represented by dashed lines. The revival of the signal 10 ps after the probe in (a) is due to
the reflection of the pulse by the substrate of the sample. Similarly, in (c), the revival of the
probe pulse at 22 ps is the reflected probe pulse. The real time evolution is obtained with the
heterodyne measurement technique explained in Chapter 4.
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Chapter 7. Effect of dephasing in pump-probe spectroscopy

Additionally, in Fig. 7.3 (a), we present the amplitude of the real-time evolution of the probe

signal for a pump intensity of 1 mW. Figure 7.3 (b) and (c) are the real-time evolutions of the

probe signal respectively at 3.5 ps and -3.5 ps delays. This real-time evolution is obtained

through the heterodyne technique explained in Chapter 4. Notice that the period of the

real-time oscillation of the probe signal before the arrival of the pump pule is h/2ΩR (See Fig.

7.3 (c)). Since ΩR is the Rabi coupling, this oscillation is a direct manifestation of the Rabi

oscillation between an exciton and a photon. Even at 3.5 ps delay (See Fig. 7.3 (b)) we can find

the real-time oscillation of the probe signal. This means that the incident of the weak intensity

pump pulse creates a small polariton population and it modulates the oscillation period of

the system, which is the origin of the blueshift, but the coherence is still surviving.

high pump intensity

When the pump intensity is increased, a new peak develops in the pump-probe spectra (Fig.

7.2 (c)-(f)). By increasing the pump power, the middle peak energy blue shifts (Fig. 7.2 (c,d))

and for the highest pump intensity (Fig. 7.2 (e,f)) both measurement and simulation present

three peaks at negative delays and a single peak at positive delays.
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Figure 7.4: (a) The amplitude of the real-time evolution of the probe signal as a function
of the pump-probe delay τ: |E pr(t ,τ)|. The experiment is same as Fig. 7.2 (e). The time
evolution of the probe at the positive pump-probe delay τ=3.5 ps (b) and negative pump-
probe delay τ=-3.5 ps (c) are presented. The arrival times of pump, probe, and reference pulses
are schematically represented by dashed lines. The real-time evolution is obtained with the
heterodyne measurement technique explained in Chapter 4.

106



7.3. Experimental results and analysis based on EBE

In order to explain the complex behaviour of the probe signal in Fig. 7.2 (e-f), in Fig. 7.4

(a), we display the amplitude of the real-time evolution of the probe signal for the pump

intensity of 5 mW. Figure 7.4 (b) and (c) display the real-time evolutions of the probe signal

respectively at 3.5 ps and -3.5 ps delays. The three peaks at negative delays result from the

temporal convolution of modulated and non modulated parts of the probe pulse (See Fig. 7.4

(c)). More precisely, the side peaks occur from the portion of the probe transmitted before the

arrival of the pump pulse, while the middle peak is originated from the arrival of the pump

pulse during the short lifetime of the probe polarization given by ∼ 2ħ/(γc +γ∗x ). On the other

hand, at positive delays the probe pulse is always modified by the strong pump pulse (See

Fig. 7.4 (b)). Therefore, the blue-shift of the single middle peak stays for a long time, which is

determined by the long lasting exciton population ∼ħ/Γx .
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Figure 7.5: Simulated probe transmission at the pump-probe time delay τ=5 ps as a function
of the pump intensity. The cavity detuning is δ= 0.8 meV. The other parameters are the same
as those employed in Fig. 7.2. The white dashed lines represent the cavity photon and exciton
energies. As the pump intensity |F pu |2 increases, the lower polariton (LP) asymptotically
reaches the cavity photon energy, while the upper polariton (UP) branch energy almost stays
at the same position and gradually disappears due to the EID effect.

If the intensity of the pump increases further, since γx (N ) becomes comparable to the effective

Rabi coupling Ω−2ggpaeN , the lower-polariton peak reaches the cavity mode, which is the

signature of the strong to weak coupling transition [106]. To illustrate this transition, we

present in Fig. 7.5 a simulated probe transmission spectrum at 5 ps pump-probe delay as a

function of pump intensity. As the pump intensity increases, the lower polariton resonance

shifts up in energy while the upper polariton resonance remains steady in energy and its

intensity gradually vanishes due to the EID. In this simulation, not only gpae and g ′, but also

the exciton-exciton interaction g0 assists the lower-polariton branch to reach the cavity mode.

Here, we would like to comment on the observation of the strong-to-weak coupling transition
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Chapter 7. Effect of dephasing in pump-probe spectroscopy

performed by F. Quochi et al. [106, 107]. In the pump-probe spectrum of a semiconductor

microcavity, they observed that the polariton doublet collapses into a single branch, then it

evolves into the AC stark triplet (also referred to as Mollow triplet) by increasing the pump

intensity more than 40 times above the exciton saturation density. Actually, neither experimen-

tal spectrum nor theoretical prediction in Fig. 7.5 evidence the AC stark triplet. Why is the AC

stark triplet not visible in our sample? Firstly, it is important to note that the semiconductor

microcavity used in [106, 107] has parameters completely different from our sample. The

semiconductor microcavity in [106, 107] has a larger Rabi splitting 2ΩR =8 meV (six quantum

wells) and a huge inhomogeneous broadening of 5.5 meV. In these parameters range, the

system would behave more like bare quantum wells in the weak coupling regime [108]. Theo-

retically speaking, the striking difference between EBEs and OBEs might exist here. The AC

stark triplet is a consequence of the Rabi flopping, which is a rotation of the Bloch vector

between the north and south poles of the Bloch sphere [36]. Therefore, in order to reproduce

the AC stark splitting, two-level system description would be necessary. Since EBEs are not

based on two-level state model, EBEs cannot reproduce the AC stark triplet. Probably, in

[106, 108], where the measurement are performed at very high pump intensity (more than

40 times above the exciton saturation density), an electron and a hole picture with two levels

(valence band and conduction band) would be more suitable than the bosonic exciton model.

Actually, the experimental observation of [106, 107, 108] are well reproduced with two-level

like theoretical models, OBEs and semiconductor Bloch equations (SBEs).

Figure 7.6: Probe transmission spectra for different pump intensities in semiconductor micro-
cavity with six quantum wells from [106]. The lower and upper polariton doublet evolves into
a single peak (the strong-to-weak coupling transition). When we make the pump intensity
higher, two side peaks appear, which is the AC stark triplet (Mollow triplet)
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7.4 The effect of dephasing

7.4.1 Pump-probe spectra in coherent limit
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Figure 7.7: Simulated probe transmission as a function of energy and pump-probe time delay
without EID and pure dephasing (g ′ = γ∗x = 0 meV) for four different pump intensities: I0 (a),
2.5I0 (b), 5I0 (c), and 125I0 (d). The first three intensities correspond to Fig. 7.2 (b), (d), and
(f). The other parameters are the same as those used in the simulation of Fig. 7.2. (d) is a
simulation with a very high pump power. This region is considered as a weak coupling regime,
thus the lower polariton branch almost reaches the cavity mode. The signal around -3 meV
might be the result of higher-order four-wave mixing processes.

In order to understand more deeply the effect of the incoherent exciton population and of EID

on the two polariton resonances, we show simulations based on EBEs but without EID and

pure dephasing (g ′ = γ∗x = 0 meV) in Fig. 7.7. The other parameters are same as in Fig. 7.2.

This configuration can be called coherent limit, thus the simulation in Fig. 7.7 is qualitatively

same as that of GPEs. Namely, the decay of the population is twice faster than that of the

polarization (γx (N ) = Γx /2 = 0.005 meV). Roughly speaking, in pump-probe spectroscopy as a

function of pump-probe delay, the energy-shit at positive and negative delays are respectively

sensitive to the population (Γx ) and polarization decay rate (γx ). Therefore, in the coherent

limit, the blue-shift decays twice faster at positive delays than negative delays (See Fig. 7.7).

Additionally, we find that the polariton branch is broadened towards the high energy side.

This is understood as a “dynamical energy-shift". Namely, the time integration of the temporal
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Chapter 7. Effect of dephasing in pump-probe spectroscopy

decrease of the energy-shift induces a broadening of the polariton branches. When comparing

the simulations in Fig. 7.7 with experiments in Fig. 7.2, we clearly find that the experiments

cannot be reproduced under the condition of coherent limit (GPE). Especially, in the high

pump intensity simulation (Fig. 7.7 (b) and (c)), neither the three peaks structure nor the

disappearance of the quantum beat at positive delays are reproduced because of the lack of

EID. At very high pump intensity, the transition to weak coupling regime is also observed with

the GPEs. However as the figure shows, a very strong dynamical blue-shift also exists, which is

different from the observed experimental behaviour.

