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Chapter 1

Introduction

1.1 Background
Since the early times of Scala, there has always been a built-in way to do
code reflection.

Surprisingly, even in Scala 1.x, one could find the scala.reflect pack-
age that featured definitions of abstract syntax trees called Code along with
supporting data structures. In a type-directed fashion, users could request
lambda expressions to be lifted to their AST representation for future intro-
spection:

val x: Int = 0
val xtimesy: Code[Int => Int] = (y: Int) => x * y

The main goal of this functionality was to enable virtualization of Scala
code, providing a facility to transform lifted code according to domain-
specific rules. Code trees were quite incomplete, supporting only a subset
of Scala syntax.

The Scala 2.2 release introduced the Code.lift helper utility, which pro-
vided a way to obtain ASTs of arbitrary code snippets using a high-level
function call notation:

val x: Int = 0
val xtimes2: Code[Int] = Code.lift(x * 2)

Code.lift was in fact not a regular method but a special intrinsic whose
calls were replaced with lifted AST representations of its arguments in a
dedicated compiler phase.

5



6 CHAPTER 1. INTRODUCTION

The Scala 2.10 release, which arrived in early 2013, featured an experi-
mental macro system [1] that provided a way to write functions that trans-
formed ASTs at compile time. The Code AST used by Code.lift was aban-
doned in favor of a comprehensive Reflection API that exposed internal com-
piler data structures via a restricted public interface.

At the core of the newly introduced macro system was the reify function
that could construct Reflection API trees of its argument, much like its pre-
decessor Code.lift could construct Code trees. However, unlike Code.lift,
reify didn’t require a separate compiler phase and was purely macro-based
[1].

In the example below, reify is used to define the assert macro that
enapsulates a common debugging idiom. Note how reify not only creates
the code that will be returned by the macro, but also lets the programmer
to incorporate macro arguments into the final result.

package object asserts {
def assertionsEnabled = ...
def raise(msg: Any) = throw new AssertionError(msg)

def assert(cond: Boolean, msg: Any): Unit = macro assertImpl
def assertImpl(c: Context)(cond: c.Expr[Boolean],

msg: c.Expr[Any]): c.Expr[Unit] =
if (assertionsEnabled)
c.reify(if (!cond.splice) raise(msg.splice))

else
c.reify(())

}

In comparison with untyped macro systems of lisps, reify promised to
deliver strong guarantees with respect to well-typedness of generated code
and absense of inadvertent name clashes. For instance, code generated with
reify is guaranteed to be well-typed due to the fact that only typed snippets
can be spliced. Additionally, raise within the first reify block is guaranteed
to bind to asserts.raise in accordance with the traditional intuition of
lexical scoping. Both of these properties are possible due to the fact that
code generated via reify is typechecked on snippet-by-snippet basis1.

1However, additionally to being constructed via reify, instances of Expr could also be
created from manually constructed, untyped trees, and once the user does that, safety is
natually off the table.
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Curiously, the very guarantees that reify aimed to provide have led to
it being insufficiently flexible:

• Composition of code snippets was limited to composition of well-typed
terms (instances of Expr) based on other well-typed terms. This might
look like a good idea at first glance but ultimately it significantly re-
stricts modularity, as it often is impossible to split snippets into small,
yet still well-typed parts.

• There was no way to abstract over arity and generate code with variable
amount of subtrees. For example, one couldn’t generate a block that
has variable amount of statements inside.

• Lastly, reify only provided code generation functionality. There was
no support for pattern matching on existing code snippets to decompose
them into smaller pieces.

The limitations of reify often made it necessary to use raw tree con-
structors which were quite verbose and easy to get wrong considering the
fact that those trees were never designed for convenience of the end user but
rather for simplicity of the underlying compiler.

As a response to these problems, an alternative tool for code genara-
tion, quasiquotes, was introduced in the Scala 2.11 release [8]. The goal of
quasiquotes was to emphasize flexibility of tree manipulation and completely
eliminate the need to use the constructors of the data structures underlying
the ASTs of the Reflection API. All aforementioned problems of reify were
solved, albeit at the expense of safety.

With the help of quasiquotes, one might rewrite the previously demon-
strated macro implementation in the following way:

def assertImpl(c: Context)(cond: c.Tree, msg: c.Tree): c.Tree =
if (assertionsEnabled)
q"if ($cond) _root_.asserts.raise($msg)"

else
q"()"

As it can be seen, quasiquotes produce untyped trees and don’t require un-
quotees to be statically typed. As a result, one has to fully qualify referenced
names to ensure that, regardless of the environment where a macro expands,
they always bind to what the macro programmer intended.
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While the possibility for the generated code to be ill-typed is an unpleas-
ant downside, it is mostly compensated by the fact that the final result of
macro expansion is typechecked. Also, with the help of the Context.typecheck
API, it is also possible to pre-validate intermediate results during macro ex-
pansion whenever necessary.

Meanwhile, the possibility for inadvertent name clashes turned to be a
much bigger issue in practice. The lack of connection between scoping out-
side of quasiquote and scoping within quasiquotes causes numerous bugs in
macros which are quite hard to find and debug. Unfortunately, there is no
easy solution to this problem. In scalac, name resolution is inherently tied
to typechecking and one can’t just perform one without the other. But at
the same time one can’t typecheck quasiquotes as that would lose all the
flexibility advantage over reify.

1.2 Our contribution
As things currently stand, Scala’s macro system features two ways to con-
struct abstract syntax trees: reify, which provides binding integrity guar-
antees at the expense of flexibility, and quasiquotes, which enjoy ultimate
flexibility at a cost of exposing the programmer to inadvertent name clashes.

The main contribution of this work is a formal model of hygienic name
resolution and macro system that is flexible enough to provide missing safety
to quasiquotes. This makes it possible to combine the best of two worlds:
we get reasonable safety guarantees without sacrificing the notational conve-
nience of quasiquotes.

Towards this goal we build a three-tier formal model:

1. In Section 2 we define a core language that mimics Scala scoping and
common underlying primitives. This section roughly corresponds to
state of Scala before macros (e.g. Scala 2.9)

2. Then we proceed with a model of simple unhygienic macros in Section
3. We show detailed examples that illustrate why current system works
the way it does and why it’s not sufficient to sustain hygienic macros.
This section models Scala 2.10-2.11 typechecking and macro expansion.

3. After that in Section 4 we present an alternative name resolution and
AST re-typechecking schemes with an ultimate goal of providing hy-
gienic safety to blackbox macros written using quasiquotes.
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Each section has an accompanying formalization of typechecking and run-
time evaluation which serve as a foundation that makes it possible to reason
about properties of a typed language with rich scoping similar to Scala. We
do not formalize all of the features of quasiquotes present in Scala 2.11, only
the minimal subset that is required to illustrate hygiene challenges.

