000215110 001__ 215110 000215110 005__ 20190123024102.0 000215110 0247_ $$2doi$$a10.1016/j.sna.2016.01.011 000215110 022__ $$a0924-4247 000215110 02470 $$2ISI$$a000371186600013 000215110 037__ $$aARTICLE 000215110 245__ $$aA low-cost UWB sensor node powered by a piezoelectric harvester or solar cells 000215110 260__ $$aLausanne$$bElsevier$$c2016 000215110 269__ $$a2016 000215110 300__ $$a10 000215110 336__ $$aJournal Articles 000215110 500__ $$aIMT-NE Number : 833 000215110 520__ $$aWe propose an autonomous battery-less wireless sensor node that combines on a single printed circuit board an ultra-wideband (UWB) transmitter and its printed antenna, together with a piezoelectric cantilever and a solar cell array to harvest vibrations and light energy, respectively. The co-design of the solar cell array with the printed UWB antenna allows a prototype size of only 85x35 mm2, i.e., less than 65% of a credit card size. Low-cost is achieved by using inexpensive FR4 dual-layer substrate, standard-ceramic capacitors, and low-cost harvesters. The vibrational energy scavenger is fabricated at the wafer scale based on commercially available bulk polycrystalline Lead Zirconate Titanate (PZT), and the solar cells are fabricated by depositing amorphous-Si on 0.5 mm thick glass substrate. The cold-startup time of the demonstrator is about 42 min under indoor-ambient light conditions, and about 34 min under 700 mg vibrations at a frequency of 100 Hz. Once started, the sensor requires only 12.6 µW to allow a transmission rate of one temperature sensor readout every 34 s, thanks to the UWB transmitter that consumes only 206 pJ per pulse and a custom protocol with a reduced overhead. 000215110 6531_ $$aAutonomous battery-less sensor 000215110 6531_ $$aUltra-wideband transmitter 000215110 6531_ $$aPiezoelectric vibrational energy 000215110 6531_ $$aHarvester 000215110 6531_ $$aSolar cell 000215110 6531_ $$aSmart building 000215110 700__ $$0243672$$aBotteron, Cyril$$g190010 000215110 700__ $$0243293$$aBriand, Danick$$g188690 000215110 700__ $$0243693$$aMishra, Biswajit$$g206120 000215110 700__ $$0245435$$aTasselli, Gabriele$$g216850 000215110 700__ $$0243310$$aJanphuang, Pattanaphong$$g192069 000215110 700__ $$0243396$$aHaug, Franz-Josef$$g190209 000215110 700__ $$0242772$$aSkrivervik, Anja$$g106441 000215110 700__ $$0243273$$aLockhart, Robert$$g176825 000215110 700__ $$0243671$$aRobert, Christian$$g190088 000215110 700__ $$ade Rooij, Nicolas F. 000215110 700__ $$0243688$$aFarine, Pierre-André$$g152066 000215110 773__ $$j239$$q127-136$$tSensors and Actuators A: Physical 000215110 8564_ $$s2680431$$uhttps://infoscience.epfl.ch/record/215110/files/paper_833.pdf$$yPublisher's version$$zPublisher's version 000215110 909C0 $$0252263$$pESPLAB$$xU11964 000215110 909C0 $$0252091$$pLEMA$$xU10374 000215110 909C0 $$0252194$$pPV-LAB$$xU11963 000215110 909C0 $$0252173$$pSAMLAB$$xU10329 000215110 909CO $$ooai:infoscience.tind.io:215110$$pSTI$$particle$$qGLOBAL_SET 000215110 917Z8 $$x190010 000215110 917Z8 $$x190010 000215110 917Z8 $$x190010 000215110 917Z8 $$x190010 000215110 917Z8 $$x190047 000215110 917Z8 $$x190055 000215110 917Z8 $$x144315 000215110 937__ $$aEPFL-ARTICLE-215110 000215110 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED 000215110 980__ $$aARTICLE