7.4.2 Dynamics of population and polarization

For the purpose of understanding the effects of dephasing, it is useful to present simulations

of the real-time evolutions of the exciton population and polarization. Figure. 7.8 is the time

evolutions of the polarization |P (t )|2 and population N (t ) at k = 0 μm−1 after the arrival of a

single pump pulse. Simulation are performed with dephasing and without dephasing.
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Figure 7.8: Simulated time evolution of the polarization |P (t )|2 and population N (t ) at k = 0
μm−1 as a function of time after an arrival of a single pulse. Simulations in a coherent limit
(g ′ = γ∗ = 0 meV) (a,c) and with dephasing (EID and pure dephasing) (b,d) are presented for
two different laser pulse intensities 1 mW (a,b) and 5 mW (c,d). The parameters are the same
as the simulation of Fig. 7.2. The dashed lines represent scaled laser pulses.
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7.5. Discussion

Firstly in the coherent limit (Fig. 7.8 (a) an (c)), the time evolution of the exciton population

N (t) coincides with that of |P (t)|2. This is because the dynamics of the exciton population

is uniquely determined as N (x, t ) = |P (x, t )|2 and the factorization 〈ψ̂†
xψ̂x〉 = 〈ψ̂†

x〉〈ψ̂x〉 takes

place. Therefore, in the coherent limit, the lifetime of the system is determined mainly by the

cavity photon lifetime ħ/(γc +γx ) ∼ħ/γc , because γc (=0.1 meV) is much larger than γx (=0.005

meV).

On the other hand, when pure dephasing and EID are introduced (See Fig. 7.8 (b) an (d))),

temporal separation of time evolution of the population and polarization takes place. In

particular, at high pump intensity (Fig. 7.8 (d)), the polarization decays fast due to EID

(∼ħ/(γc +γx (N )), while the population lives for a long time (∼ħ/Γx ). These results indicate

that, with the existence of dephasing, the population can have a long lifetime because it is

decoupled from the light field after the disappearance of the polarization.

7.5 Discussion

7.5.1 Dephasing mechanism

In this section, we discuss the origin of dephasing and comment about a link between the EBE

model and exciton reservoir. Until now, we dealt with the dephasing as a phenomenological

damping of the exciton polarization. Using the idea of Kubo’s Brownian oscillator model

[109, 61, 110], the dephasing mechanism might be explained more microscopically. As the

name “dephase" indicates, the dephasing can be understood in terms of a phase fluctuation of

the polarization. Let us consider that the polarization as a classical ensemble of single exciton

wave-functions: P (x, t) = 〈ψx (x, t)〉. The wave-function may obey the following stochastic

Gross-Pitaevskii equations (sGPE) [109].

iħψ̇x = (εx +δε(t )+ g0|ψx |2 − iΓx /2)ψx + (Ω−2gpae|ψx |2)E (7.20)

iħĖ = (εc − ħ2

2mc
∇2 − iγc )E + (Ω− gpae|ψx |2)〈ψx〉− fext. (7.21)

Here, δε(t ) represents the energy fluctuations, which induce phase fluctuations. The energy

fluctuations satisfy the following properties.

〈δε(t )〉 = 0 (7.22)

〈δε(τ)δε(0)〉 = M(τ). (7.23)

M(τ) is a correlation function, which can depend on |ψx |2. Let us note that the electric

field is coupled to the polarization P (x, t) = 〈ψx (x, t)〉, which is an expectation value of the

ensemble of the exciton wave function. Numerically solving the above equation is not easy

and it is a future issue. Here, we use the stochastic equation for a qualitative explanation of
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Chapter 7. Effect of dephasing in pump-probe spectroscopy

the dephasing mechanism. In this stochastic theory, the most important thing is that the

energy fluctuation δε(t) introduces a random phase fluctuation to the wave-function such

as ψx (x,0)e−i (εx+δε(t ))t/ħ, thus the polarization as an ensemble P (x, t ) = 〈ψx (x, t )〉 decays. On

the other hand, the population of the ensemble N (x, t) = 〈ψ∗
x (x, t)ψx (x, t)〉 does not suffer

from the phase fluctuations, because the phase terms of ψx (x, t ) and ψ∗
x (x, t ) cancel with each

other such that e−i (εx+δε(t ))t/ħ · ei (εx+δε(t ))t/ħ = 1. Therefore, the ensemble population N (x, t)

is simply given by N (x, t ) = |ψx (x, t )|2. Two different origins can be considered for the energy

fluctuation: the intrinsic one due to the environment and the exciton-exciton collision. The

former one is associated with pure dephasing γ∗x , while the latter one is associated with EID

g ′. This is why EID is also referred to as “collisional broadening". For the intrinsic energy

fluctuation, various origins such as phonons, and impurities are possible [105].

7.5.2 Relation between EBE and two reservoirs model

Secondly, let us comment that the EBE model will cast a light to an understanding of excitonic

reservoir in non-resonantly excited polariton condensates [101, 102]. Polariton condensates

are well modelled by a Gross-Pitaevskii equation coupled with two reservoirs [111, 101, 112]:

ṅI = −γI nI − 1

τR
nI +P (7.24)

ṅA = −(γA +RR |ψL |2)nA + 1

τR
nI (7.25)

iħψ̇L =
{
− ħ2

2m
∇2 + gL |ψL |2 + gR nA + gR nI − i

2
[γL −RR nA]

}
ψL , (7.26)

where nI and nA are respectively the “inactive" and “active" excitonic reservoirs. ψL is the

condensate wavefunction of lower-polaritons. P represents the creation of population in the

inactive reservoir by an external non-resonant pump. The interaction constants contributing

from the condensates and the reservoirs are respectively represented by gL are gR . The decay

rates γI , γA , and γL are those of the inactive reservoir, active reservoir, and condensate. 1/τR

represents a stimulation scattering rate of the active reservoir into the condensate. The external

non-resonant pump P firstly creates the long-lived inactive excitonic reservoir (typically γI ∼ 1

ns−1 [112]), which supplies the active excitonic reservoir with a short lifetime (typically γA ∼ 15

ps−1 [112]). Finally, the population in the active reservoir scatters into the coherent ground

state of lower-polaritons under stimulated scattering. This process is schematically drawn in

Fig. 7.9. Our study suggests that the inactive reservoir can be interpreted as the incoherent

exciton population N in EBEs. Actually, both incoherent exciton population and inactive

excitonic reservoir have a long lifetime and contribute to the energy shift of the polariton

resonances [76]. Additionally, similarly to the incoherent exciton population of EBEs, the

inactive reservoir nI contributes to the mean field blueshift of the lower-polariton condensates

through the interaction constant gR even though it is not coupled to the cavity photons.
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active excitonic reservoir nA

polariton condensate ΨL

decay γI ~ 1 nsdecay γA ~ 15 ps

non-resonant excitation P

decay γL ~ 0.2 ps

lower-polariton branch

bosonic stimulation

inactive excitonic reservoir nI

RR|ΨL|
2

1/τR 
~ 0.01 meV

Figure 7.9: Scheme of two reservoirs model for non-resonant polariton condensates. The
external non-resonant pump P creates the inactive excitonic reservoir nI , then the inactive
reservoir nI supplies the exciton population into the active excitonic reservoir nA . Finally, the
condensates of lower-polaritons ψL grow through the stimulation scattering from the active
excitonic reservoir.

7.6 Conclusion

In conclusion, we studied the importance of decoherence associated with excitation induced

dephasing (EID) in a semiconductor microcavity both experimentally and theoretically. Time-

resolved femtosecond pump-probe spectroscopy was carried out and for the theoretical

description of our results we used excitonic Bloch equations (EBEs), which can explicitly take

into account the coherent polarization and the incoherent population of excitons. While

numerical simulations with EBEs reproduced the experimental results with a great fidelity,

commonly used Gross-Pitaevskii equations (GPE) fail to simulate them. This is because GPE

has an implicit assumption that the exciton is described as a coherent polarization (coherent

limit). An important future perspective is to investigate pump-probe spectroscopy with

selective excitation of a single branch (either lower or upper polariton branch) with a narrow

spectral band pulse. In addition to this, the effect of incoherence associated with a biexciton

in counter-circular polarization configuration is a very interesting issue. Actually, preliminary

results have been obtained by installing a pulse shaper for the optics of the pump beam. We

will discuss these in the next chapter.
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8 Future perspective

We discuss now the future directions of the experiment and the theoretical model in this

chapter. Experimentally, one of the important new experimental implementations is a pulse

shaper (See Fig. 4.3 in Chapter 4). In the experiments of previous sections, the broadband

pump pulse excites both lower and upper-polariton branch. By installing a pulse shaper in the

optical pathway of the pump beam, the spectral width of the pump pulse can be squeezed

to the linewidth of a single polariton branch (< 1 meV). The principle of pulse shaping is a

spectral filtering. After the pulse is spectrally decomposed by a grating, we pick up only a

narrowband part of the spectrum, then the spectrally decomposed pulse is recombined again

into the time domain by the grating. With this technique, we are able to excite only a single

branch of polariton (lower or upper polariton). In order to go further in the investigation of the

lower-upper cross interaction and the strength of dephasing of each branch, it is important to

excite a single polariton branch. This will give supplemental information to the broadband

pump-probe experiment described in previous sections.