We are convinced that results of this research could be incorporated into
a full-fledged Scala compiler as a foundation for a hygienic macro system.
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Chapter 2

Base language

2.1 Syntax

v ::= Values:
l store location
xi ⇒ t function value

i, j, k ::= Symbols:
0 empty symbol
id globally unique id

x, y, z ::= Names:
x name with empty symbol (x0)
xi name with any symbol

a, b, c, t ::= Terms:
xi identifier
(xi : T )⇒ t function
t t application
{ s; t } block
new { zi ⇒ s } new
t.x selection

s ::= Statements:
val xi : T = t lazy val
import p._ wildcard import

p ::= Paths:
x identifier
p.x selection

A, B, C, T ::= Types:
{x : T} structural object type
T ⇒ T function type

Γ ::= p.xi : T Environment
µ ::= l 7→ {x = t} Store

Figure 2.1: Base syntax
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Before we proceed to model hygienic quasiquotes and macro expansion we
need to fully understand mechanics of current typechecking and the inherent
problems it has with respect to macros and quasiquotes.

For sake of simplicity we will inspect core ideas on a simple Scala-like
language with similar scoping and binding structure. This language is based
on simply-typed lambda calculus with blocks, anonymous objects with self-
recursion, local lazy vals and imports from objects as first-class modules. We
use straightforward structural types with subtyping to model anonymous
object values.

Additionally for our examples we assume that Int and Bool with cor-
responding constants and operations are also available as primitives in the
language even though we do not define them in the base calculus to keep
typing and evaluation rules small and easy to understand.

As you can see this language doesn’t yet have macros or quasiquotes. In
this section we’ll inspect typechecking and evaluation of the base language
only.

2.2 Scoping

In our language we aimed at having scoping and name resolution that are
extremely close to full-blown Scala. In particular we preserved template and
block scope unification that allows forward references:

{
val x: Int = y
val y: Int = 0
x

}

Here x can reference y. Semantics of evaluation is lazy so when the x value
is requested in the end of block it transitively requests y to be evaluated and
eventually results in both x and y having value 0 with value 0 being returned
from the block.

Similarly in objects any member can reference any other during its ini-
tialization:
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new { z =>
val div: Int = value / 10
val rem: Int = value % 10
val value: Int = 10

}

Here div and rem can reference value which is in the same scope but is
not necessarily defined earlier than it is being used. Similarly to blocks this
works due to the fact that fields are lazily initialized.

Our base language also supports wildcard imports from objects as first-
class modules. Similarly to Scala this means that for each member we in-
troduce corresponding identifiers into a scope of statements and terms below
it. For sake of simplicity we do not include full-blown Scala imports because
they only improve user convenience and do not bring anything new to the
name resolution mechanics.

{
val x: { value: Int } = new { val value: Int = 10 }
import x._
value // resolves to x.value

}

To avoid complicating the formalization we do not support import am-
biguities. If two imports in the same scope imports members with the same
name then latter will shadow the former.

{
val x: { value: Int } = new { val value: Int = 10 }
val y: { value: Int } = new { val value: Int = 20 }
import x._
import y._
value // resolves to y.value

}

In Scala such code would fail to compile with import ambiguity errror.

2.3 Typechecking
To model typechecking we use two co-recursive relations for typechecking of
terms (Γ ` t −→ t′ : T ) and statements (Γ ` stats { s } −→ { s′ }; Γ′).
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Similarly to Scala compiler we model expansion of identifiers to their fully-
qualified paths and attribution of symbols (unique identifiers) to definitions
and identifiers. Unlike in Scala symbols are attributed to identifiers only but
not to member selections. This is due to the fact that we have structural
type system rather than nominal one.

To model such expansions we construct lexical environment Γ as a map-
ping from names x to their (optional) prefix, symbol and type p.xi : T where
p.x is fully-qualified version of identifier x in current scope and i is unique
definition id. Path prefix is added for definitions which were brought into
scope using imports and to the members within new. Local definitions like
vals in blocks, function parameters and self definitions in new (z) have an
empty prefix.

Symbol attribution works in a following manner: whenever we see a defi-
nition we generate a fresh id for it and add corresponding entry to Γ. Even-
tually when our typechecker reaches leafs of the tree we lookup identifiers in
environment and replace it with their attributed versions, either with prefixes
(T-PrefixedIdent) or without them (T-LocalIdent).

p.x : T ∈ Γ

Γ ` x −→ p.x : T
(T-PrefixedIdent)

xi : T ∈ Γ

Γ ` x −→ xi : T
(T-LocalIdent)

i = freshId Γ, xi : A ` t −→ t′ : B

Γ ` (x : A)⇒ t −→ (xi : A)⇒ t′ : A⇒ B
(T-Func)

Γ ` t −→ t′ : A⇒ B Γ ` a −→ a′ : A

Γ ` t a −→ t′ a′ : B
(T-App)

Γ ` t −→ t′ : T T <: A

Γ ` t −→ t′ : A
(T-Sub)

Γ ` t −→ t′ : {x : A, y : B}
Γ ` t.x −→ t′.x : A

(T-Sel)

Figure 2.2: Term typing Γ ` t −→ t′ : T (Part 1)

For statements in block or object scope we first create symbols for all
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definitions in the scope using attribute meta-function to model forward refer-
ences. Then we extract all definitions from the scope using sig meta-function
and use this new custom scope to typecheck statement bodies and resolve
imports within the scope. The latter is done using helper ` stats relation.

s′ = attributeJsK xs = sigJs′K
Γ, xs ` stats { s′ } −→ { s′′ }; Γ′

Γ′ ` t −→ t′ : T

Γ ` { s; t } −→ { s′′; t′ } : T
(T-Block)

s′ = attributeJsK xs = sigJs′K i = freshId
zx = {zi.x : T | val xj : T = t ∈ s′}

Γ, zi : {xs}, zx ` stats { s′ } −→ { s′′ }; Γ′

Γ ` new { z ⇒ s } −→ new { zi ⇒ s′′ } : {xs}
(T-New)

Figure 2.3: Term typing Γ ` t −→ t′ : T (Part 2)

Statement typing checks that all statements are well-formed and also
performs import resolution (St-Import) returning a new environment where
all imports are resolved Γ′.