In Fig. 8.1 we present preliminary results of pump-probe spectroscopy with a narrowband

pump pulse and a broadband probe pulse in the co-circular polarization configuration. In

the experiment (a) and simulation (c) only lower-polariton branch is excited by the pump.

On the other hand, in the experiment (b) and simulation (d), the pump pulse excites only

upper-polariton branch. Focusing on positive delays of the experiments, we find that the

center energy of the lower-polariton resonance returns to the reference black line in (a).

Meanwhile, in (b) the blueshift of the lower-polariton branch stays for long time (more than

10 ps) similarly to the results presented in Chapter 7, which indicates the existence of the

long-living incoherent exciton population. This result shows the importance to go further in

this kind of investigation by the excitation of a single polariton branch.
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Figure 8.1: Experimental and simulated probe transmission spectra as a function of pump-
probe delay with narrowband pump pulses. The measurements are done in the co-circular
polarization configuration. Only lower and upper polariton branch are excited by the pump
respectively in (a,c) and (b,d). The cavity detuning set at δ=-1.2 meV. The experimental pump
pulse intensity is 1.48×1013 (1 mW) photons pulse−1 cm−2. In the simulation, for (c) the
parameters are g0 and g ′ = 0 (coherent limit), while for (d) g0 and g ′ = 0.4g0 (with EID). The
other parameters are set as gpae = 0.3g0, γc = 0.1 meV, γ∗x = 0 meV and Γx = 0.01 meV. The
white dashed lines represent the cavity photon (εc ) and exciton (εx ) energies. The black dashed
lines are the lower and upper polariton resonance energies without a pump pulse. In the
simulation, the pump intensity is |F pu |2 = 0.15/g0. The pulse durations of the pump and
probe are respectively set to 1.5 ps and 2.1 ps. Here g0 has the same value as in Chapter 7.

The numerical simulations displayed in Fig. 8.1 are based on the excitonic Bloch equations

(EBE):

iħṄ = −iΓx N −2i (Ω−2gpaeN )Im[PE∗] (8.1)

iħṖ = (εx + g0N − iγx (N ))P + (Ω−2gpaeN )E (8.2)

iħĖ = (εc − ħ2

2mc
∇2 − iγc )E + (Ω− gpaeN )P − fext. (8.3)

The constants g0 and g ′ are respectively the real and imaginary parts of the exciton-exciton
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interaction g ,

g = g0 + i g ′. (8.4)

These are the same equations as Eq. 7.5-7.7 in Chapter 7. In order to qualitatively reproduce

the experiments, we need to assume coherent limit (g ′ = 0) in Fig. 8.1 (c), while the excitation

induced dephasing (EID) is necessary (g ′ = 0.4g0) in 8.1 (d). Let us note that the pump intensity

is same for both configurations.

These findings indicate that the formation of exciton reservoir is favoured when exciting the

upper-polariton branch. This leads to a surprising consequence: the frequency dependence

of the EID strength.

Even though these are preliminary results and it is too early to conclude, sophisticated the-

oretical ideas could be a hint for their explanations. Firstly, under the coherent limit, since

N (t) = |P (t)|2 is satisfied, the interacting part of the polarization in Eq. 8.2 is reduced to be

Qxx (t ) = g |P (t )|2P (t ). This interacting term can be generalized as [33, 51, 53, 52, 72]

Qxx (t ) = P∗(t )
∫

G(t ′ − t )P (t ′)P (t ′)d t ′. (8.5)

Here G(τ) =G(t ′ − t ) is a correlation function of the exciton-exciton interaction. In the deriva-

tion of the simple equations such as GP and EBE, we are implicitly assuming “Markovian"

approximation, G(t ′− t ) = (g0+i g ′)δ(t ′− t ). In this approximation, the interacting term Qxx (t )

is reduced back to the conventional form Qxx (t ) = (g0 + i g ′)|P (t )|2P (t ). The physical meaning

of this is to approximate the exciton-exciton as an instantaneous one (no retardation), which is

equivalent to the Hartree-Fock approximation [51, 113]. In the frequency domain, the Marko-

vian approximation means that the correlation function does not depend on frequencies. This

is easily understood, because the Fourier transformed correlation function is G(ω) = g0 + i g ′

under the Markovian approximation. Inversely speaking, if we take into account the real

exciton-exciton interaction correlation, G(ω) can depend on frequency.

Now, the question is what is the more realistic form of the interaction correlation function

G(ω)? Fortunately, several state of the arts theoretical works provide the shape of G(ω) based

on microscopic calculations based on T-matrix theory [33, 51, 53, 52, 72]. In Fig. 8.2, we redraw

the real and imaginary parts of the correlation function G(ω) of exciton-exciton interaction

with parallel spins in a GaAs single quantum well from [114]. The real and imaginary parts

respectively contribute the energy shift and EID. The imaginary part of the full correlation

function indicates the enhancement of the EID strength as the increase of the frequency.

It is probable that this frequency dependence of the EID strength explains the higher EID

strength in the upper-polariton branch in the narrow band pump-probe results (Fig. 8.1). In

the Markovian approximation, we approximate the full correlation as a frequency independent

function, which is the origin of the constants g0 and g ′ (See the right side of Fig. 8.2).
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Figure 8.2: Schematic representation of the correlation function of the exciton-exciton in-
teraction with parallel spins in a GaAs single quantum well. The real and imaginary parts of
the full correlation function is redrawn from [52] (left side). The right side is the Markovian
approximation of the full correlation function. ω0 is the frequency of the exciton resonance.

Furthermore, the full correlation function of exciton-exciton interaction with anti-parallel

spins provides a new view point to the two-channel model and the background interaction

employed in Chapter 6. As shown in Fig. 8.3 [114], the imaginary part of the correlation

function has a peak coming from the contribution of the bound biexciton. However, we should

note that in the full correlation there is a background contribution even without the biexciton,

which is similar to the parallel spins configuration. The contribution without the biexciton

effect is sometimes called “scattering continuum" [114, 115]. Focusing on the real part of

the full correlation (the left side of Fig. 8.3), we find that the dispersive shape originating

from the biexciton is shifted to downward due to the scattering continuum. In Chapter 6, we

approximated the full correlation as two contributions: frequency independent Markovian

part and discrete biexciton state (See the right side of Fig. 8.3) [116]. The former corresponds

to the attractive background interaction phenomenologically introduced as the constant

g+−, while the latter is the discrete biexciton state represented by ψ̂B with energy εB (=ħωB ).

Additionally, in this approximation, the dephasing effect (the imaginary part of the correlation)

is introduced as the large dephasing rate of the biexciton. In this sense, the two-channel model

used in Chapter 6 is the simplest model that can include the “non-Markovian" effect, where

the retardation is taken into account by the discrete biexciton state [116].
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Figure 8.3: Schematic representation of the correlation function of the exciton-exciton interac-
tion with anti-parallel spins in a GaAs single quantum well. The real and imaginary parts of the
full correlation function are redrawn from [114] (left side). The right side is the approximation
of the full correlation function. ω0 and ωB are respectively exciton and biexciton frequencies.
The biexciton frequency ωB is located below the exciton one due to the binding energy.

Finally, we comment on the possibility of the inclusion of the incoherent exciton and biexciton

populations in the exciton-biexciton coupling. Since the discussion above based on the

coherent limit, it is impossible to explicitly include the incoherent exciton population in

a unique way. In [35], the formation of biexcitons from incoherent exciton population is

investigated experimentally and the theorical model succeeded in describing it, but the

creation of biexcitons from the coherent exciton is neglected because a pump-probe delay

employed in the experiment is much longer than the coherence time of excitons. Here, one

probable solution to include both coherent and incoherent exciton in the biexciton formation

is to use the Brownian oscillator model of dephasing (Chapter 7) [109, 61, 110]. The advantage

of the Brownian oscillator model is that the equation itself is same as that of coherent limit

and the dephasing effect appears as an ensemble average. Therefore, we can directly use the

coherent exciton-biexciton coupling equations in Chapter 6.

In summary, the experiment with the spectrally narrowband pump is the starting point of a

deeper understanding of the many-body correlation effects of the exciton-exciton interaction.

In parallel to this, the development of an advanced theory is expected in the future to interpret

the experimental results.
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9 Conclusion

In this thesis, the polariton interaction in semiconductor microcavities has been investigated

through nonlinear spectroscopies. A semiconductor microcavity is a system composed of

a quantum well embedded between two Bragg mirrors. The strong coupling between an

exciton in the quantum well and a photon confined in the microcavity gives rise to a new

quasiparticle called a polariton. The polariton is a superposition state of an exciton and

a photon. The polariton-polariton interaction results from the excitonic component. The

various aspects of the polariton interaction have been experimentally studied by two different

types of nonlinear spectroscopies: two-dimensional Fourier transform (2DFT) four-wave

mixing and pump-probe spectroscopy.

Two-demensional Fourier (2DFT) transform spectroscopy is a powerful nonlinear spectroscopy

usually used in quantum chemistry to investigate vibrational states of molecules. 2DFT spec-

tra provide us the mutual anharmonicity of different vibrational states. In Chapter 5, this

technique has been applied to a semiconductor microcavity in order to probe the lower-lower

(upper-upper) polariton self-interactions and lower-upper polariton cross interaction. The self

and cross interactions have been presented respectively as diagonal and off-diagonal peaks in

2D spectra. The obtained 2D spectra have been firstly analysed by a double-sided Feynman

diagrams based on a third-order perturbation theory, followed by a non-perturbative numeri-

cal simulation based on Gross-Pitaevskii equations written in the polariton basis. Through

numerical simulations, the fine structure found in 2DFT spectra is identified as originating

from the polariton energy-momentum dispersion and the polariton-polariton interaction.

Since a polariton has two spin projections, spin-up and -down, the polariton-polariton in-

teraction depends on this spin configuration, and is called spinor polariton interaction. In

Chapter 6, the measurement of the spinor polariton interaction has been performed using

pump-probe spectroscopy with co- and counter-circularly polarization configuration. The

strength of interaction is measured via the meanfield energy shift of the transmitted probe

spectrum in presence of the pump beam. As a result, we have probed the spin anisotropic

nature of the polariton spinor interaction, repulsive and attractive interaction respectively

for polaritons with parallel and anti-parallel spins. Especially, for the polariton interaction
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with anti-parallel spins, the exciton bound molecule called biexciton carries an important

role. By controlling the lower-polariton energy with the cavity detuning, the coupling between

lower-polariton and biexciton has been shown to enhance the attractive polariton interac-

tion with anti-parallel spins when the energy of two lower-polariton reaches the biexciton

energy. Then at this resonance, the nature of the interaction switches from attractive to

repulsive. In addition to the modification of the polariton interaction, a strong loss of the

injected probe polaritons has been observed in the vicinity of the biexciton energy. We identify

both features as a scattering resonance of two lower-polaritons via a biexciton and named it

polaritonic Feshbach resonance. These experimental results have been examined based on

the Gross-Pitaevskii equations including biexciton states.

In Chapter 7, we have investigated the decoherence process in exciton-polaritons. Focusing on

the delay time dependence of the femtosecond pump-probe spectra, we have experimentally

proved that the decoherence induced by the excitation induced dephasing (EID) separates

the dynamics of the coherent exciton polarization and incoherent exciton population. The

experimental observation has been confirmed by an excitonic Bloch equations (EBE), which

can describe the dynamics of the incoherent population of excitons explicitly. These findings

of the incoherent exciton population could be linked with an inactive exciton reservoir.

Finally, we have sketched some future perspectives of the research, on going pump-probe

experiments with a narrow spectral band pump pulse. The preliminary experimental results

are very promising to shed light on the role of the self and cross polariton interactions. Ad-

ditionally, they open the way in the implementation of an advanced theory which takes into

account the many-body correlation effects in the exciton interactions. The experiments and

theoretical interpretations are still underway.

In summary, we have experimentally studied the polariton interactions through the nonlinear

spectroscopy technique and compared the experimental results with different theoretical

models. The investigations in this thesis are just the starting points of a deep understanding

of the exciton-polariton physics, which is interesting also in terms of future applications of

semiconductor microcavity devices.
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10 Appendix A: Phase correction

In this appendix, we explain the two steps of the phase correction process required for 2DFT

spectroscopy [42]. The first one is the phase correction for N times acquisition at a given delay.

The second one concerns the phase change associated with the motion of the delay stage.

10.1 Phase correction after an acquisition sequence

We acquire a FWM signal 20 times at each given delay τ0 and calculate the average. Now, let

us consider a phase drift during the 20 acquisitions. Since the FWM signal includes phase

information, in the worst case, the phase drift will average out the FWM signal. Thus, we have

to consider a correction process for the phase drift. Firstly, we define the FWM signal for nth

acquisition as

Sn(εt ). (10.1)

Since the delay is fixed at τ0 in this process, we abbreviate the delay dependence. Before

performing the phase correction, we apply a filter χ(ε) to Sn(ε) as

S′
n(ε) = Sn(ε)χ(ε). with χ(ε) ∈ [1,0] (10.2)

The value of χ(ε) is 0 or 1. If the deviation of the amplitude |S′
n(ε)| from the mean value over

20 acquisitions μ= |S′
n(ε)| is larger than the third of standard deviation 3σ, we consider it as

noise and discard it. Using the filtered signals, the absolute phase of the initial acquisition φ0

is calculated as

Aeiφ0 =
∫

S′
0(ε)dε (10.3)
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The absolute phase φ0 is used as a reference phase. The phase drift of the nth acquisition Δφn

is evaluated as

A′eiΔφ0 =
∫

S′
n(ε) · (S′

0(ε))∗dε (10.4)

Finally for the signal of nth acquisition, the phase drift is corrected as

Spc
n (ε) = S′

n(ε)e−iΔφ0 , (10.5)

where Spc
n (ε) is the phase corrected signal for nth acquisition. An example of the phase drift

correction is displayed in Fig. 10.1. We find that the phase drift during the 20 times acquisition

is corrected after this numerical process. The signal for a given delay τ0 is calculated as

S(εt ,τ0) = 1

N

∑
n=N

Spc
n (ε). (10.6)
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Figure 10.1: FWM signal before (a) and after (b) the phase drift correction process from [42].
The number of the acquisition is 20. A single shot measurement takes 100 ms. We find that the
phase drift is indeed corrected after the numerical correction process.
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10.2. Phase correction for 2DFT

10.2 Phase correction for 2DFT

Here, we explain the second phase correction step. As stated in Chapter 5, even if the phase

is stabilized at a given delay position, the phase changes when the delay stage moves (See

Fig. 10.2 (a)). Therefore, we apply a numerical phase correction to the FWM signal Scor(εt ,ετ)

[64, 68]. Phase correction is performed as Scor(εt ,τ) = S(εt ,τ)exp
( i
ħ (εcorτ− arg[S(εcor,τ)])

)
,

where εcor represents a phase correction frequency. The examples of S(εt ,τ) and Scor(εt ,τ) are

respectively presented in Fig. 10.2 (a) and (b). In Chapter 5, we chose the upper polariton

energy as the phase correction energy. For example, in Fig. 5.4 (cavity detuning is δ=-0.38

meV), the phase correction energy εcor is equal to 1.4883 eV.

(a) without phase correction (b) with phase correction

-π

π

de
la

y 
τ   (p

s)

emission energy εt (meV) emission energy εt (meV)

Figure 10.2: Before (a) and after (b) the phase correction with respect to the delay axis. The
arrow represent the phase correction energy εcor=1.4883eV.

We display experimental and simulated two-quantum 2D spectra with different phase cor-

rection energies in Fig. 10.3. The energy of the normal branch (NB) of the upper-polariton is

used as a reference in Fig. 10.3 (b,d), while the energy of the virtual branch (VB) of the lower-

polariton is employed as the reference in Fig. 10.3 (c,e). Form the simulated and experimental

spectra, we find that the phase correction process mainly shifts the ετ axis and affects the

amplitude of 2D spectrum, however, it does not change the fine structure of the peaks.
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Figure 10.3: Simulated two-quantum 2DFT spectra |S(εt ,ετ)| without (a) and with phase
correction (b,c). Meanwhile, (d) and (c) are experimental 2DFT spectra. The energy of the
normal branch (NB) of the upper-polariton is used as a reference in (b,d). On the other hand,
the energy of the virtual branch (VB) of the lower-polariton is employed as the reference in
(c,e). Arrows represent the phase correction energies εcor.
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11 Appendix B: Third-order perturbation
theory of 2DFT spectroscopy

In this Appendix, we explain the third-order perturbation theory of 2DFWM and introduce

the description of the double-sided Feynman diagrams. Indices A, B, C, O and P representing

Liouville-space pathways corresponding to those used for LP-LP and 2LP-LP groups in the

Chapter. 5 (See Fig. 5.5 and Fig. 5.6).