Γ ` stats {} −→ {}; Γ
(St-Empty)

Γ ` t −→ t′ : T Γ ` stats { s } −→ { s′ }; Γ′

Γ ` stats { val xi : T = t; s } −→ { val xi : T = t′; s′ }; Γ′ (St-Val)

Γ ` p −→ p′ : {y : A}
px = { p′.x : B | x : B ∈ y : A }
Γ, px ` stats { s } −→ { s′ }; Γ′

Γ ` stats { import p._; s } −→ { import p′._; s′ }; Γ′ (St-Import)

Figure 2.4: Statement typing Γ ` stats { s } −→ { s′ }; Γ′

Our previous typechecking judgements also depend on trivial structural
typing <: borrowed from [7] and two helper meta-functions (attributeJsK and
sigJsK).
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T <: T
(S-Refl)

A <: T T <: B

A <: B
(S-Trans)

C <: A B <: T

A⇒ B <: C ⇒ T
(S-Func)

{x : A, y : B} <: {x : A}
(S-Width)

∀ (A, B) ∈ zipJA,BK. A <: B

{x : A} <: {x : B}
(S-Depth)

{x : A} is a permutation of {y : B}
{x : A} <: {y : B}

(S-Perm)

Figure 2.5: Subtyping

sigJsK = { xi : T | val xi : T = t ∈ s }

Figure 2.6: sig meta-function

attributeJ∅K = ∅
attributeJval x : T = t; sK = val xi : T = t; attributeJsK
where i = freshId

attributeJimport p._; sK = import p._; attributeJsK

Figure 2.7: attribute meta-function

2.4 Evaluation
To simplify evaluation rules we erase all information that is not needed at
runtime using erase meta-function before actual evaluation. It removes all
type annotations and imports from the tree. We can safely remove imports
thanks to the fact that they have been fully resolved during typechecking.
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eraseJxiK = xi
eraseJ(xi : T )⇒ tK = xi ⇒ t
eraseJa bK = eraseJaK eraseJbK
eraseJ{ s; t }K = { eraseJsK; eraseJtK }
eraseJnew { zi ⇒ s }K = new { zi ⇒ eraseJsK }
eraseJt.xK = eraseJtK.x

eraseJ∅K = ∅
eraseJval xi : T = t; sK = val xi = t; eraseJsK
eraseJimport p._; sK = eraseJsK

Figure 2.8: erase meta-function

t1 | µ −→ t′1 | µ′

t1 t2 | µ −→ t′1 t2 | µ′ (E-App1)

t2 | µ −→ t′2 | µ′

v1 t2 | µ −→ v1 t
′
2 | µ′ (E-App2)

(xi ⇒ t) v | µ −→ [xi 7→ v]t | µ
(E-AppAbs)

{ val xi = t; t } | µ −→
{ val xi = t; [xi 7→ t]t } | µ

(E-Block1)

{ val xi = t; v } | µ −→ v | µ
(E-Block2)

l /∈ dom(µ)

new { zi ⇒ val xj = t } | µ −→
l | µ, l 7→ {x = [zi 7→ l]t}

(E-New)

t | µ −→ t′ | µ′

t.x | µ −→ t′.x | µ′ (E-Sel1)

µ(l) = {x = a, y = b}
l.x | µ −→ a | µ

(E-Sel2)

Figure 2.9: Evaluation t | µ −→ t′ | µ′
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Unhygienic macros

3.1 Syntax

v ::= New values:
q”t” term value provided unquotesJq”t”K ≡ ∅

t ::= New terms:
q”t” term quasiquote
$xi, ${t} term unquote

s ::= New statements:
macro xi(yj : A) : B = t macro

T ::= New types:
Term term type

Γ ::= p.xi : T Environment (indexed by x)
Ξ ::= macro xi(yj : A) : B = t Macro environment (indexed by x)

Figure 3.1: Unhygienic macro extension

To model current state of macros in Scala we add a simple form of term
quasiquotes with unquoting and corresponding data type Term. The com-
bination of these features can be used to write simple unhygienic macros:

19
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{
macro plus1(x: Int): Int = q"$x + 1"
val x: Int = 2
plus1 x

}

When macro is typechecked its body is replaced by the result of the evaluation
of the right-hand side and all names get resolved symbols:

{
macro plus11(x2: Int): Int = q"$x2 + 1"
val x3: Int = 2
x3 + 1

}

If identifiers are present in macro-generated code they are resolved in the
macro expansion scope rather then macro definition one. For example the
following code:

{
val x: Int = 1
macro plusx(e: Int): Int = q"$e + x"
{

val x: Int = 4
val y: Int = 5
plusx y

}
}

Will be expanded into:

{
val x1: Int = 1
macro plusx2(e3: Int): Int = q"$e3 + x"
{
val x4: Int = 4
val y5: Int = 5
y5 + x4

}
}
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Such behaviour is quite counter-intuitive and can be really confusing. At the
same time it’s exactly kind of scoping we have at the moment with macros
and quasiquotes in Scala 2.11.

3.2 Typechecking
To typecheck code that uses macros we need to augment our existing lexical
environment with compile-time knowledge about current macros in scope. To
do this we add another environment Ξ of the form macro xi(yj : A) : B = t.
This environment is disjoint with Γ and naturally augments it.

Most existing typing rules from base language are left as-is (T-PrefixedIdent),
(T-LocalIdent), (T-Func), (T-App), (T-Sub) and (T-Sel) apart from need to
add Ξ to the left hand side of the typing relation.

Apart from that we need to add a new rule for macro expansion.

macro xi(yj : A) : B = b ∈ Ξ
Γ; Ξ ` a −→ a′ : A

q”t” = evalJ[yj 7→ q”a′”]bK
t′ = resetJtK

Γ; Ξ ` t′ −→ t′′ : B

Γ; Ξ ` x a −→ t′′ : B
(T-MApp)

Figure 3.2: Term typing extension Γ; Ξ ` t −→ t′ : T (Part 1)

This rule performs following steps to expand a macro:

1. Looks up macro signature and body in macro environment.

2. Type checks macro argument against macro argument type from the
signature.

3. Evaluates macro body with macro argument replaced by the quotation
of the argument.

4. Removes all symbols from the result tree using reset meta-function.
This corresponds to resetAllAttrs function in Scala which tries to make
tree uniform with respect to attribution. We’ll discuss problems arising
on the mixing of attributed and unattributed trees in Section 3.4.2.
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5. Typechecks the tree after reset against macro result type.

6. And lastly replaces macro application with typechecked result of macro
evaluation.

Additionally we also need to tweak (T-Block) and (T-New) to make them
include macros in corresponding scopes.

s′ = attributeJsK xs = sigJs′K
Ξ ` macros { s′ } −→ { s′′ }; Ξ′

Γ, xs; Ξ′ ` stats { s′′ } −→ { s′′′ }; Γ′

Γ′; Ξ ` t −→ t′ : T

Γ; Ξ ` { s; t } −→ { s′′′; t′ } : T
(T-Block)

s′ = attributeJsK xs = sigJs′K
Ξ ` macros { s′ } −→ { s′′ }; Ξ′

i = freshId zx = {zi.x : T | val xj : T = t ∈ s}
Γ, zi : {xs}, zx; Ξ′ ` stats { s′′ } −→ { s′′′ }; Γ′

Γ; Ξ ` new { z ⇒ s } −→ new { zi ⇒ s′′′ } : {xs}
(T-New)

Figure 3.3: Term typing extension Γ; Ξ ` t −→ t′ : T (Part 2)

Unlike regular statements macros need to be already typechecked before
they are added to the environment. Considering that fact that any definition
can reference any macro we introduce another helper relation ` macros which
typechecks all macros in scope before typechecking vals and imports.

yj : Term; ∅ ` t −→ t′ : Term
Ξ ` macros { s } −→ { s′ }; Ξ′

xy = macro xi(yj : A) : B = t′

Ξ ` macros { macro xi(yj : A) : B = t; s } −→ { xy; s′ }; Ξ′, xy
(M-Macro)

s is not a macro Ξ ` macros { s } −→ { s′ }; Ξ′

Ξ ` macros { s; s } −→ { s; s′ }; Ξ′ (M-Other)

Figure 3.4: Macro statement typing Ξ ` macros { s } −→ { s′ }; Ξ′
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Γ; Ξ ` stats { s } −→ { s′ }; Γ′

Γ; Ξ ` stats { macro xj(yl : A) : B = t; s } −→ { macro xj(yl : A) : B = t; s′ }; Γ′

(St-Macro)

Figure 3.5: Statement typing extension Γ; Ξ ` stats { s } −→ { s′ }; Γ′

For sake of simplicity we make macros have isolated scope that can only
use value of the argument and nothing else from the outer scope.

Lastly we add another typing rule for quasiquotes. A quasiquote is con-
sidered to be well formed if all its unquotes are well-formed.

∀a ∈ unquotesJtK. Γ; Ξ ` a −→ a′ : Term
t′ = [a 7→ a′]t

Γ; Ξ ` q”t” −→ q”t′” : Term
(T-Quote)

Figure 3.6: Term typing extension Γ; Ξ ` t −→ t′ : T (Part 3)

Now that we’ve got extended typing rules the only thing left to do is to
extend existing helper meta-functions (attribute) and introduce a few new
ones (reset and unquotes).

attributeJmacro x(y : A) : B = tK = macro xi(yj : A) : B = t
where i = freshId, j = freshId

Figure 3.7: Extension to attribute meta-function

resetJxiK = x
resetJ(xi : T )⇒ tK = (x : T )⇒ t
resetJa bK = resetJaK resetJbK
resetJ{ s; t }K = { resetJsK; resetJtK }
resetJnew { zi ⇒ s }K = new { zi ⇒ resetJsK }
resetJt.xK = resetJtK.x

resetJ∅K = ∅
resetJval xi : T = t; sK = val x : T = t; resetJsK
resetJmacro xi(yj : A) : B = t; sK = macro x(y : A) : B = t; resetJsK
resetJimport p._; sK = resetJsK

Figure 3.8: reset meta-function
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unquotesJq”x”K = ∅
unquotesJq”(x : T )⇒ t”K = unquotesJq”t”K
unquotesJq”a b”K = unquotesJq”a”K ∪ unquotesJq”b”K
unquotesJq”{ t }”)K = unquotesJq”t”K
unquotesJq”{ val x : T = a; s; t }”)K =
unquotesJq”a”K ∪ unquotesJq”{ s; t }”K

unquotesJq”{ macro x(y : A) : B = b; s; t }”)K =
unquotesJq”b”K ∪ unquotesJq”{ s; t }”K

unquotesJq”{ import p._; s; t }”)K =
unquotesJq”p”K ∪ unquotesJq”{ s; t }”K

unquotesJq”new { z ⇒ s }”K = unquotesJq”{ s }”K
unquotesJq”t.x”K = unquotesJq”t”K
unquotesJq”q”t””K =

⋃
tu∈unquotesJq”t”K unquotesJq”tu”K

unquotesJq”${t}”K = t

Figure 3.9: unquotes meta-function

3.3 Evaluation

We augment previously defined erase meta-function to remove all macros
because they are a purely compile-time abstraction in our model.

eraseJq”t”K =
⋃
tu∈unquotesJq”t”K q”[tu 7→ eraseJtuK]t”

eraseJmacro x(y : A) : B = t; sK = eraseJsK

Figure 3.10: Extension to erase meta-function

Semantics of quasiquote evaluation is substitution of unquoted terms with
their values.

∀a ∈ unquotesJtK. a | µ −→ q”b” | µ′

t′ = [${a} 7→ b]t

q”t” | µ −→ q”t′” | µ′ (E-Quote)

Figure 3.11: Extension to evaluation t | µ −→ t′ | µ′
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Finally, we define a helper eval meta-function which erases and evaluates
a term in empty context:

evalJtK = t′′

where t′ = eraseJtK, t′ | µ −→ t′′ | µ′

Figure 3.12: eval meta-function

3.4 Challenges

3.4.1 Hygiene

As we’ve seen in previous examples, unhygienic macros have serious issues
which are caused by the way how name resolution works with respect to code
generated in macros.

Major problems of the current approach come from the fact that iden-
tifiers are resolved in macro expansion context completely disregarding the
scope where trees where created. For example in previous example:

{
val x: Int = 1
macro plusx(e: Int): Int = q"$e + x"
{
val x: Int = 4
val y: Int = 5
plusx y

}
}

One would intuitively expect x within quasiquote to bind to the outer x
definition, not the inner one similarly to how the variable would have been
captured in an anonymous function. This intuition corresponds to principle
of referential transparency.

Another common problem of naïve macro systems is inability to prevent
incorrect name space clashes that can happen when scopes of original code
and macro-generated code collapse. For example the following code:



26 CHAPTER 3. UNHYGIENIC MACROS

{
macro m(e: Int): Int = q"{
val tmp: Int = 2
$e

}"
val tmp: Int = 3
m {
tmp

}
}

Will expand into:

{
macro m1(e2: Int): Int = q"{
val tmp: Int = 2
$e2

}"
val tmp3: Int = 3
{
val tmp4: Int = 2
tmp4

}
}

Here one can see that expected binding between definition of outer tmp
and its usage gets captured by definition of the inner val with the same
name. This behaviour illustrates lack of hygiene in the narrow sense which
was originally stated in [6]:

Generated identifiers that become binding instances in the com-
pletely expanded program must only bind variables that are gen-
erated at the same transcription step.

Two of these propetries combined together are what’s commonly under-
stood as hygiene of the macro system.
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3.4.2 Composition of attributed and unattributed trees

Apart from the hygiene issues in Scala we also have problems of our own
which are caused by the fact that unlike most macro systems we also expose
type information and symbol information to the end user.

So now instead of handling one simple data structure compiler has to
be able to sanely handle mix of typed and untyped trees. Additionally it
also has to somehow coexist with typechecking optimizations which try to
minimize amount of work needed if tree is already typechecked.

A typical example of unfortunate interaction of all of these futures is an
assumption that if tree is typed then all its subtrees are typed too. This
invariant was quite a reasonable optimization before macros were added to
the language but now it can cause really unexpected bugs if macro decides
to insert an untyped transformed tree into a typed one causing it to never
being typechecked.

To counter this problems a number of helper functions were introduced
that lets user to drop type information from the tree if necessary (e.g. rese-
tAllAttrs and resetLocalAttrs). We use an equivalent of resetAllAttrs called
reset to simplify our unhygienic macro system. It lets us to only deal with
untyped trees as a result of macro expansion even though macro may return
a mix of typed an untyped trees.

In practice exposing users to those intricacies of underlying compiler de-
sign only leads to overly complicated API that requires deep understanding
of the internals. In our hygienic system we will strive to make such differences
completely transparent and let user not care about them at all.
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Chapter 4

Hygienic macros

4.1 Overview

To counter hygiene issues presented in the previous chapter we modify typ-
ing architecture by decoupling symbol resolution information (attribution of
symbols to definitions and identifiers) from typing environment. Such decou-
pling was originally pioneered by Kent Dybvig et al [5].