Ω*me E

Ω*eg E
εg

Ωme E*

Ωeg E*

εe

εm

Figure 11.1: An exciton system is represented as an ideal three-level system weakly coupled to
a classical electric field with a coupling constant Ω. g , e, and m respectively represent ground
state, first, and second excited state.

We consider an exciton system (harmonic oscillator) weakly interacting with a classical electric

field E and take into account only three levels (Fig. 11.1). The ground state |g 〉, the first |e〉 and

the second |m〉 excited states respectively represent one-exciton and two-exciton states. Now,

we construct 3×3 density matrix as following:

ρ =

⎛⎜⎝ ρg g ρ∗
eg ρ∗

mg

ρeg ρee ρ∗
me

ρmg ρme ρmm

⎞⎟⎠ . (11.1)

The Hamiltonian of the system H is composed of an eigen Hamiltonian H0 and coupling

Hamiltonian with electric fields μ: H = H0 +μ. H0 and μ are given by,

H0 =

⎛⎜⎝ εg 0 0

0 εe 0

0 0 εm

⎞⎟⎠ . (11.2)
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Chapter 11. Appendix B: Third-order perturbation theory of 2DFT spectroscopy

and

μ=

⎛⎜⎝ 0 Ωeg E∗ 0

Ω∗
eg E 0 Ωme E∗

0 Ω∗
me E 0

⎞⎟⎠ . (11.3)

Since the eigen Hamiltonian can be written as Ĥ0 = ε0ψ̂
†
xψ̂x , we find that εe = 〈e|Ĥ0|e〉 =

〈1|Ĥ0|1〉 = ε0 and εm = 〈m|Ĥ0|m〉 = 〈2|Ĥ0|2〉 = 2ε0. The Hamiltonian describing the lin-

ear coupling between the electric field and exciton is given by μ̂ =Ω0(E∗ψ̂x + ψ̂†
x E). Since

〈g |μ̂|e〉 = 〈0|μ̂|1〉 =Ω0E∗ and 〈e|μ̂|m〉 = 〈1|μ̂|2〉 =�
2Ω0E∗, Ωme =

�
2Ωeg holds in a linear (har-

monic) system. The time evolution of the density matrix ρ follows the Liouville-von Neumann

equation iħρ̇ = [H ,ρ] = Hρ−ρH . The equations of motion of 6 elements of the density matrix

can be explicitly listed as

iħρ̇mm = −iΓmρmm +Ωme Eρ∗
me −Ω∗

me E∗ρme

iħρ̇me = (εm −εe − iγ)ρme +Ω∗
me E(ρee −ρmm)−Ωeg E∗ρmg

iħρ̇mg = (εm −εg − iγ)ρmg +Ω∗
me Eρeg −Ω∗

eg Eρme

iħρ̇ee = −iΓeρee + (Ω∗
eg Eρ∗

eg −Ωeg E∗ρeg )− (Ω∗
me Eρ∗

me −Ωme E∗ρme ) (11.4)

iħρ̇eg = (εe −εg − iγ)ρeg +Ω∗
eg E(ρg g −ρee )+Ωme E∗ρmg

iħρ̇g g = −(Ω∗
eg Eρ∗

eg −Ωeg E∗ρeg ).

Here, Γe and Γm are respectively phenomenological decay rates of the population of the first

and second excited states. γ is the decay rate of the polarization. In the two-level system,

Γe and γ respectively correspond to the inverse of the lifetime T1 and the coherence time T2.

Since the above coupled equations cannot be solved analytically, we perturbatively expand

the density matrix into Taylor series of incident electric fields as

ρi j = ρ(0)
i j +ρ(1)

i j +ρ(2)
i j +ρ(3)

i j + ... (11.5)

The first, second and third-order density matrices can be written as

iħρ̇(1)
eg = (εe −εg − iγ)ρ(1)

eg +Ω∗
eg Eρ(0)

g g

iħρ̇(2)
g g = −(Ω∗

eg Eρ(1)∗
eg −Ωeg E∗ρ(1)

eg )

iħρ̇(2)
ee = −iΓeρee + (Ω∗

eg Eρ(1)∗
eg −Ωeg E∗ρ(1)

eg )

iħρ̇(2)
mg = (εm −εg − iγ)ρ(2)

mg +Ω∗
me Eρ(1)

eg (11.6)

iħρ̇(3)
eg = (εe −εg − iγ)ρ(3)

eg +Ω∗
eg E(ρ(2)

g g −ρ(2)
ee )+Ωme E∗ρ(2)

mg

iħρ̇(3)
me = (εm −εe − iγ)ρ(3)

me +Ω∗
me Eρ(2)

ee −Ωeg E∗ρ(2)
mg
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We then iteratively solve these perturbative equations in an analytical way. Before doing that,

we take into account phase-matching conditions associated with momenta and classify them

into “pathways". Considering three momentum channels: pump (k2 = 0), trigger (k1 = k), and

idler (kFW M =−k), the density matrix and incident electric field can be expressed as

ρ(n)
i j (t ) = ρ(n)

i j ,p (t )+ρ(n)
i j ,t (t )ei kx +ρ(n)

i j ,i (t )e−i kx and E = Ep (t )+Et (t )ei kx . (11.7)

Notice that, in a strict sense, when including three wave-vector channels, the density matrix

is extended to 9×9 matrix instead of 3×3. The density matrix is composed of 9 basis states:

|g , j 〉, |e, j 〉, and |m, j 〉 ( j = p, t , i ). On the pathways, we consider two cases: “one-quantum"

and “two-quantum" regimes. The former is the regime where the trigger pulse (k1 = k) arrives

before the pump one (k2 = 0), which is also called negative delay, while the latter is the regime

where the pump pulse (k2 = 0) arrives before the trigger one, which is also referred to as

positive delay. Firstly, in the one-quantum regime (negative delay), the pathways are

iħρ̇(1)
eg ,t = (εt

e −εt
g − iγ)ρ(1)

eg ,t +Ω∗
eg Etρ

(0)
g g

iħρ̇(2)
g g ,i =−Ω∗

eg Epρ
(1)∗
eg ,t

iħρ̇(2)
ee,i =−iΓeρ

(2)
ee,i +Ω∗

eg Epρ
(1)∗
eg ,t

iħρ̇(3)
eg ,i = (εi

e −εi
g − iγ)ρ(3)

eg ,i +Ω∗
eg Ep (ρ(2)

g g ,i −ρ(2)
ee,i )

iħρ̇(3)
me,i = (εi

m −εi
e − iγ)ρ(3)

me,i +Ω∗
me Epρ

(2)
ee,i .

(11.8)

Here, εp , εt , and εi respectively represent eigen energies of the pump, trigger, and idler.

Secondly, the two-quantum regime (positive delay), the pathways are

iħρ̇(1)
eg ,p = (εp

e −ε
p
g − iγ)ρ(1)

eg ,p +Ω∗
eg Epρ

(0)
g g

iħρ̇(2)
mg ,p = (εp

m −ε
p
g − iγ)ρ(2)

mg ,p +Ω∗
me Epρ

(1)
eg ,p

iħρ̇(3)
eg ,i = (εi

e −εi
g − iγ)ρ(3)

eg ,i +Ωme E∗
t ρ

(2)
mg ,p −Ωeg E∗

t ρ
(2)
mg ,p

(11.9)

Finally, the third order polarization can be calculated as

P (3) +c.c. = Tr [ρ(3)
i μ]

= Ωegρ
(3)
eg ,i +Ωmeρ

(3)
me,i +c.c. (11.10)

In the next section, we perform analytical calculations of the third-order polarization for

delta-function pump and trigger pulses.
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Chapter 11. Appendix B: Third-order perturbation theory of 2DFT spectroscopy

11.1 one-quantum regime (negative delay)

Firstly, we apply a further classification to the Eq. 11.8. The third-order density matrix of the

polarization is composed of the following three pathways A, B, and C:

path A

iħρ̇(1)
eg ,t = (εt

e −εt
g − iγ)ρ(1)

eg ,t +Ω∗
eg Etρ

(0)
g g ,p

iħρ̇(2)
g g ,i =−Ω∗

eg Epρ
(1)∗
eg ,t

iħρ̇(3),A
eg ,i = (εi

e −εi
g − iγ)ρ(3),A

eg ,i +Ω∗
eg Epρ

(2)
g g ,i

(11.11)

path B

iħρ̇(1)
eg ,t = (εt

e −εt
g − iγ)ρ(1)

eg ,t +Ω∗
eg Etρ

(0)
g g ,p

iħρ̇(2)
ee,i =−iΓeρ

(2)
ee,i +Ω∗

eg Epρ
(1)∗
eg ,t

iħρ̇(3),B
eg ,i = (εi

e −εi
g − iγ)ρ(3),B

eg ,i −Ω∗
eg Epρ

(2)
ee,i

(11.12)

path C

iħρ̇(1)
eg ,t = (εt

e −εt
g − iγ)ρ(1)

eg ,t +Ω∗
eg Etρ

(0)
g g ,p

iħρ̇(2)
ee,i =−iΓeρ

(2)
ee,i +Ω∗

eg Epρ
(1)∗
eg ,t

iħρ̇(3),C
me,i = (εi

m −εi
e − iγ)ρ(3),C

me,i +Ω∗
me Epρ

(2)
ee,i

(11.13)

We integrate Eqs. 11.11, 11.12, and 11.13 in an analytical way by taking the pump and trigger

pulses as

Ep (t ) = Ẽp (t )e−(i /ħ)εpu (t−τp ) and Et (t ) = Ẽt (t )e−(i /ħ)εtr (t−τt ). (11.14)

Ẽp (t ) and Ẽt (t ) respectively represent the pump and trigger pulse envelopes. For the analytical

integration, we assume delta-function pulse envelopes:

Ẽp (t ) = Ẽ 0
pδ(t −τp ) and Ẽt (t ) = Ẽ 0

t δ(t −τt ). (11.15)

Let us consider the path A. Using Eq. 11.14 and 11.15, we can directly integrate Eq. 11.11 in the

following way.