Instead of resolving symbols based on current scoping using current lexical
environment Γ, we split information stored in there in two parts:

1. Information needed to resolve symbols goes into lexical context σ, an
additional piece of metadata attached to every name in the program.
This metadata is going to be propagated down from the root of the
tree to leafs during typechecking.

2. Information about symbol meanings (or denotations) is going to be
stored separately in ∆ and Θ, two disjoint mappings from symbol ids
to the information about values and macros correspondingly. They
roughly correspond to Γ and Ξ in our previous unhygienic macro sys-
tem.

More concretely the data structures discussed above have the following
structure:

29
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∆ ::= i 7→ p.• : T Value denotation table
Θ ::= i 7→ macro(yj : A) : B = t Macro denotation table
σ ::= xσi 7→ xj Lexical context

Figure 4.1: Hygienic syntax extension (Part 1)

Lexical context itself is an ordered sequence of attributions xσi 7→ xj.
They encode that identifier x with symbol i and current context σ should
get resolved as xj. Initially before tree is typed both i and σ are set to
corresponding empty values and attributions look simply like x 7→ xj. Which
means that unattributed x resolves to j symbol.

Additionally we also need to slightly change name syntax to include lexical
context information:

x, y, z ::= Names:
x empty symbol and empty context (x∅0)
xi any symbol and empty context (x∅i )
xσi any symbol and any context

Figure 4.2: Hygienic syntax extension (Part 2)

Similarly we’ll also need to update all previous uses of name from xi to
xσi across other syntax definitions as every name that used to contain symbol
would now contain symbol and lexical context. Full syntax definition for
hygienic system can be found in A.1 appendix.

4.2 Referential transparency
Lexical context is built incrementally by propagating information down from
root to the leaves of the tree during typechecking. Propagation mechanics of
the lexical context can be illustrated using a simple program:

{
val x: Int = 1
(y: Int) => x + y

}
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When typechecking enters the block scope it would create a fresh symbol
for x and propagate attribution down the leafs so both x and y will get
x 7→ x1 in their σ.

Later on when typer reaches function node it would similarly create a new
symbol for function argument and propagate attribution down to function
body. The context of the identifiers in the body of the function will become
y 7→ y2, x 7→ x1.

Lastly when identifiers are typechecked they will resolve their names
using information in the lexical context. x identifier will typecheck as x1 and
y as y2.

Lets have a look at more complex example that involves macros and
quasiquotes.

{
val x: Int = 1
macro m(e: Int) = q"$e + x"
{
val x: Int = 2
m(x)

}
}

Once we typecheck statements in the outer block we’ll get

{
val x1: Int = 1
macro m2(e3: Int): Int = q"$e3 + x"
...

}

Which is quite similar to the end result of unhygienic typechecking with
one major difference. x identifier within quasiquote will in fact contain prop-
agated information about its enclosing scope so later on when macro is ex-
panded it will be able to use to correctly resolve it to x1 but not to the x
identifier within the inner block.

Later on typer will reach last expression in the block and will typecheck
inner block without yet expanding the macro:
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{
...
{
val x4: Int = 2
m(x4)

}
}

Here we can see that arguments of the macro get attributed before ac-
tual expansion. This means that identifiers in arguments will get non-zero
symbols and empty lexical contexts. Unlike in unhygienic system we do not
need to reset that information.

When macro expands we’ll finally get expected result:

{
...
{
val x4: Int = 2
x4 + x1

}
}

So as you can see name resolution in our system is performed with respect
to scope where trees were originally created, not the scope where macro
expands. This makes it referentially transparent.

4.3 Hygiene in the narrow sense

An important requirement for hygienic system is to be able to avoid name
clashes between definitions created by macro and definitions given by the end
user. Lets see how our previous example will fare in new system:
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{
macro m(e: Int): Int = q"{
val tmp: Int = 2
m $e

}"
val tmp: Int = 3
m {
tmp

}
}

Before expansion all current definitions and identifiers will get correspond-
ing symbols:

{
...
val tmp3: Int = 3
m1 {

tmp3
}

}

After we evaluate a macro we get a new tree that mixes attributed and
unattributed parts:

{
...
val tmp3: Int = 3
{
val tmp: Int = 2
tmp3

}
}

We start typechecking of the block by creation of fresh symbols to all
definitions in there and propagation of those attributions down to leafs of
the tree. So inner tmp will get attributed with symbol 4. This information
gets propagated to all names in the block in a form of lexical context update
tmp 7→ tmp4.
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Then we proceed to typechecking of the leafs of the tree: identifier tmp3.
According to information in lexical context tmp3 stays untouched as attribu-
tion tmp 7→ tmp4 doesn’t apply to it.

So finally we get following typechecked result:

{
...
val tmp3: Int = 3
{
val tmp4: Int = 2
tmp3

}
}

As you can see the bindings within argument were correctly left as-is and
still bind to outer tmp val.

What about situations when definitions were themselves located within
argument?

{
macro m(e: Int): Int = q"(tmp: Int) => $e"
m {

val tmp: Int = 2;
tmp

}
}

Before macro expands we’ll get:

{
...
m1 {

val tmp3: Int = 2;
tmp3

}
}

Once new tree is returned from a macro:
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{
...
(tmp: Int) => {
val tmp3: Int = 2;
tmp3

}
}

In Scalac situation like this might cause symbol ownership corruption is-
sues due to the fact that the symbol 3 was originally meant to be located
within a block, not a function, and when we substitute it into different context
the information stored in symbol gets out of touch with actual tree repre-
sentation and user has to fix it somehow by either resetting local symbols
(which usually causes name capture) or use complex and low-level techniques
to update existing symbols.

Our new system is able to robustly re-typecheck this code. Whenever we
see a definition that already contains a symbol like that tmp3 val we create
a new symbol for it despite that fact that it already had one and propagate
corresponding information down to the leafs. In this case we might assign
symbol 4 to function parameter, and 5 to the val. Lexical context update
will look like tmp3 7→ tmp5, tmp 7→ tmp4. Lastly only identifier in this scope
will get resolved to new symbol id tmp5.

{
...
(tmp4: Int) => {
val tmp5: Int = 2;
tmp5

}
}

So symbol resolution in our system is not only performed to resolve
unattributed identifiers but to also consistently update symbols. This al-
lows our system to uniformly treat attributed and unattributed trees.

4.4 Typechecking
Unlike in the case of unhygienic macro language extension, we need to update
most typing rules in the system with new treatment of definitions, symbols
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and name resolution. In this chapter we’ll provide key typing rules and meta-
functions that illustrate general structure of the system. Full type system
definition can be found in A.2 appendix.

We’ve already shown the structure an intuition behind lexical context but
haven’t specified precise behaviour of name resolution and identifier type-
checking.

xj = resolveJxσi K
j 7→ • : T ∈ ∆

∆; Θ ` xσi −→ xj : T
(T-LocalIdent)

xj = resolveJxσi K
j 7→ p.• : T ∈ ∆

∆; Θ ` xσi −→ p.x : T
(T-PrefixedIdent)

Figure 4.3: Extract of hygienic typing ∆; Θ ` t −→ t′ : T (Part 1)

Unlike in previous system we need to perform two steps to typecheck an
identifier. First we resolve a name based on lexical context stored within
it using resolve meta-function. Once we obtain a resolved symbol we look
up its denotation in corresponding denotation table and then perform ei-
ther expansion to fully-attributed path (T-PrefixedIdent) or expansion into
identifier with concrete symbol (T-LocalIdent). • sign in the definition of
value denotation means that name with given symbol should be substituted
instead of • to obtain a typechecked term.

Actual symbol resolution is performed by resolve meta-function:

resolveJx∅i K = xi

resolveJx
xσ

′
j 7→xk,σ

i K = xk
where resolveJxσ′

j K ≡ resolveJxσi K,

resolveJx
yσ

′
j 7→yk,σ

i K = resolveJxσi K

Figure 4.4: resolve meta-function

resolve deconstructs lexical context from left to right (from latest attri-
butions to earlier ones) looking for a attribution rule that applies to current
name. An attribution rule applies if name on the left hand side has the same
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symbol and name as the current one after recursive attributions. In the end
resolve returns either name with re-attributed symbol or the same name
with the same symbol but empty context if no rule was applicable.

It’s important to highlight that once name is resolved the lexical context
always becomes empty. This property lets us reason about lexical contexts
as purely typechecking-time abstraction that gets erased once all the names
has been resolved.

Another part we’ve not clearly defined is how lexical context is con-
structed. The main ideas of attributions and propagation can be illustrated
on typechecking of anonymous functions:

j = freshId t′ = propagateJxσi 7→ xj, tK
∆, j 7→ • : A; Θ ` t′ −→ t′′ : B

∆; Θ ` (xσi : A)⇒ t −→ (xj : A)⇒ t′′ : A⇒ B
(T-Func)

Figure 4.5: Extract of hygienic typing ∆; Θ ` t −→ t′ : T (Part 2)

Whenever we typecheck a definition like function parameter we always
generate a new symbol for it and propagate corresponding attribution down
to the leafs (which in this case means down to the body of the anonymous
function.)

All propagated changes also need to have mirrored changes to the corre-
sponding denotation table so that it’s possible not just to resolve an identifier
but to also typecheck it. Value denotation table ∆ contains mappings from
symbols to type and (optional prefix.) In this case we add entry that maps
freshly generated symbol to the type of the parameter.

Actual propagation of the context is performed by propagate helper meta-
function. This function walks the tree and prepends new context information
to the every name in the tree returning a copy of the tree where all names
have been propagated. Its definition can be found on Figure A.7 which is a
part of A.2 appendix.

As we’ve seen earlier ∆ gets updated with entries whenever we typecheck
a value definition in scope (e.g. function parameters, self definitions, vals)
which is really close to how we constructed Γ in unhygienic system. The only
difference is that every time we create a symbol we also need to propagate
down the leaves of the tree.

Similarly Θ is a representation of macros that is very similar to Ξ in pre-
vious system. It also gets filled in with entries during ` macros typechecking
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that happens whenever one typechecks a list of statement (e.g. as part of
new or block.)

Entries from Θ are looked up whenever a macro expands:

xj = resolveJxσi K
j 7→ macro(yk : A) : B = b ∈ Θ

Γ; Θ ` a −→ a′ : A
q”t” = evalJ[yk 7→ q”a′”]bK

Γ; Θ ` t −→ t′ : B

Γ; Θ ` xσi a −→ t′ : B
(T-MApp)

Figure 4.6: Extract of hygienic typing ∆; Θ ` t −→ t′ : T (Part 3)

Interestingly enough this is one of the parts of the typechecking that has
become simpler in hygienic settings as we don’t need to do extra step that re-
sets attributes. Otherwise it’s really close to previous macro application rule
with a minor change to two-step name resolution similarly to have identifiers
are resolved but only using Θ denotation table.

4.5 Evaluation
Evaluation rules stay exactly the same as in unhygienic extension. Final
definition of erasemeta-function and evaluation of erased terms can be found
in A.3 appendix.
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Related work

5.1 Scheme and Racket

This work has been heavily inspired by the lexical context system which
was originally presented in "Syntactic Abstraction in Scheme" [5] and is still
being used as a foundation for hygienic macro expansion in Racket [3].

Attributions in our model closely correspond to renamings in Scheme.
Unlike renamings they do not represent changes of names but rather represent
changes of symbols associated with names. Names always stay the same in
our model.

Another major difference from Scheme’s model is the fact that we do
not need marks to prevent clashes between macro-generated code and user-
defined code. This is caused by the fact that our macros expand in different
order (innermost macro expands first rather than outermost macro expands
first as in Scheme) and receive already attributed trees as an input. This
difference can be illustrated on a simple example:

(x: Int) => {
macro m(e: Int): Int => Int =
q"(x: Int) => $e + x"

m(x)
}

By the virtue of x argument being pretypechecked by the time when the
macro expands it’s possible to correctly resolve names without marking:

39
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(x1: Int) => {
...
(x: Int) => x1 + x

}

On the other hand if we were to have macros with untyped arguments we
would have run into name capturing problems without marks:

(x: Int) => {
macro m(e): Int => Int = q"(x: Int) => $e + x"
m(x)

}

This macro would expand as:

(x1: Int) => {
...
(x: Int) => x + x

}

And without marks there would be no way to tell which of those identifiers
should bind to the inner parameter and which should bind to the outer one.
Marks solve this problem by guiding name resolution to prefer definitions
that were generated in the same transcription step whenever possible.

Another major difference between Scheme and the proposed macro system
is the fact that we do not support bindings to definitions at macro expansion
site from macro generated code. On one hand this might look like a weakness
of our system but on the other hand intentional unhygienic bindings are not
practical in our setting due to the fact that macro arguments have to be typed
at macro expansion site before the actual macro expansion. This means that
typical examples that give rise to the need to escape hygiene (like anaphoric
macros) aren’t in fact possible in the first place.

In situations when a macro in fact does want to introduce bindings with
special meaning into scope one can use dummy methods that throw an ex-
ception if they were called outside of a macro and treat them specially inside
a macro.

For example the popular async [4] macro uses dummy await method that
only makes sense within async block. await calls deliminate boundaries of
CPS transform performed by the macro.
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import scala.async.Async.{async, await}

val future = async {
val f1 = async { ...; true }
val f2 = async { ...; 42 }
if (await(f1)) await(f2) else 0

}

This technique closely resembles syntax parameters in Racket [2].