ρ(1)
eg ,t (t ) = 1

iħΩ
∗
eg e−(i /ħ)(εt

e−εt
g−iγ)t e(i /ħ)εtr τt

∫t

−∞
d t ′Ẽt (t ′)e(i /ħ)(εt

e−εt
g−iγ−εtr )t ′ρ(0)

g g ,p

= 1

iħΩ
∗
eg e−(i /ħ)(εt

e−εt
g−iγ)t e(i /ħ)εtr τt

∫t

−∞
d t ′Ẽ 0

t δ(t ′ −τt )e(i /ħ)(εt
e−εt

g−iγ−εtr )t ′ρ(0)
g g ,p

= 1

iħΩ
∗
eg Ẽ 0

t e−(i /ħ)(εt
e−εt

g−iγ)(t−τt )ρ(0)
g g ,p (11.16)
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11.1. one-quantum regime (negative delay)

ρ(2)
g g ,i (t ) = −(

1

iħ )Ω∗
eg e(i /ħ)εpuτp

∫t

−∞
d t ′Ẽp (t ′)e(i /ħ)(−εpu )t ′ρ(1)∗

eg ,t (t ′)

= −(
1

iħ )Ω∗
eg e(i /ħ)εpuτp

∫t

−∞
d t ′Ẽ 0

pδ(t ′ −τp )e(i /ħ)(−εpu )t ′ρ(1)∗
eg ,t (t ′)

= −(
1

iħ )Ω∗
eg Ẽ 0

p ρ(1)∗
eg ,t (τp )

= (
1

iħ )2|Ωeg |2Ẽ 0
p Ẽ 0∗

t e(i /ħ)(εt
e−εt

g+iγ)(τp−τt )ρ(0)∗
g g ,p (11.17)

ρ(3),A
eg ,i (t ) = (

1

iħ )Ω∗
eg e−(i /ħ)(εi

e−εi
g−iγ)t e(i /ħ)εpuτp

∫t

−∞
d t ′Ẽp (t ′)e(i /ħ)(εi

e−εi
g−iγ−εpu )t ′ρ(2)

g g ,i (t ′)

= (
1

iħ )Ω∗
eg e−(i /ħ)(εi

e−εi
g−iγ)t e(i /ħ)εpuτp

∫t

−∞
d t ′Ẽ 0

pδ(t ′ −τp )e(i /ħ)(εi
e−εi

g−iγ−εpu )t ′ρ(2)
g g ,i (t ′)

= (
1

iħ )Ω∗
eg Ẽ 0

p e−(i /ħ)(εi
e−εi

g−iγ)(t−τp )ρ(2)
g g ,i (τp )

= (
1

iħ )3Ω∗
eg |Ωeg |2Ẽ 0

p Ẽ 0
p Ẽ∗

t e−(i /ħ)(εi
e−εi

g−iγ)(t−τp )e(i /ħ)(εt
e−εt

g+iγ)(τp−τt )ρ(0)∗
g g ,p

= (
1

iħ )3Ω∗
eg |Ωeg |2Ẽ 0

p Ẽ 0
p Ẽ∗

t e−(i /ħ)(εi
e−εi

g−iγ)t3 e(i /ħ)(εt
e−εt

g+iγ)t1ρ(0)∗
g g ,p (11.18)

In the last line, the times t1 and t3 are respectively defined as

t1 = τp −τt and t3 = t −τp . (11.19)

We note that times t1 and t3 respectively correspond to τ and t in Chapter 5. Remembering Eq.

11.10, the contribution of the path A to the polarization is given by

P (3),A(t3, t1) =Ωegρ
(3),A
eg ,i (t3, t1). (11.20)

Similarity, the contribution of the path B and C to the polarization is given by

P (3),B (t3, t1) =Ωegρ
(3),B
eg ,i (t3, t1) (11.21)

and

P (3),C (t3, t1) =Ωmeρ
(3),C
me,i (t3, t1). (11.22)

After Fourier transformation in terms of times t1 and t3, we obtain 2DFT spectrum associated

with the path A.

S(3),A(ε3,ε1) ∝ P (3),A(ε3,ε1) = |Ωeg |4Ẽ 0
p Ẽ 0

p Ẽ 0∗
t · 1

i (ε3 −εi
e +εi

g )−γ
· 1

i (ε1 +εt
e −εt

g )−γ
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Chapter 11. Appendix B: Third-order perturbation theory of 2DFT spectroscopy

Repeating similar calculations for ρ(3),B
eg ,i and ρ(3),C

eg ,i , P (3),B (t3, t1) and P (3),B (t3, t1) now read,

S(3),B (ε3,ε1) ∝ P (3),B (ε3,ε1) = |Ωeg |4Ẽ 0
p Ẽ 0

p Ẽ 0∗
t · 1

i (ε3 −εi
e +εi

g )−γ
· 1

i (ε1 +εt
e −εt

g )−γ

S(3),C (ε3,ε1) ∝ P (3),B (ε3,ε1) =−|Ωme |2|Ωeg |2Ẽ 0
p Ẽ 0

p Ẽ 0∗
t · 1

i (ε3 −εi
m +εi

e )−γ
· 1

i (ε1 +εt
e −εt

g )−γ
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Figure 11.2: Double sided Feynman diagrams in one-quantum regime representing three
different Liouville-space pathways: path A, B, and C. Below the double-sided Feynman dia-
grams, we plot a signal corresponding to each diagram. Absorption ε1 and emission energies
ε3 respectively correspond to the Fourier transform counterpart of the time t1 and t3. Notice
that if there is no non-linearity, the FWM signal from path A+B cancels the signal path C.

In Fig. 11.2, we plot double-sided Feynman diagram for paths A, B, and C and the real part

of S(3),A , S(3),B , and S(3),C . Finally, the 2DFT signal in the one-quantum regime that can

be calculated as a sum of the path A, B, and C: S1Q = S(3),A + S(3),B + S(3),C . In the linear
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11.1. one-quantum regime (negative delay)

(harmonic) system the relation εm = 2εe and Ωme =
�

2Ωeg exist. Therefore, we can easily find

that, in this linear system, the path S(3),A +S(3),B cancels S(3),C and the FWM signal is zero

(S1Q (ε3,ε1) = 0). This consequence is intuitive because the FWM signal is associated with the

existence of nonlinearities and should not appear in the linear case. Generally, the nonlinearity

(aharmonicity) is introduced in two ways: with a saturation and with an energy-shift. The

saturation effect is the reduction of the exciton-photon coupling in the higher excited state

Ωme compared to the lower one Ωeg (Ωme <Ωeg ). A special example of the saturation effect is

that of two-level system. In this case, Ωme is zero and only paths A and B exist. In the case of

excitons in semiconductor quantum wells, the saturation effect appears due to the Fermionic

nature of excitons (the photon-assisted exchange scattering). We can say that a finite-level

system is intrinsically nonlinear. On the other hand, the energy-shift is defined as εm �= 2εe .