5.2 Haskell
Similarly to our system Template Haskell [9] provides macro-like metapro-
gramming capabilities for Haskell including quasiquotes functionality. Like
in Scala quasiquotes in Haskell have multiple flavors that correspond to dif-
ferent syntactic kinds of trees they represent.

cross2 :: Expr -> Expr -> Expr
cross2 f g = [| \ (x,y) -> ($f x, $g y) |]

This code is analogous to the following snippet in a system like ours:

val cross2: (Term, Term) => Term
(f: Term, g: Term) => q"(x, y) => ($f(x), $g(y))"

Despite syntactic similarities Haskell snippet has significantly different
semantics. Unlike our hygienic quasiquotes which persist information about
enclosing lexical context and use it to create symbols during typechecking of
the tree, Haskell quasiquotes eagerly generate symbols for quoted definitions:

cross2 :: Expr -> Expr -> Expr
cross2 f g =
do { x <- gensym "x"

; y <- gensym "y"
; ft <- f
; gt <- g
; return (Lam [Ptup [Pvar x, Pvar y]]

(Tup [App ft (Var x), App gt (Var y)]))
}
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Here Expr is not just a data type that represents syntax trees but in
fact an alias to a data type which is enclosed in a Q monad. Therefore the
desugaring of the quasiquote is a pure monad-based representation of the
stateful computation.

type Expr = Q Exp

In our system quasiquotes can be safely desugared into plain AST con-
struction data types with materialized equivalents of enclosing lexical con-
text. All of the attribution mechanics is performed in the compiler and is
not exposed to the end user.

Another problem of eager naming is approach is poor support for de-
composing larger quasiquotes into smaller pieces. For example if we were to
refactor some piece of quasiquote into helper function:

cross2 :: Expr -> Expr -> Expr
cross2 f g = [| \ (x,y) -> ($fxf, $g y) |]
where fxf = fx f

fx :: Expr -> Expr
fx f = [| $f x |]

This would break the binding between an identifier x within fx and func-
tion parameter x within cross2. To fix this problem one has to resort either
to generation of fresh symbols by hand or to usage of unhygienic bindings.

Our system is able to handle such situations automatically thanks to
late-binding nature of the name resolution that we propose.
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Conclusions and future work

In this work we’ve built a fine-grained model of a Scala-like language with a
hygienic macro system. Using this model we were able to provide solutions
to three major problems of the current unhygienic macro system present in
Scala. In our system:

• Identifier bindings are referentially transparent.

• It is impossible to induce inadvertent variable capture.

• Re-typechecking is robust with respect to arbitrary combinations of
attributed and unattributed trees.

We strongly believe that these findings can be incorporated in a full-blown
Scala compiler to address those issues and make Scala macros hygienic.

Future work in this area might include extensions to the model incorpo-
rating more advanced features of Scala like type members, overloading and
implicits.
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Appendix A

Hygienic macro calculus

A.1 Syntax

v ::= Values:
l store location
xi ⇒ t function value
q”t” term value provided unquotesJtK ≡ ∅

i, j, k ::= Symbols:
0 empty symbol
id unique non-zero id

x, y, z ::= Names:
x empty symbol and empty context (x∅0)
xi any symbol and empty context (x∅i )
xσi any symbol and any context

a, b, c, t ::= Terms:
xσi identifier
(xσi : T )⇒ t function
t t application
{ s; t } block
new { zσi ⇒ s } new
t.x selection
q”t” term quotation
$xσi , ${t} term unquote

s ::= Statements:
val xσi : T = t lazy val
macro xσi (yσ

′
i : A) : B = t blackbox macro

import p._ wildcard import
p ::= Paths:

xσi identifier
p.x selection

A, B, C, T ::= Types:
{x : T} structural object type
T ⇒ T function type

∆ ::= i 7→ p.• : T Value denotation table
Θ ::= i 7→ macro(yj : A) : B = t Macro denotation table
σ ::= xσi 7→ xj Lexical context
µ ::= l 7→ {x = t} Store
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A.2 Typing

xj = resolveJxσi K
j 7→ • : T ∈ ∆

∆; Θ ` xσi −→ xj : T
(T-LocalIdent)

xj = resolveJxσi K
j 7→ p.• : T ∈ ∆

∆; Θ ` xσi −→ p.x : T
(T-PrefixedIdent)

j = freshId t′ = propagateJxσi 7→ xj, tK
∆, j 7→ • : A; Θ ` t′ −→ t′′ : B

∆; Θ ` (xσi : A)⇒ t −→ (xj : A)⇒ t′′ : A⇒ B
(T-Func)

∆; Θ ` t −→ t′ : A⇒ B ∆; Θ ` a −→ a′ : A

∆; Θ ` t a −→ t′ a′ : B
(T-App)

xj = resolveJxσi K
j 7→ macro(yk : A) : B = b ∈ Θ

Γ; Θ ` a −→ a′ : A
q”t” = evalJ[yk 7→ q”a′”]bK

Γ; Θ ` t −→ t′ : B

Γ; Θ ` xσi a −→ t′ : B
(T-MApp)

∆; Θ ` t −→ t′ : T T <: A

∆; Θ ` t −→ t′ : A
(T-Sub)

∀a ∈ unquotesJtK. Γ; Θ ` a −→ a′ : Term
t′ = [a 7→ a′]t

Γ; Θ ` q”t” −→ q”t′” : Term
(T-Quote)

Figure A.1: Hygienic term typing ∆; Θ ` t −→ t′ : T (Part 1)
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(s′, σ) = attributeJsK s′′ = propagateJσ, s′K
xj = { j 7→ • : T | val xj : T = t ∈ s′′ }

Θ ` macros { s′′ } −→ { s′′′ }; Θ′

∆, xj; Θ′ ` stats { s′′′ } −→ { s′′′′ }; ∆′; σ′

t′ = propagateJσ′, propagateJσ, tKK
∆′; Θ′ ` t′ −→ t′′ : T

∆; Θ ` { s; t } −→ { s′′′′; t′′ } : T
(T-Block)

j = freshId (s′, σ) = attributeJsK xs = sigJs′K
s′′ = propagateJzσi 7→ zj, propagateJσ, s′KK
xk = {k 7→ zj.• : T | val xk : T = t ∈ s′′}

Θ ` macros { s′′ } −→ { s′′′ }; Θ′

∆, j 7→ • : {xs}, xk; Θ′ ` stats { s′′′ } −→ { s′′′′ }; ∆′; σ′

∆; Θ ` new { zσi ⇒ s } −→ new { zj ⇒ s′′′′ } : {xs}
(T-New)

Figure A.2: Hygienic term typing ∆; Θ ` t −→ t′ : T (Part 2)

∆; Θ ` stats {} −→ {}; ∆; ∅
(St-Empty)

∆; Θ ` t −→ t′ : T ∆; Θ ` stats { s } −→ { s′ }; ∆; σ

∆; Θ ` stats { val xi : T = t; s } −→ { val xi : T = t′; s′ }; ∆; σ
(St-Val)

∆; Θ ` p −→ p′ : {y : A}
σ = { y 7→ yj | y ∈ y : A, j = freshId }

jp = { j 7→ p′.• : A | y 7→ yj ∈ c, y : A ∈ y : A}
s′ = propagateJσ, sK

∆, jp; Θ ` stats { s′ } −→ { s′′ }; ∆′; σ′

∆; Θ ` stats { import p._; s } −→ { s′′ }; ∆′; σ′, σ
(St-Import)