Namely, the repulsive (attractive) interaction of excitons induces the blue-(red) shift of the

energy of the two-exciton state εm . In quantum well excitons with parallel spins, the repulsive

interaction between excitons introduces a blue-shift of the two-excitons state (εm > 2εe ). We

plot the real and absolute value of S1Q (ε3,ε1) in Fig 11.3.
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Figure 11.3: The real and absolute value of 2DFT spectrum in one-quantum regime as a
summation of the path A, B, and C for two types of non-linearities: saturation (a) and blue-
shift (b). A striking difference appears in real parts of 2DFT spectra. While the blue-shift type
non-linearity displays dispersive shape in the real part, it does not appear in the saturation
type non-linearity.
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11.2 two-quantum regime (positive delay)

At positive delays (the trigger pulse arrives after the pump one), there are two Liouville-space

pathways:

path O

iħρ̇(1)
eg ,p = (εp

e −ε
p
g − iγ)ρ(1)

eg ,p +Ω∗
eg Epρ

(0)
g g ,p

iħρ̇(2)
mg ,p = (εp

m −ε
p
g − iγ)ρ(2)

mg ,p +Ω∗
me Epρ

(1)
eg ,p

iħρ̇(3),O
eg ,i = (εi

e −εi
g − iγ)ρ(3),O

eg ,i +Ωme E∗
t ρ

(2)
mg ,p

(11.23)

path P

iħρ̇(1)
eg ,p = (εp

e −ε
p
g − iγ)ρ(1)

eg ,p +Ω∗
eg Epρ

(0)
g g ,p

iħρ̇(2)
mg ,p = (εp

m −ε
p
g − iγ)ρ(2)

mg ,p +Ω∗
me Epρ

(1)
eg ,p

iħρ̇(3),P
me,i = (εi

m −εi
e − iγ)ρ(3),P

me,i −Ωeg E∗
t ρ

(2)
mg ,p

(11.24)

We directly integrate the Eq. 11.23. The explicit calculations of the first, second and third-order

density matrices are the following.

ρ(1)
eg ,p (t ) = 1

iħΩ
∗
eg e−(i /ħ)(εp

e −εp
g −iγ)t e(i /ħ)εpuτp

∫t

−∞
d t ′Ẽp (t ′)e(i /ħ)(εp

e −εp
g −iγ−εpu )t ′ρ(0)

g g ,p

= 1

iħΩ
∗
eg e−(i /ħ)(εp

e −εp
g −iγ)t e(i /ħ)εpuτp

∫t

−∞
d t ′Ẽ 0

pδ(t ′ −τp )e(i /ħ)(εp
e −εp

g −iγ−εpu )t ′ρ(0)
g g ,p

= 1

iħΩ
∗
eg Ẽ 0

p e−(i /ħ)(εp
e −εp

g −iγ)(t−τp )ρ(0)
g g ,p (11.25)

ρ(2)
mg ,p (t ) = 1

iħΩ
∗
me e−(i /ħ)(εp

m−εp
g −iγ)t e(i /ħ)εpuτp

∫t

−∞
d t ′Ẽp (t ′)e(i /ħ)(εp

m−εp
g −iγ−εpu )t ′ρ(1)

eg ,p (t ′)

= 1

iħΩ
∗
me e−(i /ħ)(εp

m−εp
g −iγ)t e(i /ħ)εpuτp

∫t

−∞
d t ′Ẽ 0

pδ(t ′ −τp )e(i /ħ)(εp
m−εp

g −iγ−εpu )t ′ρ(1)
eg ,p (t ′)

= 1

iħΩ
∗
me Ẽ 0

p e−(i /ħ)(εp
m−εp

g −iγ)(t−τp )ρ(1)
eg ,p (τp )

= (
1

iħ )2Ω∗
meΩ

∗
eg Ẽ 0

p Ẽ 0
p e−(i /ħ)(εp

m−εp
g −iγ)(t−τp )ρ(0)

g g ,p (11.26)

ρ(3),O
eg ,i (t ) = (

1

iħ )Ωme e−(i /ħ)(εi
e−εi

g−iγ)t e(i /ħ)εtr τt

∫t

−∞
d t ′Ẽ∗

t (t ′)e(i /ħ)(εi
e−εi

g−iγ−εtr )t ′ρ(2)
mg ,p (t ′)

= (
1

iħ )Ωme e−(i /ħ)(εi
e−εi

g−iγ)t e(i /ħ)εtr τt

∫t

−∞
d t ′Ẽ 0∗

t δ(t ′ −τt )e(i /ħ)(εi
e−εi

g−iγ−εtr )t ′ρ(2)
mg ,p (t ′)

= (
1

iħ )Ωme Ẽ 0∗
t e−(i /ħ)(εi

e−εi
g−iγ)(t−τt )ρ(2)

mg ,p (τt )
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= (
1

iħ )3|Ωme |2Ω∗
eg Ẽ 0∗

t Ẽ 0
p Ẽ 0

p e−(i /ħ)(εi
e−εi

g−iγ)(t−τt )e−(i /ħ)(εp
m−εp

g −iγ)(τt−τp )ρ(0)
g g ,p

= (
1

iħ )3|Ωme |2Ω∗
eg Ẽ 0∗

t Ẽ 0
p Ẽ 0

p e−(i /ħ)(εi
e−εi

g−iγ)t3 e−(i /ħ)(εp
m−εp

g −iγ)t1ρ(0)
g g ,p (11.27)

In the last line, times t1 and t3 are respectively defined as

t1 = τt −τp and t3 = t −τt . (11.28)

In the same way as in the one-quantum regime, t1 and t3 respectively correspond to τ and t in

Chapter 5.
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Figure 11.4: Double sided Feynman diagrams in the two-quantum regime representing two
different Liouville-space pathways: path O and P. Below the double-sided Feynman diagrams,
we plot the signal corresponding to each diagram. Absorption ε1 and emission ε3 energies
respectively correspond to the Fourier transform counterpart of the time t1 and t3.

The contributions of the paths O and E to the polarization are given by

P (3),O(t3, t1) =Ωegρ
(3),O
eg ,i (t3, t1) and P (3),P (t3, t1) =Ωmeρ

(3),P
me,i (t3, t1). (11.29)
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The FWM signal resulting from P (3),D
i (t3, t1) is

S(3),O(ε3,ε1) ∝ P (3),O(ε3,ε1) = |Ωme |2|Ωeg |2|Ẽ 0∗
t Ẽ 0

p Ẽ 0
p · 1

i (ε3 −εi
e +εi

g )−γ
· 1

i (ε1 −ε
p
m +ε

p
g )−γ

.

In a similar way to the path O, P (3),E
i (t3, t1) is calculated as

S(3),P (ε3,ε1) ∝ P (3),P (ε3,ε1) =−|Ωme |2|Ωeg |2Ẽ 0∗
t Ẽ 0

p Ẽ 0
p · 1

i (ε3 −εi
m +εi

e )−γ
· 1

i (ε1 −ε
p
m +ε

p
g )−γ

.

The double-sided Feynman diagrams of paths O and P and real values of S(3),O and S(3),P

are presented in Fig. 11.4. In the same way as the one-quantum region, paths O and P

cancel out each other and the total signal S2Q = S(3),O +S(3),P vanishes in the linear (harmonic)

system. However, the important difference from the one-quantum region is that energy-shift

type nonlinearity is required for the appearance of the signal S2Q (ε3,ε1). In other words,

S2Q (ε3,ε1) = 0 takes place even when the saturation type non-linearity exists (Ωeq �= Ωme ).

Therefore, two level systems such as atoms and quantum dots emit a FWM signal only in the

one-quantum region (negative delay). Actually the FWM signal in the two-quantum regime

(positive delay) is an evidence of energy-shift associated with exciton-exciton interactions.

Figure. 11.5 is the plot of the real and absolute value of P (3),2Q = 0 in the system with blue-shift

non-linearity

Ω*me E

Ω*eg E

Ωme E*

Ωeg E*
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ε3

Figure 11.5: Real and absolute value of 2DFT spectrum in two-quantum regime as a summation
of the path O and P for blue-shift type non-linearity. The blue-shift type non-linearity displays
dispersive shape in the real part of the spectrum. Since with a saturation type non-linearity,
paths O and P cancel out and no signal appears.

Finally, It is important to note that the electric field is weakly coupled to the exciton in this

system, thus there is no feedback action from the exciton to electric field. This situation
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11.2. two-quantum regime (positive delay)

completely changes when the electric field is confined inside a microcavity and strongly

coupled to the exciton. In the exciton-photon strong coupling system such as a semiconductor

microcavity, the new polariton eigenstates are good eigenstate and we need quasi-mode

formalism in order to map polariton system into the weak coupling formalism, which is

addressed in Chapter 5.
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12 Appendix C: Giant oscillator strength
model

In this appendix, we review the giant oscillator strength model. As explained in Chapter

6, we can consider two different types of biexciton creation mechanism: the bipolariton

model (x-x-B) [81, 50] and the giant oscillator strength model (x-c-B) [117, 118]. In Chapter

6, we used the bipolariton model. Here, we review the idea and possibility of using the giant

oscillator strength model. We will show that the giant oscillator strength model also models

the experiment in a reasonable way. In the bipolariton model, the biexciton is formed from

two excitons with opposite spins through the Coulomb interaction. On the other hand, in the

giant oscillator strength model, the biexciton is created from an exciton and a photon with

opposite spins through the oscillator strength of the biexciton.