∆; Θ ` stats { s } −→ { s′ }; ∆′; σ′

∆; Θ ` stats { macro xj(yl : A) : B = t; s } −→ { macro xj(yl : A) : B = t; s′ }; ∆′; σ′

(St-Macro)

Figure A.3: Hygienic statement typing ∆; Θ ` stats { s } −→ { s′ }; ∆′; σ



A.2. TYPING 53

j 7→ • : Term; ∅ ` t −→ t′ : Term Θ ` macros { s } −→ { s′ }; Θ′

Θ ` macros { macro xi(yj : A) : B = t; s } −→
{ macro xi(yj : A) : B = t′; s′ }; Θ′, i 7→ macro(yj : A) : B = t′

(M-Macro)

s is not a macro Θ ` macros { s } −→ { s′ }; Θ′

Θ ` macros { s; s } −→ { s; s′ }; Θ′ (M-Other)

Figure A.4: Hygienic macro typing Θ ` macros { s } −→ { s′ }; Θ′

T <: T
(S-Refl)

A <: T T <: B

A <: B
(S-Trans)

C <: A B <: T

A⇒ B <: C ⇒ T
(S-Func)

{x : A, y : B} <: {x : A}
(S-Width)

∀ (A, B) ∈ zipJA,BK. A <: B

{x : A} <: {x : B}
(S-Depth)

{x : A} is a permutation of {y : B}
{x : A} <: {y : B}

(S-Perm)

Figure A.5: Subtyping

sigJsK = { x : T | val xci : T = t ∈ s }

Figure A.6: sig meta-function
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propagateJσ, xσ′

k K = xσ,σ
′

k

propagateJσ, (xσ
′

k : T )⇒ tK = (xσ,σ
′

k : T )⇒ propagateJσ, tK
propagateJσ, t aK = propagateJσ, tK propagateJσ, aK
propagateJσ, { s; t }K = { propagateJσ, sK; propagateJσ, tK }
propagateJσ, new { zσ′

k ⇒ s }K = new { zσ,σ
′

k ⇒ propagateJσ, sK }
propagateJσ, t.xK = propagateJσ, tK.x
propagateJσ, q”t”K = q”propagateJσ, tK”
propagateJσ, ${t}K = ${propagateJσ, tK}

propagateJσ, ∅K = ∅
propagateJσ, val xσ′

k : T = t; sK = val xσ,σ
′

k = t; propagateJσ, sK
propagateJσ, macro xσ′

i (yσ
′′

j : A) : B = t; sK =

macro xσ,σ
′

i (yσ,σ
′′

j : A) : B = propagateJσ, tK; propagateJσ, sK
propagateJσ, import p._; sK = import propagateJσ, pK._; propagateJσ, sK

Figure A.7: propagate meta-function

resolveJx∅i K = xi

resolveJx
xσ

′
j 7→xk,σ

i K = xk
where resolveJxσ′

j K ≡ resolveJxσi K,

resolveJx
yσ

′
j 7→yk,σ

i K = resolveJxσi K

Figure A.8: resolve meta-function

attributeJ∅K = (∅, ∅)
attributeJval xσi : T = t; sK = (val xj : T = t; s′, c′)
where j = freshId, (s′, c) = attributeJsK, c′ = c, xσi 7→ xj

attributeJimport p._; sK = (import p._; s′, c)
where (s′, c) = attributeJsK

attributeJmacro xσi (yσ
′

j : A) : B = t; sK = (macro xi′(yj′ : A) : B = t′; s′, c′)
where i′ = freshId, j′ = freshId,

t′ = propagateJyσ′
j 7→ yj′ , tK,

(s′, c) = attributeJsK, c′ = c, xσi 7→ xi′

Figure A.9: attribute meta-function
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unquotesJq”xσi ”K = ∅
unquotesJq”(xσi : T )⇒ t”K = unquotesJq”t”K
unquotesJq”a b”K = unquotesJq”a”K ∪ unquotesJq”b”K
unquotesJq”{ t }”)K = unquotesJq”t”K
unquotesJq”{ val xσi : T = a; s; t }”)K =
unquotesJq”a”K ∪ unquotesJq”{ s; t }”K

unquotesJq”{ macro xσi (yσ
′

j : A) : B = b; s; t }”)K =
unquotesJq”b”K ∪ unquotesJq”{ s; t }”K

unquotesJq”{ import p._; s; t }”)K =
unquotesJq”p”K ∪ unquotesJq”{ s; t }”K

unquotesJq”new { zσi ⇒ s }”K = unquotesJq”{ s; x }”K
unquotesJq”t.x”K = unquotesJq”t”K
unquotesJq”q”t””K =

⋃
a∈unquotesJq”t”K unquotesJq”a”K

unquotesJq”${t}”K = t

Figure A.10: unquotes meta-function

A.3 Evaluation

eraseJxσi K = xi
eraseJ(xσi : T )⇒ tK = xi ⇒ t
eraseJa bK = eraseJaK eraseJbK
eraseJ{ s; t }K = { eraseJsK; eraseJtK }
eraseJnew { zσi ⇒ s }K = new { zi ⇒ eraseJsK }
eraseJt.xK = eraseJtK.x
eraseJq”t”K =

⋃
a∈unquotesJq”t”K q”[a 7→ eraseJaK]t”

eraseJ∅K = ∅
eraseJval xσi : T = t; sK = val xi = t; eraseJsK
eraseJimport p._; sK = eraseJsK
eraseJmacro xσi (yσ

′
j : A) : B = t; sK = eraseJsK

Figure A.11: erase meta-function
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evalJtK = t′′

where t′ = eraseJtK, t′ | µ −→ t′′ | µ′

Figure A.12: eval meta-function

t1 | µ −→ t′1 | µ′

t1 t2 | µ −→ t′1 t2 | µ′ (E-App1)

t2 | µ −→ t′2 | µ′

v1 t2 | µ −→ v1 t
′
2 | µ′ (E-App2)

(xi ⇒ t) v | µ −→ [xi 7→ v]t | µ
(E-AppAbs)

{ val xi = a; b } | µ −→
{ val xi = a; [xi 7→ a]b } | µ

(E-Block1)

{ val xi = a; v } | µ −→ v | µ
(E-Block2)

l /∈ dom(µ)

new { zi ⇒ val xj = a } | µ −→
l | µ, l 7→ {x = [zi 7→ l]a}

(E-New)

t | µ −→ t′ | µ′

t.x | µ −→ t′.x | µ′ (E-Sel1)

µ(l) = {x = a, y = b}
l.x | µ −→ a | µ

(E-Sel2)

∀a ∈ unquotesJtK. a | µ −→ q”b” | µ′

t′ = [${a} 7→ b]t

q”t” | µ −→ q”t′” | µ′ (E-Quote)

Figure A.13: Evaluation of erased terms t | µ −→ t′ | µ′