12.0.1 Hamiltonian

Firstly, the Hamiltonian of the giant oscillator model is given by [118]

Ĥgiant = ∑
σ={↑↓}

∫
dx

1

2
gΩ

(
ψ̂Bψ̂

†
x,σψ̂

†
c,−σ+ψ̂x,σψ̂c,−σψ̂†

B

)
. (12.1)

The constant gΩ represents the strength of the exciton-photon-biexciton coupling. We

schematically present the Hamiltonian of the giant oscillator strength model in Fig. 12.1.

By replacing the bipolariton model with the giant oscillator strength model in the Hamiltonian

in Chapter 6 (See Eq. 6.1), we calculate the equations of motion of exciton, photon, and

biexciton wave-functions as follows:

iħψ̇x,↑ = (εx + g |ψx,↑|2 + g+−|ψx,↓|2 − iγx )ψx,↑

+1

2
gΩψBψ

∗
c,↓ + (Ω−2gpae|ψx,↑|2)ψc,↑ (12.2)

iħψ̇c,↑ = (εc − ħ2

2mc
∇2 − iγc )ψc,↑ +

1

2
gΩψBψ

∗
x,↓ + (Ω− gpae|ψx,↑|2)ψx,↑ − fext,↑ (12.3)
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Chapter 12. Appendix C: Giant oscillator strength model

iħψ̇B = (εB − iγB )ψB + 1

2
gΩ(ψx,↑ψc,↓ +ψc,↑ψx,↓). (12.4)

exciton with spin-up

biexciton

exciton-photon-biexciton coupling gΩ

σ- photon

exciton with spin-up

biexcitongΩ
gΩ

σ- photon

Figure 12.1: Schematic representation of the exciton-photon-biexciton coupling gΩ in the
giant oscillator strength model. The solid and wavy lines respectively represent an exciton
and a photon. The dashed lines are biexcitons. In this figure, we present only the creation
process of the biexciton from exciton with spin-up and σ− photon. However, the biexcion is
also formed from exciton with spin-down and σ+ photon.

Since the biexciton is involved only in an exciton-photon pair with opposite spins, we consider

only counter-circular polarization configuration in this appendix. In the same way as in

Chapter. 6, defining the vector of spin-down probe wavefunctions as �u = (ψpr
x↓ ,ψpr

c↓ ,ψB ), the

dynamics of the vector �u reads,

iħ d

d t
�u = M+−

Ω �u −�F pr
↑ . (12.5)

The matrix M+− is given by

M+−
Ω =

⎛⎜⎝ εx + g+−|ψpu
x,↓|2 − iγx Ω 1

2 gΩψ
pu∗
c↓

Ω εc − iγc
1
2 gΩψ

pu∗
x,↓

1
2 gΩψ

pu
c,↓

1
2 gΩψ

pu
x,↓ εB − iγB

⎞⎟⎠ . (12.6)

The dynamics of the pump wave functions are independently calculated as following,

iħψ̇pu
x↓ = (εx + g |ψpu

x,↓|2 − iγx )ψpu
x,↓ +Ωψ

pu
c,↓ (12.7)

iħψ̇pu
c,↓ = (εc − iγc )ψpu

c,↓ +Ωψ
pu
x,↓ − f pu

↓ . (12.8)

In contrast with the bipolariton model, the photonic component of the polarion is required to
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form the biexciton. Similarly to Fig. 6.6 in Chapter 6, we try to fit the experimental data by

finding the values of g+− and gΩ. The comparison between the simulation and experiment is

shown in Fig. 12.2, where we display the fitting of the experiment based on the giant oscillator

strength model with g++ = 2/n0, g+− =−0.65/n0, and gΩ = 1.3/
�

n0 meV.
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Figure 12.2: Same as Fig. 6.6 in Chapter 6 but concidering the giant oscillator strength model
as a biexciton formation process. The parameters for the simulations are g++ = 2/n0, g+− =
−0.65/n0, gbx = 1.3/

�
n0 meV.

12.0.2 Lower-polariton basis

Similarly to the discussion in Chapter 6, we derive lower-polariton interaction constants α1

and α2 in the framework of the giant oscillator strength model. The Hamiltonian is rewritten

in the lower-polariton basis as,

∑
σ={↑↓}

∫
dx − 1

2
gΩX0|C0|

(
ψ̂Bψ̂

†
L,σψ̂

†
L,−σ+ψ̂L,σψ̂L,−σψ̂†

B

)
, (12.9)

Le us note that, in the lower-polariton basis, no qualitative difference between the two models

(Compare Eq. 12.9 and Eq. 6.44.) is found except for the Hopfield coefficient in front of

the coupling constant between the lower-polariton and biexciton. Defining the probe and
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Figure 12.3: Same as Fig. 6.7 but concidering the giant oscillator strength model as the
biexciton creation process.

biexciton wave-functions �u:

�u(t ) =
(
ψ

pr
L,↑(t ),ψB (t )

)
. (12.10)

The equation of motion for the vector �u follows

iħ d

d t
�u = M+−

L �u −�F pr
↑ . (12.11)

The matrix M is defined as

M+−
L =

⎛⎝ εL,0 + g+−X 4
0 |ψ

pu
L,↓|2 − iγL −gΩX0|C0|ψpu∗

L,↓

−gΩX0|C0|ψpu
L,↓ εB − iγB

⎞⎠ , (12.12)

The analytical solution of ψpr
L,↑(ε) is given by

ψ
pr
L,↑(ε) =

[
εL,0 −ε + g+−X 4

0 |ψpu
L,↓|2 − iγL −

g 2
ΩX 2

0C 2
0 |ψ

pu
L,↓|2

εB −εL,0 −ε− iγB

]−1

. (12.13)

The approximate interaction constant of the lower-polaritons with opposite spins α2 reads,

α2 � g+−X 4
0 − g 2

bx X 2
0C 2

0(εB −2εL,0)

(εB −2εL,0)2 +γ2
B

. (12.14)
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The imaginary part of the interaction (decay associated with the biexciton coupling) is given

by

α′
2 �

g 2
ΩX 2

0C 2
0γ

2
B

(εB −2εL,0)2 +γ2
B

. (12.15)

The interaction constants α1, α2, and α′
2 are displayed in Fig. 12.3. In the bipolariton model

the polariton-biexciton coupling behaves as |X |4, while in the giant oscillator strength model,

it has a |C |2|X |2 detuning dependence. This is why the enhancement of the α2 interaction

constant with the increase of the cavity detuning is weaker than that in the bipolariton model.

12.0.3 Feshbach resonance

Moreover, we also fit the Feshbach resonance in Fig. 6.11 based on the giant oscillator strength

model using the following effective Hamiltonian,

Ĥeff = [ ψ̂x,↑ ψ̂c,↑ ψ̂B ]†

⎡⎢⎣ εx + g+−nx,↓ − iγx Ω 1
2 gΩ

�
nc,↓

Ω εc − iγc
1
2 gΩ

�
nx,↓

1
2 gΩ

�
nc,↓ 1

2 gΩ
�

nx,↓ εB − iγB

⎤⎥⎦
⎡⎢⎣ ψ̂x,↑

ψ̂c,↑
ψ̂B

⎤⎥⎦ ,

(12.16)

The fitting of the Feshbach resonance is presented in Fig. 12.4. The giant oscillator strength

model reproduces the experimental results reasonably well as far as the energy shift is con-

cerned. However, the shape of the absorption feature deviates from the experiment for both

very negative and positive detunings.
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Figure 12.4: Same as Fig. 6.11 but concidering the giant oscillator strength model as the
biexciton creation process. The coupling between exciton and biexciton is set to gΩ = 0.21
meV/

�
n0. The background interaction is g+− =−0.06 meV/

�
n0, where n0 is the normalized

density of spin-up polaritons.
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12.0.4 Summary

In this appendix, we have explained that the giant oscillator strength model also reproduces

the experimental results. Actually, due to the qualitative similarity of the two models, it is

difficult to determine which is more appropriate model for the biexciton formation. In Chapter

6, the bipolariton model is employed for modelling the biexciton effect based on the better

fitting of the absorption of polariton Feshbach resonance (See Fig. 12.4 (b) and Fig. 6.11

(b)). Finally, we should comment on the possibility of the coexistence of the two types of

couplings. The coexistence of the bipolariton model and giant oscillator strength model

is difficult to consider because the two coupling pathways constructively or destructively

interfere depending on the relative phase factor between them [55]. Even with an appropriate

phase the resonant absorption could not be well reproduced [55]. We should therefore choose

either bipolariton model or giant oscillator strength model for describing the polaritonic

Feshbach resonance.
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